NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
An improved feature extraction algorithm based on KAZE for multi-spectral image
NASA Astrophysics Data System (ADS)
Yang, Jianping; Li, Jun
2018-02-01
Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.
Classification by Using Multispectral Point Cloud Data
NASA Astrophysics Data System (ADS)
Liao, C. T.; Huang, H. H.
2012-07-01
Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.
Sousa, Daniel; Small, Christopher
2018-02-14
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.
Small, Christopher
2018-01-01
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900
[A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].
Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong
2011-10-01
Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.
Morphological Feature Extraction for Automatic Registration of Multispectral Images
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
[Detecting fire smoke based on the multispectral image].
Wei, Ying-Zhuo; Zhang, Shao-Wu; Liu, Yan-Wei
2010-04-01
Smoke detection is very important for preventing forest-fire in the fire early process. Because the traditional technologies based on video and image processing are easily affected by the background dynamic information, three limitations exist in these technologies, i. e. lower anti-interference ability, higher false detection rate and the fire smoke and water fog being not easily distinguished. A novel detection method for detecting smoke based on the multispectral image was proposed in the present paper. Using the multispectral digital imaging technique, the multispectral image series of fire smoke and water fog were obtained in the band scope of 400 to 720 nm, and the images were divided into bins. The Euclidian distance among the bins was taken as a measurement for showing the difference of spectrogram. After obtaining the spectral feature vectors of dynamic region, the regions of fire smoke and water fog were extracted according to the spectrogram feature difference between target and background. The indoor and outdoor experiments show that the smoke detection method based on multispectral image can be applied to the smoke detection, which can effectively distinguish the fire smoke and water fog. Combined with video image processing method, the multispectral image detection method can also be applied to the forest fire surveillance, reducing the false alarm rate in forest fire detection.
Multispectral Palmprint Recognition Using a Quaternion Matrix
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049
Multispectral palmprint recognition using a quaternion matrix.
Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng
2012-01-01
Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.
NASA Astrophysics Data System (ADS)
McMackin, Lenore; Herman, Matthew A.; Weston, Tyler
2016-02-01
We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.
On-line object feature extraction for multispectral scene representation
NASA Technical Reports Server (NTRS)
Ghassemian, Hassan; Landgrebe, David
1988-01-01
A new on-line unsupervised object-feature extraction method is presented that reduces the complexity and costs associated with the analysis of the multispectral image data and data transmission, storage, archival and distribution. The ambiguity in the object detection process can be reduced if the spatial dependencies, which exist among the adjacent pixels, are intelligently incorporated into the decision making process. The unity relation was defined that must exist among the pixels of an object. Automatic Multispectral Image Compaction Algorithm (AMICA) uses the within object pixel-feature gradient vector as a valuable contextual information to construct the object's features, which preserve the class separability information within the data. For on-line object extraction the path-hypothesis and the basic mathematical tools for its realization are introduced in terms of a specific similarity measure and adjacency relation. AMICA is applied to several sets of real image data, and the performance and reliability of features is evaluated.
Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing
2015-01-01
This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2017-02-01
Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem
2016-01-01
The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088
Tissue classification for laparoscopic image understanding based on multispectral texture analysis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena
2016-03-01
Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Classification of human carcinoma cells using multispectral imagery
NASA Astrophysics Data System (ADS)
Ćinar, Umut; Y. Ćetin, Yasemin; Ćetin-Atalay, Rengul; Ćetin, Enis
2016-03-01
In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.
Multispectral image dissector camera flight test
NASA Technical Reports Server (NTRS)
Johnson, B. L.
1973-01-01
It was demonstrated that the multispectral image dissector camera is able to provide composite pictures of the earth surface from high altitude overflights. An electronic deflection feature was used to inject the gyro error signal into the camera for correction of aircraft motion.
Multispectral Analysis of NMR Imagery
NASA Technical Reports Server (NTRS)
Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.
1985-01-01
Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
D Land Cover Classification Based on Multispectral LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.
Digital enhancement of multispectral MSS data for maximum image visibility
NASA Technical Reports Server (NTRS)
Algazi, V. R.
1973-01-01
A systematic approach to the enhancement of images has been developed. This approach exploits two principal features involved in the observation of images: the properties of human vision and the statistics of the images being observed. The rationale of the enhancement procedure is as follows: in the observation of some features of interest in an image, the range of objective luminance-chrominance values being displayed is generally limited and does not use the whole perceptual range of vision of the observer. The purpose of the enhancement technique is to expand and distort in a systematic way the grey scale values of each of the multispectral bands making up a color composite, to enhance the average visibility of the features being observed.
Intelligent multi-spectral IR image segmentation
NASA Astrophysics Data System (ADS)
Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert
2017-05-01
This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.
Tissues segmentation based on multi spectral medical images
NASA Astrophysics Data System (ADS)
Li, Ya; Wang, Ying
2017-11-01
Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.
Multispectral Image Processing for Plants
NASA Technical Reports Server (NTRS)
Miles, Gaines E.
1991-01-01
The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
Feature extraction from multiple data sources using genetic programming
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.
2002-08-01
Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.
IMAGE 100: The interactive multispectral image processing system
NASA Technical Reports Server (NTRS)
Schaller, E. S.; Towles, R. W.
1975-01-01
The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.
Clancy, Neil T.; Stoyanov, Danail; James, David R. C.; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S.
2012-01-01
Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities. PMID:23082296
Cluster compression algorithm: A joint clustering/data compression concept
NASA Technical Reports Server (NTRS)
Hilbert, E. E.
1977-01-01
The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.
NASA Astrophysics Data System (ADS)
Wicaksono, Pramaditya; Salivian Wisnu Kumara, Ignatius; Kamal, Muhammad; Afif Fauzan, Muhammad; Zhafarina, Zhafirah; Agus Nurswantoro, Dwi; Noviaris Yogyantoro, Rifka
2017-12-01
Although spectrally different, seagrass species may not be able to be mapped from multispectral remote sensing images due to the limitation of their spectral resolution. Therefore, it is important to quantitatively assess the possibility of mapping seagrass species using multispectral images by resampling seagrass species spectra to multispectral bands. Seagrass species spectra were measured on harvested seagrass leaves. Spectral resolution of multispectral images used in this research was adopted from WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI. These images are widely available and can be a good representative and baseline for previous or future remote sensing images. Seagrass species considered in this research are Enhalus acoroides (Ea), Thalassodendron ciliatum (Tc), Thalassia hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea serrulata (Cs), Halodule uninervis (Hu), Halodule pinifolia (Hp), Syringodum isoetifolium (Si), Halophila ovalis (Ho), and Halophila minor (Hm). Multispectral resampling analysis indicate that the resampled spectra exhibit similar shape and pattern with the original spectra but less precise, and they lose the unique absorption feature of seagrass species. Relying on spectral bands alone, multispectral image is not effective in mapping these seagrass species individually, which is shown by the poor and inconsistent result of Spectral Angle Mapper (SAM) classification technique in classifying seagrass species using seagrass species spectra as pure endmember. Only Sentinel-2A produced acceptable classification result using SAM.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2016-10-01
Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanski, J. J.; Brumby, Steven P.; Pope, P. A.
Feature extration from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. The tool used is the GENetic Imagery Exploitation (GENIE) software, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniquesmore » to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land-cover features including towns, grasslands, wild fire burn scars, and several types of forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.« less
Application of multispectral scanner data to the study of an abandoned surface coal mine
NASA Technical Reports Server (NTRS)
Spisz, E. W.
1978-01-01
The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.
Multispectral image fusion for illumination-invariant palmprint recognition
Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064
Multispectral image fusion for illumination-invariant palmprint recognition.
Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.
Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei
2016-01-01
Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maier, Oskar; Wilms, Matthias; von der Gablentz, Janina; Krämer, Ulrike; Handels, Heinz
2014-03-01
Automatic segmentation of ischemic stroke lesions in magnetic resonance (MR) images is important in clinical practice and for neuroscientific trials. The key problem is to detect largely inhomogeneous regions of varying sizes, shapes and locations. We present a stroke lesion segmentation method based on local features extracted from multi-spectral MR data that are selected to model a human observer's discrimination criteria. A support vector machine classifier is trained on expert-segmented examples and then used to classify formerly unseen images. Leave-one-out cross validation on eight datasets with lesions of varying appearances is performed, showing our method to compare favourably with other published approaches in terms of accuracy and robustness. Furthermore, we compare a number of feature selectors and closely examine each feature's and MR sequence's contribution.
Semiconductor Laser Multi-Spectral Sensing and Imaging
Le, Han Q.; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555
Semiconductor laser multi-spectral sensing and imaging.
Le, Han Q; Wang, Yang
2010-01-01
Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.
NASA Astrophysics Data System (ADS)
Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero
2017-06-01
During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are no shadows on intensity images produced from the data. These are significant advantages in developing automated classification and change detection procedures.
Tunable filters for multispectral imaging of aeronomical features
NASA Astrophysics Data System (ADS)
Goenka, C.; Semeter, J. L.; Noto, J.; Dahlgren, H.; Marshall, R.; Baumgardner, J.; Riccobono, J.; Migliozzi, M.
2013-10-01
Multispectral imaging of optical emissions in the Earth's upper atmosphere unravels vital information about dynamic phenomena in the Earth-space environment. Wavelength tunable filters allow us to accomplish this without using filter wheels or multiple imaging setups, but with identifiable caveats and trade-offs. We evaluate one such filter, a liquid crystal Fabry-Perot etalon, as a potential candidate for the next generation of imagers for aeronomy. The tunability of such a filter can be exploited in imaging features such as the 6300-6364 Å oxygen emission doublet, or studying the rotational temperature of N2+ in the 4200-4300 Å range, observations which typically require multiple instruments. We further discuss the use of this filter in an optical instrument, called the Liquid Crystal Hyperspectral Imager (LiCHI), which will be developed to make simultaneous measurements in various wavelength ranges.
Optimal wavelength band clustering for multispectral iris recognition.
Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi
2012-07-01
This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Daniela Irina
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detectmore » geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.« less
NASA Astrophysics Data System (ADS)
Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.
2017-01-01
Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis
2011-03-01
Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.
Moody, Daniela; Wohlberg, Brendt
2018-01-02
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.
Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-05-15
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.
Automated road network extraction from high spatial resolution multi-spectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Qiaoping
For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.
Multispectral and geomorphic studies of processed Voyager 2 images of Europa
NASA Technical Reports Server (NTRS)
Meier, T. A.
1984-01-01
High resolution images of Europa taken by the Voyager 2 spacecraft were used to study a portion of Europa's dark lineations and the major white line feature Agenor Linea. Initial image processing of images 1195J2-001 (violet filter), 1198J2-001 (blue filter), 1201J2-001 (orange filter), and 1204J2-001 (ultraviolet filter) was performed at the U.S.G.S. Branch of Astrogeology in Flagstaff, Arizona. Processing was completed through the stages of image registration and color ratio image construction. Pixel printouts were used in a new technique of linear feature profiling to compensate for image misregistration through the mapping of features on the printouts. In all, 193 dark lineation segments were mapped and profiled. The more accurate multispectral data derived by this method was plotted using a new application of the ternary diagram, with orange, blue, and violet relative spectral reflectances serving as end members. Statistical techniques were then applied to the ternary diagram plots. The image products generated at LPI were used mainly to cross-check and verify the results of the ternary diagram analysis.
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
Development of online lines-scan imaging system for chicken inspection and differentiation
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Chan, Diane E.; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.
2006-10-01
An online line-scan imaging system was developed for differentiation of wholesome and systemically diseased chickens. The hyperspectral imaging system used in this research can be directly converted to multispectral operation and would provide the ideal implementation of essential features for data-efficient high-speed multispectral classification algorithms. The imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph for line-scan images. The system scanned the surfaces of chicken carcasses on an eviscerating line at a poultry processing plant in December 2005. A method was created to recognize birds entering and exiting the field of view, and to locate a Region of Interest on the chicken images from which useful spectra were extracted for analysis. From analysis of the difference spectra between wholesome and systemically diseased chickens, four wavelengths of 468 nm, 501 nm, 582 nm and 629 nm were selected as key wavelengths for differentiation. The method of locating the Region of Interest will also have practical application in multispectral operation of the line-scan imaging system for online chicken inspection. This line-scan imaging system makes possible the implementation of multispectral inspection using the key wavelengths determined in this study with minimal software adaptations and without the need for cross-system calibration.
Black, Robert W.; Haggland, Alan; Crosby, Greg
2003-01-01
Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.
Experiences with digital processing of images at INPE
NASA Technical Reports Server (NTRS)
Mascarenhas, N. D. A. (Principal Investigator)
1984-01-01
Four different research experiments with digital image processing at INPE will be described: (1) edge detection by hypothesis testing; (2) image interpolation by finite impulse response filters; (3) spatial feature extraction methods in multispectral classification; and (4) translational image registration by sequential tests of hypotheses.
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-01-01
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang’s method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used. PMID:29762519
NASA Astrophysics Data System (ADS)
Bell, James F.; Wellington, Danika; Hardgrove, Craig; Godber, Austin; Rice, Melissa S.; Johnson, Jeffrey R.; Fraeman, Abigail
2016-10-01
The Mars Science Laboratory (MSL) Curiosity rover Mastcam is a pair of multispectral CCD cameras that have been imaging the surface and atmosphere in three broadband visible RGB color channels as well as nine additional narrowband color channels between 400 and 1000 nm since the rover's landing in August 2012. As of Curiosity sol 1159 (the most recent PDS data release as of this writing), approximately 140 multispectral imaging targets have been imaged using all twelve unique bandpasses. Near-simultaneous imaging of an onboard calibration target allows rapid relative reflectance calibration of these data to radiance factor and estimated Lambert albedo, for direct comparison to lab reflectance spectra of rocks, minerals, and mixtures. Surface targets among this data set include a variety of outcrop and float rocks (some containing light-toned veins), unconsolidated pebbles and clasts, and loose sand and soil. Some of these targets have been brushed, scuffed, or otherwise disturbed by the rover in order to reveal the (less dusty) interiors of these materials, and those targets and each of Curiosity's drill holes and tailings piles have been specifically targeted for multispectral imaging.Analysis of the relative reflectance spectra of these materials, sometimes in concert with additional compositional and/or mineralogic information from Curiosity's ChemCam LIBS and passive-mode spectral data and CheMin XRD data, reveals the presence of relatively broad solid state crystal field and charge transfer absorption features characteristic of a variety of common iron-bearing phases, including hematite (both nanophase and crystalline), ferric sulfate, olivine, and pyroxene. In addition, Mastcam is sensitive to a weak hydration feature in the 900-1000 nm region that can provide insight on the hydration state of some of these phases, especially sulfates. Here we summarize the Mastcam multispectral data set and the major potential phase identifications made using that data set during the traverse so far in Gale crater, and describe the ways that Mastcam multispectral observations will continue to inform the ongoing ascent and exploration of Mt. Sharp, Gale crater's layered central mound of sedimentary rocks.
Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system
NASA Astrophysics Data System (ADS)
Wang, Yaoli; Chen, Yuanyuan
2018-07-01
An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.
Multispectral image enhancement for H&E stained pathological tissue specimens
NASA Astrophysics Data System (ADS)
Bautista, Pinky A.; Abe, Tokiya; Yamaguchi, Masahiro; Ohyama, Nagaaki; Yagi, Yukako
2008-03-01
The presence of a liver disease such as cirrhosis can be determined by examining the proliferation of collagen fiber from a tissue slide stained with special stain such as the Masson's trichrome(MT) stain. Collagen fiber and smooth muscle, which are both stained the same in an H&E stained slide, are stained blue and pink respectively in an MT-stained slide. In this paper we show that with multispectral imaging the difference between collagen fiber and smooth muscle can be visualized even from an H&E stained image. In the method M KL bases are derived using the spectral data of those H&E stained tissue components which can be easily differentiated from each other, i.e. nucleus, cytoplasm, red blood cells, etc. and based on the spectral residual error of fiber weighting factors are determined to enhance spectral features at certain wavelengths. Results of our experiment demonstrate the capability of multispectral imaging and its advantage compared to the conventional RGB imaging systems to delineate tissue structures with subtle colorimetric difference.
Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li
2015-07-01
Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.
NASA Astrophysics Data System (ADS)
Deng, S.; Katoh, M.; Takenaka, Y.; Cheung, K.; Ishii, A.; Fujii, N.; Gao, T.
2017-10-01
This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.
Assigning Main Orientation to an EOH Descriptor on Multispectral Images.
Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang
2015-07-01
This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.
Towards noncontact skin melanoma selection by multispectral imaging analysis.
Kuzmina, Ilona; Diebele, Ilze; Jakovels, Dainis; Spigulis, Janis; Valeine, Lauma; Kapostinsh, Janis; Berzina, Anna
2011-06-01
A clinical trial comprising 334 pigmented and vascular lesions has been performed in three Riga clinics by means of multispectral imaging analysis. The imaging system Nuance 2.4 (CRi) and self-developed software for mapping of the main skin chromophores were used. Specific features were observed and analyzed for malignant skin melanomas: notably higher absorbance (especially as the difference of optical density relative to the healthy skin), uneven chromophore distribution over the lesion area, and the possibility to select the "melanoma areas" in the correlation graphs of chromophores. The obtained results indicate clinical potential of this technology for noncontact selection of melanoma from other pigmented and vascular skin lesions.
NASA Technical Reports Server (NTRS)
1978-01-01
NASA remote sensing technology is being employed in archeological studies of the Anasazi Indians, who lived in New Mexico one thousand years ago. Under contract with the National Park Service, NASA's Technology Applications Center at the University of New Mexico is interpreting multispectral scanner data and demonstrating how aerospace scanning techniques can uncover features of prehistoric ruins not visible in conventional aerial photographs. The Center's initial study focused on Chaco Canyon, a pre-Columbia Anasazi site in northeastern New Mexico. Chaco Canyon is a national monument and it has been well explored on the ground and by aerial photography. But the National Park Service was interested in the potential of multispectral scanning for producing evidence of prehistoric roads, field patterns and dwelling areas not discernible in aerial photographs. The multispectral scanner produces imaging data in the invisible as well as the visible portions of the spectrum. This data is converted to pictures which bring out features not visible to the naked eye or to cameras. The Technology Applications Center joined forces with Bendix Aerospace Systems Division, Ann Arbor, Michigan, which provided a scanner-equipped airplane for mapping the Chaco Canyon area. The NASA group processed the scanner images and employed computerized image enhancement techniques to bring out additional detail.
Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri
2014-01-01
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Co-Registration Between Multisource Remote-Sensing Images
NASA Astrophysics Data System (ADS)
Wu, J.; Chang, C.; Tsai, H.-Y.; Liu, M.-C.
2012-07-01
Image registration is essential for geospatial information systems analysis, which usually involves integrating multitemporal and multispectral datasets from remote optical and radar sensors. An algorithm that deals with feature extraction, keypoint matching, outlier detection and image warping is experimented in this study. The methods currently available in the literature rely on techniques, such as the scale-invariant feature transform, between-edge cost minimization, normalized cross correlation, leasts-quares image matching, random sample consensus, iterated data snooping and thin-plate splines. Their basics are highlighted and encoded into a computer program. The test images are excerpts from digital files created by the multispectral SPOT-5 and Formosat-2 sensors, and by the panchromatic IKONOS and QuickBird sensors. Suburban areas, housing rooftops, the countryside and hilly plantations are studied. The co-registered images are displayed with block subimages in a criss-cross pattern. Besides the imagery, the registration accuracy is expressed by the root mean square error. Toward the end, this paper also includes a few opinions on issues that are believed to hinder a correct correspondence between diverse images.
Photogeologic mapping in central southwest Bahia, using LANDSAT-1 multispectral images. [Brazil
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Ohara, T.
1981-01-01
The interpretation of LANDSAT multispectral imagery for geologic mapping of central southwest Bahia, Brazil is described. Surface features such as drainage, topography, vegetation and land use are identified. The area is composed of low grade Precambrian rocks covered by Mezozoic and Cenozoic sediments. The principal mineral prospects of economic value are fluorite and calcareous rocks. Gold, calcite, rock crystal, copper, potassium nitrate and alumina were also identified.
Multispectral atmospheric mapping sensor of mesoscale water vapor features
NASA Technical Reports Server (NTRS)
Menzel, P.; Jedlovec, G.; Wilson, G.; Atkinson, R.; Smith, W.
1985-01-01
The Multispectral atmospheric mapping sensor was checked out for specified spectral response and detector noise performance in the eight visible and three infrared (6.7, 11.2, 12.7 micron) spectral bands. A calibration algorithm was implemented for the infrared detectors. Engineering checkout flights on board the ER-2 produced imagery at 50 m resolution in which water vapor features in the 6.7 micron spectral band are most striking. These images were analyzed on the Man computer Interactive Data Access System (McIDAS). Ground truth and ancillary data was accessed to verify the calibration.
NASA Astrophysics Data System (ADS)
Li, Jiao; Zhang, Songhe; Chekkoury, Andrei; Glasl, Sarah; Vetschera, Paul; Koberstein-Schwarz, Benno; Omar, Murad; Ntziachristos, Vasilis
2017-03-01
Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
Parallel evolution of image processing tools for multispectral imagery
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.
2000-11-01
We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.
NASA Astrophysics Data System (ADS)
Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.
2016-12-01
The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.
Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L
2014-02-01
Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.
NASA Technical Reports Server (NTRS)
Lovegreen, J. R.; Prosser, W. J.; Millet, R. A.
1975-01-01
A site in the Great Valley subsection of the Valley and Ridge physiographic province in eastern Pennsylvania was studied to evaluate the use of digital and analog image processing for geologic investigations. Ground truth at the site was obtained by a field mapping program, a subsurface exploration investigation and a review of available published and unpublished literature. Remote sensing data were analyzed using standard manual techniques. LANDSAT-1 imagery was analyzed using digital image processing employing the multispectral Image 100 system and using analog color processing employing the VP-8 image analyzer. This study deals primarily with linears identified employing image processing and correlation of these linears with known structural features and with linears identified manual interpretation; and the identification of rock outcrops in areas of extensive vegetative cover employing image processing. The results of this study indicate that image processing can be a cost-effective tool for evaluating geologic and linear features for regional studies encompassing large areas such as for power plant siting. Digital image processing can be an effective tool for identifying rock outcrops in areas of heavy vegetative cover.
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-12-09
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less
A fast and automatic mosaic method for high-resolution satellite images
NASA Astrophysics Data System (ADS)
Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing
2015-12-01
We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.
NASA Technical Reports Server (NTRS)
1973-01-01
Topics discussed include the management and processing of earth resources information, special-purpose processors for the machine processing of remotely sensed data, digital image registration by a mathematical programming technique, the use of remote-sensor data in land classification (in particular, the use of ERTS-1 multispectral scanning data), the use of remote-sensor data in geometrical transformations and mapping, earth resource measurement with the aid of ERTS-1 multispectral scanning data, the use of remote-sensor data in the classification of turbidity levels in coastal zones and in the identification of ecological anomalies, the problem of feature selection and the classification of objects in multispectral images, the estimation of proportions of certain categories of objects, and a number of special systems and techniques. Individual items are announced in this issue.
Alexandridis, Thomas K; Tamouridou, Afroditi Alexandra; Pantazi, Xanthoula Eirini; Lagopodi, Anastasia L; Kashefi, Javid; Ovakoglou, Georgios; Polychronos, Vassilios; Moshou, Dimitrios
2017-09-01
In the present study, the detection and mapping of Silybum marianum (L.) Gaertn. weed using novelty detection classifiers is reported. A multispectral camera (green-red-NIR) on board a fixed wing unmanned aerial vehicle (UAV) was employed for obtaining high-resolution images. Four novelty detection classifiers were used to identify S. marianum between other vegetation in a field. The classifiers were One Class Support Vector Machine (OC-SVM), One Class Self-Organizing Maps (OC-SOM), Autoencoders and One Class Principal Component Analysis (OC-PCA). As input features to the novelty detection classifiers, the three spectral bands and texture were used. The S. marianum identification accuracy using OC-SVM reached an overall accuracy of 96%. The results show the feasibility of effective S. marianum mapping by means of novelty detection classifiers acting on multispectral UAV imagery.
Fingerprint enhancement using a multispectral sensor
NASA Astrophysics Data System (ADS)
Rowe, Robert K.; Nixon, Kristin A.
2005-03-01
The level of performance of a biometric fingerprint sensor is critically dependent on the quality of the fingerprint images. One of the most common types of optical fingerprint sensors relies on the phenomenon of total internal reflectance (TIR) to generate an image. Under ideal conditions, a TIR fingerprint sensor can produce high-contrast fingerprint images with excellent feature definition. However, images produced by the same sensor under conditions that include dry skin, dirt on the skin, and marginal contact between the finger and the sensor, are likely to be severely degraded. This paper discusses the use of multispectral sensing as a means to collect additional images with new information about the fingerprint that can significantly augment the system performance under both normal and adverse sample conditions. In the context of this paper, "multispectral sensing" is used to broadly denote a collection of images taken under different illumination conditions: different polarizations, different illumination/detection configurations, as well as different wavelength illumination. Results from three small studies using an early-stage prototype of the multispectral-TIR (MTIR) sensor are presented along with results from the corresponding TIR data. The first experiment produced data from 9 people, 4 fingers from each person and 3 measurements per finger under "normal" conditions. The second experiment provided results from a study performed to test the relative performance of TIR and MTIR images when taken under extreme dry and dirty conditions. The third experiment examined the case where the area of contact between the finger and sensor is greatly reduced.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
Estimating atmospheric parameters and reducing noise for multispectral imaging
Conger, James Lynn
2014-02-25
A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.
Automatic Feature Extraction System.
1982-12-01
exploitation. It was used for * processing of black and white and multispectral reconnaissance photography, side-looking synthetic aperture radar imagery...the image data and different software modules for image queing and formatting, the result of the input process will be images in standard AFES file...timely manner. The FFS configuration provides the environment necessary for integrated testing of image processing functions and design and
Hanson, Erik A; Lundervold, Arvid
2013-11-01
Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.
Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas
NASA Astrophysics Data System (ADS)
Sun, X. F.; Lin, X. G.
2017-09-01
As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.
A novel scheme for abnormal cell detection in Pap smear images
NASA Astrophysics Data System (ADS)
Zhao, Tong; Wachman, Elliot S.; Farkas, Daniel L.
2004-07-01
Finding malignant cells in Pap smear images is a "needle in a haystack"-type problem, tedious, labor-intensive and error-prone. It is therefore desirable to have an automatic screening tool in order that human experts can concentrate on the evaluation of the more difficult cases. Most research on automatic cervical screening tries to extract morphometric and texture features at the cell level, in accordance with the NIH "The Bethesda System" rules. Due to variances in image quality and features, such as brightness, magnification and focus, morphometric and texture analysis is insufficient to provide robust cervical cancer detection. Using a microscopic spectral imaging system, we have produced a set of multispectral Pap smear images with wavelengths from 400 nm to 690 nm, containing both spectral signatures and spatial attributes. We describe a novel scheme that combines spatial information (including texture and morphometric features) with spectral information to significantly improve abnormal cell detection. Three kinds of wavelet features, orthogonal, bi-orthogonal and non-orthogonal, are carefully chosen to optimize recognition performance. Multispectral feature sets are then extracted in the wavelet domain. Using a Back-Propagation Neural Network classifier that greatly decreases the influence of spurious events, we obtain a classification error rate of 5%. Cell morphometric features, such as area and shape, are then used to eliminate most remaining small artifacts. We report initial results from 149 cells from 40 separate image sets, in which only one abnormal cell was missed (TPR = 97.6%) and one normal cell was falsely classified as cancerous (FPR = 1%).
An integrated compact airborne multispectral imaging system using embedded computer
NASA Astrophysics Data System (ADS)
Zhang, Yuedong; Wang, Li; Zhang, Xuguo
2015-08-01
An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
2016-10-18
Pluto's present, hazy atmosphere is almost entirely free of clouds, though scientists from NASA's New Horizons mission have identified some cloud candidates after examining images taken by the New Horizons Long Range Reconnaissance Imager and Multispectral Visible Imaging Camera, during the spacecraft's July 2015 flight through the Pluto system. All are low-lying, isolated small features -- no broad cloud decks or fields -- and while none of the features can be confirmed with stereo imaging, scientists say they are suggestive of possible, rare condensation clouds. http://photojournal.jpl.nasa.gov/catalog/PIA21127
Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwirth, P.N.; Lee, T.J.; Burne, R.V.
1993-03-01
A major problem for mapping shallow water zones by the analysis of remotely sensed data is that contrast effects due to water depth obscure and distort the special nature of the substrate. This paper outlines a new method which unmixes the exponential influence of depth in each pixel by employing a mathematical constraint. This leaves a multispectral residual which represents relative substrate reflectance. Input to the process are the raw multispectral data and water attenuation coefficients derived by the co-analysis of known bathymetry and remotely sensed data. Outputs are substrate-reflectance images corresponding to the input bands and a greyscale depthmore » image. The method has been applied in the analysis of Landsat TM data at Hamelin Pool in Shark Bay, Western Australia. Algorithm derived substrate reflectance images for Landsat TM bands 1, 2, and 3 combined in color represent the optimum enhancement for mapping or classifying substrate types. As a result, this color image successfully delineated features, which were obscured in the raw data, such as the distributions of sea-grasses, microbial mats, and sandy area. 19 refs.« less
A spectral reflectance estimation technique using multispectral data from the Viking lander camera
NASA Technical Reports Server (NTRS)
Park, S. K.; Huck, F. O.
1976-01-01
A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system.
Analysis of Multispectral Galileo SSI Images of the Conamara Chaos Region, Europa
NASA Technical Reports Server (NTRS)
Spaun, N. A.; Phillips, C. B.
2003-01-01
Multispectral imaging of Europa s surface by Galileo s Solid State Imaging (SSI) camera has revealed two major surface color units, which appear as white and red-brown regions in enhanced color images of the surface (see figure). The Galileo Near- Infrared Mapping Spectrometer (NIMS) experiment suggests that the whitish material is icy, almost pure water ice, while the spectral signatures of the reddish regions are dominated by a non-ice material. Two endmember models have been proposed for the composition of the non-ice material: magnesium sulfate hydrates [1] and sulfuric acid and its byproducts [2]. There is also debate concerning whether the origin of this non-ice material is exogenic or endogenic [3].Goals: The key questions this work addresses are: 1) Is the non-ice material exogenic or endogenic in origin? 2) Once emplaced, is this non-ice material primarily modified by exogenic or endogenic processes? 3) Is the non-ice material within ridges, bands, chaos, and lenticulae the same non-ice material across all such geological features? 4) Does the distribution of the non-ice material provide any evidence for or against any of the various models for feature formation? 5) To what extent do the effects of scattered light in SSI images change the spectral signatures of geological features?
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
A new clustering algorithm applicable to multispectral and polarimetric SAR images
NASA Technical Reports Server (NTRS)
Wong, Yiu-Fai; Posner, Edward C.
1993-01-01
We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.
NASA Astrophysics Data System (ADS)
Cheng, Jun-Hu; Jin, Huali; Liu, Zhiwei
2018-01-01
The feasibility of developing a multispectral imaging method using important wavelengths from hyperspectral images selected by genetic algorithm (GA), successive projection algorithm (SPA) and regression coefficient (RC) methods for modeling and predicting protein content in peanut kernel was investigated for the first time. Partial least squares regression (PLSR) calibration model was established between the spectral data from the selected optimal wavelengths and the reference measured protein content ranged from 23.46% to 28.43%. The RC-PLSR model established using eight key wavelengths (1153, 1567, 1972, 2143, 2288, 2339, 2389 and 2446 nm) showed the best predictive results with the coefficient of determination of prediction (R2P) of 0.901, and root mean square error of prediction (RMSEP) of 0.108 and residual predictive deviation (RPD) of 2.32. Based on the obtained best model and image processing algorithms, the distribution maps of protein content were generated. The overall results of this study indicated that developing a rapid and online multispectral imaging system using the feature wavelengths and PLSR analysis is potential and feasible for determination of the protein content in peanut kernels.
Nanohole-array-based device for 2D snapshot multispectral imaging
Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.
2013-01-01
We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
Information-Efficient Spectral Imaging Sensor With Tdi
Rienstra, Jeffrey L.; Gentry, Stephen M.; Sweatt, William C.
2004-01-13
A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.
Zhang, Dongyan; Zhou, Xingen; Zhang, Jian; Lan, Yubin; Xu, Chao; Liang, Dong
2018-01-01
Detection and monitoring are the first essential step for effective management of sheath blight (ShB), a major disease in rice worldwide. Unmanned aerial systems have a high potential of being utilized to improve this detection process since they can reduce the time needed for scouting for the disease at a field scale, and are affordable and user-friendly in operation. In this study, a commercialized quadrotor unmanned aerial vehicle (UAV), equipped with digital and multispectral cameras, was used to capture imagery data of research plots with 67 rice cultivars and elite lines. Collected imagery data were then processed and analyzed to characterize the development of ShB and quantify different levels of the disease in the field. Through color features extraction and color space transformation of images, it was found that the color transformation could qualitatively detect the infected areas of ShB in the field plots. However, it was less effective to detect different levels of the disease. Five vegetation indices were then calculated from the multispectral images, and ground truths of disease severity and GreenSeeker measured NDVI (Normalized Difference Vegetation Index) were collected. The results of relationship analyses indicate that there was a strong correlation between ground-measured NDVIs and image-extracted NDVIs with the R2 of 0.907 and the root mean square error (RMSE) of 0.0854, and a good correlation between image-extracted NDVIs and disease severity with the R2 of 0.627 and the RMSE of 0.0852. Use of image-based NDVIs extracted from multispectral images could quantify different levels of ShB in the field plots with an accuracy of 63%. These results demonstrate that a customer-grade UAV integrated with digital and multispectral cameras can be an effective tool to detect the ShB disease at a field scale.
Djiongo Kenfack, Cedrigue Boris; Monga, Olivier; Mpong, Serge Moto; Ndoundam, René
2018-03-01
Within the last decade, several approaches using quaternion numbers to handle and model multiband images in a holistic manner were introduced. The quaternion Fourier transform can be efficiently used to model texture in multidimensional data such as color images. For practical application, multispectral satellite data appear as a primary source for measuring past trends and monitoring changes in forest carbon stocks. In this work, we propose a texture-color descriptor based on the quaternion Fourier transform to extract relevant information from multiband satellite images. We propose a new multiband image texture model extraction, called FOTO++, in order to address biomass estimation issues. The first stage consists in removing noise from the multispectral data while preserving the edges of canopies. Afterward, color texture descriptors are extracted thanks to a discrete form of the quaternion Fourier transform, and finally the support vector regression method is used to deduce biomass estimation from texture indices. Our texture features are modeled using a vector composed with the radial spectrum coming from the amplitude of the quaternion Fourier transform. We conduct several experiments in order to study the sensitivity of our model to acquisition parameters. We also assess its performance both on synthetic images and on real multispectral images of Cameroonian forest. The results show that our model is more robust to acquisition parameters than the classical Fourier Texture Ordination model (FOTO). Our scheme is also more accurate for aboveground biomass estimation. We stress that a similar methodology could be implemented using quaternion wavelets. These results highlight the potential of the quaternion-based approach to study multispectral satellite images.
Binocular Multispectral Adaptive Imaging System (BMAIS)
2010-07-26
system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
An automated procedure for detection of IDP's dwellings using VHR satellite imagery
NASA Astrophysics Data System (ADS)
Jenerowicz, Malgorzata; Kemper, Thomas; Soille, Pierre
2011-11-01
This paper presents the results for the estimation of dwellings structures in Al Salam IDP Camp, Southern Darfur, based on Very High Resolution multispectral satellite images obtained by implementation of Mathematical Morphology analysis. A series of image processing procedures, feature extraction methods and textural analysis have been applied in order to provide reliable information about dwellings structures. One of the issues in this context is related to similarity of the spectral response of thatched dwellings' roofs and the surroundings in the IDP camps, where the exploitation of multispectral information is crucial. This study shows the advantage of automatic extraction approach and highlights the importance of detailed spatial and spectral information analysis based on multi-temporal dataset. The additional data fusion of high-resolution panchromatic band with lower resolution multispectral bands of WorldView-2 satellite has positive influence on results and thereby can be useful for humanitarian aid agency, providing support of decisions and estimations of population especially in situations when frequent revisits by space imaging system are the only possibility of continued monitoring.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Gimbaled multispectral imaging system and method
Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.
2016-01-26
A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.
van den Berg, Nynke S; Buckle, Tessa; KleinJan, Gijs H; van der Poel, Henk G; van Leeuwen, Fijs W B
2017-07-01
During (robot-assisted) sentinel node (SN) biopsy procedures, intraoperative fluorescence imaging can be used to enhance radioguided SN excision. For this combined pre- and intraoperative SN identification was realized using the hybrid SN tracer, indocyanine green- 99m Tc-nanocolloid. Combining this dedicated SN tracer with a lymphangiographic tracer such as fluorescein may further enhance the accuracy of SN biopsy. Clinical evaluation of a multispectral fluorescence guided surgery approach using the dedicated SN tracer ICG- 99m Tc-nanocolloid, the lymphangiographic tracer fluorescein, and a commercially available fluorescence laparoscope. Pilot study in ten patients with prostate cancer. Following ICG- 99m Tc-nanocolloid administration and preoperative lymphoscintigraphy and single-photon emission computed tomograpy imaging, the number and location of SNs were determined. Fluorescein was injected intraprostatically immediately after the patient was anesthetized. A multispectral fluorescence laparoscope was used intraoperatively to identify both fluorescent signatures. Multispectral fluorescence imaging during robot-assisted radical prostatectomy with extended pelvic lymph node dissection and SN biopsy. (1) Number and location of preoperatively identified SNs. (2) Number and location of SNs intraoperatively identified via ICG- 99m Tc-nanocolloid imaging. (3) Rate of intraoperative lymphatic duct identification via fluorescein imaging. (4) Tumor status of excised (sentinel) lymph node(s). (5) Postoperative complications and follow-up. Near-infrared fluorescence imaging of ICG- 99m Tc-nanocolloid visualized 85.3% of the SNs. In 8/10 patients, fluorescein imaging allowed bright and accurate identification of lymphatic ducts, although higher background staining and tracer washout were observed. The main limitation is the small patient population. Our findings indicate that a lymphangiographic tracer can provide additional information during SN biopsy based on ICG- 99m Tc-nanocolloid. The study suggests that multispectral fluorescence image-guided surgery is clinically feasible. We evaluated the concept of surgical fluorescence guidance using differently colored dyes that visualize complementary features. In the future this concept may provide better guidance towards diseased tissue while sparing healthy tissue, and could thus improve functional and oncologic outcomes. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Dual multispectral and 3D structured light laparoscope
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.
2015-03-01
Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.
Novel instrumentation of multispectral imaging technology for detecting tissue abnormity
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Kong, Linghua
2012-10-01
Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.
Pollutant monitoring of aircraft exhaust with multispectral imaging
NASA Astrophysics Data System (ADS)
Berkson, Emily E.; Messinger, David W.
2016-10-01
Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.
IIPImage: Large-image visualization
NASA Astrophysics Data System (ADS)
Pillay, Ruven
2014-08-01
IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.
2016-10-10
AFRL-RX-WP-JA-2017-0189 EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...March 2016 – 23 May 2016 4. TITLE AND SUBTITLE EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios
Remote sensing fusion based on guided image filtering
NASA Astrophysics Data System (ADS)
Zhao, Wenfei; Dai, Qinling; Wang, Leiguang
2015-12-01
In this paper, we propose a novel remote sensing fusion approach based on guided image filtering. The fused images can well preserve the spectral features of the original multispectral (MS) images, meanwhile, enhance the spatial details information. Four quality assessment indexes are also introduced to evaluate the fusion effect when compared with other fusion methods. Experiments carried out on Gaofen-2, QuickBird, WorldView-2 and Landsat-8 images. And the results show an excellent performance of the proposed method.
Multispectral imaging with vertical silicon nanowires
Park, Hyunsung; Crozier, Kenneth B.
2013-01-01
Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156
EO-1 analysis applicable to coastal characterization
NASA Astrophysics Data System (ADS)
Burke, Hsiao-hua K.; Misra, Bijoy; Hsu, Su May; Griffin, Michael K.; Upham, Carolyn; Farrar, Kris
2003-09-01
The EO-1 satellite is part of NASA's New Millennium Program (NMP). It consists of three imaging sensors: the multi-spectral Advanced Land Imager (ALI), Hyperion and Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30 m resolution. The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently the only space-borne HSI data source since the launch of EO-1 in late 2000. The discussion begins with the unique capability of hyperspectral sensing to coastal characterization: (1) most ocean feature algorithms are semi-empirical retrievals and HSI has all spectral bands to provide legacy with previous sensors and to explore new information, (2) coastal features are more complex than those of deep ocean that coupled effects are best resolved with HSI, and (3) with contiguous spectral coverage, atmospheric compensation can be done with more accuracy and confidence, especially since atmospheric aerosol effects are the most pronounced in the visible region where coastal feature lie. EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed. In this presentation, it is first illustrated that hyperspectral data inherently provide more information for feature extraction than multispectral data despite Hyperion has lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare favorably with data from other sources. The analysis illustrates the potential value of Hyperion (and HSI in general) data to coastal characterization. Future measurement requirements (air borne and space borne) are also discussed.
NASA Technical Reports Server (NTRS)
Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.
1974-01-01
Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.
Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.
2014-01-01
Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging—Spectroscopy—Habitability—Arm instrument. Astrobiology 14, 132–169. PMID:24552233
Reproducible high-resolution multispectral image acquisition in dermatology
NASA Astrophysics Data System (ADS)
Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir
2015-07-01
Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.
Documentation of procedures for textural/spatial pattern recognition techniques
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Bryant, W. F.
1976-01-01
A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.
NASA Astrophysics Data System (ADS)
Kim, H. O.; Yeom, J. M.
2014-12-01
Space-based remote sensing in agriculture is particularly relevant to issues such as global climate change, food security, and precision agriculture. Recent satellite missions have opened up new perspectives by offering high spatial resolution, various spectral properties, and fast revisit rates to the same regions. Here, we examine the utility of broadband red-edge spectral information in multispectral satellite image data for classifying paddy rice crops in South Korea. Additionally, we examine how object-based spectral features affect the classification of paddy rice growth stages. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the crop condition in heterogeneous paddy rice crop environments, particularly when single-season image data were used. This positive effect appeared to be offset by the multi-temporal image data. Additional texture information brought only a minor improvement or a slight decline, although it is well known to be advantageous for object-based classification in general. We conclude that broadband red-edge information derived from conventional multispectral satellite data has the potential to improve space-based crop monitoring. Because the positive or negative effects of texture features for object-based crop classification could barely be interpreted, the relationships between the textual properties and paddy rice crop parameters at the field scale should be further examined in depth.
The Multispectral Imaging Science Working Group. Volume 2: Working group reports
NASA Technical Reports Server (NTRS)
Cox, S. C. (Editor)
1982-01-01
Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.
Multi-spectral black meta-infrared detectors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Krishna, Sanjay
2016-09-01
There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).
Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis.
Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L; Hwang, Jae Youn
2016-12-01
We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis.
Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.
2014-01-01
Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.
Multispectral computational ghost imaging with multiplexed illumination
NASA Astrophysics Data System (ADS)
Huang, Jian; Shi, Dongfeng
2017-07-01
Computational ghost imaging has attracted wide attention from researchers in many fields over the last two decades. Multispectral imaging as one application of computational ghost imaging possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters or dispersive optical devices to separate light of different wavelengths, and then use multiple bucket detectors or an array detector to record them separately. Here, we propose a novel multispectral ghost imaging method that uses one single bucket detector with multiplexed illumination to produce a colored image. The multiplexed illumination patterns are produced by three binary encoded matrices (corresponding to the red, green and blue colored information, respectively) and random patterns. The results of the simulation and experiment have verified that our method can be effective in recovering the colored object. Multispectral images are produced simultaneously by one single-pixel detector, which significantly reduces the amount of data acquisition.
Study on multispectral imaging detection and recognition
NASA Astrophysics Data System (ADS)
Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng
2009-07-01
Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.
Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids
Dissing, Bjørn S.; Nielsen, Michael E.; Ersbøll, Bjarne K.; Frosch, Stina
2011-01-01
Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets. PMID:21573000
Nondestructive prediction of pork freshness parameters using multispectral scattering images
NASA Astrophysics Data System (ADS)
Tang, Xiuying; Li, Cuiling; Peng, Yankun; Chao, Kuanglin; Wang, Mingwu
2012-05-01
Optical technology is an important and immerging technology for non-destructive and rapid detection of pork freshness. This paper studied on the possibility of using multispectral imaging technique and scattering characteristics to predict the freshness parameters of pork meat. The pork freshness parameters selected for prediction included total volatile basic nitrogen (TVB-N), color parameters (L *, a *, b *), and pH value. Multispectral scattering images were obtained from pork sample surface by a multispectral imaging system developed by ourselves; they were acquired at the selected narrow wavebands whose center wavelengths were 517,550, 560, 580, 600, 760, 810 and 910nm. In order to extract scattering characteristics from multispectral images at multiple wavelengths, a Lorentzian distribution (LD) function with four parameters (a: scattering asymptotic value; b: scattering peak; c: scattering width; d: scattering slope) was used to fit the scattering curves at the selected wavelengths. The results show that the multispectral imaging technique combined with scattering characteristics is promising for predicting the freshness parameters of pork meat.
Galileo SSI lunar observations: Copernican craters and soils
NASA Technical Reports Server (NTRS)
Mcewen, A. S.; Greeley, R.; Head, James W.; Pieters, C. M.; Fischer, E. M.; Johnson, T. V.; Neukum, G.
1993-01-01
The Galileo spacecraft completed its first Earth-Moon flyby (EMI) in December 1990 and its second flyby (EM2) in December 1992. Copernican-age craters are among the most prominent features seen in the SSI (Solid-State Imaging) multispectral images of the Moon. The interiors, rays, and continuous ejecta deposits of these youngest craters stand out as the brightest features in images of albedo and visible/1-micron color ratios (except where impact melts are abundant). Crater colors and albedos (away from impact melts) are correlated with their geologic emplacement ages as determined from counts of superposed craters; these age-color relations can be used to estimate the emplacement age (time since impact event) for many Copernican-age craters on the near and far sides of the Moon. The spectral reflectivities of lunar soils are controlled primarily by (1) soil maturity, resulting from the soil's cumulative age of exposure to the space environment; (2) steady-state horizontal and vertical mixing of fresh crystalline materials ; and (3) the mineralogy of the underlying bedrock or megaregolith. Improved understanding of items (1) and (2) above will improve our ability to interpret item (3), especially for the use of crater compositions as probes of crustal stratigraphy. We have examined the multispectral and superposed crater frequencies of large isolated craters, mostly of Eratosthenian and Copernican ages, to avoid complications due to (1) secondaries (as they affect superposed crater counts) and (2) spatially and temporally nonuniform regolith mixing from younger, large, and nearby impacts. Crater counts are available for 11 mare craters and 9 highlands craters within the region of the Moon imaged during EM1. The EM2 coverage provides multispectral data for 10 additional craters with superposed crater counts. Also, the EM2 data provide improved spatial resolution and signal-to-noise ratios over the western nearside.
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Lehnert, Lukas W.; Wang, Yun; Reudenbach, Christoph; Nauss, Thomas; Bendix, Jörg
2016-04-01
Pastoralism is the dominant land-use on the Qinghai-Tibet-Plateau (QTP) providing the major economic resource for the local population. However, the pastures are highly supposed to be affected by ongoing degradation whose extent is still disputed. This study uses hyperspectral in situ measurements and multispectral satellite images to assess vegetation cover and above ground biomass (AGB) as proxies of pasture degradation on a regional scale. Using Random Forests in conjunction with recursive feature selection as modeling tool, it is tested whether the full hyperspectral information is needed or if multispectral information is sufficient to accurately estimate vegetation cover and AGB. To regionalize pasture degradation proxies, the transferability of the locally derived models to high resolution multispectral satellite data is assessed. For this purpose, 1183 hyperspectral measurements and vegetation records were sampled at 18 locations on the QTP. AGB was determined on 25 0.5x0.5m plots. Proxies for pasture degradation were derived from the spectra by calculating narrow-band indices (NBI). Using the NBI as predictor variables vegetation cover and AGB were modeled. Models were calculated using the hyperspectral data as well as the same data resampled to WorldView-2, QuickBird and RapidEye channels. The hyperspectral results were compared to the multispectral results. Finally, the models were applied to satellite data to map vegetation cover and AGB on a regional scale. Vegetation cover was accurately predicted by Random Forest if hyperspectral measurements were used. In contrast, errors in AGB estimations were considerably higher. Only small differences in accuracy were observed between the models based on hyper- compared to multispectral data. The application of the models to satellite images generally resulted in an increase of the estimation error. Though this reflects the challenge of applying in situ measurements to satellite data, the results still show a high potential to map pasture degradation proxies on the QTP even for larger scales.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Fuell, Kevin K.; Knaff, John; Lee, Thomas
2012-01-01
Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low-Earth orbits. The NASA Short-term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA s Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channel s available from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard METEOSAT-9. This broader suite includes products that discriminate between air mass types associated with synoptic-scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Similarly, researchers at NOAA/NESDIS and CIRA have developed air mass discrimination capabilities using channels available from the current GOES Sounders. Other applications of multispectral composites include combinations of high and low frequency, horizontal and vertically polarized passive microwave brightness temperatures to discriminate tropical cyclone structures and other synoptic-scale features. Many of these capabilities have been transitioned for evaluation and operational use at NWS Weather Forecast Offices and National Centers through collaborations with SPoRT and CIRA. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES-R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar-Orbiting Partnership (S-NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites). At the same time, new image manipulation and display capabilities are available within AWIPS II, the next generation of the NWS forecaster decision support system. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and articulate an integrated and collaborative path forward with Raytheon AWIPS II development staff for integrating current and future capabilities that support new satellite instrumentation and the AWIPS II decision support system.
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek
2009-02-01
Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands at the same level of decomposition. The insignicant quadtrees in dierent subbands in the high-frequency subband class are coded by a combined function to reduce redundancy. A number of experiments conducted on microscopic multispectral images have shown promising results for the proposed method over current state-of-the-art image-compression techniques.
Forest Stand Segmentation Using Airborne LIDAR Data and Very High Resolution Multispectral Imagery
NASA Astrophysics Data System (ADS)
Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet, Valérie; Hervieu, Alexandre
2016-06-01
Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this paper, a method based on the fusion of airborne laser scanning data (or lidar) and very high resolution multispectral imagery for automatic forest stand delineation and forest land-cover database update is proposed. The multispectral images give access to the tree species whereas 3D lidar point clouds provide geometric information on the trees. Therefore, multi-modal features are computed, both at pixel and object levels. The objects are individual trees extracted from lidar data. A supervised classification is performed at the object level on the computed features in order to coarsely discriminate the existing tree species in the area of interest. The analysis at tree level is particularly relevant since it significantly improves the tree species classification. A probability map is generated through the tree species classification and inserted with the pixel-based features map in an energetical framework. The proposed energy is then minimized using a standard graph-cut method (namely QPBO with α-expansion) in order to produce a segmentation map with a controlled level of details. Comparison with an existing forest land cover database shows that our method provides satisfactory results both in terms of stand labelling and delineation (matching ranges between 94% and 99%).
MOVING BEYOND COLOR: THE CASE FOR MULTISPECTRAL IMAGING IN BRIGHTFIELD PATHOLOGY.
Cukierski, William J; Qi, Xin; Foran, David J
2009-01-01
A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated in pathology [1, 2], there is no unified consensus over when and how MSI might benefit automated analysis [3, 4]. In this work, we use a linear-algebra framework to investigate the relationship between the spectral image and its standard-image counterpart. The multispectral "cube" is treated as an extension of a traditional image in a high-dimensional color space. The concept of metamers is introduced and used to derive regions of the visible spectrum where MSI may provide an advantage. Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the Commission internationale de l'éclairage (CIE) 1931 transformation from spectrum to color is non-neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral blood smears.
Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis
Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L.; Hwang, Jae Youn
2016-01-01
We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. PMID:28018743
NASA Astrophysics Data System (ADS)
Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin
2010-10-01
It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.
NASA Technical Reports Server (NTRS)
Trumbull, J. V. A. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Three Skylab earth resources passes over Puerto Rico and St. Croix on 6 June and 30 November 1973 and 18 January 1974 resulted in color photography and multispectral photography and scanner imagery. Bathymetric and turbid water features are differentiable by use of the multispectral data. Photography allows mapping of coral reefs, offshore sand deposits, areas of coastal erosion, and patterns of sediment transport. Bottom sediment types could not be differentiated. Patterns of bottom dwelling biologic communities are well portrayed but are difficult to differentiate from bathymetric detail. Effluent discharges and oil slicks are readily detected and are differentiated from other phenomena by the persistence of their images into the longer wavelength multispectral bands.
Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.
2014-01-01
Abstract. In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range. PMID:25104414
Intelligent image processing for vegetation classification using multispectral LANDSAT data
NASA Astrophysics Data System (ADS)
Santos, Stewart R.; Flores, Jorge L.; Garcia-Torales, G.
2015-09-01
We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.
Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging
NASA Astrophysics Data System (ADS)
Huang, Wei; Xu, Xiaojing; Wang, Guiqiang
2014-02-01
Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt
2013-01-01
Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and recent applications within the operational forecasting environment
A Multispectral Micro-Imager for Lunar Field Geology
NASA Technical Reports Server (NTRS)
Nunez, Jorge; Farmer, Jack; Sellar, Glenn; Allen, Carlton
2009-01-01
Field geologists routinely assign rocks to one of three basic petrogenetic categories (igneous, sedimentary or metamorphic) based on microtextural and mineralogical information acquired with a simple magnifying lens. Indeed, such observations often comprise the core of interpretations of geological processes and history. The Multispectral Microscopic Imager (MMI) uses multi-wavelength, light-emitting diodes (LEDs) and a substrate-removed InGaAs focal-plane array to create multispectral, microscale reflectance images of geological samples (FOV 32 X 40 mm). Each pixel (62.5 microns) of an image is comprised of 21 spectral bands that extend from 470 to 1750 nm, enabling the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases. MMI images provide crucial context information for in situ robotic analyses using other onboard analytical instruments (e.g. XRD), or for the selection of return samples for analysis in terrestrial labs. To further assess the value of the MMI as a tool for lunar exploration, we used a field-portable, tripod-mounted version of the MMI to image a variety of Apollo samples housed at the Lunar Experiment Laboratory, NASA s Johnson Space Center. MMI images faithfully resolved the microtextural features of samples, while the application of ENVI-based spectral end member mapping methods revealed the distribution of Fe-bearing mineral phases (olivine, pyroxene and magnetite), along with plagioclase feldspars within samples. Samples included a broad range of lithologies and grain sizes. Our MMI-based petrogenetic interpretations compared favorably with thin section-based descriptions published in the Lunar Sample Compendium, revealing the value of MMI images for astronaut and rover-mediated lunar exploration.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
Fast Lossless Compression of Multispectral-Image Data
NASA Technical Reports Server (NTRS)
Klimesh, Matthew
2006-01-01
An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.
Feasibility study and quality assessment of unmanned aircraft system-derived multispectral images
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen
2017-04-01
The purpose of study is to explore the precision and the applicability of UAS-derived multispectral images. In this study, the Micro-MCA6 multispectral camera was mounted on quadcopter. The Micro-MCA6 shoot images synchronized of each single band. By means of geotagged images and control points, the orthomosaic images of each single band generated firstly by 14cm resolution. The multispectral image was merged complete with 6 bands. In order to improve the spatial resolution, the 6 band image fused with 9cm resolution image taken from RGB camera. Quality evaluation of the image is verified of the each single band by using control points and check points. The standard deviations of errors are within 1 to 2 pixel resolution of each band. The quality of the multispectral image is compared with 3 cm resolution orthomosaic RGB image gathered from UAV in the same mission, as well. The standard deviations of errors are within 2 to 3 pixel resolution. The result shows that the errors resulting from the blurry and the band dislocation of the objects edge identification. To the end, the normalized difference vegetation index (NDVI) extracted from the image to explore the condition of vegetation and the nature of the environment. This study demonstrates the feasibility and the capability of the high resolution multispectral images.
NASA Astrophysics Data System (ADS)
Saager, Rolf B.; Baldado, Melissa L.; Rowland, Rebecca A.; Kelly, Kristen M.; Durkin, Anthony J.
2018-04-01
With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.
Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents.
Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam
2017-01-13
The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions.
Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents
Li, Peilin; Lee, Sang-Heon; Hsu, Hung-Yao; Park, Jae-Sam
2017-01-01
The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fused with Daubechies wavelet transform (DWT) in a multiscale decomposition approach. With DWT, the background noises are reduced and the necessary image features are enhanced by fusing the color contrast of the color components and the homogeneity of the near infrared (NIR) component. The resulting fused color image is classified with a C-means algorithm for reconstruction. The performance of the proposed approach is evaluated with the statistical F measure in comparison to some existing methods using linear combinations of color components. The results show that the fusion of information in different spectral components has the advantage of enhancing the image quality, therefore improving the classification accuracy in citrus fruit identification in natural lighting conditions. PMID:28098797
An ERTS multispectral scanner experiment for mapping iron compounds
NASA Technical Reports Server (NTRS)
Vincent, R. K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.
NASA Astrophysics Data System (ADS)
Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing
2016-04-01
In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.
NASA Astrophysics Data System (ADS)
Liebel, L.; Körner, M.
2016-06-01
In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.
Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation
NASA Astrophysics Data System (ADS)
Hakim, P. R.; Permala, R.; Jayani, A. P. S.
2018-05-01
LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.
Initial clinical testing of a multi-spectral imaging system built on a smartphone platform
NASA Astrophysics Data System (ADS)
Mink, Jonah W.; Wexler, Shraga; Bolton, Frank J.; Hummel, Charles; Kahn, Bruce S.; Levitz, David
2016-03-01
Multi-spectral imaging systems are often expensive and bulky. An innovative multi-spectral imaging system was fitted onto a mobile colposcope, an imaging system built around a smartphone in order to image the uterine cervix from outside the body. The multi-spectral mobile colposcope (MSMC) acquires images at different wavelengths. This paper presents the clinical testing of MSMC imaging (technical validation of the MSMC system is described elsewhere 1 ). Patients who were referred to colposcopy following abnormal screening test (Pap or HPV DNA test) according to the standard of care were enrolled. Multi-spectral image sets of the cervix were acquired, consisting of images from the various wavelengths. Image acquisition took 1-2 sec. Areas suspected for dysplasia under white light imaging were biopsied, according to the standard of care. Biopsied sites were recorded on a clockface map of the cervix. Following the procedure, MSMC data was processed from the sites of biopsied sites. To date, the initial histopathological results are still outstanding. Qualitatively, structures in the cervical images were sharper at lower wavelengths than higher wavelengths. Patients tolerated imaging well. The result suggests MSMC holds promise for cervical imaging.
NASA Technical Reports Server (NTRS)
Imhoff, M. L.; Vermillion, C. H.; Khan, F. A.
1984-01-01
An investigation to examine the utility of spaceborne radar image data to malaria vector control programs is described. Specific tasks involve an analysis of radar illumination geometry vs information content, the synergy of radar and multispectral data mergers, and automated information extraction techniques.
Simulation of the hyperspectral data from multispectral data using Python programming language
NASA Astrophysics Data System (ADS)
Tiwari, Varun; Kumar, Vinay; Pandey, Kamal; Ranade, Rigved; Agarwal, Shefali
2016-04-01
Multispectral remote sensing (MRS) sensors have proved their potential in acquiring and retrieving information of Land Use Land (LULC) Cover features in the past few decades. These MRS sensor generally acquire data within limited broad spectral bands i.e. ranging from 3 to 10 number of bands. The limited number of bands and broad spectral bandwidth in MRS sensors becomes a limitation in detailed LULC studies as it is not capable of distinguishing spectrally similar LULC features. On the counterpart, fascinating detailed information available in hyperspectral (HRS) data is spectrally over determined and able to distinguish spectrally similar material of the earth surface. But presently the availability of HRS sensors is limited. This is because of the requirement of sensitive detectors and large storage capability, which makes the acquisition and processing cumbersome and exorbitant. So, there arises a need to utilize the available MRS data for detailed LULC studies. Spectral reconstruction approach is one of the technique used for simulating hyperspectral data from available multispectral data. In the present study, spectral reconstruction approach is utilized for the simulation of hyperspectral data using EO-1 ALI multispectral data. The technique is implemented using python programming language which is open source in nature and possess support for advanced imaging processing libraries and utilities. Over all 70 bands have been simulated and validated using visual interpretation, statistical and classification approach.
Water Mapping Using Multispectral Airborne LIDAR Data
NASA Astrophysics Data System (ADS)
Yan, W. Y.; Shaker, A.; LaRocque, P. E.
2018-04-01
This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.
MOVING BEYOND COLOR: THE CASE FOR MULTISPECTRAL IMAGING IN BRIGHTFIELD PATHOLOGY
Cukierski, William J.; Qi, Xin; Foran, David J.
2009-01-01
A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated in pathology [1, 2], there is no unified consensus over when and how MSI might benefit automated analysis [3, 4]. In this work, we use a linear-algebra framework to investigate the relationship between the spectral image and its standard-image counterpart. The multispectral “cube” is treated as an extension of a traditional image in a high-dimensional color space. The concept of metamers is introduced and used to derive regions of the visible spectrum where MSI may provide an advantage. Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the Commission internationale de l’éclairage (CIE) 1931 transformation from spectrum to color is non-neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral blood smears. PMID:19997528
Automated oil spill detection with multispectral imagery
NASA Astrophysics Data System (ADS)
Bradford, Brian N.; Sanchez-Reyes, Pedro J.
2011-06-01
In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.
2015-06-01
Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.
A multispectral imaging approach for diagnostics of skin pathologies
NASA Astrophysics Data System (ADS)
Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis
2013-06-01
Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.
Multispectral imaging for biometrics
NASA Astrophysics Data System (ADS)
Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.
2005-03-01
Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.
Space Shuttle Columbia views the world with imaging radar: The SIR-A experiment
NASA Technical Reports Server (NTRS)
Ford, J. P.; Cimino, J. B.; Elachi, C.
1983-01-01
Images acquired by the Shuttle Imaging Radar (SIR-A) in November 1981, demonstrate the capability of this microwave remote sensor system to perceive and map a wide range of different surface features around the Earth. A selection of 60 scenes displays this capability with respect to Earth resources - geology, hydrology, agriculture, forest cover, ocean surface features, and prominent man-made structures. The combined area covered by the scenes presented amounts to about 3% of the total acquired. Most of the SIR-A images are accompanied by a LANDSAT multispectral scanner (MSS) or SEASAT synthetic-aperture radar (SAR) image of the same scene for comparison. Differences between the SIR-A image and its companion LANDSAT or SEASAT image at each scene are related to the characteristics of the respective imaging systems, and to seasonal or other changes that occurred in the time interval between acquisition of the images.
Multipurpose Hyperspectral Imaging System
NASA Technical Reports Server (NTRS)
Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon
2005-01-01
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.
NASA Astrophysics Data System (ADS)
Schneiderwind, Sascha; Mason, Jack; Wiatr, Thomas; Papanikolaou, Ioannis; Reicherter, Klaus
2016-03-01
Two normal faults on the island of Crete and mainland Greece were studied to test an innovative workflow with the goal of obtaining a more objective palaeoseismic trench log, and a 3-D view of the sedimentary architecture within the trench walls. Sedimentary feature geometries in palaeoseismic trenches are related to palaeoearthquake magnitudes which are used in seismic hazard assessments. If the geometry of these sedimentary features can be more representatively measured, seismic hazard assessments can be improved. In this study more representative measurements of sedimentary features are achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of ISO (iterative self-organising) cluster analysis of a true colour photomosaic representing the spectrum of visible light. Photomosaic acquisition disadvantages (e.g. illumination) were addressed by complementing the data set with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D interpretation of attached 2-D ground-penetrating radar (GPR) profiles collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements, and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. This manuscript combines multiparametric approaches and shows (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GPR techniques, and (ii) how a multispectral digital analysis can offer additional advantages to interpret palaeoseismic and stratigraphic data. The multispectral data sets are stored allowing unbiased input for future (re)investigations.
Application of Fourier analysis to multispectral/spatial recognition
NASA Technical Reports Server (NTRS)
Hornung, R. J.; Smith, J. A.
1973-01-01
One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.
Omucheni, Dickson L; Kaduki, Kenneth A; Bulimo, Wallace D; Angeyo, Hudson K
2014-12-11
Multispectral imaging microscopy is a novel microscopic technique that integrates spectroscopy with optical imaging to record both spectral and spatial information of a specimen. This enables acquisition of a large and more informative dataset than is achievable in conventional optical microscopy. However, such data are characterized by high signal correlation and are difficult to interpret using univariate data analysis techniques. In this work, the development and application of a novel method which uses principal component analysis (PCA) in the processing of spectral images obtained from a simple multispectral-multimodal imaging microscope to detect Plasmodium parasites in unstained thin blood smear for malaria diagnostics is reported. The optical microscope used in this work has been modified by replacing the broadband light source (tungsten halogen lamp) with a set of light emitting diodes (LEDs) emitting thirteen different wavelengths of monochromatic light in the UV-vis-NIR range. The LEDs are activated sequentially to illuminate same spot of the unstained thin blood smears on glass slides, and grey level images are recorded at each wavelength. PCA was used to perform data dimensionality reduction and to enhance score images for visualization as well as for feature extraction through clusters in score space. Using this approach, haemozoin was uniquely distinguished from haemoglobin in unstained thin blood smears on glass slides and the 590-700 spectral range identified as an important band for optical imaging of haemozoin as a biomarker for malaria diagnosis. This work is of great significance in reducing the time spent on staining malaria specimens and thus drastically reducing diagnosis time duration. The approach has the potential of replacing a trained human eye with a trained computerized vision system for malaria parasite blood screening.
Globally scalable generation of high-resolution land cover from multispectral imagery
NASA Astrophysics Data System (ADS)
Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.
2017-05-01
We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).
Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.
Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai
2017-01-27
Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM
NASA Astrophysics Data System (ADS)
Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang
2016-03-01
A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.
Detecting early stage pressure ulcer on dark skin using multispectral imager
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Kong, Linghua; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao
2010-02-01
We are developing a handheld multispectral imaging device to non-invasively inspect stage I pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This paper reports some preliminary test results of using a proof-of-concept prototype. It also talks about the innovation's impact to traditional multispectral imaging technologies and the fields that will potentially benefit from it.
Solid state high resolution multi-spectral imager CCD test phase
NASA Technical Reports Server (NTRS)
1973-01-01
The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.
Design and fabrication of multispectral optics using expanded glass map
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George
2015-06-01
As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.
Hyperspectral discrimination of camouflaged target
NASA Astrophysics Data System (ADS)
Bárta, Vojtěch; Racek, František
2017-10-01
The article deals with detection of camouflaged objects during winter season. Winter camouflage is a marginal affair in most countries due to short time period of the snow cover. In the geographical condition of Central Europe the winter period with snow occurs less than 1/12 of year. The LWIR or SWIR spectral areas are used for detection of camouflaged objects. For those spectral regions the difference in chemical composition and temperature express in spectral features. Exploitation of the LWIR and SWIR devices is demanding due to their large dimension and expensiveness. Therefore, the article deals with estimation of utilization of VIS region for detecting of camouflaged object on snow background. The multispectral image output for the various spectral filters is simulated. Hyperspectral indices are determined to detect the camouflaged objects in the winter. The multispectral image simulation is based on the hyperspectral datacube obtained in real conditions.
A multispectral photon-counting double random phase encoding scheme for image authentication.
Yi, Faliu; Moon, Inkyu; Lee, Yeon H
2014-05-20
In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
An algorithm for spatial heirarchy clustering
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Velasco, F. R. D.
1981-01-01
A method for utilizing both spectral and spatial redundancy in compacting and preclassifying images is presented. In multispectral satellite images, a high correlation exists between neighboring image points which tend to occupy dense and restricted regions of the feature space. The image is divided into windows of the same size where the clustering is made. The classes obtained in several neighboring windows are clustered, and then again successively clustered until only one region corresponding to the whole image is obtained. By employing this algorithm only a few points are considered in each clustering, thus reducing computational effort. The method is illustrated as applied to LANDSAT images.
The Importance of Chaos and Lenticulae on Europa for the JIMO Mission
NASA Technical Reports Server (NTRS)
Spaun, Nicole A.
2003-01-01
The Galileo Solid State Imaging (SSI) experiment provided high-resolution images of Europa's surface allowing identification of surface features barely distinguishable at Voyager's resolution. SSI revealed the visible pitting on Europa's surface to be due to large disrupted features, chaos, and smaller sub-circular patches, lenticulae. Chaos features contain a hummocky matrix material and commonly contain dislocated blocks of ridged plains. Lenticulae are morphologically interrelated and can be divided into three classes: domes, spots, and micro-chaos. Domes are broad, upwarped features that generally do not disrupt the texture of the ridged plains. Spots are areas of low albedo that are generally smooth in texture compared to other units. Micro-chaos are disrupted features with a hummocky matrix material, resembling that observed within chaos regions. Chaos and lenticulae are ubiquitous in the SSI regional map observations, which average approximately 200 meters per pixel (m/pxl) in resolution, and appear in several of the ultra-high resolution, i.e., better than 50 m/pxl, images of Europa as well. SSI also provided a number of multi-spectral observations of chaos and lenticulae. Using this dataset we have undertaken a thorough study of the morphology, size, spacing, stratigraphy, and color of chaos and lenticulae to determine their properties and evaluate models of their formation. Geological mapping indicates that chaos and micro-chaos have a similar internal morphology of in-situ degradation suggesting that a similar process was operating during their formation. The size distribution denotes a dominant size of 4-8 km in diameter for features containing hummocky material (i.e., chaos and micro-chaos). Results indicate a dominant spacing of 15 - 36 km apart. Chaos and lenticulae are generally among the youngest features stratigraphically observed on the surface, suggesting a recent change in resurfacing style. Also, the reddish non-icy materials on Europa's surface have high concentrations in many chaos and lenticulae features. Nonetheless, a complete global map of the distribution of chaos and lenticulae is not possible with the SSI dataset. Only <20% of the surface has been imaged at 200 m/pxl or better resolution, mostly of the near-equatorial regions. Color and ultra-high-res images have much less surface coverage. Thus we suggest that full global imaging of Europa at 200 m/pxl or better resolution, preferably in multi-spectral wavelengths, should be a high priority for the JIMO mission.
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This video image is of the STS-2 Columbia, Orbiter Vehicle (OV) 102, payload bay (PLB) showing the Office of Space Terrestrial Applications 1 (OSTA-1) pallet (Shuttle Imaging Radar A (SIR-A) antenna (left) and SIR-A recorder, Shuttle Multispectral Infrared Radiometer (SMIRR), Feature Identification Location Experiment (FILE), Measurement of Air Pollution for Satellites (MAPS) (right)). The image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). It is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
Image quality prediction: an aid to the Viking Lander imaging investigation on Mars.
Huck, F O; Wall, S D
1976-07-01
Two Viking spacecraft scheduled to land on Mars in the summer of 1976 will return multispectral panoramas of the Martian surface with resolutions 4 orders of magnitude higher than have been previously obtained and stereo views with resolutions approaching that of the human eye. Mission constraints and uncertainties require a carefully planned imaging investigation that is supported by a computer model of camera response and surface features to aid in diagnosing camera performance, in establishing a preflight imaging strategy, and in rapidly revising this strategy if pictures returned from Mars reveal unfavorable or unanticipated conditions.
Some spectral and spatial characteristics of LANDSAT data
NASA Technical Reports Server (NTRS)
1982-01-01
Activities are provided for: (1) developing insight into the way in which the LANDSAT MSS produces multispectral data; (2) promoting understanding of what a "pixel" means in a LANDSAT image and the implications of the term "mixed pixel"; (3) explaining the concept of spectral signatures; (4) deriving a simple signature for a class or feature by analysis: of the four band images; (5) understanding the production of false color composites; (6) appreciating the use of color additive techniques; (7) preparing Diazo images; and (8) making quick visual identifications of major land cover types by their characteristic gray tones or colors in LANDSAT images.
Multispectral laser imaging for advanced food analysis
NASA Astrophysics Data System (ADS)
Senni, L.; Burrascano, P.; Ricci, M.
2016-07-01
A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.
Computational multispectral video imaging [Invited].
Wang, Peng; Menon, Rajesh
2018-01-01
Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430-718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-01-01
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures. PMID:26007744
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-05-22
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.
Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues
NASA Astrophysics Data System (ADS)
Lazaridou, M. A.; Karagianni, A. Ch.
2016-06-01
Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.
Theory on data processing and instrumentation. [remote sensing
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1978-01-01
A selection of NASA Earth observations programs are reviewed, emphasizing hardware capabilities. Sampling theory, noise and detection considerations, and image evaluation are discussed for remote sensor imagery. Vision and perception are considered, leading to numerical image processing. The use of multispectral scanners and of multispectral data processing systems, including digital image processing, is depicted. Multispectral sensing and analysis in application with land use and geographical data systems are also covered.
Model-based recovery of histological parameters from multispectral images of the colon
NASA Astrophysics Data System (ADS)
Hidovic-Rowe, Dzena; Claridge, Ela
2005-04-01
Colon cancer alters the macroarchitecture of the colon tissue. Common changes include angiogenesis and the distortion of the tissue collagen matrix. Such changes affect the colon colouration. This paper presents the principles of a novel optical imaging method capable of extracting parameters depicting histological quantities of the colon. The method is based on a computational, physics-based model of light interaction with tissue. The colon structure is represented by three layers: mucosa, submucosa and muscle layer. Optical properties of the layers are defined by molar concentration and absorption coefficients of haemoglobins; the size and density of collagen fibres; the thickness of the layer and the refractive indexes of collagen and the medium. Using the entire histologically plausible ranges for these parameters, a cross-reference is created computationally between the histological quantities and the associated spectra. The output of the model was compared to experimental data acquired in vivo from 57 histologically confirmed normal and abnormal tissue samples and histological parameters were extracted. The model produced spectra which match well the measured data, with the corresponding spectral parameters being well within histologically plausible ranges. Parameters extracted for the abnormal spectra showed the increase in blood volume fraction and changes in collagen pattern characteristic of the colon cancer. The spectra extracted from multi-spectral images of ex-vivo colon including adenocarcinoma show the characteristic features associated with normal and abnormal colon tissue. These findings suggest that it should be possible to compute histological quantities for the colon from the multi-spectral images.
LANDSAT image studies as applied to petroleum exploration in Kenya
NASA Technical Reports Server (NTRS)
Miller, J. B.
1975-01-01
The Chevron-Kenya oil license, acquired in 1972, covers an area at the north end of the Lamu Embayment. Immediately after acquisition, a photogeologic study of the area was made followed by a short field inspection. An interpretation of LANDSAT-1 images as a separate attempt to improve geological knowledge was completed. The method used in the image study, the multispectral characteristics of rock units and terrain, and the observed anomalous features as seen in the LANDSAT imagery are described. It was found that the study helped to define the relationship of the Lamu Embayment and its internal structure with surrounding regional features, such as the East Africa rifting, the Rudolf Trough, the Bur Acaba structural ridge, and the Ogaden Basin.
Principles of computer processing of Landsat data for geologic applications
Taranik, James V.
1978-01-01
The main objectives of computer processing of Landsat data for geologic applications are to improve display of image data to the analyst or to facilitate evaluation of the multispectral characteristics of the data. Interpretations of the data are made from enhanced and classified data by an analyst trained in geology. Image enhancements involve adjustments of brightness values for individual picture elements. Image classification involves determination of the brightness values of picture elements for a particular cover type. Histograms are used to display the range and frequency of occurrence of brightness values. Landsat-1 and -2 data are preprocessed at Goddard Space Flight Center (GSFC) to adjust for the detector response of the multispectral scanner (MSS). Adjustments are applied to minimize the effects of striping, adjust for bad-data lines and line segments and lost individual pixel data. Because illumination conditions and landscape characteristics vary considerably and detector response changes with time, the radiometric adjustments applied at GSFC are seldom perfect and some detector striping remain in Landsat data. Rotation of the Earth under the satellite and movements of the satellite platform introduce geometric distortions in the data that must also be compensated for if image data are to be correctly displayed to the data analyst. Adjustments to Landsat data are made to compensate for variable solar illumination and for atmospheric effects. GeoMetric registration of Landsat data involves determination of the spatial location of a pixel in. the output image and the determination of a new value for the pixel. The general objective of image enhancement is to optimize display of the data to the analyst. Contrast enhancements are employed to expand the range of brightness values in Landsat data so that the data can be efficiently recorded in a manner desired by the analyst. Spatial frequency enhancements are designed to enhance boundaries between features which have subtle differences in brightness values. Ratioing tends to reduce the effects due to topography and it tends to emphasize changes in brightness values between two Landsat bands. Simulated natural color is produced for geologists so that the colors of materials on images appear similar to colors of actual materials in the field. Image classification of Landsat data involves both machine assisted delineation of multispectral patterns in four-dimensional spectral space and identification of machine delineated multispectral patterns that represent particular cover conditions. The geological information derived from an analysis of a multispectral classification is usually related to lithology.
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
Hu, J H; Wang, Y; Cahill, P T
1997-01-01
This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.
Skin condition measurement by using multispectral imaging system (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan
2017-02-01
There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.
Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping
NASA Astrophysics Data System (ADS)
Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard
2015-05-01
Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, the inventory and characterization of wetland habitats are most often limited to small areas. This explains why the understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. While LiDAR data and multispectral Earth Observation (EO) images are often used separately to map wetland habitats, their combined use is currently being assessed for different habitat types. The aim of this study is to evaluate the combination of multispectral and multiseasonal imagery and LiDAR data to precisely map the distribution of wetland habitats. The image classification was performed combining an object-based approach and decision-tree modeling. Four multispectral images with high (SPOT-5) and very high spatial resolution (Quickbird, KOMPSAT-2, aerial photographs) were classified separately. Another classification was then applied integrating summer and winter multispectral image data and three layers derived from LiDAR data: vegetation height, microtopography and intensity return. The comparison of classification results shows that some habitats are better identified on the winter image and others on the summer image (overall accuracies = 58.5 and 57.6%). They also point out that classification accuracy is highly improved (overall accuracy = 86.5%) when combining LiDAR data and multispectral images. Moreover, this study highlights the advantage of integrating vegetation height, microtopography and intensity parameters in the classification process. This article demonstrates that information provided by the synergetic use of multispectral images and LiDAR data can help in wetland functional assessment
MultiSpec—a tool for multispectral hyperspectral image data analysis
NASA Astrophysics Data System (ADS)
Biehl, Larry; Landgrebe, David
2002-12-01
MultiSpec is a multispectral image data analysis software application. It is intended to provide a fast, easy-to-use means for analysis of multispectral image data, such as that from the Landsat, SPOT, MODIS or IKONOS series of Earth observational satellites, hyperspectral data such as that from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion satellite system or the data that will be produced by the next generation of Earth observational sensors. The primary purpose for the system was to make new, otherwise complex analysis tools available to the general Earth science community. It has also found use in displaying and analyzing many other types of non-space related digital imagery, such as medical image data and in K-12 and university level educational activities. MultiSpec has been implemented for both the Apple Macintosh ® and Microsoft Windows ® operating systems (OS). The effort was first begun on the Macintosh OS in 1988. The GLOBE ( http://www.globe.gov) program supported the development of a subset of MultiSpec for the Windows OS in 1995. Since then most (but not all) of the features in the Macintosh OS version have been ported to the Windows OS version. Although copyrighted, MultiSpec with its documentation is distributed without charge. The Macintosh and Windows versions and documentation on its use are available from the World Wide Web at URL: http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/ MultiSpec is copyrighted (1991-2001) by Purdue Research Foundation, West Lafayette, Indiana 47907.
Laser- and Multi-Spectral Monitoring of Natural Objects from UAVs
NASA Astrophysics Data System (ADS)
Reiterer, Alexander; Frey, Simon; Koch, Barbara; Stemmler, Simon; Weinacker, Holger; Hoffmann, Annemarie; Weiler, Markus; Hergarten, Stefan
2016-04-01
The paper describes the research, development and evaluation of a lightweight sensor system for UAVs. The system is composed of three main components: (1) a laser scanning module, (2) a multi-spectral camera system, and (3) a processing/storage unit. All three components are newly developed. Beside measurement precision and frequency, the low weight has been one of the challenging tasks. The current system has a total weight of about 2.5 kg and is designed as a self-contained unit (incl. storage and battery units). The main features of the system are: laser-based multi-echo 3D measurement by a wavelength of 905 nm (totally eye save), measurement range up to 200 m, measurement frequency of 40 kHz, scanning frequency of 16 Hz, relative distance accuracy of 10 mm. The system is equipped with both GNSS and IMU. Alternatively, a multi-visual-odometry system has been integrated to estimate the trajectory of the UAV by image features (based on this system a calculation of 3D-coordinates without GNSS is possible). The integrated multi-spectral camera system is based on conventional CMOS-image-chips equipped with a special sets of band-pass interference filters with a full width half maximum (FWHM) of 50 nm. Good results for calculating the normalized difference vegetation index (NDVI) and the wide dynamic range vegetation index (WDRVI) have been achieved using the band-pass interference filter-set with a FWHM of 50 nm and an exposure times between 5.000 μs and 7.000 μs. The system is currently used for monitoring of natural objects and surfaces, like forest, as well as for geo-risk analysis (landslides). By measuring 3D-geometric and multi-spectral information a reliable monitoring and interpretation of the data-set is possible. The paper gives an overview about the development steps, the system, the evaluation and first results.
Fourier Spectral Filter Array for Optimal Multispectral Imaging.
Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo
2016-04-01
Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.
Multi-spectral endogenous fluorescence imaging for bacterial differentiation
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.
2017-07-01
In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Razansky, Daniel; Ntziachristos, Vasilis
2012-02-01
Optoacoustic imaging has enabled the visualization of optical contrast at high resolutions in deep tissue. Our Multispectral optoacoustic tomography (MSOT) imaging results reveal internal tissue heterogeneity, where the underlying distribution of specific endogenous and exogenous sources of absorption can be resolved in detail. Technical advances in cardiac imaging allow motion-resolved multispectral measurements of the heart, opening the way for studies of cardiovascular disease. We further demonstrate the fast characterization of the pharmacokinetic profiles of lightabsorbing agents. Overall, our MSOT findings indicate new possibilities in high resolution imaging of functional and molecular parameters.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
Textural features for image classification
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Dinstein, I.; Shanmugam, K.
1973-01-01
Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.
Surface and atmosphere parameter maps from earth-orbiting radiometers
NASA Technical Reports Server (NTRS)
Gloersen, P.
1976-01-01
Earlier studies have shown that an earth-orbiting electrically scanned microwave radiometer (ESMR) is capable of inferring the extent, concentration, and age of sea ice; the extent, concentration, and thickness of lake ice; rainfall rates over oceans; surface wind speeds over open water; particle size distribution in the deep snow cover of continental ice sheets; and soil moisture content in unvegetated fields. Most other features of the surface of the earth and its atmosphere require multispectral imaging techniques to unscramble the combined contributions of the atmosphere and the surface. Multispectral extraction of surface parameters is analyzed on the basis of a pertinent equation in terms of the observed brightness temperature, the emissivity of the surface which depends on wavelength and various parameters, the sensible temperature of the surface, and the total atmospheric opacity which is also wavelength dependent. Implementation of the multispectral technique is examined. Properties of the surface of the earth and its atmosphere to be determined from a scanning multichannel microwave radiometer are tabulated.
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan
2013-03-01
Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.
Kaushik, S Sivaram; Karr, Robin; Runquist, Matthew; Marszalkowski, Cathy; Sharma, Abhishiek; Rand, Scott D; Maiman, Dennis; Koch, Kevin M
2017-01-01
To evaluate magnetic resonance imaging (MRI) artifacts near metallic spinal instrumentation using both conventional metal artifact reduction sequences (MARS) and 3D multispectral imaging sequences (3D-MSI). Both MARS and 3D-MSI images were acquired in 10 subjects with titanium spinal hardware on a 1.5T GE 450W scanner. Clinical computed tomography (CT) images were used to measure the volume of the implant using seed-based region growing. Using 30-40 landmarks, the MARS and 3D-MSI images were coregistered to the CT images. Three independent users manually segmented the artifact volume from both MR sequences. For five L-spine subjects, one user independently segmented the nerve root in both MARS and 3D-MSI images. For all 10 subjects, the measured artifact volume for the 3D-MSI images closely matched that of the CT implant volume (absolute error: 4.3 ± 2.0 cm 3 ). The MARS artifact volume was ∼8-fold higher than that of the 3D-MSI images (30.7 ± 20.2, P = 0.002). The average nerve root volume for the MARS images was 24 ± 7.3% lower than the 3D-MSI images (P = 0.06). Compared to 3D-MSI images, the higher-resolution MARS images may help study features farther away from the implant surface. However, the MARS images retained substantial artifacts in the slice-dimension that result in a larger artifact volume. These artifacts have the potential to obscure physiologically relevant features, and can be mitigated with 3D-MSI sequences. Hence, MR study protocols may benefit with the inclusion both MARS and 3D-MSI sequences to accurately study pathology near the spine. 2 J. Magn. Reson. Imaging 2017;45:51-58. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Schoonmaker, Jon; Reed, Scott; Podobna, Yuliya; Vazquez, Jose; Boucher, Cynthia
2010-04-01
Due to increased security concerns, the commitment to monitor and maintain security in the maritime environment is increasingly a priority. A country's coast is the most vulnerable area for the incursion of illegal immigrants, terrorists and contraband. This work illustrates the ability of a low-cost, light-weight, multi-spectral, multi-channel imaging system to handle the environment and see under difficult marine conditions. The system and its implemented detecting and tracking technologies should be organic to the maritime homeland security community for search and rescue, fisheries, defense, and law enforcement. It is tailored for airborne and ship based platforms to detect, track and monitor suspected objects (such as semi-submerged targets like marine mammals, vessels in distress, and drug smugglers). In this system, automated detection and tracking technology is used to detect, classify and localize potential threats or objects of interest within the imagery provided by the multi-spectral system. These algorithms process the sensor data in real time, thereby providing immediate feedback when features of interest have been detected. A supervised detection system based on Haar features and Cascade Classifiers is presented and results are provided on real data. The system is shown to be extendable and reusable for a variety of different applications.
The Multispectral Imaging Science Working Group. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
Cox, S. C. (Editor)
1982-01-01
The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.
Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca
1999-01-01
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.
Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.
1999-07-27
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.
A scene-analysis approach to remote sensing. [San Francisco, California
NASA Technical Reports Server (NTRS)
Tenenbaum, J. M. (Principal Investigator); Fischler, M. A.; Wolf, H. C.
1978-01-01
The author has identified the following significant results. Geometric correspondance between a sensed image and a symbolic map is established in an initial stage of processing by adjusting parameters of a sensed model so that the image features predicted from the map optimally match corresponding features extracted from the sensed image. Information in the map is then used to constrain where to look in an image, what to look for, and how to interpret what is seen. For simple monitoring tasks involving multispectral classification, these constraints significantly reduce computation, simplify interpretation, and improve the utility of the resulting information. Previously intractable tasks requiring spatial and textural analysis may become straightforward in the context established by the map knowledge. The use of map-guided image analysis in monitoring the volume of water in a reservoir, the number of boxcars in a railyard, and the number of ships in a harbor is demonstrated.
Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong
2016-07-01
Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhateja, Vikrant, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn; Moin, Aisha; Srivastava, Anuja
Computer based diagnosis of Alzheimer’s disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer’s disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Componentmore » Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).« less
Multispectral imaging method and apparatus
Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.
1999-07-06
A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.
Multispectral imaging method and apparatus
Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca
1999-01-01
A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging
Multi Spectral Fluorescence Imager (MSFI)
NASA Technical Reports Server (NTRS)
Caron, Allison
2016-01-01
Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.
NASA Astrophysics Data System (ADS)
Alpers, Matthias; Brüns, Christian; Pillukat, Alexander
2017-11-01
The evolving needs of the meteorological community concerning the EUMETSAT Polar System follow-on satellite mission (Post-EPS) require the development of a high-performance multi-spectral imaging radiometer. Recognizing these needs, Jena Optronik GmbH proposed an innovative instrument concept, which comprises a high flexibility to adapt to user requirements as a very important feature. Core parameters like ground sampling distance (GSD), number and width of spectral channels, signal-to-noise ratio, polarization control and calibration facilities can be chosen in a wide range without changing the basic instrument configuration. Core item of the METimage instrument is a rotating telescope scanner to cover the large swath width of about 2800 km, which all polar platforms need for global coverage. The de-rotated image facilitates use of in-field spectral channel separation, which allows tailoring individual channel GSD (ground sampling distance) and features like TDI (time delay and integration). State-of-the-art detector arrays and readout electronics can easily be employed. Currently, the German DLR Space Agency, Jena- Optronik GmbH and AIM Infrarot Module GmbH work together implementing core assemblies of METimage: the rotating telescope scanner and the infrared detectors. The METimage instrument phase B study was kicked-off in September 2008. Germany intents to provide METimage as an in-kind contribution of the first METimage flight model to the EUMETSAT Post-EPS Programme.
NASA Technical Reports Server (NTRS)
Krohn, M. Dennis
1986-01-01
The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.
Development of low-cost high-performance multispectral camera system at Banpil
NASA Astrophysics Data System (ADS)
Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.
2014-05-01
Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.
Karagiannis, G; Salpistis, Chr; Sergiadis, G; Chryssoulakis, Y
2007-06-01
In the present work, a powerful tool for the investigation of paintings is presented. This permits the tuneable multispectral real time imaging between 200 and 5000 nm and the simultaneous multispectral acquisition of spectroscopic data from the same region. We propose the term infrared reflectoscopy for tuneable infrared imaging in paintings (Chryssonlakis and Chassery, The Application of Physicochemical Methods of Analysis and Image Processing Techniques to Painted Works of Art, Erasmus Project ICP-88-006-6, Athens, June, 1989) for a technique that is effective especially when the spectroscopic data acquisition is performed between 800 and 1900 nm. Elements such as underdrawings, old damage that is not visible to the naked eye, later interventions or overpaintings, hidden signatures, nonvisible inscriptions, and authenticity features can thus be detected with the overlying paint layers becoming successively "transparent" due to the deep infrared penetration. The spectroscopic data are collected from each point of the studied area with a 5 nm step through grey level measurement, after adequate infrared reflectance (%R) and curve calibration. The detection limits of the infrared detector as well as the power distribution of the radiation coming out through the micrometer slit assembly of the monochromator in use are also taken into account. Inorganic pigments can thus be identified and their physicochemical properties directly compared to the corresponding infrared images at each wavelength within the optimum region. In order to check its effectiveness, this method was applied on an experimental portable icon of a known stratigraphy.
Spatial arrangement of color filter array for multispectral image acquisition
NASA Astrophysics Data System (ADS)
Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat
2011-03-01
In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.
Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-10-01
Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less
Generalization of the Lyot filter and its application to snapshot spectral imaging.
Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert
2010-03-15
A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1983-01-01
The geometric quality of the TM and MSS film products were evaluated by making selective photo measurements such as scale, linear and area determinations; and by measuring the coordinates of known features on both the film products and map products and then relating these paired observations using a standard linear least squares regression approach. Quantitative interpretation tests are described which evaluate the quality and utility of the TM film products and various band combinations for detecting and identifying important forest and agricultural features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up
Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less
Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples
Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.
2014-01-01
Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Single sensor that outputs narrowband multispectral images
Kong, Linghua; Yi, Dingrong; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao
2010-01-01
We report the work of developing a hand-held (or miniaturized), low-cost, stand-alone, real-time-operation, narrow bandwidth multispectral imaging device for the detection of early stage pressure ulcers. PMID:20210418
Low SWaP multispectral sensors using dichroic filter arrays
NASA Astrophysics Data System (ADS)
Dougherty, John; Varghese, Ron
2015-06-01
The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.
NASA Astrophysics Data System (ADS)
Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet-Brunet, Valérie
2017-04-01
Forest stands are the basic units for forest inventory and mapping. Stands are defined as large forested areas (e.g., ⩾ 2 ha) of homogeneous tree species composition and age. Their accurate delineation is usually performed by human operators through visual analysis of very high resolution (VHR) infra-red images. This task is tedious, highly time consuming, and should be automated for scalability and efficient updating purposes. In this paper, a method based on the fusion of airborne lidar data and VHR multispectral images is proposed for the automatic delineation of forest stands containing one dominant species (purity superior to 75%). This is the key preliminary task for forest land-cover database update. The multispectral images give information about the tree species whereas 3D lidar point clouds provide geometric information on the trees and allow their individual extraction. Multi-modal features are computed, both at pixel and object levels: the objects are individual trees extracted from lidar data. A supervised classification is then performed at the object level in order to coarsely discriminate the existing tree species in each area of interest. The classification results are further processed to obtain homogeneous areas with smooth borders by employing an energy minimum framework, where additional constraints are joined to form the energy function. The experimental results show that the proposed method provides very satisfactory results both in terms of stand labeling and delineation (overall accuracy ranges between 84 % and 99 %).
Photographic techniques for enhancing ERTS MSS data for geologic information
NASA Technical Reports Server (NTRS)
Yost, E.; Geluso, W.; Anderson, R.
1974-01-01
Satellite multispectral black-and-white photographic negatives of Luna County, New Mexico, obtained by ERTS on 15 August and 2 September 1973, were precisely reprocessed into positive images and analyzed in an additive color viewer. In addition, an isoluminous (uniform brightness) color rendition of the image was constructed. The isoluminous technique emphasizes subtle differences between multispectral bands by greatly enhancing the color of the superimposed composite of all bands and eliminating the effects of brightness caused by sloping terrain. Basaltic lava flows were more accurately displayed in the precision processed multispectral additive color ERTS renditions than on existing state geological maps. Malpais lava flows and small basaltic occurrences not appearing on existing geological maps were identified in ERTS multispectral color images.
FRIT characterized hierarchical kernel memory arrangement for multiband palmprint recognition
NASA Astrophysics Data System (ADS)
Kisku, Dakshina R.; Gupta, Phalguni; Sing, Jamuna K.
2015-10-01
In this paper, we present a hierarchical kernel associative memory (H-KAM) based computational model with Finite Ridgelet Transform (FRIT) representation for multispectral palmprint recognition. To characterize a multispectral palmprint image, the Finite Ridgelet Transform is used to achieve a very compact and distinctive representation of linear singularities while it also captures the singularities along lines and edges. The proposed system makes use of Finite Ridgelet Transform to represent multispectral palmprint image and it is then modeled by Kernel Associative Memories. Finally, the recognition scheme is thoroughly tested with a benchmarking multispectral palmprint database CASIA. For recognition purpose a Bayesian classifier is used. The experimental results exhibit robustness of the proposed system under different wavelengths of palm image.
Retinex Preprocessing for Improved Multi-Spectral Image Classification
NASA Technical Reports Server (NTRS)
Thompson, B.; Rahman, Z.; Park, S.
2000-01-01
The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original images, without preprocessing, are much less similar.
Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L
2005-12-01
Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.
NASA Technical Reports Server (NTRS)
Yost, E. F. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The first part of the study resulted in photographic procedures for making multispectral positive images which greatly enhance the color differences in land detail using an additive color viewer. An additive color analysis of the geologic features near Willcox, Arizona using enhanced black and white multispectral positives allowed compilation of a significant number of unmapped geologic units which do not appear on geologic maps of the area. The second part demonstrated the feasibility of utilizing Skylab remote sensor data to monitor and manage the coastal environment by relating physical, chemical, and biological ship sampled data to S190A, S190B, and S192 image characteristics. Photographic reprocessing techniques were developed which greatly enhanced subtle low brightness water detail. Using these photographic contrast-stretch techniques, two water masses having an extinction coefficient difference of only 0.07 measured simultaneously with the acquisition of S190A data were readily differentiated.
Lossless, Multi-Spectral Data Compressor for Improved Compression for Pushbroom-Type Instruments
NASA Technical Reports Server (NTRS)
Klimesh, Matthew
2008-01-01
A low-complexity lossless algorithm for compression of multispectral data has been developed that takes into account pushbroom-type multispectral imagers properties in order to make the file compression more effective.
NASA Astrophysics Data System (ADS)
Clark, M. L.
2016-12-01
The goal of this study was to assess multi-temporal, Hyperspectral Infrared Imager (HyspIRI) satellite imagery for improved forest class mapping relative to multispectral satellites. The study area was the western San Francisco Bay Area, California and forest alliances (e.g., forest communities defined by dominant or co-dominant trees) were defined using the U.S. National Vegetation Classification System. Simulated 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery were processed from image data acquired by NASA's AVIRIS airborne sensor in year 2015, with summer and multi-temporal (spring, summer, fall) data analyzed separately. HyspIRI reflectance was used to generate a suite of hyperspectral metrics that targeted key spectral features related to chemical and structural properties. The Random Forests classifier was applied to the simulated images and overall accuracies (OA) were compared to those from real Landsat 8 images. For each image group, broad land cover (e.g., Needle-leaf Trees, Broad-leaf Trees, Annual agriculture, Herbaceous, Built-up) was classified first, followed by a finer-detail forest alliance classification for pixels mapped as closed-canopy forest. There were 5 needle-leaf tree alliances and 16 broad-leaf tree alliances, including 7 Quercus (oak) alliance types. No forest alliance classification exceeded 50% OA, indicating that there was broad spectral similarity among alliances, most of which were not spectrally pure but rather a mix of tree species. In general, needle-leaf (Pine, Redwood, Douglas Fir) alliances had better class accuracies than broad-leaf alliances (Oaks, Madrone, Bay Laurel, Buckeye, etc). Multi-temporal data classifications all had 5-6% greater OA than with comparable summer data. For simulated data, HyspIRI metrics had 4-5% greater OA than Landsat 8 and Sentinel-2 multispectral imagery and 3-4% greater OA than HyspIRI reflectance. Finally, HyspIRI metrics had 8% greater OA than real Landsat 8 imagery. In conclusion, forest alliance classification was found to be a difficult remote sensing application with moderate resolution (30 m) satellite imagery; however, of the data tested, HyspIRI spectral metrics had the best performance relative to multispectral satellites.
Regularization destriping of remote sensing imagery
NASA Astrophysics Data System (ADS)
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes
(strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
Multispectral Landsat images of Antartica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.
1988-01-01
The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.
USDA-ARS?s Scientific Manuscript database
This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...
Detection of sudden death syndrome using a multispectral imaging sensor
USDA-ARS?s Scientific Manuscript database
Sudden death syndrome (SDS), caused by the fungus Fusarium solani f. sp. glycines, is a widespread mid- to late-season disease with distinctive foliar symptoms. This paper reported the development of an image analysis based method to detect SDS using a multispectral image sensor. A hue, saturation a...
CART V: recent advancements in computer-aided camouflage assessment
NASA Astrophysics Data System (ADS)
Müller, Thomas; Müller, Markus
2011-05-01
In order to facilitate systematic, computer aided improvements of camouflage and concealment assessment methods, the software system CART (Camouflage Assessment in Real-Time) was built up for the camouflage assessment of objects in multispectral image sequences (see contributions to SPIE 2007-2010 [1], [2], [3], [4]). It comprises a semi-automatic marking of target objects (ground truth generation) including their propagation over the image sequence and the evaluation via user-defined feature extractors as well as methods to assess the object's movement conspicuity. In this fifth part in an annual series at the SPIE conference in Orlando, this paper presents the enhancements over the recent year and addresses the camouflage assessment of static and moving objects in multispectral image data that can show noise or image artefacts. The presented methods fathom the correlations between image processing and camouflage assessment. A novel algorithm is presented based on template matching to assess the structural inconspicuity of an object objectively and quantitatively. The results can easily be combined with an MTI (moving target indication) based movement conspicuity assessment function in order to explore the influence of object movement to a camouflage effect in different environments. As the results show, the presented methods contribute to a significant benefit in the field of camouflage assessment.
Radiometric sensitivity comparisons of multispectral imaging systems
NASA Technical Reports Server (NTRS)
Lu, Nadine C.; Slater, Philip N.
1989-01-01
Multispectral imaging systems provide much of the basic data used by the land and ocean civilian remote-sensing community. There are numerous multispectral imaging systems which have been and are being developed. A common way to compare the radiometric performance of these systems is to examine their noise-equivalent change in reflectance, NE Delta-rho. The NE Delta-rho of a system is the reflectance difference that is equal to the noise in the recorded signal. A comparison is made of the noise equivalent change in reflectance of seven different multispectral imaging systems (AVHRR, AVIRIS, ETM, HIRIS, MODIS-N, SPOT-1, HRV, and TM) for a set of three atmospheric conditions (continental aerosol with 23-km visibility, continental aerosol with 5-km visibility, and a Rayleigh atmosphere), five values of ground reflectance (0.01, 0.10, 0.25, 0.50, and 1.00), a nadir viewing angle, and a solar zenith angle of 45 deg.
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.
2004-01-01
The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.
RECENT DEVELOPMENTS IN THE U. S. GEOLOGICAL SURVEY'S LANDSAT IMAGE MAPPING PROGRAM.
Brownworth, Frederick S.; Rohde, Wayne G.
1986-01-01
At the 1984 ASPRS-ACSM Convention in Washington, D. C. a paper on 'The Emerging U. S. Geological Survey Image Mapping Program' was presented that discussed recent satellite image mapping advancements and published products. Since then Landsat image mapping has become an integral part of the National Mapping Program. The Survey currently produces about 20 Landsat multispectral scanner (MSS) and Thematic Mapper (TM) image map products annually at 1:250,000 and 1:100,000 scales, respectively. These Landsat image maps provide users with a regional or synoptic view of an area. The resultant geographical presentation of the terrain and cultural features will help planners and managers make better decisions regarding the use of our national resources.
Active Infrared Multispectral Imaging of Chemicals on Surfaces
2011-04-06
derived from the absorption spectrum using the Kramers- Kronig relation assuming a high-frequency refractive index of 1.50 (30]. The DEP was applied to a...imaginary parts of the index are related by the Kramers- Kronig relationship, each strong absorption feature corresponds to a region of anomalous...2008). [30] Ohta, K., and Ishida, H., "Comparison among several numerical integration methods for Kramers- Kronig Transformation," Appl. Spectroscopy
Robust tumor morphometry in multispectral fluorescence microscopy
NASA Astrophysics Data System (ADS)
Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo
2009-02-01
Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.
Li, Sui-Xian
2018-05-07
Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI). However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ₂ norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.
NASA Astrophysics Data System (ADS)
Delpueyo, Xana; Vilaseca, Meritxell; Royo, Santiago; Ares, Miguel; Rey-Barroso, Laura; Sanabria, Ferran; Puig, Susana; Pellacani, Giovanni; Noguero, Fernando; Solomita, Giuseppe; Bosch, Thierry
2017-06-01
This article proposes a multispectral system that uses the analysis of the spatial distribution of color and spectral features to improve the detection of skin cancer lesions, specifically melanomas and basal cell carcinomas. The system consists of a digital camera and light-emitting diodes of eight different wavelengths (414 to 995 nm). The parameters based on spectral features of the lesions such as reflectance and color, as well as others empirically computed using reflectance values, were calculated pixel-by-pixel from the images obtained. Statistical descriptors were calculated for every segmented lesion [mean (x˜), standard deviation (σ), minimum, and maximum]; descriptors based on the first-order statistics of the histogram [entropy (Ep), energy (En), and third central moment (μ3)] were also obtained. The study analyzed 429 pigmented and nonpigmented lesions: 290 nevi and 139 malignant (95 melanomas and 44 basal cell carcinomas), which were split into training and validation sets. Fifteen parameters were found to provide the best sensitivity (87.2% melanomas and 100% basal cell carcinomas) and specificity (54.5%). The results suggest that the extraction of textural information can contribute to the diagnosis of melanomas and basal cell carcinomas as a supporting tool to dermoscopy and confocal microscopy.
In-vivo morphologic and spectroscopic investigation of Psoriasis
NASA Astrophysics Data System (ADS)
Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.
2011-07-01
Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Cases of psoriasis were investigated in vivo with optical means in order to evaluate the potential of in vivo optical biopsy. A Polarization Multispectral Dermoscope was employed for the macroscopic observation. Features such as the 'dotted' blood vessels pattern was observed with high contrast. High resolution image sections of the epidermis and the dermis were produced with a custom made Multiphoton Microscope. Imaging extended from the surface of the lesion down to the papillary dermis, at a depth of 200 μm. In the epidermis, a characteristic morphology of the stratum corneum found only in Psoriasis was revealed. Additionally, the cytoplasmic area of the cells in the stratum spinosum layer was found to be smaller than normal. In the dermis the morphological features were more pronounced, where the elongated dermal papillae dominated the papillary layer. Their length exceeds 100μm, which is a far greater value compared to that of healthy skin. These in vivo observations are consistent with the ex vivo histopathological observations, supporting both the applicability and potentiality of multispectral dermoscopy and multiphoton microscopy in the field of in vivo optical investigation and biopsy of skin.
3D widefield light microscope image reconstruction without dyes
NASA Astrophysics Data System (ADS)
Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.
2015-03-01
3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.
Image correlation and sampling study
NASA Technical Reports Server (NTRS)
Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.
1972-01-01
The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.
COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.
Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R
2018-03-16
To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Almeidafilho, R.; Payolla, B. L.; Depinho, O. G.; Bettencourt, J. S.
1984-01-01
Analysis of digital multispectral MSS-LANDSAT images enhanced through computer techniques and enlarged to a video scale of 1:100.000, show the main geological and structura features of the Pedra Branca granitic massif in Rondonia. These are not observed in aerial photographs or adar images. Field work shows that LANDSAT photogeological units correspond to different facies of granitic rocks in the Pedra Branca massif. Even under the particular characteristics of Amazonia (Tropical Forest, deep weathering, and Quaternary sedimentary covers), an adequate utilization of orbital remote sensing images can be important tools for the orientation of field works.
Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.
2000-01-01
The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.
Development and bench testing of a multi-spectral imaging technology built on a smartphone platform
NASA Astrophysics Data System (ADS)
Bolton, Frank J.; Weiser, Reuven; Kass, Alex J.; Rose, Donny; Safir, Amit; Levitz, David
2016-03-01
Cervical cancer screening presents a great challenge for clinicians across the developing world. In many countries, cervical cancer screening is done by visualization with the naked eye. Simple brightfield white light imaging with photo documentation has been shown to make a significant impact on cervical cancer care. Adoption of smartphone based cervical imaging devices is increasing across Africa. However, advanced imaging technologies such as multispectral imaging systems, are seldom deployed in low resource settings, where they are needed most. To address this challenge, the optical system of a smartphone-based mobile colposcopy imaging system was refined, integrating components required for low cost, portable multi-spectral imaging of the cervix. This paper describes the refinement of the mobile colposcope to enable it to acquire images of the cervix at multiple illumination wavelengths, including modeling and laboratory testing. Wavelengths were selected to enable quantifying the main absorbers in tissue (oxyand deoxy-hemoglobin, and water), as well as scattering parameters that describe the size distribution of scatterers. The necessary hardware and software modifications are reviewed. Initial testing suggests the multi-spectral mobile device holds promise for use in low-resource settings.
NASA Astrophysics Data System (ADS)
Onojeghuo, Alex Okiemute; Onojeghuo, Ajoke Ruth
2017-07-01
This study investigated the combined use of multispectral/hyperspectral imagery and LiDAR data for habitat mapping across parts of south Cumbria, North West England. The methodology adopted in this study integrated spectral information contained in pansharp QuickBird multispectral/AISA Eagle hyperspectral imagery and LiDAR-derived measures with object-based machine learning classifiers and ensemble analysis techniques. Using the LiDAR point cloud data, elevation models (such as the Digital Surface Model and Digital Terrain Model raster) and intensity features were extracted directly. The LiDAR-derived measures exploited in this study included Canopy Height Model, intensity and topographic information (i.e. mean, maximum and standard deviation). These three LiDAR measures were combined with spectral information contained in the pansharp QuickBird and Eagle MNF transformed imagery for image classification experiments. A fusion of pansharp QuickBird multispectral and Eagle MNF hyperspectral imagery with all LiDAR-derived measures generated the best classification accuracies, 89.8 and 92.6% respectively. These results were generated with the Support Vector Machine and Random Forest machine learning algorithms respectively. The ensemble analysis of all three learning machine classifiers for the pansharp QuickBird and Eagle MNF fused data outputs did not significantly increase the overall classification accuracy. Results of the study demonstrate the potential of combining either very high spatial resolution multispectral or hyperspectral imagery with LiDAR data for habitat mapping.
USDA-ARS?s Scientific Manuscript database
Structured-illumination reflectance imaging (SIRI) is a new, promising imaging modality for enhancing quality detection of food. A liquid-crystal tunable filter (LCTF)-based multispectral SIRI system was developed and used for selecting optimal wavebands to detect bruising in apples. Immediately aft...
NASA Astrophysics Data System (ADS)
Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine
2014-10-01
The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.
Lattice algebra approach to multispectral analysis of ancient documents.
Valdiviezo-N, Juan C; Urcid, Gonzalo
2013-02-01
This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.
The NEAR Multispectral Imager.
NASA Astrophysics Data System (ADS)
Hawkins, S. E., III
1998-06-01
Multispectral Imager, one of the primary instruments on the Near Earth Asteroid Rendezvous (NEAR) spacecraft, uses a five-element refractive optics telescope, an eight-position filter wheel, and a charge-coupled device detector to acquire images over its sensitive wavelength range of ≍400 - 1100 nm. The primary science objectives of the Multispectral Imager are to determine the morphology and composition of the surface of asteroid 433 Eros. The camera will have a critical role in navigating to the asteroid. Seven narrowband spectral filters have been selected to provide multicolor imaging for comparative studies with previous observations of asteroids in the same class as Eros. The eighth filter is broadband and will be used for optical navigation. An overview of the instrument is presented, and design parameters and tradeoffs are discussed.
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.
NASA Astrophysics Data System (ADS)
Zabarylo, U.; Minet, O.
2010-01-01
Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.
NASA Astrophysics Data System (ADS)
Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.
2017-07-01
This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.
Diagnosing hypoxia in murine models of rheumatoid arthritis from reflectance multispectral images
NASA Astrophysics Data System (ADS)
Glinton, Sophie; Naylor, Amy J.; Claridge, Ela
2017-07-01
Spectra computed from multispectral images of murine models of Rheumatoid Arthritis show a characteristic decrease in reflectance within the 600-800nm region which is indicative of the reduction in blood oxygenation and is consistent with hypoxia.
The application of UV multispectral technology in extract trace evdidence
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Xu, Xiaojing; Li, Zhihui; Xu, Lei; Xie, Lanchi
2015-11-01
Multispectral imaging is becoming more and more important in the field of examination of material evidence, especially the ultraviolet spectral imaging. Fingerprints development, questioned document detection, trace evidence examination-all can used of it. This paper introduce a UV multispectral equipment which was developed by BITU & IFSC, it can extract trace evidence-extract fingerprints. The result showed that this technology can develop latent sweat-sebum mixed fingerprint on photo and ID card blood fingerprint on steel hold. We used the UV spectrum data analysis system to make the UV spectral image clear to identify and analyse.
Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei
2014-01-01
Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.
Multispectral photography for earth resources
NASA Technical Reports Server (NTRS)
Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.
1972-01-01
A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.
NASA Technical Reports Server (NTRS)
Holub, R.; Shenk, W. E.
1973-01-01
Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.
Use of high resolution satellite images for monitoring of earthquakes and volcano activity.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, Alonso A.
Our studies have shown that the strain energy accumulation deep in the Earth's crust that precedes a strong earthquake can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the Richter scale magnitude ˜4.5, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth's crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.
Dabo-Niang, S; Zoueu, J T
2012-09-01
In this communication, we demonstrate how kriging, combine with multispectral and multimodal microscopy can enhance the resolution of malaria-infected images and provide more details on their composition, for analysis and diagnosis. The results of this interpolation applied to the two principal components of multispectral and multimodal images illustrate that the examination of the content of Plasmodium falciparum infected human erythrocyte is improved. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
2015-10-08
Regions with exposed water ice are highlighted in blue in this composite image from New Horizons' Ralph instrument, combining visible imagery from the Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). The strongest signatures of water ice occur along Virgil Fossa, just west of Elliot crater on the left side of the inset image, and also in Viking Terra near the top of the frame. A major outcrop also occurs in Baré Montes towards the right of the image, along with numerous much smaller outcrops, mostly associated with impact craters and valleys between mountains. The scene is approximately 280 miles (450 kilometers) across. Note that all surface feature names are informal. http://ppj2:8080/catalog/PIA19963
NASA Astrophysics Data System (ADS)
Jayasekare, Ajith S.; Wickramasuriya, Rohan; Namazi-Rad, Mohammad-Reza; Perez, Pascal; Singh, Gaurav
2017-07-01
A continuous update of building information is necessary in today's urban planning. Digital images acquired by remote sensing platforms at appropriate spatial and temporal resolutions provide an excellent data source to achieve this. In particular, high-resolution satellite images are often used to retrieve objects such as rooftops using feature extraction. However, high-resolution images acquired over built-up areas are associated with noises such as shadows that reduce the accuracy of feature extraction. Feature extraction heavily relies on the reflectance purity of objects, which is difficult to perfect in complex urban landscapes. An attempt was made to increase the reflectance purity of building rooftops affected by shadows. In addition to the multispectral (MS) image, derivatives thereof namely, normalized difference vegetation index and principle component (PC) images were incorporated in generating the probability image. This hybrid probability image generation ensured that the effect of shadows on rooftop extraction, particularly on light-colored roofs, is largely eliminated. The PC image was also used for image segmentation, which further increased the accuracy compared to segmentation performed on an MS image. Results show that the presented method can achieve higher rooftop extraction accuracy (70.4%) in vegetation-rich urban areas compared to traditional methods.
NASA Technical Reports Server (NTRS)
Harston, Craig; Schumacher, Chris
1992-01-01
Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.
Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor.
Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong
2016-12-29
When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications.
Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor
Zhao, Huijie; Ji, Zheng; Li, Na; Gu, Jianrong; Li, Yansong
2016-01-01
When detecting a target over the diurnal cycle, a conventional infrared thermal sensor might lose the target due to the thermal crossover, which could happen at any time throughout the day when the infrared image contrast between target and background in a scene is indistinguishable due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal crossover influences a conventional thermal sensor, within the conditions where the thermal crossover would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented. Furthermore, the effectiveness of this technology is also described and we describe how the prototype design and multispectral technology is employed to help solve the thermal crossover detection problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h period. The experimental results show that the multispectral infrared imaging system can enhance the contrast of the detected images and effectively solve the failure of the conventional infrared sensor during the diurnal cycle, which is of great significance for infrared surveillance applications. PMID:28036073
Multi-spectral imaging with infrared sensitive organic light emitting diode
Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky
2014-01-01
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589
Multi-spectral imaging with infrared sensitive organic light emitting diode
NASA Astrophysics Data System (ADS)
Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky
2014-08-01
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.
Multispectral imaging of plant stress for detection of CO2 leaking from underground
NASA Astrophysics Data System (ADS)
Rouse, J.; Shaw, J. A.; Repasky, K. S.; Lawrence, R. L.
2008-12-01
Multispectral imaging of plant stress is a potentially useful method of detecting CO2 leaking from underground. During the summers of 2007 and 2008, we deployed a multispectral imager for vegetation sensing as part of an underground CO2 release experiment conducted at the Zero Emission Research and Technology (ZERT) field site near the Montana State University campus in Bozeman, Montana. The imager was mounted on a low tower and observed the vegetation in a region near an underground pipe during a multi-week CO2 release. The imager was calibrated to measure absolute reflectance, from which vegetation indices were calculated as a measure of vegetation health. The temporal evolution of these indices over the course of the experiment show that the vegetation nearest the pipe exhibited more stress than the vegetation located further from the pipe. The imager observed notably increased stress in vegetation at locations exhibiting particularly high flux of CO2 from the ground into the atmosphere. These data from the 2007 and 2008 experiments will be used to demonstrate the utility of a tower-mounted multispectral imaging system for detecting CO2 leakage from below ground with the ability to operate continuously during clear and cloudy conditions.
Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera
NASA Astrophysics Data System (ADS)
Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.
2017-10-01
Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a Jet Propulsion Laboratory SBIR (Small Business Innovative Research), Cambridge Research and Instrumentation Inc., developed a new class of filters for the construction of small, low-cost multispectral imagers. The VariSpec liquid crystal enables users to obtain multi-spectral, ultra-high resolution images using a monochrome CCD (charge coupled device) camera. Application areas include biomedical imaging, remote sensing, and machine vision.
Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura
2014-01-01
Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604
Pugsley, Haley R
2017-07-21
Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner.
Pugsley, Haley R.
2017-01-01
Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner. PMID:28784946
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Boldt, J.; Wilson, J. P.; Yee, J. H.; Stoffler, R.
2017-12-01
The multi-spectral STereo Atmospheric Remote Sensing (STARS) concept has the objective to provide high-spatial and -temporal-resolution observations of 3D cloud structures related to hurricane development and other severe weather events. The rapid evolution of severe weather demonstrates a critical need for mesoscale observations of severe weather dynamics, but such observations are rare, particularly over the ocean where extratropical and tropical cyclones can undergo explosive development. Coincident space-based measurements of wind velocity and cloud properties at the mesoscale remain a great challenge, but are critically needed to improve the understanding and prediction of severe weather and cyclogenesis. STARS employs a mature stereoscopic imaging technique on two satellites (e.g. two CubeSats, two hosted payloads) to simultaneously retrieve cloud motion vectors (CMVs), cloud-top temperatures (CTTs), and cloud geometric heights (CGHs) from multi-angle, multi-spectral observations of cloud features. STARS is a pushbroom system based on separate wide-field-of-view co-boresighted multi-spectral cameras in the visible, midwave infrared (MWIR), and longwave infrared (LWIR) with high spatial resolution (better than 1 km). The visible system is based on a pan-chromatic, low-light imager to resolve cloud structures under nighttime illumination down to ¼ moon. The MWIR instrument, which is being developed as a NASA ESTO Instrument Incubator Program (IIP) project, is based on recent advances in MWIR detector technology that requires only modest cooling. The STARS payload provides flexible options for spaceflight due to its low size, weight, power (SWaP) and very modest cooling requirements. STARS also meets AF operational requirements for cloud characterization and theater weather imagery. In this paper, an overview of the STARS concept, including the high-level sensor design, the concept of operations, and measurement capability will be presented.
A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.
1991-01-01
In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.
NASA Astrophysics Data System (ADS)
Renaud, Rémi; Bendahmane, Mounir; Chery, Romain; Martin, Claire; Gurden, Hirac; Pain, Frederic
2012-06-01
Wide field multispectral imaging of light backscattered by brain tissues provides maps of hemodynamics changes (total blood volume and oxygenation) following activation. This technique relies on the fit of the reflectance images obtain at two or more wavelengths using a modified Beer-Lambert law1,2. It has been successfully applied to study the activation of several sensory cortices in the anesthetized rodent using visible light1-5. We have carried out recently the first multispectral imaging in the olfactory bulb6 (OB) of anesthetized rats. However, the optimization of wavelengths choice has not been discussed in terms of cross talk and uniqueness of the estimated parameters (blood volume and saturation maps) although this point was shown to be crucial for similar studies in Diffuse Optical Imaging in humans7-10. We have studied theoretically and experimentally the optimal sets of wavelength for multispectral imaging of rodent brain activation in the visible. Sets of optimal wavelengths have been identified and validated in vivo for multispectral imaging of the OB of rats following odor stimulus. We studied the influence of the wavelengths sets on the magnitude and time courses of the oxy- and deoxyhemoglobin concentration variations as well as on the spatial extent of activated brain areas following stimulation. Beyond the estimation of hemodynamic parameters from multispectral reflectance data, we observed repeatedly and for all wavelengths a decrease of light reflectance. For wavelengths longer than 590 nm, these observations differ from those observed in the somatosensory and barrel cortex and question the basis of the reflectance changes during activation in the OB. To solve this issue, Monte Carlo simulations (MCS) have been carried out to assess the relative contribution of absorption, scattering and anisotropy changes to the intrinsic optical imaging signals in somatosensory cortex (SsC) and OB model.
Multi-spectral confocal microendoscope for in-vivo imaging
NASA Astrophysics Data System (ADS)
Rouse, Andrew Robert
The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.
NASA Astrophysics Data System (ADS)
Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2006-09-01
The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Britt, Daniel T.; Head, James W.; Pratt, Stephen F.; Fisher, Paul C.
1991-01-01
Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.
Davis, Philip A.; Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for South Bamyan) and the WGS84 datum. The final image mosaics for the South Bamyan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Pansharpening Techniques to Detect Mass Monument Damaging in Iraq
NASA Astrophysics Data System (ADS)
Baiocchi, V.; Bianchi, A.; Maddaluno, C.; Vidale, M.
2017-05-01
The recent mass destructions of monuments in Iraq cannot be monitored with the terrestrial survey methodologies, for obvious reasons of safety. For the same reasons, it's not advisable the use of classical aerial photogrammetry, so it was obvious to think to the use of multispectral Very High Resolution (VHR) satellite imagery. Nowadays VHR satellite images resolutions are very near airborne photogrammetrical images and usually they are acquired in multispectral mode. The combination of the various bands of the images is called pan-sharpening and it can be carried on using different algorithms and strategies. The correct pansharpening methodology, for a specific image, must be chosen considering the specific multispectral characteristics of the satellite used and the particular application. In this paper a first definition of guidelines for the use of VHR multispectral imagery to detect monument destruction in unsafe area, is reported. The proposed methodology, agreed with UNESCO and soon to be used in Libya for the coastal area, has produced a first report delivered to the Iraqi authorities. Some of the most evident examples are reported to show the possible capabilities of identification of damages using VHR images.
Mitigating fluorescence spectral overlap in wide-field endoscopic imaging
Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.
2013-01-01
Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226
NASA Astrophysics Data System (ADS)
Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula
2009-10-01
State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.
NASA Astrophysics Data System (ADS)
Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula
2010-02-01
State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.
Correlation and registration of ERTS multispectral imagery. [by a digital processing technique
NASA Technical Reports Server (NTRS)
Bonrud, L. O.; Henrikson, P. J.
1974-01-01
Examples of automatic digital processing demonstrate the feasibility of registering one ERTS multispectral scanner (MSS) image with another obtained on a subsequent orbit, and automatic matching, correlation, and registration of MSS imagery with aerial photography (multisensor correlation) is demonstrated. Excellent correlation was obtained with patch sizes exceeding 16 pixels square. Qualities which lead to effective control point selection are distinctive features, good contrast, and constant feature characteristics. Results of the study indicate that more than 300 degrees of freedom are required to register two standard ERTS-1 MSS frames covering 100 by 100 nautical miles to an accuracy of 0.6 pixel mean radial displacement error. An automatic strip processing technique demonstrates 600 to 1200 degrees of freedom over a quater frame of ERTS imagery. Registration accuracies in the range of 0.3 pixel to 0.5 pixel mean radial error were confirmed by independent error analysis. Accuracies in the range of 0.5 pixel to 1.4 pixel mean radial error were demonstrated by semi-automatic registration over small geographic areas.
Iris biometric system design using multispectral imaging
NASA Astrophysics Data System (ADS)
Widhianto, Benedictus Yohanes Bagus Y. B.; Nasution, Aulia M. T.
2016-11-01
An identity recognition system is a vital component that cannot be separated from life, iris biometric is one of the biometric that has the best accuracy reaching 99%. Usually, iris biometric systems use infrared spectrum lighting to reduce discomfort caused by radiation when the eye is given direct light, while the eumelamin that is forming the iris has the most flourescent radiation when given a spectrum of visible light. This research will be conducted by detecting iris wavelengths of 850 nm, 560 nm, and 590 nm, where the detection algorithm will be using Daugman algorithm by using a Gabor wavelet extraction feature, and matching feature using a Hamming distance. Results generated will be analyzed to identify how much differences there are, and to improve the accuracy of the multispectral biometric system and as a detector of the authenticity of the iris. The results obtained from the analysis of wavelengths 850 nm, 560 nm, and 590 nm respectively has an accuracy of 99,35 , 97,5 , 64,5 with a matching score of 0,26 , 0,23 , 0,37.
NASA Technical Reports Server (NTRS)
1982-01-01
The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.
2005-01-01
Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.
Mineral mapping and applications of imaging spectroscopy
Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.
2006-01-01
Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).
Optimal optical filters of fluorescence excitation and emission for poultry fecal detection
USDA-ARS?s Scientific Manuscript database
Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection. Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, ...
Leica ADS40 Sensor for Coastal Multispectral Imaging
NASA Technical Reports Server (NTRS)
Craig, John C.
2007-01-01
The Leica ADS40 Sensor as it is used for coastal multispectral imaging is presented. The contents include: 1) Project Area Overview; 2) Leica ADS40 Sensor; 3) Focal Plate Arrangements; 4) Trichroid Filter; 5) Gradient Correction; 6) Image Acquisition; 7) Remote Sensing and ADS40; 8) Band comparisons of Satellite and Airborne Sensors; 9) Impervious Surface Extraction; and 10) Impervious Surface Details.
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2010-05-01
Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic
Multispectral imaging reveals biblical-period inscription unnoticed for half a century
Cordonsky, Michael; Levin, David; Moinester, Murray; Sass, Benjamin; Turkel, Eli; Piasetzky, Eli; Finkelstein, Israel
2017-01-01
Most surviving biblical period Hebrew inscriptions are ostraca—ink-on-clay texts. They are poorly preserved and once unearthed, fade rapidly. Therefore, proper and timely documentation of ostraca is essential. Here we show a striking example of a hitherto invisible text on the back side of an ostracon revealed via multispectral imaging. This ostracon, found at the desert fortress of Arad and dated to ca. 600 BCE (the eve of Judah’s destruction by Nebuchadnezzar), has been on display for half a century. Its front side has been thoroughly studied, while its back side was considered blank. Our research revealed three lines of text on the supposedly blank side and four "new" lines on the front side. Our results demonstrate the need for multispectral image acquisition for both sides of all ancient ink ostraca. Moreover, in certain cases we recommend employing multispectral techniques for screening newly unearthed ceramic potsherds prior to disposal. PMID:28614416
Multispectral imaging reveals biblical-period inscription unnoticed for half a century.
Faigenbaum-Golovin, Shira; Mendel-Geberovich, Anat; Shaus, Arie; Sober, Barak; Cordonsky, Michael; Levin, David; Moinester, Murray; Sass, Benjamin; Turkel, Eli; Piasetzky, Eli; Finkelstein, Israel
2017-01-01
Most surviving biblical period Hebrew inscriptions are ostraca-ink-on-clay texts. They are poorly preserved and once unearthed, fade rapidly. Therefore, proper and timely documentation of ostraca is essential. Here we show a striking example of a hitherto invisible text on the back side of an ostracon revealed via multispectral imaging. This ostracon, found at the desert fortress of Arad and dated to ca. 600 BCE (the eve of Judah's destruction by Nebuchadnezzar), has been on display for half a century. Its front side has been thoroughly studied, while its back side was considered blank. Our research revealed three lines of text on the supposedly blank side and four "new" lines on the front side. Our results demonstrate the need for multispectral image acquisition for both sides of all ancient ink ostraca. Moreover, in certain cases we recommend employing multispectral techniques for screening newly unearthed ceramic potsherds prior to disposal.
Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei
2014-01-01
Multispectral imaging with 19 wavelengths in the range of 405–970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit. PMID:24505317
NASA Astrophysics Data System (ADS)
Kim, Manjae; Kim, Sewoong; Hwang, Minjoo; Kim, Jihun; Je, Minkyu; Jang, Jae Eun; Lee, Dong Hun; Hwang, Jae Youn
2017-02-01
To date, the incident rates of various skin diseases have increased due to hereditary and environmental factors including stress, irregular diet, pollution, etc. Among these skin diseases, seborrheic dermatitis and psoriasis are a chronic/relapsing dermatitis involving infection and temporary alopecia. However, they typically exhibit similar symptoms, thus resulting in difficulty in discrimination between them. To prevent their associated complications and appropriate treatments for them, it is crucial to discriminate between seborrheic dermatitis and psoriasis with high specificity and sensitivity and further continuously/quantitatively to monitor the skin lesions during their treatment at other locations besides a hospital. Thus, we here demonstrate a mobile multispectral imaging system connected to a smartphone for selfdiagnosis of seborrheic dermatitis and further discrimination between seborrheic dermatitis and psoriasis on the scalp, which is the more challenging case. Using the system developed, multispectral imaging and analysis of seborrheic dermatitis and psoriasis on the scalp was carried out. It was here found that the spectral signatures of seborrheic dermatitis and psoriasis were discernable and thus seborrheic dermatitis on the scalp could be distinguished from psoriasis by using the system. In particular, the smartphone-based multispectral imaging and analysis moreover offered better discrimination between seborrheic dermatitis and psoriasis than the RGB imaging and analysis. These results suggested that the multispectral imaging system based on a smartphone has the potential for self-diagnosis of seborrheic dermatitis with high portability and specificity.
Selection of optimal multispectral imaging system parameters for small joint arthritis detection
NASA Astrophysics Data System (ADS)
Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija
2018-02-01
Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.
Implementation and evaluation of ILLIAC 4 algorithms for multispectral image processing
NASA Technical Reports Server (NTRS)
Swain, P. H.
1974-01-01
Data concerning a multidisciplinary and multi-organizational effort to implement multispectral data analysis algorithms on a revolutionary computer, the Illiac 4, are reported. The effectiveness and efficiency of implementing the digital multispectral data analysis techniques for producing useful land use classifications from satellite collected data were demonstrated.
A Review of Imaging Techniques for Plant Phenotyping
Li, Lei; Zhang, Qin; Huang, Danfeng
2014-01-01
Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588
Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong
2006-09-01
Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.
2017-01-20
This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft's close flyby of Pluto in July 2015. The mosaic shows how Pluto's large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach- which were imaged at the highest resolution. North is up; Pluto's equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto's giant, informally named Sputnik Planitia glacier - the left half of Pluto's signature "heart" feature -- is at the center of this map. http://photojournal.jpl.nasa.gov/catalog/PIA11707
Distant Determination of Bilirubin Distribution in Skin by Multi-Spectral Imaging
NASA Astrophysics Data System (ADS)
Saknite, I.; Jakovels, D.; Spigulis, J.
2011-01-01
For mapping the bilirubin distribution in bruised skin the multi-spectral imaging technique was employed, which made it possible to observe temporal changes of the bilirubin content in skin photo-types II and III. The obtained results confirm the clinical potential of this technique for skin bilirubin diagnostics.
USDA-ARS?s Scientific Manuscript database
Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...
Multispectral fluorescence image algorithms for detection of frass on mature tomatoes
USDA-ARS?s Scientific Manuscript database
A multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at five wavebands, 515 nm, 640 nm, 664 nm, 690 nm, and 724 nm...
Analysis of variograms with various sample sizes from a multispectral image
USDA-ARS?s Scientific Manuscript database
Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
In-vivo optical investigation of psoriasis
NASA Astrophysics Data System (ADS)
Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.
2011-03-01
Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Cases of psoriasis were investigated in vivo with optical means in order to evaluate the potential of in vivo optical biopsy. A Polarization Multispectral Dermoscope was employed for the macroscopic observation. Features such as the 'dotted' blood vessels pattern was observed with high contrast. The average size of dot vessels in Psoriasis was measured to be 974 μm2 which is much higher compared to healthy skin. High resolution image sections of the epidermis and the dermis were produced with a custom made Multiphoton Microscope. Imaging extended from the surface of the lesion down to the papillary dermis, at a depth of 200 μm. In the epidermis, a characteristic morphology of the stratum corneum found only in Psoriasis was revealed. Additionally, the cytoplasmic area of the cells in the stratum spinosum layer was found to be smaller than normal. In the dermis the morphological features were more pronounced, where the elongated dermal papillae dominated the papillary layer. Their length exceeds 100μm, which is a far greater value compared to that of healthy skin. These in vivo observations are consistent with the ex vivo histopathological observations, supporting both the applicability and potentiality of multispectral dermoscopy and multiphoton microscopy in the field of in vivo optical investigation and biopsy of skin.
Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.
Brauers, Johannes; Aach, Til
2011-02-01
High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A.
2008-05-01
Our studies have shown that the strain energy accumulation deep in the Earth's crust that precedes a strong earthquake can be estimated by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the Richter scale magnitude > 4.5, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth's crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.
2009-12-01
Our studies have shown that the strain energy accumulation deep in the Earth’s crust that precedes seismic and volcanic activity can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.
Wetland Vegetation Integrity Assessment with Low Altitude Multispectral Uav Imagery
NASA Astrophysics Data System (ADS)
Boon, M. A.; Tesfamichael, S.
2017-08-01
The use of multispectral sensors on Unmanned Aerial Vehicles (UAVs) was until recently too heavy and bulky although this changed in recent times and they are now commercially available. The focus on the usage of these sensors is mostly directed towards the agricultural sector where the focus is on precision farming. Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area. Specifically, NDVI derived from multispectral UAV imagery was used to inform the determination of the integrity of the wetland vegetation. Furthermore, we tested different software applications for the processing of the imagery. The advantages and disadvantages we experienced of these applications are also shortly presented in this paper. A JAG-M fixed-wing imaging system equipped with a MicaScene RedEdge multispectral camera were utilised for the survey. A single surveying campaign was undertaken in early autumn of a 17 ha study area at the Kameelzynkraal farm, Gauteng Province, South Africa. Structure-from-motion photogrammetry software was used to reconstruct the camera position's and terrain features to derive a high resolution orthoretified mosaic. MicaSense Atlas cloud-based data platform, Pix4D and PhotoScan were utilised for the processing. The WET-Health level one methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland's structure and function from its natural reference condition. An on-site evaluation of the vegetation integrity was first completed. Disturbance classes were then mapped using the high resolution multispectral orthoimages and NDVI. The WET-Health vegetation module completed with the aid of the multispectral UAV products indicated that the vegetation of the wetland is largely modified ("D" PES Category) and that the condition is expected to deteriorate (change score) in the future. However a lower impact score were determined utilising the multispectral UAV imagery and NDVI. The result is a more accurate estimation of the impacts in the wetland.
NASA Astrophysics Data System (ADS)
Tupas, M. E. A.; Dasallas, J. A.; Jiao, B. J. D.; Magallon, B. J. P.; Sempio, J. N. H.; Ramos, M. K. F.; Aranas, R. K. D.; Tamondong, A. M.
2017-10-01
The FAST-SIFT corner detector and descriptor extractor combination was used to automatically georeference DIWATA-1 Spaceborne Multispectral Imager images. Features from the Fast Accelerated Segment Test (FAST) algorithm detects corners or keypoints in an image, and these robustly detected keypoints have well-defined positions. Descriptors were computed using Scale-Invariant Feature Transform (SIFT) extractor. FAST-SIFT method effectively SMI same-subscene images detected by the NIR sensor. The method was also tested in stitching NIR images with varying subscene swept by the camera. The slave images were matched to the master image. The keypoints served as the ground control points. Random sample consensus was used to eliminate fall-out matches and ensure accuracy of the feature points from which the transformation parameters were derived. Keypoints are matched based on their descriptor vector. Nearest-neighbor matching is employed based on a metric distance between the descriptors. The metrics include Euclidean and city block, among others. Rough matching outputs not only the correct matches but also the faulty matches. A previous work in automatic georeferencing incorporates a geometric restriction. In this work, we applied a simplified version of the learning method. RANSAC was used to eliminate fall-out matches and ensure accuracy of the feature points. This method identifies if a point fits the transformation function and returns inlier matches. The transformation matrix was solved by Affine, Projective, and Polynomial models. The accuracy of the automatic georeferencing method were determined by calculating the RMSE of interest points, selected randomly, between the master image and transformed slave image.
Davis, Philip A.; Cagney, Laura E.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Balkhab) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the Balkhab area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Balkhab study area, one subarea was designated for detailed field investigations (that is, the Balkhab Prospect subarea); this subarea was extracted from the area's image mosaic and is provided as separate embedded geotiff images.
Spectrum slicer for snapshot spectral imaging
NASA Astrophysics Data System (ADS)
Tamamitsu, Miu; Kitagawa, Yutaro; Nakagawa, Keiichi; Horisaki, Ryoichi; Oishi, Yu; Morita, Shin-ya; Yamagata, Yutaka; Motohara, Kentaro; Goda, Keisuke
2015-12-01
We propose and demonstrate an optical component that overcomes critical limitations in our previously demonstrated high-speed multispectral videography-a method in which an array of periscopes placed in a prism-based spectral shaper is used to achieve snapshot multispectral imaging with the frame rate only limited by that of an image-recording sensor. The demonstrated optical component consists of a slicing mirror incorporated into a 4f-relaying lens system that we refer to as a spectrum slicer (SS). With its simple design, we can easily increase the number of spectral channels without adding fabrication complexity while preserving the capability of high-speed multispectral videography. We present a theoretical framework for the SS and its experimental utility to spectral imaging by showing real-time monitoring of a dynamic colorful event through five different visible windows.
Davis, Philip A.; Cagney, Laura E.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Katawas) and the WGS84 datum. The final image mosaics are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Katawas study area, one subarea was designated for detailed field investigation (that is, the Gold subarea); this subarea was extracted from the area's image mosaic and is provided as a separate embedded geotiff image.
Davis, Philip A.; Cagney, Laura E.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for North Takhar) and the WGS84 datum. The final image mosaics were subdivided into nine overlapping tiles or quadrants because of the large size of the target area. The nine image tiles (or quadrants) for the North Takhar area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Cagney, Laura E.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Baghlan) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the Baghlan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Uruzgan) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the Uruzgan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Cagney, Laura E.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (41 for South Helmand) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the South Helmand area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (41 for Bakhud) and the WGS84 datum. The final image mosaics were subdivided into nine overlapping tiles or quadrants because of the large size of the target area. The nine image tiles (or quadrants) for the Bakhud area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2003-01-01
Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.
Nam, Hyeong Soo; Kang, Woo Jae; Lee, Min Woo; Song, Joon Woo; Kim, Jin Won; Oh, Wang-Yuhl; Yoo, Hongki
2018-01-01
The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement. PMID:29675330
USDA-ARS?s Scientific Manuscript database
The amount of visible and near infrared light reflected by plants varies depending on their health. In this study, multispectral images were acquired by quadcopter for detecting tomato spot wilt virus amongst twenty genetic varieties of peanuts. The plants were visually assessed to acquire ground ...
USDA-ARS?s Scientific Manuscript database
This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...
Polarimetric Multispectral Imaging Technology
NASA Technical Reports Server (NTRS)
Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.
1993-01-01
The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.
Fluorescence multispectral imaging-based diagnostic system for atherosclerosis.
Ho, Cassandra Su Lyn; Horiuchi, Toshikatsu; Taniguchi, Hiroaki; Umetsu, Araya; Hagisawa, Kohsuke; Iwaya, Keiichi; Nakai, Kanji; Azmi, Amalina; Zulaziz, Natasha; Azhim, Azran; Shinomiya, Nariyoshi; Morimoto, Yuji
2016-08-20
Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall. The inner surface of extracted arteries (rabbit abdominal aorta, human coronary artery) was illuminated by 405 nm excitation light and multispectral fluorescence images were obtained. Pathological examination of human coronary artery samples were carried out and thickness of arteries were calculated by measuring combined media and intima thickness. The fluorescence spectra in atherosclerotic sites were different from those in normal sites. Multiple regions of interest (ROI) were selected within each sample and a ratio between two fluorescence intensity differences (where each intensity difference is calculated between an identifier wavelength and a base wavelength) from each ROI was determined, allowing for discrimination of atherosclerotic sites. Fluorescence intensity and thickness of artery were found to be significantly correlated. These results indicate that multispectral fluorescence imaging provides qualitative and quantitative evaluations of atherosclerosis and is therefore a viable method of diagnosing the disease.
Forest tree species clssification based on airborne hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Dian, Yuanyong; Li, Zengyuan; Pang, Yong
2013-10-01
Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.
Davis, Philip A.; Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for North Bamyan) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the North Bamyan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Cagney, Laura E.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Takhar) and the WGS84 datum. The final image mosaics for the Takhar area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Parwan) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the North Bamyan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Ghazni2) and the WGS84 datum. The images for the Ghazni2 area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (41 for Ahankashan) and the WGS84 datum. The final image mosaics were subdivided into five overlapping tiles or quadrants because of the large size of the target area. The five image tiles (or quadrants) for the Ahankashan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Ghazni1) and the WGS84 datum. The images for the Ghazni1 area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David
2018-02-01
Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.
Wide field-of-view dual-band multispectral muzzle flash detection
NASA Astrophysics Data System (ADS)
Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.
2013-06-01
Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.
Atmospheric correction for remote sensing image based on multi-spectral information
NASA Astrophysics Data System (ADS)
Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen
2018-03-01
The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.
Evaluation of Skybox Video and Still Image products
NASA Astrophysics Data System (ADS)
d'Angelo, P.; Kuschk, G.; Reinartz, P.
2014-11-01
The SkySat-1 satellite lauched by Skybox Imaging on November 21 in 2013 opens a new chapter in civilian earth observation as it is the first civilian satellite to image a target in high definition panchromatic video for up to 90 seconds. The small satellite with a mass of 100 kg carries a telescope with 3 frame sensors. Two products are available: Panchromatic video with a resolution of around 1 meter and a frame size of 2560 × 1080 pixels at 30 frames per second. Additionally, the satellite can collect still imagery with a swath of 8 km in the panchromatic band, and multispectral images with 4 bands. Using super-resolution techniques, sub-meter accuracy is reached for the still imagery. The paper provides an overview of the satellite design and imaging products. The still imagery product consists of 3 stripes of frame images with a footprint of approximately 2.6 × 1.1 km. Using bundle block adjustment, the frames are registered, and their accuracy is evaluated. Image quality of the panchromatic, multispectral and pansharpened products are evaluated. The video product used in this evaluation consists of a 60 second gazing acquisition of Las Vegas. A DSM is generated by dense stereo matching. Multiple techniques such as pairwise matching or multi image matching are used and compared. As no ground truth height reference model is availble to the authors, comparisons on flat surface and compare differently matched DSMs are performed. Additionally, visual inspection of DSM and DSM profiles show a detailed reconstruction of small features and large skyscrapers.
Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †
Kiku, Daisuke; Okutomi, Masatoshi
2017-01-01
Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407
Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.
Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi
2017-12-01
Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.
NASA Astrophysics Data System (ADS)
Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel
2015-03-01
Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.
Quality assessment of butter cookies applying multispectral imaging
Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne
2013-01-01
A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036
Techniques for automatic large scale change analysis of temporal multispectral imagery
NASA Astrophysics Data System (ADS)
Mercovich, Ryan A.
Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst's job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
A novel method to detect shadows on multispectral images
NASA Astrophysics Data System (ADS)
Daǧlayan Sevim, Hazan; Yardımcı ćetin, Yasemin; Özışık Başkurt, Didem
2016-10-01
Shadowing occurs when the direct light coming from a light source is obstructed by high human made structures, mountains or clouds. Since shadow regions are illuminated only by scattered light, true spectral properties of the objects are not observed in such regions. Therefore, many object classification and change detection problems utilize shadow detection as a preprocessing step. Besides, shadows are useful for obtaining 3D information of the objects such as estimating the height of buildings. With pervasiveness of remote sensing images, shadow detection is ever more important. This study aims to develop a shadow detection method on multispectral images based on the transformation of C1C2C3 space and contribution of NIR bands. The proposed method is tested on Worldview-2 images covering Ankara, Turkey at different times. The new index is used on these 8-band multispectral images with two NIR bands. The method is compared with methods in the literature.
Cloud and aerosol polarimetric imager
NASA Astrophysics Data System (ADS)
Zhang, Junqiang; Shao, Jianbing; Yan, Changxiang
2014-02-01
Cloud and Aerosol Polarimetric Imager (CAPI), which is the first onboard cloud and aerosol Polarimetric detector of CHINA, is developed to get cloud and aerosol data of atmosphere to retrieve aerosol optical and microphysical properties to increase the reversion precision of greenhouse gasses (GHGs). The instrument is neither a Polarization and Direction of Earth's Reflectance (POLDER) nor a Directional Polarimetric Camera (DPC) type polarized camera. It is a multispectral push broom system using linear detectors, and can get 5 bands spectral data, from ultraviolet (UV) to SWIR, of the same ground feature at the same time without any moving structure. This paper describes the CAPI instrument characteristics, composition, calibration, and the nearest development.
Spectral and textural processing of ERTS imagery. [Kansas
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Bosley, R. J.
1974-01-01
A procedure is developed to simultaneously extract textural features from all bands of ERTS multispectral scanner imagery for automatic analysis. Multi-images lead to excessively large grey tone N-tuple co-occurrence matrices; therefore, neighboring grey N-tuple differences are measured and an ellipsoidally symmetric functional form is assumed for the co-occurrence distribution of multiimage greytone N-tuple differences. On the basis of past data the ellipsoidally symmetric approximation is shown to be reasonable. Initial evaluation of the procedure is encouraging.
Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hongbin
2016-04-15
The potential use of feature wavelengths for predicting drip loss in grass carp fish, as affected by being frozen at -20°C for 24 h and thawed at 4°C for 1, 2, 4, and 6 days, was investigated. Hyperspectral images of frozen-thawed fish were obtained and their corresponding spectra were extracted. Least-squares support vector machine and multiple linear regression (MLR) models were established using five key wavelengths, selected by combining a genetic algorithm and successive projections algorithm, and this showed satisfactory performance in drip loss prediction. The MLR model with a determination coefficient of prediction (R(2)P) of 0.9258, and lower root mean square error estimated by a prediction (RMSEP) of 1.12%, was applied to transfer each pixel of the image and generate the distribution maps of exudation changes. The results confirmed that it is feasible to identify the feature wavelengths using variable selection methods and chemometric analysis for developing on-line multispectral imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong
2016-12-01
Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography in vivo. When compared to saline control, the doxorubicin treated group showed a significant increase in uptake of ICG-PS monoclonal antibody in triple negative breast tumor xenografted in NCr nude female mice. Day 5 posttreatment had the highest optoacoustic signal in the tumor region, indicating maximum apoptosis and the tumor subsequently shrank. Since multispectral optoacoustic imaging does not involve the use of radioactivity, the longer the circulatory time of the PS antibody can be exploited to monitor apoptosis over a period of time without multiple injections of commonly used imaging probes such as Tc-99m Annexin V or F-18 ML10. The proposed apoptosis imaging technique involving multispectral optoacoustic tomography, monoclonal antibody, and near-infrared absorbing fluorescent marker can be an effective tool for imaging apoptosis and treatment planning.
Time-resolved multispectral imaging of combustion reactions
NASA Astrophysics Data System (ADS)
Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick
2015-10-01
Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.
Time-resolved multispectral imaging of combustion reaction
NASA Astrophysics Data System (ADS)
Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick
2015-05-01
Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.
NASA Astrophysics Data System (ADS)
Yang, Jie; Messinger, David W.; Dube, Roger R.
2018-03-01
Bloodstain detection and discrimination from nonblood substances on various substrates are critical in forensic science as bloodstains are a critical source for confirmatory DNA tests. Conventional bloodstain detection methods often involve time-consuming sample preparation, a chance of harm to investigators, the possibility of destruction of blood samples, and acquisition of too little data at crime scenes either in the field or in the laboratory. An imaging method has the advantages of being nondestructive, noncontact, real-time, and covering a large field-of-view. The abundant spectral information provided by multispectral imaging makes it a potential presumptive bloodstain detection and discrimination method. This article proposes an interference filter (IF) based area scanning three-spectral-band crime scene imaging system used for forensic bloodstain detection and discrimination. The impact of large angle of views on the spectral shift of calibrated IFs is determined, for both detecting and discriminating bloodstains from visually similar substances on multiple substrates. Spectral features in the visible and near-infrared portion employed by the relative band depth method are used. This study shows that 1 ml bloodstain on black felt, gray felt, red felt, white cotton, white polyester, and raw wood can be detected. Bloodstains on the above substrates can be discriminated from cola, coffee, ketchup, orange juice, red wine, and green tea.
NASA Astrophysics Data System (ADS)
Xia, Wenfeng; Nikitichev, Daniil I.; Mari, Jean Martial; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.
2015-07-01
Precise and efficient guidance of medical devices is of paramount importance for many minimally invasive procedures. These procedures include fetal interventions, tumor biopsies and treatments, central venous catheterisations and peripheral nerve blocks. Ultrasound imaging is commonly used for guidance, but it often provides insufficient contrast with which to identify soft tissue structures such as vessels, tumors, and nerves. In this study, a hybrid interventional imaging system that combines ultrasound imaging and multispectral photoacoustic imaging for guiding minimally invasive procedures was developed and characterized. The system provides both structural information from ultrasound imaging and molecular information from multispectral photoacoustic imaging. It uses a commercial linear-array ultrasound imaging probe as the ultrasound receiver, with a multimode optical fiber embedded in a needle to deliver pulsed excitation light to tissue. Co-registration of ultrasound and photoacoustic images is achieved with the use of the same ultrasound receiver for both modalities. Using tissue ex vivo, the system successfully discriminated deep-located fat tissue from the surrounding muscle tissue. The measured photoacoustic spectrum of the fat tissue had good agreement with the lipid spectrum in literature.
NASA Technical Reports Server (NTRS)
Shimabukuro, Yosio Edemir; Smith, James A.
1991-01-01
Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.
NASA Technical Reports Server (NTRS)
Edgett, Kenneth S.; Anderson, Donald L.
1995-01-01
This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data.
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
Bandwidth compression of multispectral satellite imagery
NASA Technical Reports Server (NTRS)
Habibi, A.
1978-01-01
The results of two studies aimed at developing efficient adaptive and nonadaptive techniques for compressing the bandwidth of multispectral images are summarized. These techniques are evaluated and compared using various optimality criteria including MSE, SNR, and recognition accuracy of the bandwidth compressed images. As an example of future requirements, the bandwidth requirements for the proposed Landsat-D Thematic Mapper are considered.
Rowan, L.C.; Trautwein, C.M.; Purdy, T.L.
1990-01-01
This study was undertaken as part of the Conterminous U.S. Mineral Assessment Program (CUSMAP). The purpose of the study was to map linear features on Landsat Multispectral Scanner (MSS) images and a proprietary side-looking airborne radar (SLAR) image mosaic and to determine the spatial relationship between these linear features and the locations of metallic mineral occurrE-nces. The results show a close spatial association of linear features with metallic mineral occurrences in parts of the quadrangle, but in other areas the association is less well defined. Linear features are defined as distinct linear and slightly curvilinear elements mappable on MSS and SLAR images. The features generally represent linear segments of streams, ridges, and terminations of topographic features; however, they may also represent tonal patterns that are related to variations in lithology and vegetation. Most linear features in the Butte quadrangle probably represent underlying structural elements, such as fractures (with and without displacement), dikes, and alignment of fold axes. However, in areas underlain by sedimentary rocks, some of the linear features may reflect bedding traces. This report describes the geologic setting of the Butte quadrangle, the procedures used in mapping and analyzing the linear features, and the results of the study. Relationship of these features to placer and non-metal deposits were not analyzed in this study and are not discussed in this report.
The magnifying glass - A feature space local expansion for visual analysis. [and image enhancement
NASA Technical Reports Server (NTRS)
Juday, R. D.
1981-01-01
The Magnifying Glass Transformation (MGT) technique is proposed, as a multichannel spectral operation yielding visual imagery which is enhanced in a specified spectral vicinity, guided by the statistics of training samples. An application example is that in which the discrimination among spectral neighbors within an interactive display may be increased without altering distant object appearances or overall interpretation. A direct histogram specification technique is applied to the channels within the multispectral image so that a subset of the spectral domain occupies an increased fraction of the domain. The transformation is carried out by obtaining the training information, establishing the condition of the covariance matrix, determining the influenced solid, and initializing the lookup table. Finally, the image is transformed.
Global Mosaics of Pluto and Charon
2017-07-14
Global mosaics of Pluto and Charon projected at 300 meters (985 feet) per pixel that have been assembled from most of the highest resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) onboard New Horizons. Transparent, colorized stereo topography data generated for the encounter hemispheres of Pluto and Charon have been overlain on the mosaics. Terrain south of about 30°S on Pluto and Charon was in darkness leading up to and during the flyby, so is shown in black. "S" and "T" respectively indicate Sputnik Planitia and Tartarus Dorsa on Pluto, and "C" indicates Caleuche Chasma on Charon. All feature names on Pluto and Charon are informal. https://photojournal.jpl.nasa.gov/catalog/PIA21862
Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography
NASA Astrophysics Data System (ADS)
Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki
2017-03-01
We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.
Online quantitative analysis of multispectral images of human body tissues
NASA Astrophysics Data System (ADS)
Lisenko, S. A.
2013-08-01
A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models.
Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching
NASA Technical Reports Server (NTRS)
Gillespie, Alan R.
1992-01-01
Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika
2013-05-01
To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.
NASA Astrophysics Data System (ADS)
Schneiderwind, S.; Mason, J.; Wiatr, T.; Papanikolaou, I.; Reicherter, K.
2015-09-01
Two normal faults on the Island of Crete and mainland Greece were studied to create and test an innovative workflow to make palaeoseismic trench logging more objective, and visualise the sedimentary architecture within the trench wall in 3-D. This is achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of iso cluster analysis of a true colour photomosaic representing the spectrum of visible light. Passive data collection disadvantages (e.g. illumination) were addressed by complementing the dataset with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D-interpretation of GPR data collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. Sedimentary feature geometries related to earthquake magnitude can be used to improve the accuracy of seismic hazard assessments. Therefore, this manuscript combines multiparametric approaches and shows: (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GRP techniques, and (ii) how a multispectral digital analysis can offer additional advantages and a higher objectivity in the interpretation of palaeoseismic and stratigraphic information. The multispectral datasets are stored allowing unbiased input for future (re-)investigations.
Mapping soil features from multispectral scanner data
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Zachary, A. L.
1974-01-01
In being able to identify quickly gross variations in soil features, the computer-aided classification of multispectral scanner data can be an effective aid to soil surveying. Variations in soil tone are easily seen as well as variations in features related to soil tone, e.g., drainage patterns and organic matter content. Changes in surface texture also affect the reflectance properties of soils. Inasmuch as conventional soil classes are based on both surface and subsurface soil characteristics, the technique described here can be expected only to augment and not replace traditional soil mapping.
Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.
2010-01-01
Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475
Oximetry using multispectral imaging: theory and application
NASA Astrophysics Data System (ADS)
MacKenzie, Lewis E.; Harvey, Andrew R.
2018-06-01
Multispectral imaging (MSI) is a technique for measurement of blood oxygen saturation in vivo that can be applied using various imaging modalities to provide new insights into physiology and disease development. This tutorial aims to provide a thorough introduction to the theory and application of MSI oximetry for researchers new to the field, whilst also providing detailed information for more experienced researchers. The optical theory underlying two-wavelength oximetry, three-wavelength oximetry, pulse oximetry, and multispectral oximetry algorithms are described in detail. The varied challenges of applying MSI oximetry to in vivo applications are outlined and discussed, covering: the optical properties of blood and tissue, optical paths in blood vessels, tissue auto-fluorescence, oxygen diffusion, and common oximetry artefacts. Essential image processing techniques for MSI are discussed, in particular, image acquisition, image registration strategies, and blood vessel line profile fitting. Calibration and validation strategies for MSI are discussed, including comparison techniques, physiological interventions, and phantoms. The optical principles and unique imaging capabilities of various cutting-edge MSI oximetry techniques are discussed, including photoacoustic imaging, spectroscopic optical coherence tomography, and snapshot MSI.
Visual enhancement of unmixed multispectral imagery using adaptive smoothing
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2004-01-01
Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.
Multispectral open-air intraoperative fluorescence imaging.
Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua
2017-08-01
Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.
Davis, Philip A.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. PRISM image orthorectification for one-half of the target areas was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using SPARKLE logic, which is described in Davis (2006). Each of the four-band images within each resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a specified radius that was usually 500 m. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (either 41 or 42) and the WGS84 datum. Most final image mosaics were subdivided into overlapping tiles or quadrants because of the large size of the target areas. The image tiles (or quadrants) for each area of interest are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Approximately one-half of the study areas have at least one subarea designated for detailed field investigations; the subareas were extracted from the area's image mosaic and are provided as separate embedded geotiff images.
NASA Astrophysics Data System (ADS)
van der Meer, Freek; Kopačková, Veronika; Koucká, Lucie; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Bakker, Wim H.
2018-02-01
The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while hyperspectral data allow to quantify this. As input to most image classification or spectral processing approach, endmembers are required. An alternative approach to classification is to derive absorption feature characteristics such as the wavelength position of the deepest absorption, depth of the absorption and symmetry of the absorption feature from hyperspectral data. Two approaches are presented, tested and compared in this paper: the 'Wavelength Mapper' and the 'QuanTools'. Although these algorithms use a different mathematical solution to derive absorption feature wavelength and depth, and use different image post-processing, the results are consistent, comparable and reproducible. The wavelength images can be directly linked to mineral type and abundance, but more importantly also to mineral chemical composition and subtle changes thereof. This in turn allows to interpret hyperspectral data in terms of mineral chemistry changes which is a proxy to pressure-temperature of formation of minerals. We show the case of the Rodalquilar epithermal system of the southern Spanish Gabo de Gata volcanic area using HyMAP airborne hyperspectral images.
Development of a multispectral imagery device devoted to weed detection
NASA Astrophysics Data System (ADS)
Vioix, Jean-Baptiste; Douzals, Jean-Paul; Truchetet, Frederic; Navar, Pierre
2003-04-01
Multispectral imagery is a large domain with number of practical applications: thermography, quality control in industry, food science and agronomy, etc. The main interest is to obtain spectral information of the objects for which reflectance signal can be associated with physical, chemical and/or biological properties. Agronomic applications of multispectral imagery generally involve the acquisition of several images in the wavelengths of visible and near infrared. This paper will first present different kind of multispectral devices used for agronomic issues and will secondly introduce an original multispectral design based on a single CCD. Third, early results obtained for weed detection are presented.
NASA Astrophysics Data System (ADS)
Behrooz, Ali; Vasquez, Kristine O.; Waterman, Peter; Meganck, Jeff; Peterson, Jeffrey D.; Miller, Peter; Kempner, Joshua
2017-02-01
Intraoperative resection of tumors currently relies upon the surgeon's ability to visually locate and palpate tumor nodules. Undetected residual malignant tissue often results in the need for additional treatment or surgical intervention. The Solaris platform is a multispectral open-air fluorescence imaging system designed for translational fluorescence-guided surgery. Solaris supports video-rate imaging in four fixed fluorescence channels ranging from visible to near infrared, and a multispectral channel equipped with a liquid crystal tunable filter (LCTF) for multispectral image acquisition (520-620 nm). Identification of tumor margins using reagents emitting in the visible spectrum (400-650 nm), such as fluorescein isothiocyanate (FITC), present challenges considering the presence of auto-fluorescence from tissue and food in the gastrointestinal (GI) tract. To overcome this, Solaris acquires LCTF-based multispectral images, and by applying an automated spectral unmixing algorithm to the data, separates reagent fluorescence from tissue and food auto-fluorescence. The unmixing algorithm uses vertex component analysis to automatically extract the primary pure spectra, and resolves the reagent fluorescent signal using non-negative least squares. For validation, intraoperative in vivo studies were carried out in tumor-bearing rodents injected with FITC-dextran reagent that is primarily residing in malignant tissue 24 hours post injection. In the absence of unmixing, fluorescence from tumors is not distinguishable from that of surrounding tissue. Upon spectral unmixing, the FITC-labeled malignant regions become well defined and detectable. The results of these studies substantiate the multispectral power of Solaris in resolving FITC-based agent signal in deep tumor masses, under ambient and surgical light, and enhancing the ability to surgically resect them.
Davis, Philip A.; Cagney, Laura E.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (41 for Nalbandon) and the WGS84 datum. The final image mosaics were subdivided into ten overlapping tiles or quadrants because of the large size of the target area. The ten image tiles (or quadrants) for the Nalbandon area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Nalbandon study area, two subareas were designated for detailed field investigations (that is, the Nalbandon District and Gharghananaw-Gawmazar subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Cagney, Laura E.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Zarkashan) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the Zarkashan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Zarkashan study area, three subareas were designated for detailed field investigations (that is, the Mine Area, Bolo Gold Prospect, and Luman-Tamaki Gold Prospect subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar- elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image- registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative- reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area- enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Kandahar) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the Kandahar area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Kandahar study area, two subareas were designated for detailed field investigations (that is, the Obatu-Shela and Sekhab-Zamto Kalay subareas); these subareas were extracted from the area's image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (41 for Khanneshin) and the WGS84 datum. The final image mosaics were subdivided into nine overlapping tiles or quadrants because of the large size of the target area. The nine image tiles (or quadrants) for the Khanneshin area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Khanneshin study area, one subarea was designated for detailed field investigations (that is, the Khanneshin volcano subarea); this subarea was extracted from the area's image mosaic and is provided as separate embedded geotiff images.
Davis, Philip A.; Cagney, Laura E.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Panjsher Valley) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the Panjsher Valley area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Panjsher Valley study area, two subareas were designated for detailed field investigations (that is, the Emerald and Silver-Iron subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (41 for Farah) and the WGS84 datum. The final image mosaics were subdivided into four overlapping tiles or quadrants because of the large size of the target area. The four image tiles (or quadrants) for the Farah area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Farah study area, five subareas were designated for detailed field investigations (that is, the FarahA through FarahE subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Classification of high dimensional multispectral image data
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1993-01-01
A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
NASA Astrophysics Data System (ADS)
Baker, Kevin C.; Bambot, Shabbir
2011-02-01
Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.
Exploiting physical constraints for multi-spectral exo-planet detection
NASA Astrophysics Data System (ADS)
Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth
2016-07-01
We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).
Bautista, Pinky A; Yagi, Yukako
2012-05-01
Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M < N principal component (PC) vectors. The pixel's enhanced spectrum is transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.
Kainerstorfer, Jana M.; Polizzotto, Mark N.; Uldrick, Thomas S.; Rahman, Rafa; Hassan, Moinuddin; Najafizadeh, Laleh; Ardeshirpour, Yasaman; Wyvill, Kathleen M.; Aleman, Karen; Smith, Paul D.; Yarchoan, Robert; Gandjbakhche, Amir H.
2013-01-01
Diffuse multi-spectral imaging has been evaluated as a potential non-invasive marker of tumor response. Multi-spectral images of Kaposi sarcoma skin lesions were taken over the course of treatment, and blood volume and oxygenation concentration maps were obtained through principal component analysis (PCA) of the data. These images were compared with clinical and pathological responses determined by conventional means. We demonstrate that cutaneous lesions have increased blood volume concentration and that changes in this parameter are a reliable indicator of treatment efficacy, differentiating responders and non-responders. Blood volume decreased by at least 20% in all lesions that responded by clinical criteria and increased in the two lesions that did not respond clinically. Responses as assessed by multi-spectral imaging also generally correlated with overall patient clinical response assessment, were often detectable earlier in the course of therapy, and are less subject to observer variability than conventional clinical assessment. Tissue oxygenation was more variable, with lesions often showing decreased oxygenation in the center surrounded by a zone of increased oxygenation. This technique could potentially be a clinically useful supplement to existing response assessment in KS, providing an early, quantitative, and non-invasive marker of treatment effect. PMID:24386302
Airborne multispectral detection of regrowth cotton fields
NASA Astrophysics Data System (ADS)
Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.
2015-01-01
Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.
Perceptual evaluation of color transformed multispectral imagery
NASA Astrophysics Data System (ADS)
Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.
2014-04-01
Color remapping can give multispectral imagery a realistic appearance. We assessed the practical value of this technique in two observer experiments using monochrome intensified (II) and long-wave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First, we investigated the amount of detail observers perceive in a short timespan. REF and CF imagery yielded the highest precision and recall measures, while II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty in extracting information from monochrome than from color imagery. Next, we measured eye fixations during free image exploration. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF, and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representations such that the resulting fixation behavior resembles the fixation behavior corresponding to daylight color imagery.
Image denoising and deblurring using multispectral data
NASA Astrophysics Data System (ADS)
Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.
2017-05-01
Currently decision-making systems get widespread. These systems are based on the analysis video sequences and also additional data. They are volume, change size, the behavior of one or a group of objects, temperature gradient, the presence of local areas with strong differences, and others. Security and control system are main areas of application. A noise on the images strongly influences the subsequent processing and decision making. This paper considers the problem of primary signal processing for solving the tasks of image denoising and deblurring of multispectral data. The additional information from multispectral channels can improve the efficiency of object classification. In this paper we use method of combining information about the objects obtained by the cameras in different frequency bands. We apply method based on simultaneous minimization L2 and the first order square difference sequence of estimates to denoising and restoring the blur on the edges. In case of loss of the information will be applied an approach based on the interpolation of data taken from the analysis of objects located in other areas and information obtained from multispectral camera. The effectiveness of the proposed approach is shown in a set of test images.
High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.
Sereda, A; Moreau, J; Canva, M; Maillart, E
2014-04-15
Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Volkov, Boris; Mathews, Marlon S.; Abookasis, David
2015-03-01
Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
The Multispectral Imaging Science Working Group. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Cox, S. C. (Editor)
1982-01-01
Results of the deliberations of the six multispectral imaging science working groups (Botany, Geography, Geology, Hydrology, Imaging Science and Information Science) are summarized. Consideration was given to documenting the current state of knowledge in terrestrial remote sensing without the constraints of preconceived concepts such as possible band widths, number of bands, and radiometric or spatial resolutions of present or future systems. The findings of each working group included a discussion of desired capabilities and critical developmental issues.
Retinal oxygen saturation evaluation by multi-spectral fundus imaging
NASA Astrophysics Data System (ADS)
Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James
2007-03-01
Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work is original and is not under consideration for publication elsewhere.
Evaluation of Chilling Injury in Mangoes Using Multispectral Imaging.
Hashim, Norhashila; Onwude, Daniel I; Osman, Muhamad Syafiq
2018-05-01
Commodities originating from tropical and subtropical climes are prone to chilling injury (CI). This injury could affect the quality and marketing potential of mango after harvest. This will later affect the quality of the produce and subsequent consumer acceptance. In this study, the appearance of CI symptoms in mango was evaluated non-destructively using multispectral imaging. The fruit were stored at 4 °C to induce CI and 12 °C to preserve the quality of the control samples for 4 days before they were taken out and stored at ambient temperature for 24 hr. Measurements using multispectral imaging and standard reference methods were conducted before and after storage. The performance of multispectral imaging was compared using standard reference properties including moisture content (MC), total soluble solids (TSS) content, firmness, pH, and color. Least square support vector machine (LS-SVM) combined with principal component analysis (PCA) were used to discriminate CI samples with those of control and before storage, respectively. The statistical results demonstrated significant changes in the reference quality properties of samples before and after storage. The results also revealed that multispectral parameters have a strong correlation with the reference parameters of L * , a * , TSS, and MC. The MC and L * were found to be the best reference parameters in identifying the severity of CI in mangoes. PCA and LS-SVM analysis indicated that the fruit were successfully classified into their categories, that is, before storage, control, and CI. This indicated that the multispectral imaging technique is feasible for detecting CI in mangoes during postharvest storage and processing. This paper demonstrates a fast, easy, and accurate method of identifying the effect of cold storage on mango, nondestructively. The method presented in this paper can be used industrially to efficiently differentiate different fruits from each other after low temperature storage. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.
2016-09-01
In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.
Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration
NASA Astrophysics Data System (ADS)
Wang, Pu; Wang, Ping; Wang, Han-Wei; Cheng, Ji-Xin
2012-09-01
Photoacoustic microscopy using vibrational overtone absorption as a contrast mechanism allows bond-selective imaging of deep tissues. Due to the spectral similarity of molecules in the region of overtone vibration, it is difficult to interrogate chemical components using photoacoustic signal at single excitation wavelength. Here we demonstrate that lipids and collagen, two critical markers for many kinds of diseases, can be distinguished by multispectral photoacoustic imaging of the first overtone of C-H bond. A phantom consisting of rat-tail tendon and fat was constructed to demonstrate this technique. Wavelengths between 1650 and 1850 nm were scanned to excite both the first overtone and combination bands of C-H bonds. B-scan multispectral photoacoustic images, in which each pixel contains a spectrum, were analyzed by a multivariate curve resolution-alternating least squares algorithm to recover the spatial distribution of collagen and lipids in the phantom.
Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration.
Wang, Pu; Wang, Ping; Wang, Han-Wei; Cheng, Ji-Xin
2012-09-01
Photoacoustic microscopy using vibrational overtone absorption as a contrast mechanism allows bond-selective imaging of deep tissues. Due to the spectral similarity of molecules in the region of overtone vibration, it is difficult to interrogate chemical components using photoacoustic signal at single excitation wavelength. Here we demonstrate that lipids and collagen, two critical markers for many kinds of diseases, can be distinguished by multispectral photoacoustic imaging of the first overtone of C-H bond. A phantom consisting of rat-tail tendon and fat was constructed to demonstrate this technique. Wavelengths between 1650 and 1850 nm were scanned to excite both the first overtone and combination bands of C-H bonds. B-scan multispectral photoacoustic images, in which each pixel contains a spectrum, were analyzed by a multivariate curve resolution-alternating least squares algorithm to recover the spatial distribution of collagen and lipids in the phantom.
NASA Technical Reports Server (NTRS)
Settle, M.; Adams, J.
1982-01-01
Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.
Terrain type recognition using ERTS-1 MSS images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1973-01-01
For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.
Land mine detection using multispectral image fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-03-29
Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less
SPEKTROP DPU: optoelectronic platform for fast multispectral imaging
NASA Astrophysics Data System (ADS)
Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin
2010-09-01
In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.
Applying reconfigurable hardware to the analysis of multispectral and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Belanovic, Pavle; Estlick, Michael; Gokhale, Maya; Szymanski, John J.; Theiler, James P.
2002-01-01
Unsupervised clustering is a powerful technique for processing multispectral and hyperspectral images. Last year, we reported on an implementation of k-means clustering for multispectral images. Our implementation in reconfigurable hardware processed 10 channel multispectral images two orders of magnitude faster than a software implementation of the same algorithm. The advantage of using reconfigurable hardware to accelerate k-means clustering is clear; the disadvantage is the hardware implementation worked for one specific dataset. It is a non-trivial task to change this implementation to handle a dataset with different number of spectral channels, bits per spectral channel, or number of pixels; or to change the number of clusters. These changes required knowledge of the hardware design process and could take several days of a designer's time. Since multispectral data sets come in many shapes and sizes, being able to easily change the k-means implementation for these different data sets is important. For this reason, we have developed a parameterized implementation of the k-means algorithm. Our design is parameterized by the number of pixels in an image, the number of channels per pixel, and the number of bits per channel as well as the number of clusters. These parameters can easily be changed in a few minutes by someone not familiar with the design process. The resulting implementation is very close in performance to the original hardware implementation. It has the added advantage that the parameterized design compiles approximately three times faster than the original.
NASA Astrophysics Data System (ADS)
Piermattei, Livia; Bozzi, Carlo Alberto; Mancini, Adriano; Tassetti, Anna Nora; Karel, Wilfried; Pfeifer, Norbert
2017-04-01
Unmanned aerial vehicles (UAVs) in combination with consumer grade cameras have become standard tools for photogrammetric applications and surveying. The recent generation of multispectral, cost-efficient and lightweight cameras has fostered a breakthrough in the practical application of UAVs for precision agriculture. For this application, multispectral cameras typically use Green, Red, Red-Edge (RE) and Near Infrared (NIR) wavebands to capture both visible and invisible images of crops and vegetation. These bands are very effective for deriving characteristics like soil productivity, plant health and overall growth. However, the quality of results is affected by the sensor architecture, the spatial and spectral resolutions, the pattern of image collection, and the processing of the multispectral images. In particular, collecting data with multiple sensors requires an accurate spatial co-registration of the various UAV image datasets. Multispectral processed data in precision agriculture are mainly presented as orthorectified mosaics used to export information maps and vegetation indices. This work aims to investigate the acquisition parameters and processing approaches of this new type of image data in order to generate orthoimages using different sensors and UAV platforms. Within our experimental area we placed a grid of artificial targets, whose position was determined with differential global positioning system (dGPS) measurements. Targets were used as ground control points to georeference the images and as checkpoints to verify the accuracy of the georeferenced mosaics. The primary aim is to present a method for the spatial co-registration of visible, Red-Edge, and NIR image sets. To demonstrate the applicability and accuracy of our methodology, multi-sensor datasets were collected over the same area and approximately at the same time using the fixed-wing UAV senseFly "eBee". The images were acquired with the camera Canon S110 RGB, the multispectral cameras Canon S110 NIR and S110 RE and with the multi-camera system Parrot Sequoia, which is composed of single-band cameras (Green, Red, Red Edge, NIR and RGB). Imagery from each sensor was georeferenced and mosaicked with the commercial software Agisoft PhotoScan Pro and different approaches for image orientation were compared. To assess the overall spatial accuracy of each dataset the root mean square error was computed between check point coordinates measured with dGPS and coordinates retrieved from georeferenced image mosaics. Additionally, image datasets from different UAV platforms (i.e. DJI Phantom 4Pro, DJI Phantom 3 professional, and DJI Inspire 1 Pro) were acquired over the same area and the spatial accuracy of the orthoimages was evaluated.
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Kunduz) and the WGS84 datum. The final image mosaics were subdivided into five overlapping tiles or quadrants because of the large size of the target area. The five image tiles (or quadrants) for the Kunduz area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (41 for Tourmaline) and the WGS84 datum. The final image mosaics were subdivided into four overlapping tiles or quadrants because of the large size of the target area. The four image tiles (or quadrants) for the Tourmaline area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Dudkash) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the Dudkash area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
The MVACS Surface Stereo Imager on Mars Polar Lander
NASA Astrophysics Data System (ADS)
Smith, P. H.; Reynolds, R.; Weinberg, J.; Friedman, T.; Lemmon, M. T.; Tanner, R.; Reid, R. J.; Marcialis, R. L.; Bos, B. J.; Oquest, C.; Keller, H. U.; Markiewicz, W. J.; Kramm, R.; Gliem, F.; Rueffer, P.
2001-08-01
The Surface Stereo Imager (SSI), a stereoscopic, multispectral camera on the Mars Polar Lander, is described in terms of its capabilities for studying the Martian polar environment. The camera's two eyes, separated by 15.0 cm, provide the camera with range-finding ability. Each eye illuminates half of a single CCD detector with a field of view of 13.8° high by 14.3° wide and has 12 selectable filters between 440 and 1000 nm. The
NASA Technical Reports Server (NTRS)
Jaggi, S.
1993-01-01
A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M
2018-04-12
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.
2018-01-01
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114
Coastal modification of a scene employing multispectral images and vector operators.
Lira, Jorge
2017-05-01
Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.
Design and development of a simple UV fluorescence multi-spectral imaging system
NASA Astrophysics Data System (ADS)
Tovar, Carlos; Coker, Zachary; Yakovlev, Vladislav V.
2018-02-01
Healthcare access in low-resource settings is compromised by the availability of affordable and accurate diagnostic equipment. The four primary poverty-related diseases - AIDS, pneumonia, malaria, and tuberculosis - account for approximately 400 million annual deaths worldwide as of 2016 estimates. Current diagnostic procedures for these diseases are prolonged and can become unreliable under various conditions. We present the development of a simple low-cost UV fluorescence multi-spectral imaging system geared towards low resource settings for a variety of biological and in-vitro applications. Fluorescence microscopy serves as a useful diagnostic indicator and imaging tool. The addition of a multi-spectral imaging modality allows for the detection of fluorophores within specific wavelength bands, as well as the distinction between fluorophores possessing overlapping spectra. The developed instrument has the potential for a very diverse range of diagnostic applications in basic biomedical science and biomedical diagnostics and imaging. Performance assessment of the microscope will be validated with a variety of samples ranging from organic compounds to biological samples.
Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. All available panchromatic images for this area had significant cloud and snow cover that precluded their use for resolution enhancement of the multispectral image data. Each of the four-band images within the 10-m image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Nuristan) and the WGS84 datum. The final image mosaics for the Nuristan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image.
NASA Astrophysics Data System (ADS)
Bigdeli, Behnaz; Pahlavani, Parham
2017-01-01
Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Fomins, Sergejs
2010-11-01
Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.
NASA Astrophysics Data System (ADS)
Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E.
2017-10-01
This article summarises our first results and experiences on the use of multispectral airborne laser scanner (ALS) data. Optech Titan multispectral ALS data over a large suburban area in Finland were acquired on three different dates in 2015-2016. We investigated the feasibility of the data from the first date for land cover classification and road mapping. Object-based analyses with segmentation and random forests classification were used. The potential of the data for change detection of buildings and roads was also demonstrated. The overall accuracy of land cover classification results with six classes was 96 % compared with validation points. The data also showed high potential for road detection, road surface classification and change detection. The multispectral intensity information appeared to be very important for automated classifications. Compared to passive aerial images, the intensity images have interesting advantages, such as the lack of shadows. Currently, we focus on analyses and applications with the multitemporal multispectral data. Important questions include, for example, the potential and challenges of the multitemporal data for change detection.
Multispectral image fusion for detecting land mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-04-01
This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less
Kim, Min-Gab; Kim, Jin-Yong
2018-05-01
In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.
Portable multispectral imaging system for oral cancer diagnosis
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Fang; Ou-Yang, Mang; Lee, Cheng-Chung
2013-09-01
This study presents the portable multispectral imaging system that can acquire the image of specific spectrum in vivo for oral cancer diagnosis. According to the research literature, the autofluorescence of cells and tissue have been widely applied to diagnose oral cancer. The spectral distribution is difference for lesions of epithelial cells and normal cells after excited fluorescence. We have been developed the hyperspectral and multispectral techniques for oral cancer diagnosis in three generations. This research is the third generation. The excited and emission spectrum for the diagnosis are acquired from the research of first generation. The portable system for detection of oral cancer is modified for existing handheld microscope. The UV LED is used to illuminate the surface of oral cavity and excite the cells to produce fluorescent. The image passes through the central channel and filters out unwanted spectrum by the selection of filter, and focused by the focus lens on the image sensor. Therefore, we can achieve the specific wavelength image via fluorescence reaction. The specificity and sensitivity of the system are 85% and 90%, respectively.
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung
2013-05-01
This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Hayden, David; Thompson, David R.; Castano, Rebecca
2013-01-01
Many current and future NASA missions are capable of collecting enormous amounts of data, of which only a small portion can be transmitted to Earth. Communications are limited due to distance, visibility constraints, and competing mission downlinks. Long missions and high-resolution, multispectral imaging devices easily produce data exceeding the available bandwidth. To address this situation computationally efficient algorithms were developed for analyzing science imagery onboard the spacecraft. These algorithms autonomously cluster the data into classes of similar imagery, enabling selective downlink of representatives of each class, and a map classifying the terrain imaged rather than the full dataset, reducing the volume of the downlinked data. A range of approaches was examined, including k-means clustering using image features based on color, texture, temporal, and spatial arrangement
NASA Astrophysics Data System (ADS)
Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling
2018-02-01
This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.
Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling
2018-02-01
This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.
NASA Technical Reports Server (NTRS)
Farrar, Michael R.; Smith, Eric A.
1992-01-01
A method for enhancing the 19, 22, and 37 GHz measurements of the SSM/I (Special Sensor Microwave/Imager) to the spatial resolution and sampling density of the high resolution 85-GHz channel is presented. An objective technique for specifying the tuning parameter, which balances the tradeoff between resolution and noise, is developed in terms of maximizing cross-channel correlations. Various validation procedures are performed to demonstrate the effectiveness of the method, which hopefully will provide researchers with a valuable tool in multispectral applications of satellite radiometer data.
Satellite remote sensing facility for oceanograhic applications
NASA Technical Reports Server (NTRS)
Evans, R. H.; Kent, S. S.; Seidman, J. B.
1980-01-01
The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.
Advanced Image Processing of Aerial Imagery
NASA Technical Reports Server (NTRS)
Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn
2006-01-01
Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.
Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery
NASA Technical Reports Server (NTRS)
Pope, P. A.; Emery, W. J.; Radebaugh, M.
1992-01-01
High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval.
Hyperspectral imaging for food processing automation
NASA Astrophysics Data System (ADS)
Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Smith, Doug P.; Feldner, Peggy W.
2002-11-01
This paper presents the research results that demonstrates hyperspectral imaging could be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses, and potential application for real-time, on-line processing of poultry for automatic safety inspection. The hyperspectral imaging system included a line scan camera with prism-grating-prism spectrograph, fiber optic line lighting, motorized lens control, and hyperspectral image processing software. Hyperspectral image processing algorithms, specifically band ratio of dual-wavelength (565/517) images and thresholding were effective on the identification of fecal and ingesta contamination of poultry carcasses. A multispectral imaging system including a common aperture camera with three optical trim filters (515.4 nm with 8.6- nm FWHM), 566.4 nm with 8.8-nm FWHM, and 631 nm with 10.2-nm FWHM), which were selected and validated by a hyperspectral imaging system, was developed for a real-time, on-line application. A total image processing time required to perform the current multispectral images captured by a common aperture camera was approximately 251 msec or 3.99 frames/sec. A preliminary test shows that the accuracy of real-time multispectral imaging system to detect feces and ingesta on corn/soybean fed poultry carcasses was 96%. However, many false positive spots that cause system errors were also detected.
Interactive color display for multispectral imagery using correlation clustering
NASA Technical Reports Server (NTRS)
Haskell, R. E. (Inventor)
1979-01-01
A method for processing multispectral data is provided, which permits an operator to make parameter level changes during the processing of the data. The system is directed to production of a color classification map on a video display in which a given color represents a localized region in multispectral feature space. Interactive controls permit an operator to alter the size and change the location of these regions, permitting the classification of such region to be changed from a broad to a narrow classification.
NASA Astrophysics Data System (ADS)
Maimaitijiang, Maitiniyazi; Ghulam, Abduwasit; Sidike, Paheding; Hartling, Sean; Maimaitiyiming, Matthew; Peterson, Kyle; Shavers, Ethan; Fishman, Jack; Peterson, Jim; Kadam, Suhas; Burken, Joel; Fritschi, Felix
2017-12-01
Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAI was best predicted by RGB and thermal data fusion while multispectral and thermal data fusion was found to be best for biomass estimation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion, ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion of low-cost multiple sensor data within a machine learning framework can provide relatively accurate estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant stress assessment.
Automatic interpretation of ERTS data for forest management
NASA Technical Reports Server (NTRS)
Kirvida, L.; Johnson, G. R.
1973-01-01
Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wild life management, forest inventory and forest condition monitoring. Automatic procedures based on both multi-spectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74% was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 99% was obtained.
Multispectral Imaging in Cultural Heritage Conservation
NASA Astrophysics Data System (ADS)
Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L. J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D.
2017-08-01
This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors operating in the optical domain (visible to shortwave infrared spectrum). In the field of heritage preservation, multispectral imaging is a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different construction materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular case study and damage. It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to multispectral images.
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images. PMID:29874262
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Multispectral Filter Arrays: Recent Advances and Practical Implementation
Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre
2014-01-01
Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904
NASA Astrophysics Data System (ADS)
Liu, Xin; Samil Yetik, Imam
2012-04-01
Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.
Image processing of underwater multispectral imagery
Zawada, D. G.
2003-01-01
Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.
Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude
NASA Astrophysics Data System (ADS)
Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.
2018-05-01
One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.
Multispectral Mosaic of the Aristarchus Crater and Plateau
1998-06-03
The Aristarchus region is one of the most diverse and interesting areas on the Moon. About 500 images from NASA's Clementine spacecraft were processed and combined into a multispectral mosaic of this region. http://photojournal.jpl.nasa.gov/catalog/PIA00090
Detection and identification of benthic communities and shoreline features in Biscayne Bay
NASA Technical Reports Server (NTRS)
Kolipinski, M. C.; Higer, A. L.
1970-01-01
Progress made in the development of a technique for identifying and delinating benthic and shoreline communities using multispectral imagery is described. Images were collected with a multispectral scanner system mounted in a C-47 aircraft. Concurrent with the overflight, ecological ground- and sea-truth information was collected at 19 sites in the bay and on the shore. Preliminary processing of the scanner imagery with a CDC 1604 digital computer provided the optimum channels for discernment among different underwater and coastal objects. Automatic mapping of the benthic plants by multiband imagery and the mapping of isotherms and hydrodynamic parameters by digital model can become an effective predictive ecological tool when coupled together. Using the two systems, it appears possible to predict conditions that could adversely affect the benthic communities. With the advent of the ERTS satellites and space platforms, imagery data could be obtained which, when used in conjunction with water-level and meteorological data, would provide for continuous ecological monitoring.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E; Moran, Emilio
2008-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
NASA Astrophysics Data System (ADS)
Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian
2012-07-01
Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.
Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian
2012-07-01
Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio
2009-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’ picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’ local zone (41 for Dusar-Shaida) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the Dusar-Shaida area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Dusar-Shaida study area, three subareas were designated for detailed field investigations (that is, the Dahana-Misgaran, Kaftar VMS, and Shaida subareas); these subareas were extracted from the area’ image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Kundalyan) and the WGS84 datum. The final image mosaics were subdivided into five overlapping tiles or quadrants because of the large size of the target area. The five image tiles (or quadrants) for the Kundalyan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Kundalyan study area, three subareas were designated for detailed field investigations (that is, the Baghawan-Garangh, Charsu-Ghumbad, and Kunag Skarn subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 1,000-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (41 for Herat) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the Herat area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Herat study area, one subarea was designated for detailed field investigations (that is, the Barium-Limestone subarea); this subarea was extracted from the area's image mosaic and is provided as separate embedded geotiff images.
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Badakhshan) and the WGS84 datum. The final image mosaics were subdivided into six overlapping tiles or quadrants because of the large size of the target area. The six image tiles (or quadrants) for the Badakhshan area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Badakhshan study area, three subareas were designated for detailed field investigations (that is, the Bharak, Fayz-Abad, and Ragh subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 1,000-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (41 for Kharnak-Kanjar) and the WGS84 datum. The final image mosaics were subdivided into eight overlapping tiles or quadrants because of the large size of the target area. The eight image tiles (or quadrants) for the Kharnak-Kanjar area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Kharnak-Kanjar study area, three subareas were designated for detailed field investigations (that is, the Koh-e-Katif Passaband, Panjshah-Mullayan, and Sahebdad-Khanjar subareas); these subareas were extracted from the area's image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then co-registered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image-coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Haji-Gak) and the WGS84 datum. The final image mosaics were subdivided into three overlapping tiles or quadrants because of the large size of the target area. The three image tiles (or quadrants) for the Haji-Gak area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Haji-Gak study area, three subareas were designated for detailed field investigations (that is, the Haji-Gak Prospect, Farenjal, and NE Haji-Gak subareas); these subareas were extracted from the area's image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Aynak) and the WGS84 datum. The final image mosaics were subdivided into four overlapping tiles or quadrants because of the large size of the target area. The four image tiles (or quadrants) for the Aynak area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Aynak study area, five subareas were designated for detailed field investigations (that is, the Bakhel-Charwaz, Kelaghey-Kakhay, Kharuti-Dawrankhel, Logar Valley, and Yagh-Darra/Gul-Darra subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. For this particular area, PRISM image orthorectification was performed by the Alaska Satellite Facility, applying its photogrammetric software to PRISM stereo images with vertical control points obtained from the digital elevation database produced by the Shuttle Radar Topography Mission (Farr and others, 2007) and horizontal adjustments based on a controlled Landsat image base (Davis, 2006). The 10-m AVNIR multispectral imagery was then coregistered to the orthorectified PRISM images and individual multispectral and panchromatic images were mosaicked into single images of the entire area of interest. The image coregistration was facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band’s picture element based on the digital values of all picture elements within a 500-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area’s local zone (42 for Ghunday-Achin) and the WGS84 datum. The final image mosaics were subdivided into six overlapping tiles or quadrants because of the large size of the target area. The six image tiles (or quadrants) for the Ghunday-Achin area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Ghunday-Achin study area, two subareas were designated for detailed field investigations (that is, the Achin-Magnesite and Ghunday-Mamahel subareas); these subareas were extracted from the area’s image mosaic and are provided as separate embedded geotiff images.
Bautista, Pinky A; Yagi, Yukako
2011-01-01
In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.
Harada, Ryuichi; Okamura, Nobuyuki; Furumoto, Shozo; Yoshikawa, Takeo; Arai, Hiroyuki; Yanai, Kazuhiko; Kudo, Yukitsuka
2014-02-01
Selective visualization of amyloid-β and tau protein deposits will help to understand the pathophysiology of Alzheimer's disease (AD). Here, we introduce a novel fluorescent probe that can distinguish between these two deposits by multispectral fluorescence imaging technique. Fluorescence spectral analysis was performed using AD brain sections stained with novel fluorescence compounds. Competitive binding assay using [(3)H]-PiB was performed to evaluate the binding affinity of BF-188 for synthetic amyloid-β (Aβ) and tau fibrils. In AD brain sections, BF-188 clearly stained Aβ and tau protein deposits with different fluorescence spectra. In vitro binding assays indicated that BF-188 bound to both amyloid-β and tau fibrils with high affinity (K i < 10 nM). In addition, BF-188 showed an excellent blood-brain barrier permeability in mice. Multispectral imaging with BF-188 could potentially be used for selective in vivo imaging of tau deposits as well as amyloid-β in the brain.
NASA Technical Reports Server (NTRS)
Blackwell, R. J.
1982-01-01
Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.
VIS-NIR multispectral synchronous imaging pyrometer for high-temperature measurements.
Fu, Tairan; Liu, Jiangfan; Tian, Jibin
2017-06-01
A visible-infrared multispectral synchronous imaging pyrometer was developed for simultaneous, multispectral, two-dimensional high temperature measurements. The multispectral image pyrometer uses prism separation construction in the spectrum range of 650-950 nm and multi-sensor fusion of three CCD sensors for high-temperature measurements. The pyrometer had 650-750 nm, 750-850 nm, and 850-950 nm channels all with the same optical path. The wavelength choice for each channel is flexible with three center wavelengths (700 nm, 810 nm, and 920 nm) with a full width at half maximum of the spectrum of 3 nm used here. The three image sensors were precisely aligned to avoid spectrum artifacts by micro-mechanical adjustments of the sensors relative to each other to position them within a quarter pixel of each other. The pyrometer was calibrated with the standard blackbody source, and the temperature measurement uncertainty was within 0.21 °C-0.99 °C in the temperatures of 600 °C-1800 °C for the blackbody measurements. The pyrometer was then used to measure the leading edge temperatures of a ceramics model exposed to high-enthalpy plasma aerodynamic heating environment to verify the system applicability. The measured temperature ranges are 701-991 °C, 701-1134 °C, and 701-834 °C at the heating transient, steady state, and cooling transient times. A significant temperature gradient (170 °C/mm) was observed away from the leading edge facing the plasma jet during the steady state heating time. The temperature non-uniformity on the surface occurs during the entire aerodynamic heating process. However, the temperature distribution becomes more uniform after the heater is shut down and the experimental model is naturally cooled. This result shows that the multispectral simultaneous image measurement mode provides a wider temperature range for one imaging measurement of high spatial temperature gradients in transient applications.
The Athena Pancam and Color Microscopic Imager (CMI)
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Herkenhoff, K. E.; Schwochert, M.; Morris, R. V.; Sullivan, R.
2000-01-01
The Athena Mars rover payload includes two primary science-grade imagers: Pancam, a multispectral, stereo, panoramic camera system, and the Color Microscopic Imager (CMI), a multispectral and variable depth-of-field microscope. Both of these instruments will help to achieve the primary Athena science goals by providing information on the geology, mineralogy, and climate history of the landing site. In addition, Pancam provides important support for rover navigation and target selection for Athena in situ investigations. Here we describe the science goals, instrument designs, and instrument performance of the Pancam and CMI investigations.
Component pattern analysis of chemicals using multispectral THz imaging system
NASA Astrophysics Data System (ADS)
Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki
2004-04-01
We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Highly Protable Airborne Multispectral Imaging System
NASA Technical Reports Server (NTRS)
Lehnemann, Robert; Mcnamee, Todd
2001-01-01
A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.
NASA Technical Reports Server (NTRS)
Manohar, Mareboyana; Tilton, James C.
1994-01-01
A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
Multispectral laser-induced fluorescence imaging system for large biological samples
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren
2003-07-01
A laser-induced fluorescence imaging system developed to capture multispectral fluorescence emission images simultaneously from a relatively large target object is described. With an expanded, 355-nm Nd:YAG laser as the excitation source, the system captures fluorescence emission images in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 678, and 730 nm, respectively, from a 30-cm-diameter target area in ambient light. Images of apples and of pork meat artificially contaminated with diluted animal feces have demonstrated the versatility of fluorescence imaging techniques for potential applications in food safety inspection. Regions of contamination, including sites that were not readily visible to the human eye, could easily be identified from the images.
NASA Astrophysics Data System (ADS)
Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.
Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.
Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.
1985-01-01
The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors
2011-03-01
electromagnetic spectrum. With the availability of multispectral and hyperspectral systems, both spatial and spectral information for a scene are...an image. The boundary conditions for NDGRI and NDSI are set from diffuse spectral reflectance values for the range of skin types determined in [28...wearing no standard uniform and blending into the urban population. To assist with enemy detection and tracking, imaging systems that acquire spectral
Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu
2018-03-02
Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.
Simple models for complex natural surfaces - A strategy for the hyperspectral era of remote sensing
NASA Technical Reports Server (NTRS)
Adams, John B.; Smith, Milton O.; Gillespie, Alan R.
1989-01-01
A two-step strategy for analyzing multispectral images is described. In the first step, the analyst decomposes the signal from each pixel (as expressed by the radiance or reflectance values in each channel) into components that are contributed by spectrally distinct materials on the ground, and those that are due to atmospheric effects, instrumental effects, and other factors, such as illumination. In the second step, the isolated signals from the materials on the ground are selectively edited, and recombined to form various unit maps that are interpretable within the framework of field units. The approach has been tested on multispectral images of a variety of natural land surfaces ranging from hyperarid deserts to tropical rain forests. Data were analyzed from Landsat MSS (multispectral scanner) and TM (Thematic Mapper), the airborne NS001 TM simulator, Viking Lander and Orbiter, AIS, and AVRIS (Airborne Visible and Infrared Imaging Spectrometer).
NASA Technical Reports Server (NTRS)
1982-01-01
Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.
Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu
2018-01-01
Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703
Multichannel imager for littoral zone characterization
NASA Astrophysics Data System (ADS)
Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary
2010-04-01
This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.
Implementation of Multispectral Image Classification on a Remote Adaptive Computer
NASA Technical Reports Server (NTRS)
Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna
1999-01-01
As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).
Adaptive illumination source for multispectral vision system applied to material discrimination
NASA Astrophysics Data System (ADS)
Conde, Olga M.; Cobo, Adolfo; Cantero, Paulino; Conde, David; Mirapeix, Jesús; Cubillas, Ana M.; López-Higuera, José M.
2008-04-01
A multispectral system based on a monochrome camera and an adaptive illumination source is presented in this paper. Its preliminary application is focused on material discrimination for food and beverage industries, where monochrome, color and infrared imaging have been successfully applied for this task. This work proposes a different approach, in which the relevant wavelengths for the required discrimination task are selected in advance using a Sequential Forward Floating Selection (SFFS) Algorithm. A light source, based on Light Emitting Diodes (LEDs) at these wavelengths is then used to sequentially illuminate the material under analysis, and the resulting images are captured by a CCD camera with spectral response in the entire range of the selected wavelengths. Finally, the several multispectral planes obtained are processed using a Spectral Angle Mapping (SAM) algorithm, whose output is the desired material classification. Among other advantages, this approach of controlled and specific illumination produces multispectral imaging with a simple monochrome camera, and cold illumination restricted to specific relevant wavelengths, which is desirable for the food and beverage industry. The proposed system has been tested with success for the automatic detection of foreign object in the tobacco processing industry.
NASA Astrophysics Data System (ADS)
Anderson, Neal T.; Marchisio, Giovanni B.
2012-06-01
Over the last decade DigitalGlobe (DG) has built and launched a series of remote sensing satellites with steadily increasing capabilities: QuickBird, WorldView-1 (WV-1), and WorldView-2 (WV-2). Today, this constellation acquires over 2.5 million km2 of imagery on a daily basis. This paper presents the configuration and performance capabilities of each of these satellites, with emphasis on the unique spatial and spectral capabilities of WV-2. WV-2 employs high-precision star tracker and inertial measurement units to achieve a geolocation accuracy of 5 m Circular Error, 90% confidence (CE90). The native resolution of WV-2 is 0.5 m GSD in the panchromatic band and 2 m GSD in 8 multispectral bands. Four of the multispectral bands match those of the Landsat series of satellites; four new bands enable novel and expanded applications. We are rapidly establishing and refreshing a global database of very high resolution (VHR) 8-band multispectral imagery. Control moment gyroscopes (CMGs) on both WV-1 and WV-2 improve collection capacity and provide the agility to capture multi-angle sequences in rapid succession. These capabilities result in a rich combination of image features that can be exploited to develop enhanced monitoring solutions. Algorithms for interpretation and analysis can leverage: 1) broader and more continuous spectral coverage at 2 m resolution; 2) textural and morphological information from the 0.5 m panchromatic band; 3) ancillary information from stereo and multi-angle collects, including high precision digital elevation models; 4) frequent revisits and time-series collects; and 5) the global reference image archives. We introduce the topic of creative fusion of image attributes, as this provides a unifying theme for many of the papers in this WV-2 Special Session.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virnstein, R.; Tepera, M.; Beazley, L.
1997-06-01
A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less
Snapshot spectral and polarimetric imaging; target identification with multispectral video
NASA Astrophysics Data System (ADS)
Bartlett, Brent D.; Rodriguez, Mikel D.
2013-05-01
As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.
NASA Astrophysics Data System (ADS)
Thompson, Nicholas Allan
2013-06-01
With recent developments in multispectral detector technology, the interest in common aperture, common focal plane multispectral imaging systems is increasing. Such systems are particularly desirable for military applications, where increased levels of target discrimination and identification are required in cost-effective, rugged, lightweight systems. During the optical design of dual waveband or multispectral systems, the options for material selection are limited. This selection becomes even more restrictive for military applications, where material resilience, thermal properties, and color correction must be considered. We discuss the design challenges that lightweight multispectral common aperture systems present, along with some potential design solutions. Consideration is given to material selection for optimum color correction, as well as material resilience and thermal correction. This discussion is supported using design examples currently in development at Qioptiq.
NASA Astrophysics Data System (ADS)
Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine
2016-10-01
The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.
NASA Astrophysics Data System (ADS)
Wellington, D. F.; Bell, J. F., III; Johnson, J. R.; Fraeman, A. A.; Kinch, K. M.; Godber, A.; Rice, M. S.
2016-12-01
The Mars Science Laboratory Curiosity rover reached the lower units of Mt. Sharp in Gale Crater approximately two years ago. Along the traverse, Mastcam multispectral observations have documented the visible/near-IR spectral variability of drill tailings, bedrock, float rocks, fines, and other materials, recording a set of diverse reflectance properties in twelve unique filters over wavelengths 400-1100 nm. The most recent multi-filter images include new spectral diversity not encountered in near-field imaging acquired earlier in the mission. Since departing Marias Pass ( sol 1072), the rover has sampled material from the Stimson sandstone unit four times at two widely separated locations. These drill pairs were designed to investigate alteration regions visible as bright haloes bordering fractures in the bedrock. Drill fines and piles of dumped sample material from these sites (at Bridger Basin and on the Naukluft Plateau) were targeted for multispectral observations, which quantify the differences in overall reflectance and spectral shape between the unaltered Stimson material and the light-toned haloes. In the latter, high reflectances and relatively flat spectral shapes are consistent with interpretations of silica enrichment from other instruments. Mastcam spectra of the portions of the underlying Murray Formation (mudstone) that were encountered on first approach to the Bagnold dunes, and again upon exiting the Naukluft Plateau, are consistent with the presence of crystalline hematite. Variations in the relative strength of hematite absorption features in different locations may suggest possible differences in relative and/or absolute abundances of hematite of varying degrees of crystallinity. Dune materials have low reflectances with a broad, shallow absorption near 1-µm consistent with an olivine-bearing basaltic composition. We present these and other examples of spectral variability encountered by the rover during its ascent up the lower slopes of Mt. Sharp.
Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.
2005-01-01
Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.
Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data
NASA Astrophysics Data System (ADS)
Xiao, P.; Kelly, M.; Guo, Q.
2014-12-01
This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree from multispectral image and Lidar data: recall, precision and F-score. This work explores the tradeoff between the expensive Lidar data and inexpensive multispectral image. The conclusion will guide the optimal data selection in different density canopy areas for individual tree segmentation, and contribute to the field of forest remote sensing.
Lossless compression algorithm for multispectral imagers
NASA Astrophysics Data System (ADS)
Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth
2008-08-01
Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and archiving. Research for NOAA NESDIS has been directed to finding for the characteristics of satellite atmospheric Earth science Imager sensor data what level of Lossless compression ratio can be obtained as well as appropriate types of mathematics and approaches that can lead to approaching this data's entropy level. Conventional lossless do not achieve the theoretical limits for lossless compression on imager data as estimated from the Shannon entropy. In a previous paper, the authors introduce a lossless compression algorithm developed for MODIS as a proxy for future NOAA-NESDIS satellite based Earth science multispectral imagers such as GOES-R. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. In decompression, the algorithm uses a statistically computed look up table to iteratively predict each channel from a channel decompressed in the previous iteration. In this paper we present a new approach which fundamentally differs from our prior work. In this new approach, instead of having a single predictor for each pair of bands we introduce a piecewise spatially varying predictor which significantly improves the compression results. Our new algorithm also now optimizes the sequence of channels we use for prediction. Our results are evaluated by comparison with a state of the art wavelet based image compression scheme, Jpeg2000. We present results on the 14 channel subset of the MODIS imager, which serves as a proxy for the GOES-R imager. We will also show results of the algorithm for on NOAA AVHRR data and data from SEVIRI. The algorithm is designed to be adapted to the wide range of multispectral imagers and should facilitate distribution of data throughout globally. This compression research is managed by Roger Heymann, PE of OSD NOAA NESDIS Engineering, in collaboration with the NOAA NESDIS STAR Research Office through Mitch Goldberg, Tim Schmit, Walter Wolf.