Science.gov

Sample records for multistage fluid bed

  1. MULTISTAGE FLUIDIZED BED REACTOR

    DOEpatents

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  2. The development of an integrated multistaged fluid bed retorting process. Annual report, October 1991--September 1992

    SciTech Connect

    Carter, S.; Vego, A.; Stehn, J.; Taulbee, D.; Robl, T.; Hower, J.; Mahboub, K.; Robertson, R.; Hornsberger, P.; Oduroh, P.; Simpson, A.

    1992-12-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1991 through September 30, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis (shale oil production), gasification (synthesis gas production), and combustion of the spent oil shale for process heat. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work completed this year involved several different areas. Basic studies of the cracking and coking kinetics of shale oil vapors were carried out in fluidized and fixed bed reactors using both freshly generated shale oil vapors and model compounds. The design and fabrication of the 50-lb/hr KENTORT II reactor was completed and installation of the process components was initiated. The raw oil shale sample (Cleveland Member from Montgomery County, Kentucky) for the program was mined, prepared, characterized and stored. A preliminary study of KENTORT II-derived oil for possible paving applications was completed, and it was concluded that the shale exhibits acceptable properties as an asphalt recycling agent.

  3. The development of an integrated multistage fluid bed retorting process. Quarterly technical report, January 1, 1993--March 31, 1993

    SciTech Connect

    Carter, S.; Stehn, J.; Vego, A.

    1993-04-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT 11) during the period of January 1, 1993 through March 31, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, US Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The major activity for this quarter was to install various components of the process and provide utility support including air, water, electrical power, and computerized instrumentation. Following the completion of construction activities which is scheduled for next quarter, cold-flow testing and heat-up procedures will be performed.

  4. The development of an integrated multistaged fluid bed retorting process. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Carter, S.; Taulbee, D.; Vego, A.; Stehn, J.; Fei, Y.; Robl, T.; Derbyshire, F.

    1993-11-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1992 through September 30, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, US Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The PDU was assembled, instrumented and tested during this fiscal year. Along with the major activity of commissioning the 50-lb/hr retort, work was also completed in other areas. Basic studies of the cracking and coking kinetics of model compounds in a fixed bed reactor were continued. Additionally, as part of the effort to investigate niche market applications for KENTORT II-derived products, a study of the synthesis of carbon fibers from the heavy fraction of KENTORT II shale oil was initiated.

  5. The development of an integrated multistage fluid bed retorting process. [Kentort II process--50-lb/hr

    SciTech Connect

    Carter, S.; Stehn, J.; Vego, A.; Taulbee, D.

    1992-05-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of January 1, 1992 through March 31, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The design of the 50-lb/hr KENTORT II retort was completed and fabrication is ready to begin. Data from the cold-flow model of the system and operating experience from the 5-lb/hr unit were used as the basis for the design. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors was continued. A mathematical model was implemented to characterize the important mass transfer effects of the system. This model will be eventually broadened to become a general fluidized bed coking model. In addition, experiments were performed to examine the effects of surface area, initial carbon content and steam treatment on coking activity. From the data that has been collected to-date, it appears that the coking activity of the tested substrates can be explained in terms of porosity (surface area and pore volume) and the initial carbon content of the solid.

  6. The development of an integrated multistage fluid bed retorting process. Technical report, January 1, 1992--March 31, 1992

    SciTech Connect

    Carter, S.; Stehn, J.; Vego, A.; Taulbee, D.

    1992-05-01

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of January 1, 1992 through March 31, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The design of the 50-lb/hr KENTORT II retort was completed and fabrication is ready to begin. Data from the cold-flow model of the system and operating experience from the 5-lb/hr unit were used as the basis for the design. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors was continued. A mathematical model was implemented to characterize the important mass transfer effects of the system. This model will be eventually broadened to become a general fluidized bed coking model. In addition, experiments were performed to examine the effects of surface area, initial carbon content and steam treatment on coking activity. From the data that has been collected to-date, it appears that the coking activity of the tested substrates can be explained in terms of porosity (surface area and pore volume) and the initial carbon content of the solid.

  7. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  8. A multistage model of hospital bed requirements.

    PubMed Central

    Pendergast, J F; Vogel, W B

    1988-01-01

    This article presents a model for projecting future hospital bed requirements, based on clinical judgment and basic probability theory. Clinical judgment is used to define various categories of care, including a category for patients who are inappropriately hospitalized, for a large teaching hospital with a heavy indigent and psychiatric workload. Survey results and discharge abstract data are then used to calculate expected discharges and patient days for each clinical category. These expected discharges and patient days are converted into estimated bed requirements using a simple deterministic equation. Results of this multistage model are compared with the results obtained from exercising the simple deterministic equation alone. Because the multistage model removes patients from the hospital if they are deemed inappropriately placed, this model results in the projection of 5.1 percent fewer hospital beds than the simple deterministic equation alone. PMID:3403276

  9. Multi-stage circulating fluidized bed syngas cooling

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  10. The development of an integrated multistaged fluid bed retorting process. Technical report, October 1, 1992--December 31, 1992

    SciTech Connect

    Taulbee, D.; Fei, Y.; Carter, S.

    1993-01-01

    The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. Along with the major activity of assembling the components of the 50-lb/hr retort, work was also completed in other areas this quarter. Basic studies of the cracking and coking kinetics of model compounds in a fixed bed reactor were continued. Additionally, as part of the effort to investigate niche market applications for KENTORT II-derived products, a study of the synthesis of carbon fibers from the heavy fraction of KENTORT II shale oil was initiated.

  11. The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994

    SciTech Connect

    Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.

    1995-02-01

    This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

  12. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  13. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-07-01

    In this work, one-dimensional population balance models (PBMs) have been developed to model a pulsed top-spray fluidized bed granulation. The developed PBMs have linked the key binder solution spray operating factors of the binder spray rate, atomizing air pressure and pulsed frequency of spray with the granule properties to predict granule growth behaviour in the pulsed spray fluidized bed granulation process at different operating conditions with accuracy. A multi-stage open optimal control strategy based on the developed PBMs was proposed to reduce the model mismatch, in which through adjusting the trajectory of the evolution of the granule size distribution at predefined sample intervals, to determine the optimal operating variables related to the binder spray including the spray rate of binding liquid, atomizing air pressure and pulsed frequency of spray. The effectiveness of the proposed modelling and multi-stage open optimal control strategies has been validated by experimental and simulation tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. SYNROC production using a fluid bed calciner

    SciTech Connect

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-09-27

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables.

  15. Dry coating in a rotary fluid bed.

    PubMed

    Kablitz, Caroline Désirée; Harder, Kim; Urbanetz, Nora Anne

    2006-02-01

    A highly efficient dry coating process was developed to obtain an enteric film avoiding completely the use of organic solvents and water. Using hydroxypropyl methylcellulose acetate succinate (HPMCAS) an enteric coat should be obtained without adding talc as anti-tacking agent because of problems arising from microbiological contamination. Further on, a method was developed preparing isolated films in order to determine the glass transition temperature (T(g)) and the required process temperature. The process was conducted in the rotary fluid bed with a gravimetric powder feeder achieving an exact dosage in contrast to volumetric powder feeder. A three way nozzle was aligned tangential to the pellet bed movement feeding simultaneously powder and plasticizer into the rotary fluid bed. The determined coating efficiency of the talc-free formulation was high with 94% and storage stability regarding tacking could be achieved using colloidal silicium dioxide as top powder. The T(g) of the enteric coat could be determined analyzing the T(g) of isolated films obtained by coating celluloid spheres instead of pellets using the dry coating process in rotary fluid bed. The dry coating process has been demonstrated to be a serious alternative to conventional solvent or water based coating processes.

  16. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    PubMed

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas.

  17. Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    NASA Technical Reports Server (NTRS)

    Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.

    2013-01-01

    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.

  18. Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    NASA Technical Reports Server (NTRS)

    Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.

    2013-01-01

    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.

  19. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  20. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    PubMed

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  1. Rigging Test Bed Enables Development of Multi-Stage Decelerator Extraction

    NASA Technical Reports Server (NTRS)

    Kenig, Sivan J.; Brandeau, Erich J.; Gallon, John C.

    2015-01-01

    The Low Density Supersonic Decelerator (LDSD) project developed a Parachute Deployment System (PDS) for use on its Supersonic Flight Dynamics Tests (SFDT). The PDS involves a multi-stage pilot driven extraction of a supersonic parachute. The uncertainties and complexities of developing the design for the lines and rigging of the PDS were addressed through testing in the Rigging Test Bed (RTB). The RTB provided a facility capable of simulating a variety of extraction scenarios with full scale hardware on the ground. Through more than 100 tests conducted in the facility, a wealth of data and experience were gained that fueled the PDS development. The utility of this testing and the lessons learned are presented in this paper. The goal is to inform the development of similar systems in the future and highlight the value and flexibility this type of testing offers rapid hardware development. The RTB provided a great compliment to the analytical models greatly compressing what would have otherwise been a very lengthy analytical effort or potentially much expanded flight test campaign.

  2. Study of ebullated bed fluid dynamics

    NASA Astrophysics Data System (ADS)

    Schaefer, R. J.; Rundell, D. N.; Shou, J. K.

    1983-07-01

    The fluid dynamics occurring in a coal liquefaction reactor is measured and compared with cold flow fluidization results. Catalyst bed expansions and gas holdups are higher in the Process Development Unit (PDU) than those observed in the cold flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold flow experiments. Two and three phase fluidization experiments are carried out. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. A viscometer is adapted for measurement of the viscosity of coal slurries at high temperature and pressure. A significant degree of backmixing occurs in the H-Coal system.

  3. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    SciTech Connect

    Zhang, Geoffrey Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-07-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, {alpha}/{beta} values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  4. A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode

    NASA Astrophysics Data System (ADS)

    Liao, C. R.; Zhao, D. X.; Xie, L.; Liu, Q.

    2012-08-01

    In this paper, a magnetorheological (MR) fluid damper based on a multi-stage radial flow mode is put forward, compared with traditional ones with annular damping channel which are of low magnetic field utilization and high energy consumption. The equivalent magnetic circuit model is derived, along with the relation between the magnetic induction at the working gap and the exciting current in the field coils. The finite-element software ANYSY is used to analyze the distribution of the magnetic field in the MR valve. The flow differential equation for a MR fluid in radial flow is theoretically set up, and the numerical solution is validated by means of the Herschel-Bulkley constitutive model. A MR damper was designed and fabricated in Chongqing University in accordance with the technical requirements of a railway vehicle anti-yaw damper, and the force-displacement characteristic of the damper was tested with J95-I type shock absorber test-bed. The results show that the experimental damping forces are in good agreement with the analytical ones, and the methodology is believed to help predict the damping force of a MR damper.

  5. Sensing Refractive Indices of Fluids by Wavelength-Tunable Laser and Novel Multi-stage Directional Couplers

    NASA Astrophysics Data System (ADS)

    Lu, Ruei-Chang; Lee, Keh-Yi

    2017-05-01

    In this work, the authors propose a modified type of multi-stage directional couplers and combine it with a wavelength-tunable laser to measure the refractive index of an undetermined biochemical liquid/solution. Tuning the wavelength of the laser incident on the modified multi-stage directional couplers, the relationship between the wavelength corresponding to the maximal output optical power and the refractive index of the unknown fluid has been obtained.

  6. Fluid bed solids heater. Final technical report

    SciTech Connect

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  7. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect

    Not Available

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  8. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  9. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  10. Shielded fluid stream injector for particle bed reactor

    SciTech Connect

    Notestein, J.E.

    1991-12-31

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an inline reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  11. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  12. Pressurized fluid bed demonstration units operate successfully

    SciTech Connect

    Smock, R.

    1993-03-01

    This article reviews the successful demonstration of 75 MW pressurized fluidized bed combustion (PFBC) power plants and the planning for 350 MW commercial scale plants. The topics of the article include progress in development, a review of operating units, the need for better sulfur capture, and large scale circulating PFBC design. A buyer's guide to PFBC system suppliers is provided.

  13. Fluid bed technology in materials processing

    SciTech Connect

    Gupta, C.K.; Sathiyamoorthy, D.

    1999-01-01

    The author explores the various aspects of fluidization engineering and examines its applications in a multitude of materials processing techniques. Topics include process metallurgy, fluidization in nuclear engineering, and the pros and cons of various fluidization equipment. Gupta emphasizes fluidization engineering in high temperature processing, and high temperature fluidized bed furnaces.

  14. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    SciTech Connect

    Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

  15. Nitrate destruction in an elutriated fluid-bed calciner

    SciTech Connect

    Cowan, R.G.; Cash, R.J.; Owen, T.J.; Shook, G.E.

    1987-09-01

    Nitrate destruction was demonstrated using an elutriated fluid-bed calciner process developed for nuclear fuel mixed-oxide conversion. Testing was directed to treatment of sodium nitrate, a major waste component at the Hanford Site. One test was also performed with copper nitrate. All tests produced low concentrations of NO/sub x/ in the offgas. The chemistry developed for uranium and plutonium nitrate appears to apply to other metal nitrates. The copper nitrate test was successful, with over 90% of the nitrate converted to elemental nitrogen and water and with recovery of a granular, free-flowing copper product. Tests with sodium nitrate were not successful due to fusion of sodium carbonate in the calciner bed and plugging of the calciner. Further development of the elutriated fluid-bed system would be required to process high sodium nitrate waste solutions.

  16. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  17. Coal fired fluid bed module for a single elevation style fluid bed power plant

    DOEpatents

    Waryasz, Richard E.

    1979-01-01

    A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

  18. Six years of ABB-CE, petcoke and fluid beds

    SciTech Connect

    Tanca, M.

    1994-12-31

    Combustion Engineering, Inc. (ABB-CE) has constructed twenty circulating fluidized bed (CFB) boilers and 2 bubbling fluidized bed (BFB) boilers throughout North America. The units were designed to fire a wide range of fuels from anthracite culm to coals, lignites and biomasses. Based on fuels economics, some plants have decided to use petroleum coke as a replacement or supplemental fuel. The fluid bed boiler can inherently handle a wide range of fuel types without requiring modification or down-rating. ABB-CE units have a significant amount of petroleum coke operating experience firing 100% petroleum coke with no supplemental fuel ranging from the first commercial CFB unit at New Brunswick Power to the largest CFB unit at Texas New Mexico Power. Petroleum coke is also being co-fired with anthracite culm at the Scott Paper CFB. The world`s largest operating BFB, the 160 MWe unit at TVA`s Shawnee plant, has also been co-firing petroleum coke. The ability of the fluidized bed technology to fire low volatile fuels such as petroleum cokes, efficiently and in an environmentally acceptable manner will result in the use of this technology as a preferred means of power generation. This report gives a brief description of the petroleum coke firing experiences with ABB-CE fluid bed steam generators over the last six years.

  19. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  20. Circulating fluid bed technology within Combustion Engineering Inc.

    SciTech Connect

    Treff, P.J.; Maitland, J.E.

    1995-12-31

    As the worldwide trend for more flexible, cost-effective CFB technology continues as an alternative to pulverized coal and combined cycle steam generation, Combustion Engineering Inc. has drawn on original scientific work and the operating history of numerous BFBs and CFBs worldwide as reported in publicly available literature to introduce many product enhancements for its next generation of circulating fluid bed boilers. The issues of in-furnace surface versus external fluid bed heat exchanger applicability, cyclone and loop seal design, refractory system design and operating requirements, and the suitability of regenerative air heaters for CFB applications will be among the topics discussed in this paper as Combustion Engineering Inc. answers the challenge to continuously advance CFB steam generation.

  1. An alternative circulating fluid bed bottom ash removal system

    SciTech Connect

    Barsin, J.A.; Carrea, A.

    1999-07-01

    Circulating fluid beds pose two challenges for the removal of spent or unreacted calcined limestone and coal ash from the bottom of the bed. The furnace operates under a positive pressure and thus a seal must be maintained between the ambient and the furnace and secondly the bottom ash is discharged at about 1600 F and must be cooled down before transported into a storage silo. In the higher bottom ash-loaded units (firing lignite or anthracite culm) this cooling represents a significant portion of the latent heat lost to the stream generator, thus affecting the overall heat rate. Also the material is abrasive traditionally which has had a negative effect upon the removal system life and maintenance costs. Now there is an alternative to the existing present water screw or auxiliary bed cooler systems applied in the past. This presentation reviews the successful application of a dry bottom ash removal system to pulverized coal (PC) fired units, the experimental and commercial scale developmental work to determine if that PC concept is applicable to Circulating Fluid Bed Units, and projected savings that might be realized if heat recovery, carbon recovery, reduction in parasitic power and maintenance costs all could be improved. The power generation industry typically demands at minimum a commercial demonstration of new technology prior to application and therefore a host site for dry bottom ash removal technology is sought.

  2. An alternative circulating fluid bed bottom ash removal system

    SciTech Connect

    Barsin, J.A.; Carrea, A.

    1999-11-01

    Circulating fluid beds pose two challenges for the removal of spent or unreacted calcined limestone and coal ash from the bottom of the bed. The furnace operates under a positive pressure and thus a seal must be maintained between the ambient and the furnace and secondly the bottom ash is discharged at about 1600 F and must be cooled down before transported into a storage silo. In the higher bottom ash-loaded units (firing lignite or anthracite culm) this cooling represents a significant portion of the latent heat lost to the steam generator, thus affecting the overall heat rate. Also the material is abrasive traditionally which has had a negative effect upon the removal system life and maintenance costs. Now there is an alternative to the existing present water screw or auxiliary bed cooler systems applied in the past. This presentation reviews the successful application of a dry bottom ash removal system to pulverized coal (PC) fired units, the experimental and commercial scale developmental work to determine if that PC concept is applicable to Circulating Fluid Bed Units, and projected savings that might be realized if heat recovery, carbon recovery, reduction in parasitic power and maintenance costs all could be improved. The power generation industry typically demands at minimum a commercial demonstration of new technology prior to application and therefore a host site for dry bottom ash removal technology is sought.

  3. Modeling agglomeration processes in fluid-bed granulation

    SciTech Connect

    Cryer, S.A.

    1999-10-01

    Many agrochemicals are formulated as water dispersive granules through agglomeration, beginning with a fine powder ({approximately}1 {micro}m) and ending with granules on the order of 500 {micro}m. Powders are charged into a granulation system with a liquid binding agent, and granules are subsequently grown to an appropriate size. Granulation in fluid beds is presented using a mass conserving discretized population balance equation. Coalesce kernels governing the rate and extent of granulation are assumed dependent on the Stokes number, which is indirectly liked to important process variables (air and under flow rate, bed charge, bed geometry) such that the physical processes governing particle coalescence and rebound are correlated to process variables. A new coalescence kernel is proposed based on physical insight, simplicity, and deterministic equivalent modeling to account for uncertainty. This kernel is based on a Stokes number method where uncertainty in the Stokes number is characterized by polynomial chaos expansions. The magnitude of the coalescence kernel is proportional to the probability of the distribution of Stokes number exceeding a critical value. This mechanistic/semiempirical approach to fluid-bed agglomeration fosters an environment for process scaleup by eliminating specific equipment and process variable constraints to focus on the underlying mechanisms for proper scale-up procedures. Model predictions using this new kernel are then compared to experimental pilot-plant observations.

  4. Circulating Fluid-Bed Technology for Advanced Power Systems

    SciTech Connect

    Shadle, Lawrence J.; Ludlow, J. Christopher; Mei, Joseph S.; Guenther, Christopher

    2001-11-06

    Circulating fluid bed technology offers the advantages of a plug flow, yet well-mixed, and high throughput reactor for power plant applications. The ability to effectively scale these systems in size, geometry, and operating conditions is limited because of the extensive deviation from ideal dilute gas-solids flow behavior (Monazam et al., 2001; Li, 1994). Two fluid computations show promise of accurately simulating the hydrodynamics in the riser circulating fluid bed; however, validation tests for large vessels with materials of interest to the power industry are lacking (Guenther et al., 2002). There is little available data in reactors large enough so that geometry (i.e. entrance, exit, and wall) effects do not dominate the hydrodynamics, yet with sufficiently large particle sizes to allow sufficiently large grid sizes to allow accurate and timely hydrodynamic simulations. To meet this need experimental tests were undertaken with relatively large particles of narrow size distribution in a large enough unit to reduce the contributions of wall effects and light enough to avoid geometry effects. While computational fluid dynamic calculations are capable of generating detailed velocity and density profiles, it is believed that the validation and model development begins with the ability to simulate the global flow regime transitions. The purpose of this research is to generate well-defined test data for model validation and to identify and measure critical parameters needed for these simulations.

  5. Bed-rest studies - Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested. Previously announced in STAR as N83-24160

  6. Bed-rest studies: Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from the extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested.

  7. CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine

    NASA Astrophysics Data System (ADS)

    Surwilo, Jan; Lampart, Piotr; Szymaniak, Mariusz

    2015-10-01

    Basic operational advantages of the Organic Rankine Cycle (ORC) systems and specific issues of turbines working in these systems are discussed. The strategy for CFD simulation of the considered ORC turbine and the main issues of the numerical model are presented. The method of constructing the 3D CAD geometry as well as discretisation of the flow domain are also shown. Main features of partial admission flow in the multi-stage axial turbine are discussed. The influence of partial admission on the working conditions of the subsequent stage supplied at the full circumference is also described.

  8. Relationship between fluid bed aerosol generator operation and the aerosol produced

    SciTech Connect

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriation constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.

  9. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect

    Fan, Rong

    2006-01-01

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  10. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li

    2008-05-15

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  11. Multistage structural evolution in simple monatomic supercritical fluids: superstable tetrahedral local order.

    PubMed

    Ryltsev, R E; Chtchelkatchev, N M

    2013-11-01

    The local order units of dense simple liquid are typically three-dimensional (close packed) clusters: hcp, fcc, and icosahedrons. We show that the fluid demonstrates the superstable tetrahedral local order up to temperatures several orders of magnitude higher than the melting temperature and down to critical density. While the solid-like local order (hcp, fcc) disappears in the fluid at much lower temperatures and far above critical density. We conclude that the supercritical fluid shows the temperature (density)-driven two-stage "melting" of the three-dimensional local order. We also find that the structure relaxation times in the supercritical fluid are much larger than ones estimated for weakly interactive gas even far above the melting line.

  12. Computational fluid dynamics analysis of aerosol deposition in pebble beds

    NASA Astrophysics Data System (ADS)

    Mkhosi, Margaret Msongi

    2007-12-01

    The Pebble Bed Modular Reactor is a high temperature gas cooled reactor which uses helium gas as a coolant. The reactor uses spherical graphite pebbles as fuel. The fuel design is inherently resistant to the release of the radioactive material up to high temperatures; therefore, the plant can withstand a broad spectrum of accidents with limited release of radionuclides to the environment. Despite safety features of the concepts, these reactors still contain large inventories of radioactive materials. The transport of most of the radioactive materials in an accident occurs in the form of aerosol particles. In this dissertation, the limits of applicability of existing computational fluid dynamics code FLUENT to the prediction of aerosol transport have been explored. The code was run using the Reynolds Averaged Navier-Stokes turbulence models to determine the effects of different turbulence models on the prediction of aerosol particle deposition. Analyses were performed for up to three unit cells in the orthorhombic configuration. For low flow conditions representing natural circulation driven flow, the laminar flow model was used and the results were compared with existing experimental data for packed beds. The results compares well with experimental data in the low flow regime. For conditions corresponding to normal operating of the reactor, analyses were performed using the standard k-ɛ turbulence model. From the inertial deposition results, a correlation that can be used to estimate the deposition of aerosol particles within pebble beds given inlet flow conditions has been developed. These results were converted into a dimensionless form as a function of a modified Stokes number. Based on results obtained in the laminar regime and for individual pebbles, the correlation developed for the inertial impaction component of deposition is believed to be credible. The form of the correlation developed also allows these results to be applied to pebble beds of different

  13. Experimental study of fluid dynamics in the pebble bed in a radial coolant flow

    NASA Astrophysics Data System (ADS)

    Smorchkova, Y. V.; Varava, A. N.; Dedov, A. V.; Komov, A. T.

    2016-10-01

    The results of experimental studies of pebble bed hydrodynamics are presented. For the first time experimental data on the pressure loss in a radial flow of fluid through the pebble bed was obtained. Experiments were carried out in the liquid flow rate ranging from 0.09 to 0.4 kg / s, fluid temperature is 20°C.

  14. Classification of annular bed flow patterns and investigation on their influence on the bottom spray fluid bed coating process.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2010-05-01

    This study aims to classify annular bed flow patterns in the bottom spray fluid bed coating process, study their influence on coat uniformity and investigate the feasibility of developing real-time annular bed flow pattern detection as a PAT tool. High-speed imaging and particle image velocimetry were used to visualize annular bed flow. Color coating and subsequent tristimulus colorimetry were employed to determine influence of annular bed flow pattern on coat uniformity. Feasibility of monitoring annular bed flow pattern through an observation window was tested using miniaturized particle velocity field and time series particle velocity orientation information. Three types of annular bed flow patterns were identified. Plug flow gave the best coat uniformity followed by global and localized fluidization. Plug flow may be advantageous for high spray-rate conditions, large-scale coating and prevention of particle segregation. Plug flow could be differentiated from the other flow patterns through a simulated observation window. Annular bed flow patterns were classified and found to influence particle coat uniformity noticeably. Availability of annular bed flow information for large-scale coaters would enable adjustments for process optimization. This study highlights the potential of monitoring annular bed flow pattern as a PAT tool.

  15. Northwest Africa 5738: Multistage fluid-driven secondary alteration in an extraordinarily evolved eucrite

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.; Rubin, Alan E.; Isa, Junko; Gessler, Nicholas; Ahn, Insu; Choi, Byeon-Gak

    2014-09-01

    The Northwest Africa 5738 eucrite contains a record of unprecedented geochemical complexity for a sample from the HED asteroid. It originated with a uniquely evolved (Stannern Trend) primary igneous composition, combining ultra-high bulk incompatible element and Na2O concentrations with a relatively low mg. Its bulk oxygen-isotopic composition (Δ‧17O = -0.27‰), as well as its trace element composition (e.g., Ga/Al), confirm other evidence for classification as a eucrite. Pyroxene mg equilibration, exsolution and “cloudy” inclusions, all reflect a typical eucritic degree of thermal metamorphism. The rock contains an unprecedented array of microscopic fluid-metasomatic vein deposits. Most common are curvy microveins within pyroxene, which consist dominantly of Ca-plagioclase (typically An95, in stark contrast with the rock’s An68-78 primary-igneous plagioclase), with Fe-olivine (Fo14) and Cr-spinel as additional major constituents. Likely related to these microveins are small masses of intergrown Ca-plagioclase (again roughly An95) and silica (or high-Si glass). Analyses of the microvein Cr-spinels show stoichiometry implying a significant Fe3+ content (Fe2O3 0.7-2.3 wt.%), and fO2 up to roughly IW+3; clearly elevated in comparison to the normal HED fO2 of about IW-1. The fO2 results show an anticorrelation with equilibration T (and with Mg/Fe), which suggests the parent fluid system became more oxidizing as it cooled. NWA 5738 also contains apparent secondary iron metal. The Fe-metals are very pure, with Ni consistently below an EPMA detection limit of ∼0.01 wt.%. The vein-like shapes of roughly 1/3 of the largest Fe-metals suggest origin by deposition from a fluid. The role of pyroxene exsolution as template for a denticular (sawtooth) Fe-metal edge shape, and the survival of Fo14 olivine in a rock with abundant silica and a far higher bulk mg, suggest that the most intense thermal metamorphism occurred no later than the secondary alteration. Near

  16. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  17. Use of a polishing scrubber with a fluid bed boiler

    SciTech Connect

    Toher, J.G.

    1996-12-31

    Once viewed as {open_quotes}competitive{close_quotes} technologies, the circulating dry scrubber (CDS){reg_sign} and circulating fluid bed (CFB) boiler are being used together to achieve enhanced performance with lower overall costs. The need to understand the synergy between these two technologies is driven by deregulation of the power industry and the 1990 Clean Air Act Amendments. Deregulation of power production in the US has spurred the growth of Independent Power Producers (IPP) who are responding to Industry`s demand for lower cost fuels, and close attention to annual operating costs. Utilities have to provide {open_quotes}open{close_quotes} access to their transmission lines allowing various IPP`s to connect with the end user. Industrial users can now choose from one of several sources of electricity with prices per kilowatt hour that are much lower than what they are currently being charged. The race is on to reduce power production costs and fuel can be the key in many cases. IPP`s and industry are banding together in very logical ways that can benefit both. Industry`s byproducts with heating value can be sold {open_quotes}over the fence{close_quotes} to an IPP who provides the industry with low cost steam and or electricity in return. However, many alternative lower cost fuels also have a higher emissions potential for criteria pollutants such a SO{sub 2}, NO{sub X}, particulate, or other emissions such as VOC`s and mercury which are more recently receiving attention. Cost effective management of these environmental issues must be an integral part of the project planning process. Three such cases are examined that involve the use of CFB`s with the CDS{reg_sign} as a polishing scrubber for SO{sub 2}. The first two cases involve repowering of existing facilities with petroleum coke as the fuel. The last case involves a new facility powered with low sulfur coal.

  18. Effluent characterization from a conical pressurized fluid bed

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.

    1977-01-01

    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.

  19. Fluid-bed fluoride volatility process recovers uranium from spent uranium alloy fuels

    NASA Technical Reports Server (NTRS)

    Barghusen, J. J.; Chilenskas, A. A.; Gunderson, G. E.; Holmes, J. T.; Jonke, A. A.; Kincinas, J. E.; Levitz, N. M.; Potts, G. L.; Ramaswami, D.; Stethers, H.; hide

    1967-01-01

    Fluid-bed fluoride volatility process recovers uranium from uranium fuels containing either zirconium or aluminum. The uranium is recovered as uranium hexafluoride. The process requires few operations in simple, compact equipment, and eliminates aqueous radioactive wastes.

  20. Armoring, stability, and transport driven by fluid flow over a granular bed

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2015-03-01

    We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.

  1. Fluid and electrolyte shifts during bed rest with isometric and isotonic exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Young, H. L.; Morse, J. T.; Juhos, L. T.; Van Beaumont, W.; Staley, R. W.

    1977-01-01

    It is difficult to separate the effects of reduction in hydrostatic pressure from that of reduced energy expenditure when investigating the confinement deconditioning problem. Experiments were conducted on seven healthy young men aged 19-21 yr with the purpose of separating these two factors by using isotonic physical exercise during bed rest to provide a daily energy expenditure greater than normal ambulatory levels. Fluid and electrolyte shifts were measured during three two-week bed rest periods, each of which being separated by a three-week ambulatory recovery period. During two of the three bed rest periods they performed isometric and isotonic exercises to compare their effects on fluid and electrolyte shifts during bed rest. It is shown that during bed rest, preservation of the extracellular volume takes precedence over maintenance of the plasma volume and that this mechanism is independent of the effects of isometric or isotonic exercise.

  2. Fluid bed porosity mathematical model for an inverse fluidized bed bioreactor with particles growing biofilm.

    PubMed

    Campos-Díaz, K E; Bandala-González, E R; Limas-Ballesteros, R

    2012-08-15

    A new mathematic model to estimate bed porosity as a function of Reynolds and Archimedes numbers was developed based in experimental data. Experiments were performed using an inverse fluidized bed bioreactor filled with polypropylene particles, Lactobacillus acidophillus as the immobilized strain and fluidized with a Man-Rogosa-Sharpe culture medium under controlled temperature and pH conditions. Bed porosity was measured at different flow rates, starting from 0.95 to 9.5 LPM. The new model has several advantages when compared with previously reported. Among them, advantages such as standard deviation values ≤ 1% between experimental and calculated bed porosity, its applicability in traditional and inverse fluidization, wall effects do not take account, it gives excellent agreement with spherical particles with or without biofilm, and inertial drag coefficient allow extend the new model a non-spherical particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Changes in body fluid compartments during a 28-day bed rest

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Hyatt, Kenneth H.; Davis, John E.; Vogel, John M.

    1991-01-01

    Serial isotope measurements were used to obtain measurements of the body fluid responses of 10 22-29-year-old men during 28 d of simulated microgravity (bed rest). The subjects were maintained on a controlled metabolic diet for 7 d before the study, during 14 d of ambulatory control, 28 d of horizontal bed rest, and 14 d of ambulant recovery. Fluid compartments were measured on control days 1 and 9, bed rest days 2, 14, and 28, and recovery days 7 and 14. By day 2 of bed rest, plasma volume and extracellular volume (ECV) decreased significantly by an average 209 and 533 ml, respectively. Red cell volume and total body water (TBW) decreased more slowly, with average losses of 128 and 1316 ml, respectively, after 28 d of bed rest. Early in the bed rest, TBW loss was mostly from the ECV. Thereafter, the TBW deficit was derived from the intracellular compartment, which decreased an average of 838 ml after 28 d. These results suggest losses from all fluid compartments during bed rest, with no evidence of restoration of ECV after 1-2 weeks.

  4. Partitioning of sodium, chlorine and sulfur during coal and char combustion in a fluid bed

    SciTech Connect

    Bhattacharya, S.P.; He, Y.

    1998-12-31

    Advanced power generation technologies (IGCC, Advanced PFBC) using high moisture low-rank coals require gasification of coal followed by combustion of char in a fluid bed. A study was undertaken to investigate the bed behaviour of char during combustion in a fluid bed. Three high moisture Australian low-rank coals, which are currently used in Victorian power stations, were chosen for this study. These were air dried, ground and sieved to 1--4 mm size. Char was prepared from these coals by devolatilising in a 76-mm diameter spouted bed at 700 C in presence of nitrogen. Char samples were combusted in the same spouted bed under hydrodynamic conditions similar to that in an atmospheric circulating fluid bed at temperatures of 800 C and 900 C. The three coal samples were also combusted under similar conditions to compare with the combustion behaviour of the char. No significant agglomeration problems were observed during combustion of these coals for periods of up to four hours. For one char, the bed defluidized 70 minutes after combustion at 900 C, while the two remaining chars didn`t present any significant agglomeration during the test period of four hours. Ultimate and inorganic analyses were carried out for the coal and char samples before the tests. The bed materials and cyclone ash after each combustion test were analyzed for inorganics and phases using chemical analysis, XRD and DTA techniques. A significant separation of the sodium and chlorine in coal was observed during pyrolysis of the coal to char. During combustion of char, most of the sodium (in char) was captured in the bed materials. This information was used to explain the bed behaviour observed during char combustion. This paper discusses the results and suggest strategies for mitigation of defluidization, that are currently under trial.

  5. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  6. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  7. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  8. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  9. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  10. On-line monitoring of fluid bed granulation by photometric imaging.

    PubMed

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development.

  11. Onset of erosion and sediment transport by a fluid flow over a granular bed

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad

    Erosion and deposition of grains by a fluid flowing past the surface of a granular bed occurs in many natural and industrial processes. While considerable number of empirical studies has been conducted, very little is in fact known in detail on conditions which lead to erosion and deposition of sediments and their transport coefficients. We discuss a series of laboratory experiments to develop the physics of erosion starting with a single particle resting on a surface in a fluid flow. Fluorescent fluid-particle index matching techniques allow us to visualize not only the particles at the surface of a granular bed but also the flow within the bed and the individual particles within the bed. We will discuss the conditions governing the onset of particle motion under simple shear and their transport as a function of bed and fluid flow properties. Supported by the U.S. DOE Office of Science and Office of BES program under DE-FG02-13ER16401, and NSF Grant No. CBET-1335928.

  12. The SEI facility for fluid-bed wood gasification

    SciTech Connect

    Bullpitt, W.S.; Rittenhouse, O.C. ); Masterson, L.D. )

    1989-09-01

    In mid 1985, construction was begun on the world's largest fluidized bed, wood gasification plant at the clay processing plant in Quincy, Fla. In March 1986, the plant was purchased by Southern Electric International (SEI). This paper describes how SEI coordinated the redesign of many of the plant systems and supervised the completion of construction and startup. In late 1986, the gasifier plant was sold. SEI remains involved as the operations and maintenance contractor on-site and is now responsible for design changes and equipment maintenance.

  13. Users investing own funds in large fluid bed systems

    SciTech Connect

    Poplett, J.

    1984-11-05

    The successful performance of atmospheric fluidized bed (AFB) boilers funded by government grants has encouraged industrial users to invest their own capital for large AFB boilers as a means of safely switching to coal. The successful demonstrations, the corrections of corrosion problems, the ability of AFB boilers to comply with emission standards without needing costly pollution control equipment, the ability to burn low-grade coal or coal by-products, and quick paybacks triggered the interest despite stable oil and gas prices. However, interest in systems below 100,000 pounds per hour is dropping because of long payback periods. A directory lists 15 manufacturers of AFB boilers.

  14. Comparison of low shear, high shear, and fluid bed granulation during low dose tablet process development.

    PubMed

    Hausman, Debra S

    2004-03-01

    Three processing methods were compared to develop a low dose (0.1%) immediate release tablet. Similar formulations were used to evaluate low shear, high shear, and fluid bed granulation methods. For each granulation process, the drug was dissolved or suspended in the granulating fluid and sprayed into the granulator. Both water and methanol were evaluated as granulating fluids. The low shear granulation was performed in a Patterson-Kelley V-Blender with I-bar. The high shear granulation was performed in a GRAL (top entry impeller) and a Diosna (bottom mounted impeller). Fluid bed granulation was also performed using top-spray. Acceptable content uniformity was obtained using each technology. The type of granulator and granulating solvent affected the granulation particle size distributions and bulk/tap densities. However, the addition of extragranular microcrystalline cellulose minimized the effect of variable granulation properties and allowed similar tablets to be produced from each granulation process.

  15. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect

    M.A. Alvin

    2004-01-02

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  16. Multi-stage flash degaser

    DOEpatents

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  17. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    SciTech Connect

    Coe, D.R.

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  18. Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995

    SciTech Connect

    1995-06-01

    This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.

  19. The Hydrodynamic Stability of a Fluid-Particle Flow: Instabilities in Gas-Fluidized Beds

    ERIC Educational Resources Information Center

    Liu, Xue; Howley, Maureen A.; Johri, Jayati; Glasser, Benjamin J.

    2008-01-01

    A simplified model of an industrially relevant fluid-particle flow system is analyzed using linear stability theory. Instabilities of the uniform state of a fluidized bed are investigated in response to small flow perturbations. Students are expected to perform each step of the computational analysis, and physical insight into key mechanistic…

  20. Turbulent flow over a channel with fluid-saturated porous bed

    USDA-ARS?s Scientific Manuscript database

    The characteristics of fully developed turbulent flow in a hybrid domain channel, which consists of a clear fluid region and a porous bed, are examined numerically using a model based on the macroscopic Reynolds-averaged Navier–Stokes equations. By adopting the classical continuity interface conditi...

  1. Centaur Test Bed (CTB) for Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Sakla, Steven; Kutter, Bernard; Wall, John

    2006-01-01

    Future missions such as NASA s space exploration vision and DOD satellite servicing will require significant increases in the understanding and knowledge of space based cryogenic fluid management (CFM), including the transfer and storage of cryogenic fluids. Existing CFM capabilities are based on flight of upper stage cryogenic vehicles, scientific dewars, a few dedicated flight demonstrations and ground testing. This current capability is inadequate to support development of the CEV cryogenic propulsion system, other aspects of robust space exploration or the refueling of satellite cryo propulsion systems with reasonable risk. In addition, these technologies can provide significant performance increases for missions beyond low-earth orbit to enable manned missions to the Moon and beyond. The Centaur upper-stage vehicle can provide a low cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies to support CEV development. These flight demonstrations can be performed as secondary mission objectives using excess LH2 and/or LO2 from the main vehicle propellant tanks following primary spacecraft separation at minimal cost and risk.

  2. Long-duration head-down bed rest: project overview, vital signs, and fluid balance.

    PubMed

    Meck, Janice V; Dreyer, Sherlene A; Warren, L Elisabeth

    2009-05-01

    Spaceflight has profound effects on the human body. Many of these effects can be induced with head-down bed rest, which has been a useful ground-based analog. With limited resources aboard the International Space Station for human research, the bed rest analog will be a primary platform on which countermeasures will be developed and tested for lunar and Mars mission scenarios. NASA Johnson Space Center, in conjunction with the University of Texas Medical Branch (UTMB), has created the NASA Flight Analogs Project (FAP), a research program with the overall objective of using head-down bed rest to evaluate, compare, and refine candidate countermeasures to spaceflight deconditioning. This paper serves as an overview and describes the standard conditions, the standard set of subject screening criteria, and the standard set of measurements for all FAP bed rest subjects. Heart rate and diastolic pressures decreased transiently at the onset of bed rest. Fluid balance showed an early diuresis, which stabilized within 3 d. In this supplement, detailed results from multiple disciplines are presented in a series of reports. The following reports describe multi-disciplinary results from the standard measurements by which the responses to bed rest will be assessed and by which countermeasures will be evaluated. The data presented in this overview are meant to serve as a context in which to view the data presented in the discipline specific manuscripts. The dietary support and behavioral health papers provide additional information regarding those aspects of implementing bed rest studies successfully.

  3. Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids.

    PubMed

    Gupta, Renu; Bansal, Ajay

    2013-08-01

    Axial dispersion is an important parameter in the performance of packed bed reactors. A lot of fluids exhibit non-Newtonian behaviour but the effect of rheological parameters on axial dispersion is not available in literature. The effect of rheology on axial dispersion has been analysed for viscoinelastic and viscoelastic non-Newtonian fluids. Aqueous solutions of carboxymethyl cellulose and polyacrylamide have been chosen to represent viscoinelastic and viscoelastic liquid-phases. Axial dispersion has been measured in terms of BoL number. The single parameter axial dispersion model has been applied to analyse RTD response curve. The BoL numbers were observed to increase with increase in liquid flow rate and consistency index 'K' for viscoinelastic as well as viscoelastic fluids. Bodenstein correlation for Newtonian fluids proposed has been modified to account for the effect of fluid rheology. Further, Weissenberg number is introduced to quantify the effect of viscoelasticity.

  4. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation.

    PubMed

    Zorbas, Yan G; Kakurin, Vassily J; Kuznetsov, Nikolai A; Yarullin, Vladimir L

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6 +/- 7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg bodyweight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly (p < or = 0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly (p < or = 0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly (p < or = 0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly (p < or = 0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR. c2002 Published by Elsevier Science Ltd.

  5. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  6. Electronic bed weighing vs daily fluid balance changes after cardiac surgery.

    PubMed

    Schneider, Antoine Guillaume; Thorpe, Christopher; Dellbridge, Kerrin; Matalanis, George; Bellomo, Rinaldo

    2013-12-01

    The purpose of this study is to establish the validity and reliability of measuring weight in critically ill patients with electronic weighing beds. All patients admitted to a private intensive care unit (ICU) after cardiac surgery over a 7-month period were weighed on admission and then twice daily (1200 and 2400 hours) using electronic weighing beds (Hill-Rom, Batesville, AR). For each measurement, nonremovable items were recorded, and an average value was deducted from measured weight. We compared differences in body weights (BWs) between 2 consecutive 12-hour periods with the corresponding fluid balance (FB). In addition, we compared weights obtained with electronic weighing beds with those obtained with a regular calibrated scale on ICU discharge. We obtained data in 103 patients for 414 (75.5%) of 548 of all possible BW measurements. On average, we identified a total of 3.5 kg (SD, 1.4) of nonremovable items on patients' beds. The correlation between 12-hourly changes in BW and FB was weak (r = 0.28; 95% confidence interval [CI], 0.17-0.39), even after correction for insensible fluid losses (r = 0.27; 95% CI, 0.15-0.38) and when only values obtained in intubated patients were taken into account (r = 0.34; 95% CI, 0.16-0.49). Similarly, limits of agreements were wide (95% CI, -3.3 to 3.5 kg). There was also poor agreement between weights obtained on electronic beds and those obtained on the regular scale on ICU discharge (95% CI, -7.6 to 7.6 kg). Body weight measured by electronic weighing beds does not seem sufficiently robust or accurate to replace daily FB in ICU. The clinical value of purchasing such beds remains uncertain. © 2013.

  7. Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995

    SciTech Connect

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.

  8. Matching Multistage Schemes to Viscous Flow

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; VanLeer, Bram; Wood, William A.

    2005-01-01

    Multistage, explicit time stepping can be tailored to accelerate convergence for scalar advection-diffusion problems by using optimized multistage coefficients that vary with the local cell Reynolds number. And, when combined with local preconditioning, variable-coefficient multistage schemes for computational fluid dynamics codes can also provide an order of magnitude faster convergence, relative to standard, fixed-coefficient schemes, for the Navier-Stokes system of equations.

  9. Chemical and textural characteristics of multistage fluid inclusions with high Li/B ratio found from the Sanbagawa belt.

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Hirajima, T.

    2012-04-01

    Recent studies invoked that the variation of peculiar fluid soluble light elements, such as Li, B and Cl, are capable of suggesting generation depths of fluid released in subduction zones (e.g., Scambelluri et al., 2004; Bebout et al., 2007; Marschall et al., 2009). Crush-leached fluids extracted from quartz veins intercalated with metabasites of the Sanbagawa metamorphic belt show high Li and B concentrations, whose Li/B ratios show a positive correlation with metamorphic grade of the host rocks, i.e., from 0.02 for pumpellyite-actinolite facies to 0.27 for eclogite facies (Sengen et al., 2009). Furthermore, crush-leached fluids extracted from quartz veins intercalated with metasediments in proximal to the eclogite unit in the Besshi district show much higher Li/B ratio (ca. 0.36-1.99). Yoshida et al. (2011) pointed out that Li/B ratio of dehydrated fluids was controlled by the rock types of the host rocks, i.e., Li/B ratio of dehydrated fluids derived from tourmaline-free metasediments show much higher values than those expected from metabasites. Those obtained data suggest that the Li/B ratio of the deep fluid has a potential as a depth indicator but there remain many unknown factors for establishing it. The Li/B ratio of extracted fluid obtained by the crush-leached method integrates the whole fluid activities which the host rocks were taken place. To investigate the fluid activity history for the sample showing the highest Li/B ratio (1.99), detailed petrographical and microthemometric studies were performed. The studied sample IR04 is a foliation-parallel quartz vein intercalated with a Grt-Hbl-Ph schist probably derived from clay, whose peak P-T conditions are estimated as 600 °C and 1.3 GPa using pseudosection analysis. The quartz vein shows a foam microstructure, suggesting that low differential stress and high-T conditions were attained during its texture formation. Three types of fluid inclusions have been identified: the earliest one, FIA-I, is

  10. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    USGS Publications Warehouse

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  11. Recent circulating fluid bed (CFB) boiler projects in the U. S. and Europe

    SciTech Connect

    Lund, T.; Anders, R.; Capuano, L.; Fox, S.; Plass, L.

    1983-11-01

    Lurgi Chemie and Huettentechnik has developed the circulating fluid bed process for solid fuel combustion and steam generation. This process has been commercially proven at Luenen, West Germany. Lurgi Chemie is also currently building two additional CFB boilers in Germany which will produce 595,000 pph and 331,000 pph of steam, respectively. In the U.S., Lurgi Corporation and Combustion Engineering have signed an agreement to jointly design, manufacture and sell CFB plants in the U.S. and Canada. The circular fluid bed process itself is a system which can burn a wide variety of inexpensive, low grade solid fules efficiently, economically and in an environmentally acceptable manner. The details of these CFB boilers are examined in this article.

  12. Catalytic converter with fluid injector for catalyst-free enclosure of catalyst bed

    SciTech Connect

    Andrew, S.P.S.

    1984-09-25

    A fluid injection lozenge comprises two tubes supporting a perforate member forming a cage enclosing the space between the tubes. Each tube has a series of perforations along its length so that a fluid can be injected, through the tube, into the enclosed space. The lozenges are of use in catalytic converters of either the axial or radial flow design. In the case of a radial flow converter, a plurality of tubes are provided, preferably connected in pairs by the perforate members, to form a squirrel cage structure, disposed in the catalyst bed.

  13. Critical evaluation and comparison of fluid distribution systems for industrial scale expanded bed adsorption chromatography columns.

    PubMed

    Arpanaei, A; Heebøll-Nielsen, A; Hubbuch, J J; Thomas, O R T; Hobley, T J

    2008-07-11

    The hydrodynamic properties of an expanded bed contactor with 30 cm or 150 cm internal diameter, which employs a rotating or oscillating fluid distributor, were compared to prototype columns of 60 cm or 150 cm diameter employing local stirring (fixed wall nozzles plus central bottom mounted stirrer) for fluid distribution. Fluid introduction through a rotating fluid distributor was found to give superior hydrodynamic characteristics in the 30 cm and 150 cm diameter column compared to using the local stirrer in both the 60 cm and 150 cm diameter columns. The shortcomings of the local stirring distributor at large scale were apparent: dead zones were present which could not be removed by increasing rotation rates or flow rates, and such changes led to a deterioration in hydrodynamic properties. In contrast, during fluid introduction through a rotating distributor no dead zones were observed, and residence time distribution tests showed that plate numbers remained constant or increased slightly as flow rate was raised from 200 cm h(-1) to 470 cm h(-1). Under the conditions studied, oscillation of the rotating fluid distributor led to increased mixing and poorer performance than rotary movement. The results imply that further improvement in distributor design is needed and careful attention should be given to the trade off between turbulence and adequate fluid distribution.

  14. Onset of motion at the surface of a porous granular bed by a shearing fluid flow

    NASA Astrophysics Data System (ADS)

    Hong, Anyu; Tao, Mingjiang; Kudrolli, Arshad

    2014-03-01

    We will discuss an experimental investigation of the onset of particle motion by a fluid flow over an unconsolidated granular bed. This situation arises in a number of natural and industrial processes including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches and flows in slurry pipelines and mixing tanks. The Shields criteria given by the ratio of the viscous shear and normal stresses is used to understand the onset of motion. However, reviews reveals considerable scatter while noting broad trends with Reynolds Number. We discuss an idealized model system where fluid flows with a prescribed flow rate through a horizontal rectangular pipe initially fully filled with granular beads. The granular bed height decreases and reaches a constant height when the shear stress at the boundary decreases below a critical value. We compare and contrast the values obtained assuming no-slip boundary conditions with those observed with PIV using florescent tracer particles to measure the actual fluid flow profile near the porous interface. We will also report the observed variation of the Shields criteria with particle Reynolds Number by varying particle size and fluid flow rates.

  15. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    NASA Astrophysics Data System (ADS)

    Wang, Songjie; Wang, Lu

    2015-04-01

    . Zr-in-rutile thermometry shows their formation temperature to be 586-664 oC at 1.5-2.5 GPa. Barite-bearing MS inclusions with Ba-bearing K-feldspar (type-II) connected by Kfs+Pl+Bt veinlets of in-situ phengite breakdown and thin barite veinlets along grain boundaries (type-III) are products of phengite breakdown and induced fluid flow during exhumation. These barites have witnessed the gradational separation process of melt/ fluid from miscibility on/above the second critical endpoint during UHP metamorphism, to immiscibility along the exhumation path of the subducted slab. Associated reactions from pyrite to hematite and goethite with the type-III barite ring surrounding the pyrite provide evidence for a local high oxygen fugacity environment during eclogite partial melting and subsequent melt/fluid crystallization processes. Moreover, large grain barite aggregations (type-IV) modified by amphibole+albite symplectite are most likely formed by release of molecular and hydroxyl water from anhydrous minerals of eclogite during high-grade amphibolite-facies retrogression. The growth of multi-stage barites in UHP eclogite further advances our understanding of fluid/melt transfer, crystallization processes along the subduction-exhumation path of the partially melted eclogite, broadening our knowledge of melt/fluid evolution within subduction-collision zones worldwide. REFERENCES Chen Y.X., et al., 2014, Lithos, 200, 1-21. Liu J.B., et al., 2000, Acta Petrologica Sinica 16(4), 482-484. Zeng L.S., et al., 2007, Chinese Science Bulletin, 52(21), 2995-3001. Gao X.Y., et al., 2012, Journal of Metamorphic Geology, 30(2), 193-212.

  16. Multi-stage flash degaser

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  17. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    NASA Technical Reports Server (NTRS)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  18. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    NASA Technical Reports Server (NTRS)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  19. Effect of dietary sodium on fluid/electrolyte regulation during bed rest.

    PubMed

    Williams, W Jon; Schneider, Suzanne M; Gretebeck, Randall J; Lane, Helen W; Stuart, Charles A; Whitson, Peggy A

    2003-01-01

    A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  20. CFD study on local fluid-to-wall heat transfer in packed beds and field synergy analysis

    NASA Astrophysics Data System (ADS)

    Peng, Wenping; Xu, Min; Huai, Xiulan; Liu, Zhigang

    2016-04-01

    To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio ( D/d p<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid- to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics (CFD) at different Reynolds number for D/d p=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.

  1. Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating.

    PubMed

    Dong, Fuxia; Xie, Yunchang; Qi, Jianping; Hu, Fuqiang; Lu, Yi; Li, Sanming; Wu, Wei

    2013-01-01

    Bile salt/phospholipid mixed micelles (MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing bile salt/phospholipid MM precursor (preMM) pellets with high oral bioavailability, using fluid-bed coating technology, was examined. In this study, fenofibrate (FB) and sodium deoxycholate (SDC) were used as the model drug and the bile salt, respectively. To prepare the MMs and to serve as the micellular carrier, a weight ratio of 4:6 was selected for the sodium deoxycholate/phospholipids based on the ternary phase diagram. Polyethylene glycol (PEG) 6000 was selected as the dispersion matrix for precipitation of the MMs onto pellets, since it can enhance the solubilizing ability of the MMs. Coating of the MMs onto the pellets using the fluid-bed coating technology was efficient and the pellets were spherical and intact. MMs could be easily reconstituted from preMM pellets in water. Although they existed in a crystalline state in the preMM pellets, FB could be encapsulated into the reconstituted MMs, and the MMs were redispersed better than solid dispersion pellets (FB:PEG = 1:3) and Lipanthyl®. The redispersibility of the preMM pellets increased with the increase of the FB/PEG/micellar carrier. PreMM pellets with a FB:PEG:micellar carrier ratio of 1:1.5:1.5 showed 284% and 145% bioavailability relative to Lipanthyl® and solid dispersion pellets (FB:PEG = 1:3), respectively. Fluid-bed coating technology has considerable potential for use in preparing sodium deoxycholate/phospholipid preMM pellets, with enhanced oral bioavailability for poorly water-soluble drugs.

  2. Study of ebullated bed fluid dynamics. Final progress report, September 1980-July 1983

    SciTech Connect

    Schaefer, R.J.; Rundell, D.N.; Shou, J.K.

    1983-07-01

    The fluid dynamics occurring in HRI's H-coal process development unit coal liquefaction reactor during Run PDU-10 were measured and compared with Amoco Oil cold-flow fluidization results. It was found that catalyst bed expansions and gas holdups are higher in the PDU than those observed in the cold-flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold-flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. It also appears that the gas bubbles in these PDU tests are rising quite slowly. Only two of the operating points in our test program on the PDU were found to lie in the churn turbulent regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold-flow experiments. Two- and three-phase fluidization experiments were carried out in Amoco's cold-flow fluid dynamics unit. The data base now includes fluidization results for coal char/kerosene slurry concentrations of 4.0, 9.8, and 20.7 vol% in addition to the 15.5 and 17.8 vol% data from our earlier work. Both HDS-2A and Amocat-1A catalysts were used in the tests. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. Bed contractions have been observed in some cases at sufficiently high gas velocity. Gas and liquid holdups were found to be uniform across the cross-section of the Amoco cold-flow fluid dynamics pilot plant. A viscometer was adapted for measurement of the viscosity of coal slurries at high temperature and pressure. Based on experiments carried out in the Amoco cold-flow unit, a significant degree of backmixing was found to occur in the H-Coal system. 70 references, 93 figures, 32 tables.

  3. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    SciTech Connect

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  4. Test plan for valveless ash removal from pressurized fluid bed combustion systems

    SciTech Connect

    Hauserman, W.B.

    1989-07-01

    This is a test plan to demonstrate a method of ash removal from pressurized fluid bed combustion (PFBC) systems through small beds of crushed rock rather than conventional pressure let-down valves and lock hoppers. The economic advantage of such a method is that process-inherent erosive damage will be inflicted upon the cheaply replaceable crushed rock, rather than upon expensive, fabricated valve trim components. The concept to be tested is an extension of the gravel bucket'' principle in which an erosive, high pressure slurry stream passes through a bed of crushed rock with an adjustable flow path and cross-section. The original gravel bucket concept was inspired by the costly valve erosion problems projected for coal liquefaction plants. This project extends the same approach to systems where solids are to be removed from PFBC systems, with more limited possibilities of application to some coal gasification processes. If proven successful, a hot-gas gravel bucket could offer an economic alternative to a lock hopper plus a pair of expensive block valves. 6 refs., 10 figs., 1 tab.

  5. Fluid bed drying of guarana (Paullinia cupana HBK) extract: effect of process factors on caffeine content.

    PubMed

    Pagliarussi, Renata S; Bastos, Jairo K; Freitas, Luis A P

    2006-06-16

    The aim of this study was to study the convective drying of the hydroalcoholic extracts obtained from powdered guarana seeds in a spouted bed dryer. The influence of process variables, such as the convective airflow rate, extract feed rate, and air inlet temperature, on the quality of the dry extract was determined using the caffeine and moisture content for the process evaluation. The caffeine content in the alcoholic and dried extracts was determined by capillary gas chromatography. The experiments were performed following a 3(3) factorial design and the data analyzed by response surface. The analysis of dry extract showed that the air and extract feed rates did not significantly affect (25% level) the caffeine content, but that drying temperature is a major factor to consider when the extract is submitted to fluid bed drying. Caffeine losses were significant (1% level) for drying temperatures above 120 degrees C, while moisture content was lower than 3% for temperatures above 120 degrees C. The data showed that there is an optimum temperature for the drying of guarana extracts in spouted beds, and under the conditions used in this study it was 120 degrees C.

  6. Effects of Daily Centrifugation on Segmental Fluid Distribution in Bed-rested Subjects

    NASA Technical Reports Server (NTRS)

    Diedrich, Andre; Moore, S. T.; Stenger, M.; Arya, T. M.; Newby, N.; Tucker, J. M.; Milstead, L.; Acock, K.; Knapp, C.; Jevans, J.; hide

    2007-01-01

    The effect of daily centrifugation on segmental fluid distribution have been studied during 21 days of 6 degree head down bedrest. One group (N=7) underwent no countermeasure while the other (N=8) received a daily, one hour, dose (2.5 gz at the foot, decreasing to 1.0 gz at the heart) of artificial gravity (AG) training on the Johnson Space Center short radius centrifuge. Fluid shifts of thoracic(VTO), abdominal (VAB), thigh (VTH), and calf (VCA) regions were measured by the tetrapolar segmental body impedance technique. Untrained subjects reduced their total volume from 18.9 plus or minus 0.5L to 17.9 plus or minus 0.9L (MN plus or minus SE, P less than 0.05) while trained subjects maintained their total volume. In untrained, control, subjects after bed rest, there was a trend toward reduced volume in all segments, with significant reductions in thigh and calf (fig, P less than 0.05). Trained subjects maintained volume in all segments. Our data indicate that artificial gravity treatment counteracts bed rest-induced hypovolemia.

  7. Development and optimization of a solid dispersion hot-melt fluid bed coating method.

    PubMed

    Kennedy, J P; Niebergall, P J

    1996-04-01

    A new hot-melt fluid bed coating process has been developed, characterized, and optimized. Polyethylene glycol served as the model coating agent and was charged with substrate into the fluid bed chamber in the solid state. The processing stages included: (A) warm-up, (B) preheating, (C) melting-spreading, and (D) cooling-congealing. A central composite design was utilized to characterize and optimize the process. Substrate porosity and density evaluations were conducted by mercury intrusion. The method proved capable of coating nonpareils from 10 to 35 mesh (0.500 to 2.00 mm) and tablets up to 1 g. The nonpareils were coated as individual particles, while particle sizes significantly smaller than 40 mesh (0.420 mm) tended to agglomerate. The porosity and density values of dissimilar nonpareil batches showed a large degree of variation, affecting the method's reproducibility. Additive coatings were achieved by sequential runs using coating agents of diminishing melting points. The method is a viable alternative to hot-melt spray-coating processes. Organic solvents, spraying equipment, steam jackets, and/or heating tape are eliminated from the process.

  8. Optimization of fluid bed formulations of metoprolol granules and tablets using an experimental design.

    PubMed

    Tomuţă, I; Alecu, C; Rus, L L; Leuçuta, S E

    2009-09-01

    The granulation process of a metoprolol tartrate (very difficult to process active pharmaceutical ingredient) formulation in laboratory scale fluid bed equipment was studied. To study the influence of two formulation factors and three process parameters on the characteristics of the granules and subsequently of the tablets, in the case of fluid bed granulating of a powder mix containing metoprolol tartrate. In order to study the influence of formulation factors (binder solution concentration and the silicon dioxide ratio) and process factors (atomizing pressure, the length of the final drying phase, and the inlet air temperature) on the technological and pharmaceutical properties of granules and tablets, a fractional factorial experimental design resolution V+ with five factors and two levels was used. A high atomizing pressure allows us to obtain fine granules with large poly-dispersion index and granules with high tapped and untapped density, tablets with short disintegration time, short mean dissolution time, and a high percentage metoprolol tartrate release in the first 15 minutes. A lower concentration of binder solution allows us to obtain granules with very good flow properties, tablets which have no tendency to stick on the set punch of tabletting machine and no capping. The final drying time of granules has an influence only on the granule's relative humidity and tapped and untapped density, without any influence on the granules flow properties. The practical experimental results from the formulation processed in optimal working conditions were close to the predicted ones by Modde 6.0 software.

  9. Rapid formulation screening with a Multipart Microscale Fluid bed Powder processor.

    PubMed

    Kivikero, Niina; Murtomaa, Matti; Antikainen, Osmo; Hatara, Juha; Juppo, Anne-Mari; Sandler, Niklas

    2011-08-01

    The aim of this study was to investigate early formulation screening in small scale with a miniaturized fluid bed device. Altogether eight different batches were granulated in a Multipart Microscale Fluid bed Powder processor (MMFP) with constant process conditions using electrostatic atomization. Atomization voltage and granulation liquid flow rate were kept constant. Acid acetylsalicylic was used as model active pharmaceutical ingredient (API), lactose monohydrate, microcrystalline cellulose and polyvinylpyrrolidone were used as excipients. Granule size distributions were measured with spatial filtering technique. Friability test was performed by spinning granules in the mixer with glass beads. Compressibility of the granules was evaluated by tableting and the breaking force of the tablets was measured. Multivariate analysis, namely partial least squares regression and multilinear regression were applied to the data. It was possible to generate granules of different compositions rapidly employing MMFP with electrostatic atomization fast and acquire reliable and logical results with only small amount of material. However, a major challenge was to find suitable analytical methods for such small batches.

  10. [Study on preparation of Qixian decoction pellets in tangential spray fluid bed].

    PubMed

    Luo, Xiaojian; Zhang, Guosong; Huang, Fengrong; Rao, Xiaoyong; He, Yan; Hu, Pengyi

    2009-03-01

    To prepare Qixian decoction pellets. The formulation and technological factors influencing the preparation of Qixian decoction were investigated in tangential spray fluid bed choosing the yield of pellets, particle diameter distribution, repose angle, bulk density as inspecting indexes. the technological parameters for the preparation of blank pellets were as follows: the ratio of starch and dextrin was 2:1, the adhesive agent was 70% syrup, the rotating speed was 200 r x min(-1), the air blow flow was 15 x 20 L x min(-1), the rate of air flow was 15 L x min(-1), the spay air pressure was 0.15 MPa, and the rotating rate of spray solution pump was 20-50 r x min(-1); The optimized technological parameters for the preparation of Qixian decoction were as follows: the relative density of the extract was 1.12-1.15 g x min(-1), the diluent was MCC and its quantity was 8%, the rotating rate of spray solution pump was 10-12 mL x min(-1), the frequency of the rotor disc was 18-20 Hz, the atomizing pressure was 0.2 MPa, the frequency of the fan was 22 Hz, and the spheronisation and drying time was 30 mins. the appearance of the Qixian decoction pellets prepared in tangential spray fluid bed are smoothing and round, the yield of pellets are high, and pellets of the particle size between 500-700 microm is 90.6%.

  11. Effects of process parameters on solid self-microemulsifying particles in a laboratory scale fluid bed.

    PubMed

    Mukherjee, Tusharmouli; Plakogiannis, Fotios M

    2012-01-01

    The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.

  12. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  13. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  14. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  15. Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture

    PubMed Central

    Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172

  16. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.

    PubMed

    Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions.

  17. Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Jeffrey, Robert G.

    2012-12-01

    In bedded sedimentary rocks, the energy for spontaneous growth of multiple vertical fractures from a bedding plane may be provided by an overpressurized sublayer fracture that connects a fluid source to the bedding plane. In this paper, using our coupled deformation and flow model, we study the processes and mechanisms involved in the formation and interaction of closely space fractures from preexisting flaws or starter fractures located along the bedding plane. Fracture growth from multiple flaws can be convergent, parallel or divergent, depending on the factors like contrasts in moduli and far-field stresses, flaw sizes and locations, and initial bed conductivity, fluid viscosity, and injection rate, as well as time. The results presented here have been obtained for conditions where fluid viscous dissipation is dominant, in contrast to other results available in literature based on uniform pressure assumption equivalent to use of an inviscid fluid. It is demonstrated that the earlier a hydraulic fracture starts to extend, the more likely it is to become the primary fracture in a system of closely spaced fractures. The fracture closest to the fluid source typically grows faster as a result of a higher pressure level because viscous dissipation results in a decrease in pressure with distance from the fluid source. But its development does not completely inhibit the growth of other hydraulic fractures. Simultaneous growth of closely spaced fractures is supported by the local stress and energetic analyses, and the fracture distance can be very small. Their length to spacing ratio is accordingly much larger than that predicted previously. Under certain circumstances, a longer and more permeable fracture may grow to a greater extent than a shorter fracture closer to the fluid source, which may grow toward and merge with the longer fracture to create fracture clusters adjacent to a bedding plane.

  18. Body fluid alterations during head-down bed rest in men at moderate altitude

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Luft, F. C.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on fluid balance responses to simulated zero-gravity, measurements were made in six subjects before and during -5 deg continuous head-down bed rest (HDBR) over 8 d at 10,678 ft. The same subjects were studied again at this altitude without HDBR as a control (CON) using a cross-over design. During this time, they maintained normal upright day-time activities, sleeping in the horizontal position at night. Fluid balance changes during HDBR in hypoxia were more pronounced than similar measurements previously reported from HDBR studies at sea level. Plasma volume loss was slightly greater and the diuresis and natriuresis were doubled in magnitude as compared to previous studies in normoxia and sustained for 4 d during hypoxia. These changes were associated with an immediate but transient rise in plasma atrial natriuretic peptide (ANP) to day 4 of 140 percent in HDBR and 41 percent in CON (p less than 0.005), followed by a decline towards baseline. Differences were less striking between HDBR and CON for plasma antidiuretic hormone and aldosterone, which were transiently reduced by HDBR. Plasma catecholamines showed a similar pattern to ANP in both HDBR and CON, suggesting that elevated ANP and catecholamines together accounted for the enhanced fluid shifts with HDBR during hypoxia.

  19. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish; Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  20. Development of controlled release captopril granules coated with ethylcellulose and methylcellulose by fluid bed dryer.

    PubMed

    Stulzer, Hellen Karine; Silva, Marcos Antonio Segatto; Fernandes, Daniel; Assreuy, Jamil

    2008-01-01

    Captopril granules of controlled release with different polymers as ethylcellulose, ethyl/methylcellulose, and immediate release with polyvinylpyrrolidone (PVP) were developed by fluid bed dryer technique. The formulations were analyzed by scanning electron microscopy, X-ray powder diffraction, and dissolution profiles. To compare the formulations an in vivo setting rat blood pressure assay was performed, using angiotensin I as a vasoconstrictor agent. The scanning electron microscopy of granules showed differences in morphology, and X-ray powder diffraction technique presented some modification in crystalline structure of captopril in granules coated with PVP and ethyl/methylcellulose. The dissolution profile of granules coated with ethylcellulose showed a median time release of 4 hr whereas for granules coated with ethyl/methylcellulose, this time was 3.5 hr. The blockage of angiotensin I-induced hypertensive effect lasted 8 hr in granules coated with PVP and of more than 12 hr in the granules coated with ethylcellulose and ethyl/methylcellulose.

  1. High temperature fluid-bed heat recovery for aluminum melting furnace

    SciTech Connect

    1982-12-01

    The objective of the study was to establish whether technical problems would be encountered in increasing the inlet temperature of the fluid bed heat exchanger unit at Alcoa above the 1100/sup 0/F target of the current contract. Specifically, the temperature range of up to, and potentially above, 1600/sup 0/F were investigated to establish the benefits of higher temperature, trade offs required, and plans to achieve that technology goal. The benefits are tabulated and are very significant, particularly at the temperature range of 1600 to 1800/sup 0/F. Relative to 1100/sup 0/F the heat recovery is increased by 24 to 29% at 1600 and 1800/sup 0/F respectively.

  2. Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres

    NASA Astrophysics Data System (ADS)

    Huang, Alice Y. L.; Huang, Michelle Y. F.; Capart, Hervé; Chen, Rong-Her

    2008-08-01

    Imaging methods are proposed for the characterisation of liquid flows through transparent porous media of matched refractive index. The methods are based on the analysis of laser-illuminated slices, and specialized for the case in which the porous medium is composed of irregularly packed spheres. They include algorithms for the reconstruction of the three-dimensional (3D) sphere arrangement based on a laser scan of the packed bed, particle tracking velocimetry applied to the motions of micro-tracers in a laser-illuminated plane, and techniques for the co-registration of geometry and velocity measurements acquired from different slices. The methods are applied to a cylindrical flow cell filled with mono-sized spheres and operated at Reynolds number Re = 28. The data produced include the full 3D geometry of the packed spheres assembly, the 2D fluid velocity field in the axial centre-plane of the flow cell, and the corresponding porosity and velocity distributions.

  3. The characterization of fluidization behavior using a novel multichamber microscale fluid bed.

    PubMed

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka; Yliruusi, Jouko

    2004-03-01

    In the preformulation stage, there is a special need to determine the process behavior of materials with smaller amounts of samples. The purpose of this study was to assemble a novel automated multichamber microscale fluid bed module with a process air control unit for the characterization of fluidization behavior in variable conditions. The results were evaluated on the basis of two common computational methods, the minimum fluidization velocity, and the Geldart classification. The materials studied were different particle sizes of glass beads, microcrystalline cellulose, and silicified microcrystalline cellulose. During processing, the different characteristic fluidization phases (e.g., plugging, bubbling, slugging, and turbulent fluidization) of the materials were observed by the pressure difference over the bed. When the moisture content of the process air was increased, the amount of free charge carriers increased and the fine glass beads fluidized on the limited range of velocity. The silicification was demonstrated to improve the fluidization behavior with two different particle sizes of cellulose powders. Due to the interparticle (e.g., electrostatic) forces of the fine solids, the utilization of the computational predictions was restricted. The presented setup is a novel approach for studying process behavior with only a few grams of materials.

  4. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    PubMed

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Computational fluid dynamics simulation of laboratory scale reactor of fast pyrolysis fluidised bed

    NASA Astrophysics Data System (ADS)

    Amirmostafa Jourabchi, Seyed; Kiat Ng, Hoon; Gan, Suyin; Tan, Zhong Jian

    2017-04-01

    Euler-Eulerian two-fluid model (EE-TFM), among the computational fluid dynamics (CFD) techniques and module available on the market, have been chosen to study and obtain the operational parameters required for the fluidisation of different materials and different particle diameters of the fluidised bed model. In the present work, the effect of the material, namely stainless steel and sand with the respective diameters of 0.5 and 1 mm have been investigated with the aid of ANSYS FLUENT 15. From the simulation, it has found that the minimum required superficial velocity of the driving gas for fluidisation of steel beads are 70 cm/s and 140 cm/s respectively for diameter of 0.5 and 1.0 mm. On the other hand, the minimum required superficial velocities to fluidise the less dense sand beads are 30 cm/s and 70 cm/s for particle diameter of 0.5 and 1.0 mm respectively. The results show that the minimum fluidisation velocity increases as the density of the particle material increases; while it also increases, when the particle diameter increases. It is concluded that the drag force required to fluidise the specific solid bead material is proportional to both the density and the diameter of the particle chosen.

  6. Film Coating of Nifedipine Extended Release Pellets in a Fluid Bed Coater with a Wurster Insert

    PubMed Central

    de Souza, Luciane Franquelin Gomes; Nitz, Marcello; Taranto, Osvaldir Pereira

    2014-01-01

    The objective of this work was to study the coating process of nifedipine extended release pellets using Opadry and Opadry II, in a fluid bed coater with a Wurster insert. The coating process was studied using a complete experimental design of two factors at two levels for each polymer. The variables studied were the inlet air temperature and the coating suspension flow rate. The agglomerate fraction and coating efficiency were the analyzed response variables. The air temperature was the variable that most influenced the coating efficiency for both polymers. In addition, a study of the dissolution profiles of coated and uncoated pellets using 0.5% sodium lauryl sulfate in simulated gastric fluid without enzymes (pH 1.2) was conducted. The results showed a prolonged release profile for the coated and uncoated pellets that was very similar to the standards established by the U.S. Pharmacopoeia. The drug content and the release profiles were not significantly affected by storage at 40°C and 75% relative humidity. However, when exposed to direct sunlight and fluorescent light (light from fluorescent bulbs), the coated pellets lost only 5% of the drug content, while the uncoated ones lost more than 35%; furthermore, the dissolution profile of the uncoated pellets was faster. PMID:24772426

  7. The origin of fluids in the salt beds of the Delaware Basin, New Mexico and Texas

    USGS Publications Warehouse

    O'Neil, J.R.; Johnson, C.M.; White, L.D.; Roedder, E.

    1986-01-01

    Oxygen and hydrogen isotope analyses have been made of (1) brines from several wells in the salt deposits of the Delaware Basin, (2) inclusion fluids in halite crystals from the ERDA No. 9 site, and (3) local ground waters of meteoric origin. The isotopic compositions indicate that the brines are genetically related and that they probably originated from the evaporation of paleo-ocean waters. Although highly variable in solute contents, the brines have rather uniform isotopic compositions. The stable isotope compositions of brine from the ERDA No. 6 site (826.3 m depth) and fluid inclusions from the ERDA No. 9 site are variable but remarkably regular and show that (1) mixing with old or modern meteoric waters has occurred, the extent of mixing apparently decreasing with depth, and (2) water in the ERDA No. 6 brine may have originated from the dehydration of gypsum. Alternatively, the data may reflect simple evaporation of meteoric water on a previously dry marine flat. Stable isotope compositions of all the waters analyzed indicate that there has been fairly extensive mixing with ground water throughout the area, but that no significant circulation has occurred. The conclusions bear importantly on the suitability of these salt beds and others as repositories for nuclear waste. ?? 1986.

  8. Preliminary evaluation of coal-fired fluid bed combustion-augmented compressed air energy storage power plants

    NASA Astrophysics Data System (ADS)

    Lessard, R. D.; Giramonti, A. J.; Merrick, D.

    1980-03-01

    This paper presents highlights of an ongoing study program to assess the technical and economic feasibility of advanced concepts for generating peak-load electric power from a compressed air energy storage (CAES) power plant incorporating a coal-fired fluid bed combustor (FBC). It reviews the analyses performed to select an FBC/CAES power plant system configuration for the subsequent conceptual design phase of the study. Included in this review are: the design and operating considerations involved with integrating either an atmospheric or a pressurized fluid bed combustor with a CAES system to yield practical system configurations; the integration of system configurations; the parametric performance of these system configurations; and the preliminary screening which considered performance, cost, and technical risk and led to the identification of an open-bed PFBC/CAES system as having the greatest near-term commercialization potential.

  9. Application of in-line near infrared spectroscopy and multivariate batch modeling for process monitoring in fluid bed granulation.

    PubMed

    Kona, Ravikanth; Qu, Haibin; Mattes, Robert; Jancsik, Bela; Fahmy, Raafat M; Hoag, Stephen W

    2013-08-16

    Fluid bed is an important unit operation in pharmaceutical industry for granulation and drying. To improve our understanding of fluid bed granulation, in-line near infrared spectroscopy (NIRS) and novel environmental temperature and RH data logger called a PyroButton(®) were used in conjunction with partial least square (PLS) and principal component analysis (PCA) to develop multivariate statistical process control charts (MSPC). These control charts were constructed using real-time moisture, temperature and humidity data obtained from batch experiments. To demonstrate their application, statistical control charts such as Scores, Distance to model (DModX), and Hotelling's T(2) were used to monitor the batch evolution process during the granulation and subsequent drying phase; moisture levels were predicted using a validated PLS model. Two data loggers were placed one near the bottom of the granulator bowl plenum where air enters the granulator and another inside the granulator in contact with the product in the fluid bed helped to monitor the humidity and temperature levels during the granulation and drying phase. The control charts were used for real time fault analysis, and were tested on normal batches and on three batches which deviated from normal processing conditions. This study demonstrated the use of NIRS and the use of humidity and temperature data loggers in conjunction with multivariate batch modeling as an effective tool in process understanding and fault determining method to effective process control in fluid bed granulation.

  10. Preparative chromatography with supercritical fluids. Comparison of simulated moving bed and batch processes.

    PubMed

    Peper, Stephanie; Johannsen, Monika; Brunner, Gerd

    2007-12-28

    Preparative chromatography is a key technology for the separation of fine chemicals in production scale. Most of the published studies are carried out using liquid solvents as mobile phase. However, the used organic solvents can often be replaced by supercritical fluids. A reduction or renouncement of organic solvents does not only correspond to the trend of the so-called green chemistry--a sustainable, environmentally friendly production of chemical products. But a changeover to chromatography with supercritical fluids can also be reasonable under economic criteria. In this contribution a comparison between the Batch-supercritical fluid chromatography (Batch-SFC) process and the simulated moving bed (SMB)-SFC process is presented. Because of the minor importance of solvent consumption and solvent recovery in SFC, the separation systems were optimized primarily in terms of their specific productivity. For three of the four investigated model systems, the specific productivity of the SMB process is significantly higher than the productivity of the Batch process. Due to the fact, that the process with the higher specific productivity is not inevitably the more economical process, supplementary the costs of the process were considered. Therefore the comparison of the two processes was done from an economic point of view considering the minimum product price that has to be realized to fulfill the defined economic aim. It was found that although the optimized specific productivities of the SMB process were significantly higher than the productivities of the Batch process, the Batch process is the more profitable process for the investigated production rate range between 0.4 and 5t/a.

  11. Optimization and scale-up of oligonucleotide synthesis in packed bed reactors using computational fluid dynamics modeling.

    PubMed

    Wolfrum, Christian; Josten, Andre; Götz, Peter

    2014-01-01

    A computational fluid dynamics (CFD) model for the analysis of oligonucleotide synthesis in packed bed reactors was developed and used to optimize the scale up of the process. The model includes reaction kinetics data obtained under well defined conditions comparable to the situation in the packed bed. The model was validated in terms of flow conditions and reaction kinetics by comparison with experimental data. Experimental validation and the following model parameter studies by simulation were performed on the basis of a column with 0.3 g oligonucleotide capacity. The scale-up studies based on CFD modelling were calculated on a 440 g scale (oligonucleotide capacity).

  12. Longitudinal Multistage Testing

    ERIC Educational Resources Information Center

    Pohl, Steffi

    2013-01-01

    This article introduces longitudinal multistage testing (lMST), a special form of multistage testing (MST), as a method for adaptive testing in longitudinal large-scale studies. In lMST designs, test forms of different difficulty levels are used, whereas the values on a pretest determine the routing to these test forms. Since lMST allows for…

  13. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  14. Taste masking of naproxen sodium granules by fluid-bed coating.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2014-03-01

    The taste of oral dosage forms is an important argument regarding patient's compliance and acceptability. For this reason, it is often necessary to mask an undesirable and unpleasant taste of an active pharmaceutical ingredient. The purpose of this study was to mask the taste of naproxen sodium by a new fluid-bed coating approach. Different compositions of coating suspensions were used to coat naproxen sodium granules. It was found that products with the addition of a plasticizer were not stable at 40 °C and tended to agglomerate. Subsequently, formulations without plasticizer were used and the ratio between water and Eudragit® E was varied. Increasing the fraction of water in the suspension from 3% to 14% reduced the effective release of naproxen sodium. An optimum ratio between naproxen sodium granules and Eudragit® E was found to be 1:1.576, where less naproxen sodium was released than the threshold bitter value and an appropriate taste masking for more than 5 min was guaranteed. Investigation of the particle size distribution revealed a d(10) of 138.35 ± 21.52 µm, a d(50 )= 256.40 ± 11.27 µm and a d(90 )= 500.85 ± 69.08 µm, which guarantees an acceptable mouthfeel for patients.

  15. Bench-scale studies on fluid-bed pyrolysis of wood

    SciTech Connect

    Mudge, L.K.; Brown, M.D.; Wilcox, W.A.

    1988-08-01

    The primary objective of this study was to determine the effects of different contact gases and experimental conditions on product yields from fluid-bed wood pyrolysis. The yield of condensible hydrocarbons was of particular interest. The contact gases employed included carbon dioxide (CO/sub 2/), methane (CH/sub 4/), and hydrogen (H/sub 2/). Reaction temperatures ranged from 650/degree/C to 800/degree/C, and gas contact time was between 1 and 2 s. Tests with CO/sub 2/ contact gas used a secondary vessel of catalyst for cracking of condensibles generated in the primary gasifier. Results of earlier studies at PNL showed the effectiveness of various catalysts for destruction of condensible hydrocarbons. Analyses of results on the effects of contact gas, reaction temperature, gas contact time, and wood feed rate are presented in this report, along with a description of experimental equipment and methods. Data were obtained from single tests at each set of experimental conditions. Conditions were not repeated to determine the amount of experimental error. Material balance closures were generally quite good for the experimental tests, within 10%. 9 refs., 15 figs., 16 tabs.

  16. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.

    PubMed

    Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens

    2012-06-01

    The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Optimization and scale-up of a fluid bed tangential spray rotogranulation process.

    PubMed

    Bouffard, J; Dumont, H; Bertrand, F; Legros, R

    2007-04-20

    The production of pellets in the pharmaceutical industry generally involves multi-step processing: (1) mixing, (2) wet granulation, (3) spheronization and (4) drying. While extrusion-spheronization processes have been popular because of their simplicity, fluid-bed rotogranulation (FBRG) is now being considered as an alternative, since it offers the advantages of combining the different steps into one processing unit, thus reducing processing time and material handling. This work aimed at the development of a FBRG process for the production of pellets in a 4.5-l Glatt GCPG1 tangential spray rotoprocessor and its optimization using factorial design. The factors considered were: (1) rotor disc velocity, (2) gap air pressure, (3) air flow rate, (4) binder spray rate and (5) atomization pressure. The pellets were characterized for their physical properties by measuring size distribution, roundness and flow properties. The results indicated that: pellet mean particle size is negatively affected by air flow rate and rotor plate speed, while binder spray rate has a positive effect on size; pellet flow properties are enhanced by operating with increased air flow rate and worsened with increased binder spray rate. Multiple regression analysis enabled the identification of an optimal operating window for production of acceptable pellets. Scale-up of these operating conditions was tested in a 30-l Glatt GPCG15 FBRG.

  18. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    PubMed Central

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana

    2012-01-01

    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295

  19. Cardiovascular and Body Fluid Adjustments During Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Although a few scientific bed rest (BR) studies were conducted soon after World War II, advent of the space program provided impetus for utilizing prolonged (days-months) BR, which employed the horizontal or 6 degree head-down tilt (HDT) body positions, to simulate responses of healthy people to microgravity. Shorter (hours) HDT protocols were used to study initial mechanisms of the acclimation-deconditioning (reduction of physical fitness) syndromes. Of the major physiological factors modified during BR, reduced force on bones, ligaments, and muscles, and greatly reduced hydrostatic pressure within the cardiovascular system, the latter: which involves shifts of blood from the lower extremities into the upper body, increase in central venous pressure, and diuresis, appears to be the initial stimulus for acclimation. Increase in central venous pressure occurs in subjects during weightless parabolic flight, but not in astronauts early during orbital flight. But significant reduction in total body water (hypohydration) and plasma volume (hypovolemia) occurs in subjects during both BR and microgravity. Response of interstitial fluid volume is not as clear, It has been reported to increase during BR, and it may have increased in Skylab II and IV astronauts. Reduction of total body water, and greater proportional reduction of extracellular volume, indicates increased cellular volume which may contribute to inflight cephalic edema. Cerebral pressure abates after a few days of HDT, but not during flight. accompanied by normal (eugravity) blood constituent concentrations suggesting some degree of acclimation had occurred. But during reentry, with moderately increased +Gz (head-to-foot) acceleration and gravitational force, the microgravity "euhydration" becomes functional progressive dehydration contributing to the general reentry syndrome (GRS) which, upon landing the Shuttle, can and often results in gastrointestinal distress, disorientation, vertigo, fatigue, and

  20. Cardiovascular and Body Fluid Adjustments During Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Although a few scientific bed rest (BR) studies were conducted soon after World War II, advent of the space program provided impetus for utilizing prolonged (days-months) BR, which employed the horizontal or 6 degree head-down tilt (HDT) body positions, to simulate responses of healthy people to microgravity. Shorter (hours) HDT protocols were used to study initial mechanisms of the acclimation-deconditioning (reduction of physical fitness) syndromes. Of the major physiological factors modified during BR, reduced force on bones, ligaments, and muscles, and greatly reduced hydrostatic pressure within the cardiovascular system, the latter: which involves shifts of blood from the lower extremities into the upper body, increase in central venous pressure, and diuresis, appears to be the initial stimulus for acclimation. Increase in central venous pressure occurs in subjects during weightless parabolic flight, but not in astronauts early during orbital flight. But significant reduction in total body water (hypohydration) and plasma volume (hypovolemia) occurs in subjects during both BR and microgravity. Response of interstitial fluid volume is not as clear, It has been reported to increase during BR, and it may have increased in Skylab II and IV astronauts. Reduction of total body water, and greater proportional reduction of extracellular volume, indicates increased cellular volume which may contribute to inflight cephalic edema. Cerebral pressure abates after a few days of HDT, but not during flight. accompanied by normal (eugravity) blood constituent concentrations suggesting some degree of acclimation had occurred. But during reentry, with moderately increased +Gz (head-to-foot) acceleration and gravitational force, the microgravity "euhydration" becomes functional progressive dehydration contributing to the general reentry syndrome (GRS) which, upon landing the Shuttle, can and often results in gastrointestinal distress, disorientation, vertigo, fatigue, and

  1. Methylsilane derived silicon carbide particle coatings produced by fluid-bed chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Miller, James Henry

    This report describes the research effort that was undertaken to develop and understand processing techniques for the deposition of both low and high density SiC coatings from a non-halide precursor, in support of the Generation IV Gas-Cooled Fast Reactor (GFR) fuel development program. The research was conducted in two phases. In the first phase, the feasibility of producing both porous SiC coatings and dense SiC coatings on surrogate fuel particles by fluidized bed chemical vapor deposition (FBCVD) using gas mixtures of methylsilane and argon was demonstrated. In the second phase, a combined experimental and modeling effort was carried out in order to gain an understanding of the deposition mechanisms that result in either porous or dense SiC coatings, depending on the coating conditions. For this second phase effort, a simplified (compared to the fluid bed) single-substrate chemical vapor deposition (CVD) system was employed. Based on the experimental and modeling results, the deposition of SiC from methylsilane is controlled by the extent of gas-phase reaction, and is therefore highly sensitive to temperature. The results show that all SiC coatings are due to the surface adsorption of species that result from gas-phase reactions. The model terms these gas-borne species embryos, and while the model does not include a prediction of coating morphology, a comparison of the model and experimental results indicates that the morphology of the coatings is controlled by the nucleation and growth of the embryos. The coating that results from small embryos (embryos with only two Si-C pairs) appears relatively dense and continuous, while the coating that results from larger embryos becomes less continuous and more nodular as embryo size increases. At some point in the growth of embryos they cease to behave as molecular species and instead behave as particles that grow by either agglomeration or by incorporation of molecular species on their surface. As these particles

  2. A new fluid-bed hydrodealkylation process of heavy aromatic oils against high content of coke deposit

    SciTech Connect

    Tsutsui, T.; Kubota, O.; Tashiro, M.; Ikeda, Y.

    1995-12-31

    Recently, the significance of chemical grade naphthalene and {beta}-methylnaphthalene as base materials for synthesis has been increasing, and it seems important to establish a rational process to dealkylate heavy aromatic oils. In this presentation, a new hydrodealkylation process with a fluid-bed reactor and its reaction performance in dealkylation of LCO are described. With this process, even an heavy aromatic oil containing substantial amount of poly-cyclic aromatics, polyalkylated aromatics and impurities such as sulfur and nitrogen compounds can be directly processed, and dealkylation with sufficient desulfurization and denitrogenation proceeds stably by a selected catalyst in the presence of coke deposited on it. This process and its concept are also applicable to dealkylation of heavy polyalkyl benzen, coal tar, or other heavy aromatic oils. The fluid-bed reaction analysis for a consecutive dealkylation reaction and the catalyst reactivity under coke deposition are described and discussed.

  3. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  4. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter)

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-10-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300[degree]F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  5. Study of ebullated bed fluid dynamics for H-Coal. Quarterly progress report No. 1, July 1-September 30, 1980

    SciTech Connect

    Schaefer, R. J.; Rundell, D. N.

    1980-12-01

    Cold flow experiments were completed with kerosene, nitrogen, and HDS-2A (3/16'' length) catalyst. Percent bed expansion, gas/liquid/catalyst holdups, and drift fluxes were determined for each test. Fluid dynamics data were obtained at HRI during Run PDU-10 (Wyodak coal and Amocat-1A catalyst). Reactor liquid samples were taken for later viscosity determination. A 6'' diameter test stand for bubble coalescence experiments was constructed and delivered to Northwestern University. A search was initiated to select suitable model fluids.

  6. Formulation and stability evaluation of ketoprofen sustained-release tablets prepared by fluid bed granulation with Carbopol 971P solution.

    PubMed

    Vaithiyalingam, S R; Tuliani, P; Wilber, W; Reddy, I K; Khan, M A

    2002-11-01

    The objectives of the present study were: (1) to investigate the possibility of using a Carbopol polymeric solution as granulating agent by the fluid bed granulating process; (2) to select a suitable method of tabletting for sustaining the release of ketoprofen for 12 hr; (3) to perform stability studies according to International Committee on Harmonization (ICH) guidelines and photostability on ketoprofen SR tablets; (4) to study the influence of the storage conditions on release kinetics and melting endotherm of ketoprofen; and (5) to predict the shelf-life of the ketoprofen SR tablets. Tabletting ingredients were ketoprofen, anhydrous dicalcium phosphate, Carbopol 971P, talc, and magnesium stearate. Carbopol 971P solution (0.8% w/v) was used as a granulating solution in the fluid bed granulator. For comparative evaluation, tablets were also prepared by direct compression and wet granulation, and subjected to dissolution. Tablets prepared by fluid bed granulation technique were stored in incubators maintained at 37, 40, 50, and 60 degrees C, 40 degrees C/75% RH, 30 degrees C/60% RH, and 25 degrees C/60% RH, and in a light chamber with light intensity of 600 ft candle at 25 degrees C. Melting endotherms were obtained for the drug as well as the tablets during stability studies by differential scanning calorimetry. Tablets prepared by fluid bed granulation technique prolonged the release of ketoprofen better than tablets obtained by direct compression and wet granulation. Further, it complied with the requirements of ICH guidelines for stability testing. Higher temperature and humidity (40 +/- 2 degrees C/75% RH, 40 degrees C, 50 degrees C, and 60 degrees C) adversely affected the rate and extent of the dissolution. Ketoprofen SR tablets stored in amber-colored bottles demonstrated a good photostability for 6 months at 600 ft candle. The shelf-life of the formulation was predicted as 32 months.

  7. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    PubMed

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  8. Particle size, moisture, and fluidization variations described by indirect in-line physical measurements of fluid bed granulation.

    PubMed

    Lipsanen, Tanja; Närvänen, Tero; Räikkönen, Heikki; Antikainen, Osmo; Yliruusi, Jouko

    2008-01-01

    The aim of this study was to evaluate an instrumentation system for a bench scale fluid bed granulator to determine the parameters expressing the changing conditions during the spraying phase of a fluid bed process. The study focused mainly on four in-line measurements (dependent variables): fluidization parameter (calculated by inlet air flow rate and rotor speed), pressure difference over the upper filters, pressure difference over the granules (lower filter), and temperature of the fluidizing mass. In-line particle size measured by the spatial filtering technique was an essential predictor variable. Other physical process measurements of the automated granulation system, 25 direct and 12 derived parameters, were also utilized for multivariate modeling. The correlation and partial least squares analyses revealed significant relationships between various process parameters highlighting the particle size, moisture, and fluidization effect. Fluidization parameter and pressure difference over upper filters were found to correlate with in-line particle size and therefore could be used as estimates of particle size during granulation. The pressure difference over the granules and the temperature of the fluidizing mass expressed the moisture conditions of wet granulation. The instrumentation system evaluated here is an invaluable aid to gaining more control for fluid bed processing to obtain repeatable granules for further processing.

  9. In-line monitoring of particle size in a fluid bed granulator: investigations concerning positioning and configuration of the sensor.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2014-05-15

    According to the ICH Q8 guideline, analytic technologies (PAT) are important tools for characterization and optimization of pharmaceutical manufacturing processes. Particle size as a critical quality attribute for granules is therefore an important parameter that should be monitored during the fluid bed granulation process. This work focusses on optimizing position and configuration of an SFT-sensor for the in-line measurement of particle size distribution in a Glatt GPCG 3 fluid bed granulator. As model-substances, different grades of microcrystalline cellulose were used. The in-line measured particle size and particle rate in the sensor were evaluated. A sensor position in the deceleration zone of the granulator was found to be promising for in-line particle size measurement. Most reliable data were generated in this position when the probe was placed in a distance of 11cm from the chamber wall to avoid bias by the inlet air stream. No major influence of rotation angle of the probe was found in this position. Furthermore, an entire fluid bed granulation process was successfully monitored with the sensor installed in the optimized setting.

  10. Microwave drying of granules containing a moisture-sensitive drug: a promising alternative to fluid bed and hot air oven drying.

    PubMed

    Chee, Sze Nam; Johansen, Anne Lene; Gu, Li; Karlsen, Jan; Heng, Paul Wan Sia

    2005-07-01

    The impact of microwave drying and binders (copolyvidone and povidone) on the degradation of acetylsalicylic acid (ASA) and physical properties of granules were compared with conventional drying methods. Moist granules containing ASA were prepared using a high shear granulator and dried with hot air oven, fluid bed or microwave (static or dynamic bed) dryers. Percent ASA degradation, size and size distribution, friability and flow properties of the granules were determined. Granules dried with the dynamic bed microwave dryer showed the least amount of ASA degradation, followed by fluid bed dryer, static bed microwave oven and hot air oven. The use of microwave drying with a static granular bed adversely affected ASA degradation and drying capability. Dynamic bed microwave dryer had the highest drying capability followed by fluid bed, static bed microwave dryer and conventional hot air oven. The intensity of microwave did not affect ASA degradation, size distribution, friability and flow properties of the granules. Mixing/agitating of granules during drying affected the granular physical properties studied. Copolyvidone resulted in lower amount of granular residual moisture content and ASA degradation on storage than povidone, especially for static bed microwave drying. In conclusion, microwave drying technology has been shown to be a promising alternative for drying granules containing a moisture-sensitive drug.

  11. Microencapsulation of fish oil by spray granulation and fluid bed film coating.

    PubMed

    Anwar, Sri Haryani; Weissbrodt, Jenny; Kunz, Benno

    2010-08-01

    The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 degrees C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 +/- 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process.

  12. From pore-scale flow measurements towards a Computational Fluid Dynamics prediction of momentum exchange across river bed interface

    NASA Astrophysics Data System (ADS)

    Sambrook Smith, G.; Hardy, R. J.; Best, J.; Blois, G.; Lead, J.

    2010-12-01

    Developing numerical models capable of simulating the hydrodynamics of open-channel flows over rough and within permeable beds is crucial for predicting the morphodynamic evolution of alluvial channels, as well as understanding the complex physical-chemical processes occurring within the subsurface (hyporheic zone) of river beds. However, most current numerical models assume that alluvial streams have an impermeable channel bed, which represents a considerable simplification since experimental observations have shown turbulence within gravel-beds can be significant. Thus, Darcian theory, suitable for low-conductivity porous media, should not be applied within cohesionless gravel-bed rivers. Although the Reynolds Averaged Navier Stokes (RANS) equations can be used to model flow through a porous media if the internal morphology is known, this has rarely been accomplished, and the complexity of the internal morphology of the bed has meant that the normal approach to this problem is to volume-average the NS equations and close them with the Hazen-Dupui-Darcy (HDD) model. However, if the internal morphology of the bed is known a Computational Fluid Dynamics (CFD) approach with a mass flux scaling algorithm (MFSA), which has been developed to include complex bed topography into a numerically stable discretization, can be applied. This allows both time averaged, and time dependent prediction of the flow. Even though these models represent the state-of-the-art, they have yet to be validated, and hence their reliability remains unknown. The lack of appropriate validation data is due to the fact that experimental techniques cannot currently meet the significant challenges required to fully characterize the complex instantaneous turbulent patterns produced within bed pore spaces. To meet this challenge, a novel high-resolution endoscopic particle image velocimetry (E-PIV) technique, capable of collecting data within the pore spaces of a submerged permeable bed, has been

  13. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  14. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Y.; Harrington, Richard E.

    1989-01-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

  15. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Yu; Harrington, R.E.

    1987-05-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

  16. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-ninth quarterly status report, October--December 1994

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.

    1996-02-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the twenty-seventh quarter to develop this ILEC technology.

  17. Meandering instability of air flow in a granular bed: self-similarity and fluid-solid duality.

    PubMed

    Yoshimura, Yuki; Yagisawa, Yui; Okumura, Ko

    2016-12-12

    Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing down a windshield. However, its physical understanding is still premature, although it could inspire researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a thin granular bed to successfully find a meandering regime, together with other remarkable fluidized regimes, such as a turbulent regime. We discover that phase diagrams of the flow regimes for different types of grains can be universally presented as functions of the flow rate and the granular-bed thickness when the two quantities are properly renormalized. We further reveal that the meandering shapes are self-similar as was shown for meandering rivers. The experimental findings are explained by theory, with elucidating the physics. The theory is based on force balance, a minimum-dissipation principle, and a linear-instability analysis of a continuum equation that takes into account the fluid-solid duality, i.e., the existence of fluidized and solidified regions of grains along the meandering path. The present results provide fruitful links to related issues in various fields, including fluidized bed reactors in industry.

  18. Meandering instability of air flow in a granular bed: self-similarity and fluid-solid duality

    PubMed Central

    Yoshimura, Yuki; Yagisawa, Yui; Okumura, Ko

    2016-01-01

    Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing down a windshield. However, its physical understanding is still premature, although it could inspire researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a thin granular bed to successfully find a meandering regime, together with other remarkable fluidized regimes, such as a turbulent regime. We discover that phase diagrams of the flow regimes for different types of grains can be universally presented as functions of the flow rate and the granular-bed thickness when the two quantities are properly renormalized. We further reveal that the meandering shapes are self-similar as was shown for meandering rivers. The experimental findings are explained by theory, with elucidating the physics. The theory is based on force balance, a minimum-dissipation principle, and a linear-instability analysis of a continuum equation that takes into account the fluid-solid duality, i.e., the existence of fluidized and solidified regions of grains along the meandering path. The present results provide fruitful links to related issues in various fields, including fluidized bed reactors in industry. PMID:27941823

  19. Meandering instability of air flow in a granular bed: self-similarity and fluid-solid duality

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yuki; Yagisawa, Yui; Okumura, Ko

    2016-12-01

    Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing down a windshield. However, its physical understanding is still premature, although it could inspire researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a thin granular bed to successfully find a meandering regime, together with other remarkable fluidized regimes, such as a turbulent regime. We discover that phase diagrams of the flow regimes for different types of grains can be universally presented as functions of the flow rate and the granular-bed thickness when the two quantities are properly renormalized. We further reveal that the meandering shapes are self-similar as was shown for meandering rivers. The experimental findings are explained by theory, with elucidating the physics. The theory is based on force balance, a minimum-dissipation principle, and a linear-instability analysis of a continuum equation that takes into account the fluid-solid duality, i.e., the existence of fluidized and solidified regions of grains along the meandering path. The present results provide fruitful links to related issues in various fields, including fluidized bed reactors in industry.

  20. Factorial design in the spheronization of ibuprofen microparticulates using the rotor disk fluid-bed technology.

    PubMed

    Chukwumezie, Beatrice Nkem; Wojcik, Mark; Malak, Paul; Damico, Frank; Adeyeye, Moji Christianah

    2004-01-01

    The aim of this study was to statistically evaluate the effects of some formulation and process variables in the spheronization of microparticulates of ibuprofen using the rotor disk fluid-bed technology and water as binder. Preliminary studies revealed that presence of surfactant, plate material type, and nature and content of binder influenced the process and quality of the spheronized material. A 2 x 2 x 3 full factorial randomized experiment was designed, demonstrating the influence of these factors on properties such as percent yield, particle size distribution, densities, ibuprofen release, moisture content, etc., as well as their interactions in the experimental response. A response known as the usable fraction was created representing microparticulates of 250 to 850 microm sizes (mesh size 20-60). The reproducibility of the spheronization process was assessed by blocking the experiments with the experiments within the blocks randomly replicated. The main effects included two binder levels (X1), two surfactant levels (X2), and a three-level plate type (X3) in which 2 two-level factors were collapsed into a single three-level factor. The results from the statistical analysis (general linear model, JMP 4) showed that the variables studied had a significant influence on most of the response variables evaluated (p < 0.05), with the binder level proving to be the most significant of the three. There was also significant interaction (p<0.05) between binder level and plate type with the drug content, friability, sphericity, loss on drying (LOD), and usable fraction response variables, and between the binder and the surfactant levels with the drug content, Q20, true density, geometric mean diameter, LOD, and usable fraction responses. High levels of surfactant and binder increased the sphere size, while low levels decreased it. Significant (p < 0.05) interaction was also observed between the plate type and surfactant level with the drug content, geometric mean

  1. Field evaluation of a granular activated carbon fluid-bed bioreactor for treatment of chlorobenzene in groundwater

    SciTech Connect

    Klecka, G.M.; McDaniel, S.G.; Wilson, P.S.

    1996-12-31

    Although granular activated carbon (GAC), fluidized-bed bioreactors have been used for treatment of groundwater containing readily biodegradable organic compounds, there is only limited experience with treatment of chlorinated organics found at many industrial sites. This paper describes a field evaluation of a GAC fluid-bed bioreactor operated at various chlorobenzene concentrations and organic loading rates over a 7-month period. Microorganisms used to seed the bioreactor were provided by activated sludge form the site, as well as indigenous chlorobenzene-degrading bacteria present in the groundwater. Removal efficiencies exceeding 99.99% were achieved at organic loading rates between 6 and 10 pounds of total oxygen demand (lb TOD) per 25 cubic feet per day. Influent chlorobenzene concentrations ranging form 100 to 170 ppm were consistently reduced to below the detection limit of 10 ppb. Economic evaluation indicates that groundwater treatment costs for the bioreactor were lower than other conventional technologies. 44 refs., 9 figs., 5 tabs.

  2. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-01

    Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  4. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    PubMed

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Field measurement and modeling of near-bed sediment transport processes with fluid mud layer in Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yasuyuki; Nadaoka, Kazuo; Yagi, Hiroshi; Ariji, Ryuichi; Yoneyama, Haruo; Shirai, Kazuhiro

    2012-12-01

    Tokyo Bay is one of the estuaries in Japan with a high population of almost 26 million people in the basin area. One of the major concerns for the environment in this water area is the decreasing ecosystem functions including the deterioration of water and sediment qualities caused by various anthropogenic activities. Since the bottom sediments around almost the entire area of the inner bay consist of fine materials with a high organic content, which cause the deterioration of water quality through processes such as hypoxia, an understanding of the fine sediment dynamics in the Bay is crucial for an environmental assessment of the water area. This paper proposes a model for the key processes of fine sediment dynamics, which reflects field data about muddy bed structures and their dynamics obtained during the monitoring campaign in 2007. One of the specific features of the sediment in the Bay at present is the persistent existence of fluid mud layers (water content over 300 %) with a thickness of around a few decimeters, which might be caused by deposition of abundant organic particles due to eutrophication. The present study shows that diffusion flux model delivers quite reliable results for estimating erosion flux from the top of fluid mud layers after calibrating the model parameter against the time series data of vertical flux measured by an acoustic Doppler velocimeter system. This study also derives analytical solutions, based on the Bingham fluid concept, of advection flux in the fluid mud layer on which external shear stress force is applied.

  6. Performance improvement of a converted fluid bed boiler (from traveling grate type) for agro waste combustion -- A case study

    SciTech Connect

    Sethumadhavan, R.; Karthikeyan, G.; Raviprakash, A.V.; Vasudevan, R.

    1997-12-31

    This paper investigates the operational difficulty encountered while operating a fluid bed boiler--which was earlier serving with a traveling grate for agrowaste combustion. This boiler, although operating on fluid bed technology principle, could not produce required combustion efficiency while burning any of the agrowastes such as rice husk, de-oiled bran, ground nut shell, etc. While carrying out the performance assessment study, it was found that, this inefficient combustion was mainly due to the improper operating parameters and partly due to incorrect furnace configuration. The drawbacks of the system have been attended to and set right incurring a very minor expenditure. This has led to an annual fuel saving of approximately US $40,000. The major results achieved are: (1) boiler thermal efficiency increased from 66--73%; (2) boiler was loaded uniformly and on-time operation has increased to 100% from earlier 60%; (3) boiler shut down time due to operational problems has come down from 35 hours per month to 15 hours per month; (4) very effective dust collection system was achieved resulting in reduced ID fan erosion; and (5) an annual saving of US $100,000 (both direct and indirect) was achieved.

  7. Development of a visiometric process analyzer for real-time monitoring of bottom spray fluid-bed coating.

    PubMed

    Liew, Celine Valeria; Wang, Li Kun; Wan Sia Heng, Paul

    2010-01-01

    Particle recirculation within the partition column is a major source of process variability in the bottom spray fluid-bed coating process. However, its locality and complex nature make it hidden from the operator. The aim of this study was to take snapshots of the process by employing a visiometric process analyzer based on high-speed imaging and ensemble correlation particle image velocimetry (PIV) to quantify particle recirculation. High-speed images of particles within the partition column of a bottom spray fluid-bed coater were captured and studied by morphological image processing and ensemble correlation PIV. Particle displacement probability density function (PDF) obtained from ensemble correlation PIV was consistent with validation experiments using an image tracking method. Particle displacement PDF was further resolved into particle velocity magnitude and particle velocity orientation histograms, which gave information about particle recirculation probability, thus quantifying the main source of process variability. Deeper insights into particle coating process were obtained and better control of coat uniformity can thus be achieved with use of the proposed visiometric process analyzer. The concept of visiometric process analyzers was proposed and their potential applications in pharmaceutical processes were further discussed.

  8. A multi-scale investigation of interfacial transport, pore fluid flow, and fine particle deposition in a sediment bed

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Packman, Aaron I.; Zhang, Dongxiao; Gaillard, Jean-FrançOis

    2010-11-01

    We used X-ray difference microtomography (XDMT) and multi-scale lattice Boltzmann (LB) simulations to investigate the deposition of colloidal particles in a streambed from the micron scale to the bedform scale. Flume experiments were performed to deposit zirconia colloids from suspension into a sediment bed composed of glass beads and covered with dune-shaped bedforms. Following deposition, we extracted a series of cores over a single bedform, and analyzed the microstructure of colloid deposition patterns within these cores by XDMT. Colloids deposited primarily on the upstream sides of glass beads located at the upstream face of the bedform. Colloid deposits were also found in narrow pores and grain contacts, resulting from physical straining. We used the pore structure measured by XDMT as internal solid boundaries in pore-scale LB simulations of pore water flow in order to define a constitutive porosity-permeability relationship at the scale of the representative elementary volume (REV) for the porous medium. We then incorporated this information in a continuum-scale LB model to simulate hyporheic exchange flow at the bedform scale. The bedform-scale flow model was discretized at the REV scale, with the porosity-permeability relationship obtained from the pore-scale analysis used to represent the effects of micro-scale feedbacks between particle deposition, bed structure, and pore fluid flow. Colloids deposited rapidly in the subsurface, leading to a decrease in permeability and a modification of hyporheic flow paths near the bed surface. Colloid deposition reduced the mean stream-subsurface exchange flux, but increased the spatial variability in pore water flow, leading to higher exchange flux in some locations. Similarly, the mean hyporheic residence time increased after deposition, but the development of preferential flow paths led to more rapid exchange through some regions of the bedform. These results reveal how flow-boundary interactions, colloid influx to

  9. On scattering of a material over the Ostwald-de Waele fluid bed

    NASA Astrophysics Data System (ADS)

    Siddiqui, Abuzar A.; Ahmad, Salman; Aqeel, Muhammad

    2016-12-01

    We formulated mathematically, the scattering and sliding of a material (colloid, oil, gasoline etc.) over the Ostwald-de Waele fluid. Ostwald-de Waele fluid model is used to get a boundary value problem (BVP). This BVP comprises coupled nonlinear partial differential equations (PDEs). These PDEs are further transformed into an ordinary differential equation (ODE) under the stream of similarity transform for the high Reynolds number flow assumption. The developed similarity solution is validated. The influence of fluid speed and drag is observed to be intensified in the vicinity of interface.

  10. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  11. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  12. Fluid Transport Driven by Heat-Generating Nuclear Waste in Bedded Salt

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Harp, D. R.; Stauffer, P. H.; Ten Cate, J. A.; Labyed, Y.; Boukhalfa, H.; Lu, Z.; Person, M. A.; Robinson, B. A.

    2013-12-01

    The question of where to safely dispose high-level nuclear waste (HLW) provides ample motivation for scientific research on deep geologic disposal options. The goal of this study is to model the dominant heat and mass transport processes that would be driven by heat generating nuclear waste buried in bedded salt. The interaction between liquid brine flow towards the heat source, establishment of a heat pipe in the mine-run salt backfill, boiling, and vapor condensation leads to changes in porosity, permeability, saturation, thermal conductivity, and rheology of the salt surrounding potential waste canisters. The Finite Element Heat and Mass transfer code (FEHM) was used to simulate these highly coupled thermal, hydrological, and chemical processes. The numerical model has been tested against recent and historical experimental data to develop and improve the salt material model. We used the validated numerical model to make predictions of temperature gradients, porosity changes, and tracer behavior that will be testable in a future 2-year field-scale heater experiment to be carried out in an experimental test bed at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, NM.

  13. Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Stinnett, H. O.; Davis, G. L.; Kollias, J.; Bernauer, E. M.

    1977-01-01

    Experiments were conducted on twelve women aged 23-34 yr - a bed rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects - to determine the effect of bed rest on shifts in plasma volume, electrolytes, and erythrocyte volume during +Gz acceleration on a centrifuge. The BR group underwent the +Gz acceleration during a two-week ambulatory control period, after 15 days of a 17-day BR period, and on the third day of ambulatory recovery. The AMB group underwent the same experimental procedures, but continued their normal daily routine during the BR period without additional prescribed physical exercise. Major conclusions are that (1) the higher the mean control tolerance, the greater the tolerance decline after BR; (2) relative confinement and reduced activity contribute as much to reduction in tolerance as does the horizontal body position during BR; (3) BR deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and (4) about one-half the loss in tolerance after BR can be attributed to plasma volume and electrolyte shifts.

  14. Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Stinnett, H. O.; Davis, G. L.; Kollias, J.; Bernauer, E. M.

    1977-01-01

    Experiments were conducted on twelve women aged 23-34 yr - a bed rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects - to determine the effect of bed rest on shifts in plasma volume, electrolytes, and erythrocyte volume during +Gz acceleration on a centrifuge. The BR group underwent the +Gz acceleration during a two-week ambulatory control period, after 15 days of a 17-day BR period, and on the third day of ambulatory recovery. The AMB group underwent the same experimental procedures, but continued their normal daily routine during the BR period without additional prescribed physical exercise. Major conclusions are that (1) the higher the mean control tolerance, the greater the tolerance decline after BR; (2) relative confinement and reduced activity contribute as much to reduction in tolerance as does the horizontal body position during BR; (3) BR deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and (4) about one-half the loss in tolerance after BR can be attributed to plasma volume and electrolyte shifts.

  15. Flexibility of the Fluid-Bed Calciner Process in View of Changing Demands in the Alumina Market

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Werner; Beisswenger, Hans; Kämpf, Fritz

    1980-02-01

    The two most frequently used types of alumina are finegrained, high-calcined, "floury" alumina and coarse-grained, low-calcined, "sandy" alumina; they result from different calcining conditions. Because of the increasing exchange of alumina on the international market, there is a growing demand for a modern calcining system allowing the production of various qualities. The fluid-bed calciner process is optimally suited to these demands. As grain-size distribution is of great importance for the quality of weakly calcined alumina, extensive investigations have been made to determine the influence of calcination on aluminum hydroxide. It was found that, besides the mechanical strength of the aluminum hydroxide, local velocity rates, solids concentration, and details of design affect the grain size of calcined alumina. Results from pilot and industrial plants are presented and discussed with regard to consequences for layout and operating conditions of calcining plants.

  16. Alumina calcination with the advanced circulating fluid bed technology: A design with increased efficiency combined with operating flexibility

    SciTech Connect

    Schmidt, H.W.; Stockhausen, W.; Silberberg, A.N.

    1996-10-01

    The Circulating Fluid Bed (CFB) technology has now been applied to alumina calcination for a quarter of a century. The combined capacity of the 32 units installed is greater than 10 million metric tons per year. The paper highlights the consistency of the product quality which is based upon the operating experience of the last decade and improvements to the calcination system which also provides lower heat consumption. The principal modifications are incorporated in the preheating and cooling sections of the plant. These design modifications have also reduced capital cost. Overall the plant retains its proven features of high flexibility, unique temperature control, high availability, reliable performance, and low maintenance cost. The design is applicable to single train units up to a capacity of 3,000 MTPD (alumina).

  17. Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry

    PubMed Central

    REINHARDT, K.; WONG, C. H.; GEORGIOU, A. S.

    2008-01-01

    SUMMARY The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. 1-D PAGE gels showed 40 to 50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5 to 7μg of seminal protein and with only 60μg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between two laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionisation tandem mass spectrometry revealed that 26.5% of the proteins had matches among arthropods in data bases and 14.5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6. PMID:19091156

  18. Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Reinhardt, K; Wong, C H; Georgiou, A S

    2009-03-01

    The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests that seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. One-dimensional PAGE gels showed 40-50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5-7 microg of seminal protein and with only 60 microg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between 2 laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionization tandem mass spectrometry revealed that 26.5% of the proteins had matches among arthropods in databases and 14.5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1 alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6.

  19. Evaluation of extended-release applications for solid dispersion hot-melt fluid bed coatings utilizing hydrophobic coating agents.

    PubMed

    Kennedy, J P; Niebergall, P J

    1998-02-01

    A new hot-melt fluid bed coating method was evaluated for potential extended-release applications. Chlorpheniramine maleate (CPM) USP was chosen as a model drug. The assays for drug release and content uniformity were dictated by the USP Official Monograph for a Chlorpheniramine Maleate Extended-Release Capsule. The fluid bed chamber was charged with CPM-loaded nonpareils and hydrophobic coating agents in the solid state. The method consists of four processing stages: (a) warming, (b) preheating, (c) melting-spreading, and (d) cooling-congealing. Various hydrophobic coating agent candidates were evaluated for extended-release potential by a preliminary screen at a coating agent level of 1.5% (w/w). A beeswax coating agent was identified as the most promising candidate of the preliminary screen. After the level of beeswax was increased to 2.0%, the dissolution profile met all of the specifications of the USP Drug Release Test 1 for a CPM Extended-Release Capsule. The potency and content uniformity remained unchanged by the process. Dual coatings demonstrated a cumulative extension of release superior to the capability of a single coat. The new method is a viable alternative to hot-melt spray-coating methodologies. Organic solvents, spraying equipment, steam jackets, and/or heating tape are eliminated from the process. A reduction of equipment costs, setup time, and cleanup time may be realized. The method has demonstrated extended-release capabilities. No excessive attrition of potency or content uniformity has been noted. Additive, multiple coatings that have a cumulative effect on release retardation are feasible.

  20. Integrated low emissions cleanup system for direct coal fueled turbines: (moving bed, fluid bed contactor/ceramic filter). Thirtieth quarterly report for the period January--March 1995

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1995-10-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of advanced, coal-fueled turbine power plants such as pressurized fluid bed combustion and coal gasification combined cycles. A major technical challenge remaining for the development of the coal-fueled turbine is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meet this technical challenge. These UEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure process gases. This document reports the status of a program in the thirtieth quarter to develop this ILEC technology. During this Quarter of the program, the Phase In bench-scale, high-temperature, high-pressure (HTHP) testing of PFBC fly ashes was continued. Tests have been completed to characterize the filter cake pulse cleaning, as a function of temperature. The behavior trends are consistent with field unit observations. Sulfur removal tests, looking at the influence of SO{sub 2} on filter cake permeability, as well as the ability to remove sulfur by injecting dolomite into the filter, have been completed. Alkali removal tests were initiated this quarter injecting emathlite into the filter. A complete summary of the test procedures; tests completed and test results is presented in Appendices A, B and C. Preparation has been made to prepare the Phase III final report.

  1. Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest.

    PubMed

    Greenleaf, J E; Stinnett, H O; Davis, G L; Kollias, J; Bernauer, E M

    1977-01-01

    Twelve women (23-34 yr), comprising a bed-rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects, were centrifuged after 14 days of ambulatory control (C),after 15 days of a 17-day BR period, and on the third day of recovery (R). Venous blood was taken before and after the third +3.0 G acceleration run (1.8 G/min). Relative to (C), the +Gz tolerance after BR was reduced -49.0% (P less than 0.05) in the BR group and -38.7% (NS) in the AMB group; during (R) the BR group regained up to 89.4% and the AMB group up to 87.1% of their (C) tolerances. In each of the three test periods, the shifts in plasma Na, Cl, PO4, and osmotic contents, which accompanied +Gz, followed the outward shift of plasma volume (PV). The correlation of the shift of PV during acceleration with the +Gz tolerance was 0.72 (P less than 0.01). During acceleration, the PV and electrolyte loss for both groups after BR was about half the loss of (C) and (R). Compared with (C) and (R) values, potassium shifts were variable but the mean corpuscular volume and mean corpuscular Hb contents and concentrations were unchanged during all +Gz runs; The results indicate that: 1) the higher the (C) + Gz tolerance, the greater the tolerance decline due to BR; 2) relative confinement and reduced activity contribute as much to the reduction in tolerance as does the horizontal body position during BR; 3) bed-rest deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and 4) about one-half the loss in tolerance after BR can be attributed to PV and electrolyte shifts.

  2. Granular spirals on erodible sand bed submitted to a circular fluid motion.

    PubMed

    Caps, H; Vandewalle, N

    2003-09-01

    An experimental study of a granular surface submitted to a circular fluid motion is presented. The appearance of an instability along the sand-water interface is observed beyond a critical radius r(c). This creates ripples with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as a function of the rotation speed omega of the flow and as a function of the height of water h above the surface. The study of r(c) as a function of h, omega, and r parameters is reported. Thereafter, r(c) is shown to depend on the rotation speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases and is proportional to the radial distance r. The azimuthal angle epsilon of the spiral arms is studied. It is found that epsilon scales with homegar. This lead to the conclusion that epsilon depends on the fluid momentum. Comparison with experiments performed with fluids allows us to state that the spiral patterns are not the signature of an instability of the boundary layer.

  3. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  4. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  5. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    SciTech Connect

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.

  6. Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas

    SciTech Connect

    Knauth, L.P.; Beeunas, M.A.

    1985-07-01

    Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The /sup 18/O//sup 16/O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines.

  7. Oxygen consumption by a sediment bed for stagnant water: comparison to SOD with fluid flow.

    PubMed

    Higashino, Makoto

    2011-10-01

    A model of sedimentary oxygen demand (SOD) for stagnant water in a lake or a reservoir is presented. For the purposes of this paper, stagnant water is defined as the bottom layer of stratified water columns in relatively unproductive systems that are underlain by silt and sand-dominated sediments with low-organic carbon (C) and nitrogen (N). The modeling results are compared to those with fluid flow to investigate how flow over the sediment surface raises SOD compared to stagnant water, depending on flow velocity and biochemical activity in the sediment. SOD is found to be substantially limited by oxygen transfer in the water column when water is stagnant. When flow over the sediment surface is present, SOD becomes larger than that for stagnant water, depending on flow velocity and the biochemical oxygen uptake rate in the sediment. Flow over the sediment surface causes an insignificant raise in SOD when the biochemical oxygen uptake rate is small. The difference between SOD with fluid flow and SOD for stagnant water becomes significant as the biochemical oxygen uptake rate becomes larger, i.e. SOD is 10-100 times larger when flow over the sediment surface is present.

  8. Stable isotope composition of fluid inclusions preserved in halite derived from Wieliczka and Bochnia Salt Beds (Southern Poland)

    NASA Astrophysics Data System (ADS)

    Dulinski, Marek; Rozanski, Kazimierz; Bukowski, Krzysztof

    2010-05-01

    Halite deposits located in the southern Poland, near Krakow, are famous mostly due to the medieval salt mine located in Wieliczka. Contrary to most salt deposits in Europe forming large domes, the halite deposits near Krakow form distinct beds, extending from west to east on the area of ca. 10 km2, with several types of salt identified. The deposits were formed in shallow environment, ca. 15 mln years ago and represent initial stages of Miocene sea water evaporation. Stable isotope composition of fluid inclusions trapped in the halite crystals originating from Wieliczka and Bochnia salt mines was investigated. Three distinct groups of samples were analysed: (i) samples derived from so-called 'green salt' beds forming extensive horizontal structures, (ii) samples derived from so-called zuber-type salt, and (iii) large monocrystals of halite collected in two crystal caves existing in the mine. The samples belonging to the first and second group were heated under vacuum to extract the fluid inclusions, according to the procedure used previously to extract inclusions from speleothem samples. The macro-inclusions present in some monocrystals of halite collected in crystal caves were removed for analysis without any thermal treatment. The concentration of bivalent cations (Ca2+, Mg2+) was measured in the bulk material (green salt). K+, Mg2+ and SO4-2 content was measured in the fluid inclusions derived from macro-crystals. The stable isotope data points form two clusters in the δ2H-δ18O space, representing crystal caves and green- and zuber-type salts, respectively. The cluster representing green- and zuber-type salt deposit is shifted to the right-hand side of the Local Meteoric Water Line (LMWL), towards more positive δ2H and δ18O values, pointing to evaporative conditions during formation of these deposits. Although the evaporation trajectories for the sea water in the δ2H - δ18O space suggest that fluid inclusions might represent remnants of the original

  9. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method.

    PubMed

    Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan

    2014-01-01

    To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure

  10. Modeling of the Fluid Flow and Heat Transfer an a Pebble Bed Modular Reactor Core With a Computational Fluid Dynamics Code

    SciTech Connect

    Taylor, J. Bryce; Yavuzkurt, Savas; Baratta, Anthony J.

    2002-07-01

    The Pebble Bed Modular Reactor (PBMR), a promising Generation IV nuclear reactor design, raises many novel technological issues for which new experience and techniques must be developed. This brief study explores a few of these issues, utilizes a computational fluid dynamics code to model some simple phenomena, and points out deficiencies in current knowledge that should be addressed by future research and experimentation. A highly simplified representation of the PBMR core is analyzed with FLUENT, a commercial computational fluid dynamics code. The applied models examine laminar and turbulent flow in the vicinity of a single spherical fuel pebble near the center of the core, accounting for the effects of the immediately adjacent fuel pebbles. Several important fluid flow and heat transfer parameters are examined, including heat transfer coefficient, Nusselt number, and pressure drop, as well as the temperature, pressure, and velocity profiles near the fuel pebble. The results of these 'unit cell' calculations are also compared to empirical correlations available in the literature. As FLUENT is especially sensitive to geometry during the generation of a computational mesh, the sensitivity of code results to pebble spacing is also examined. The results of this study show that while a PBMR presents a novel and complex geometry, a code such as FLUENT is suitable for calculation of both local and global flow characteristics, and can be a valuable tool for the thermal-hydraulic study of this new reactor design. FLUENT results for pressure drop deviate from the Darcy correlation by several orders of magnitude in all cases. When determining the heat transfer coefficient, FLUENT is again much lower than Robinson's correlation. Results for Nusselt number show better agreement, with FLUENT predicting results that are 10 or 20 times as large as those from the Robinson and Lancashire correlations. These differences may arise because the empirical correlations concern mainly

  11. Slope effects on the fluid dynamics of a fire spreading across a fuel bed: PIV measurements and OH* chemiluminescence imaging

    NASA Astrophysics Data System (ADS)

    Morandini, F.; Silvani, X.; Honoré, D.; Boutin, G.; Susset, A.; Vernet, R.

    2014-08-01

    Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.

  12. Multistage vector (MSV) therapeutics.

    PubMed

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Multistage vector (MSV) therapeutics

    PubMed Central

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-01-01

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  14. Multistage models of carcinogenesis.

    PubMed Central

    Armitage, P

    1985-01-01

    The simple multistage model of carcinogenesis is outlined. It provides a satisfactory explanation of the power law for the age incidence of many forms of epithelial carcinoma, for the effects in human populations of changing exposures to supposed carcinogenic agents, and for many of the observed effects of applied carcinogens in animal experiments. In particular, the evidence on the effects of starting and stopping cigarette smoking suggests that both an early and a late stage may be affected. In the absence of direct evidence on the nature of the cellular changes there is some reluctance to accept a model with more than two stages, and several forms of two-stage models provide good general explanations of observed phenomena. Such a model has recently been applied to breast cancer; another approach to this disease, effectively involving transformations of the time scale, is discussed. PMID:3908088

  15. Hydrodynamics and energy consumption studies in a three-phase liquid circulating three-phase fluid bed contactor

    SciTech Connect

    Rusumdar, Ahmad J; Abuthalib, A.; Mohan, Vaka Murali; Srinivasa Kumar, C.; Sujatha, V.; Rajendra Prasad, P.

    2009-07-15

    The hydrodynamics and energy consumption have been studied in a cold flow, bubbling and turbulent, pressurized gas-liquid-solid three-phase fluidized bed (0.15 m ID x 1 m height) with concurrent gas-liquid up flow is proposed with the intention of increasing the gas hold up. The hydrodynamic behaviour is described and characterised by some specific gas and liquid velocities. Particles are easily fluidized and can be uniformly distributed over the whole height of the column. The effect of parameters like liquid flow rate, gas flow rate, particle loading, particle size, and solid density on gas hold up and effect of gas flow rate, solid density and particle size on solid hold up, energy consumption and minimum fluidization velocity has been studied. At the elevated pressures a superior method for better prediction of minimum fluidization velocity and terminal settling velocities has been adopted. The results have been interpreted with Bernoulli's theorem and Richardson-Zaki equation. Based on the assumption of the gas and liquid as a pretend fluid, a simplification has been made to predict the particle terminal settling velocities. The Richardson-Zaki parameter n' was compared with Renzo's results. A correlation has been proposed with the experimental results for the three-phase fluidization. (author)

  16. Online monitoring of particle mass flow rate in bottom spray fluid bed coating--development and application.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2010-08-16

    The primary purpose of this study is to develop a visiometric process analyzer for online monitoring of particle mass flow rate in the bottom spray fluid bed coating process. The secondary purpose is to investigate the influences of partition gap and air accelerator insert size on particle mass flow rate using the developed visiometric process analyzer. Particle movement in the region between the product chamber and partition column was captured using a high speed camera. Mean particle velocity and number of particles in the images were determined by particle image velocimetry and morphological image processing method respectively. Mass flow rate was calculated using particle velocity, number of particles in the images, particle density and size information. Particle velocity and number findings were validated using image tracking and manual particle counting techniques respectively. Validation experiments showed that the proposed method was accurate. Partition gap was found to influence particle mass flow rate by limiting the rate of solids flux into the partition column; the air accelerator insert was found to influence particle mass flow rate by a Venturi effect. Partition gap and air accelerator insert diameter needed to be adjusted accordingly in relation to the other variability sources and diameter of coating cores respectively. The potential, challenges and possible solutions of the proposed visiometric process analyzer were further discussed.

  17. Formation of mannitol core microparticles for sustained release with lipid coating in a mini fluid bed system.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2017-09-08

    The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017. Published by Elsevier B.V.

  18. Development of a fluid bed granulation process control strategy based on real-time process and product measurements.

    PubMed

    Burggraeve, Anneleen; Silva, Ana F T; Van den Kerkhof, Tom; Hellings, Mario; Vervaet, Chris; Remon, Jean Paul; Vander Heyden, Yvan; De Beer, Thomas

    2012-10-15

    This article describes the results of three case studies conducted consecutively, in order to develop a process control strategy for a top-spray fluid bed granulation process. The use of several real-time particle size (i.e., spatial filter velocimetry and focused beam reflectance measurement) and moisture (i.e., near infrared (NIR) and Lighthouse near infrared spectroscopy) analyzers was examined. A feed-forward process control method was developed, where in-line collected granulation information during the process spraying phase was used to determine the optimum drying temperature of the consecutive drying phase. Via real-time monitoring of process (i.e., spraying temperature and spray rate) and product (i.e., granule size distribution and moisture) parameters during the spraying period, the batch bulk density was predicted at the end of the spraying cycle, using a PLS model. When this predicted bulk density was not meeting the desired value, the developed control method allowed the calculation of an adjusted drying temperature leading to the desired batch bulk density at the end of the granulation process. Besides the development of the feed-forward control strategy, a quantitative PLS model for in-line moisture content prediction of the granulated end product was built using the NIR data.

  19. Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-04-01

    Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H(2)S) - Na and K based species in particular. Work is underway to further investigate and validate this.

  20. The Multistage Compressor Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie

    2004-01-01

    Research and developments of new aerospace technologies is one of Glenn Research Center's specialties. One facility that deals with the research of aerospace technologies is the High-speed Multistage Compressor Facility. This facility will be testing the performance and efficiency of an Ultra Efficient Engine Technology (UEET) two-stage compressor. There is a lot of preparation involved with testing something of this caliber. Before the test article can be installed into the test rig, the facility must be fully operational and ready to run. Meaning all the necessary instrumentation must be calibrated and installed in the facility. The test rig should also be in safe operating condition, and the proper safety permits obtained. In preparation for the test, the Multistage Compressor Facility went through a few changes. For instance the facility will now be utilizing slip rings, the gearbox went through some maintenance, new lubrications systems replaced the old ones, and special instrumentation needs to be fine tuned to achieve the maximum amount of accurate data. Slips rings help gather information off of a rotating device - in this case from a shaft - onto stationary contacts. The contacts (or brushes) need to be cooled to reduce the amount of frictional heat produced between the slip ring and brushes. The coolant being run through the slip ring is AK-225, a material hazardous to the ozone. To abide by the safety regulations the coolant must be run through a closed chiller system. A new chiller system was purchased but the reservoir that holds the coolant was ventilated which doesn t make the system truly closed and sealed. My task was to design and have a new reservoir built for the chiller system that complies with the safety guidelines. The gearbox had some safety issues also. Located in the back of the gearbox an inching drive was set up. When the inching drive is in use the gears and chain are bare and someone can easily get caught up in it. So to prevent

  1. Physiological responses to prolonged bed rest and fluid immersion in man: A compendium of research (1974 - 1980)

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Silverstein, L.; Bliss, J.; Langenheim, V.; Rosson, H.; Chao, C.

    1982-01-01

    Water immersion and prolonged bed rest reproduce nearly all the physiological responses observed in astronauts in the weightless state. Related to actual weightlessness, given responses tend to occur sooner in immersion and later in bed rest. Much research was conducted on humans using these two techniques, especially by Russian scientists. Abstracts and annotations of reports that appeared in the literature from January 1974 through December 1980 are compiled and discussed.

  2. Integrated low emissions cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twentieth quarterly status report, July--September 1992

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1992-10-20

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been configured to meat this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the nineteenth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  3. Integrated Low Emissions Cleanup system for direct coal fueled turbines (moving bed, fluid bed contactor/ceramic filter). Twenty-fifth quarterly report, October--December 1993

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1993-12-31

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of direct coal-fired turbine power plants as part of their Heat Engines program. A major technical challenge remaining for the development of the direct coal-fired turbine is high-temperature combustion gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating two Integrated Low Emissions Cleanup (ILEC) concepts that have been reconfigured to meet this technical challenge: a baseline ceramic barrier filter ILEC concept, and a fluidized bed ILEC concept. These ILEC concepts simultaneously control sulfur, particulate, and alkali contaminants in the high-pressure combustion gases at turbine inlet temperatures up to 2300{degree}F. This document reports the status of a program in the twenty-fifth quarter to develop this ILEC technology for direct coal-fired turbine power plants.

  4. Data mining of fractured experimental data using neurofuzzy logic-discovering and integrating knowledge hidden in multiple formulation databases for a fluid-bed granulation process.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2008-06-01

    In the pharmaceutical field, current practice in gaining process understanding by data analysis or knowledge discovery has generally focused on dealing with single experimental databases. This limits the level of knowledge extracted in the situation where data from a number of sources, so called fractured data, contain interrelated information. This situation is particularly relevant for complex processes involving a number of operating variables, such as a fluid-bed granulation. This study investigated three data mining strategies to discover and integrate knowledge "hidden" in a number of small experimental databases for a fluid-bed granulation process using neurofuzzy logic technology. Results showed that more comprehensive domain knowledge was discovered from multiple databases via an appropriate data mining strategy. This study also demonstrated that the textual information excluded in individual databases was a critical parameter and often acted as the precondition for integrating knowledge extracted from different databases. Consequently generic knowledge of the domain was discovered, leading to an improved understanding of the granulation process. 2007 Wiley-Liss, Inc

  5. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation.

    PubMed

    Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk

    2011-08-01

    A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles.

  6. Three-Dimensional Simulation of a Vibrofluidized Bed with the Use of a Two-Fluid Model of Granular Gas

    NASA Astrophysics Data System (ADS)

    Kamenetskii, E. S.; Orlova, N. S.; Tagirov, A. M.; Volik, M. V.

    2016-11-01

    We present the results of three-dimensional calculations of the degree of expansion of a vibrofluidized bed that were obtained with the aid of the twoPhaseEulerFoam solver of a freely accessible OpenFOAM package and the data of experiments on vibrobubbling of relatively large dolomite particles. Satisfactory agreement is obtained between the results of numerical calculations and experimental data.

  7. Influence of process variable and physicochemical properties on the granulation mechanism of mannitol in a fluid bed top spray granulator.

    PubMed

    Bouffard, Jonathan; Kaster, Meagan; Dumont, Hubert

    2005-10-01

    This study investigated the influence of specific process variables, including the hydroxypropyl cellulose (HPC) binder solution atomization, on the fluidized bed top spray granulation of mannitol. Special attention was given to the relationship between wetting and the granule growth profile. The atomization of the HPC binder solution using a binary nozzle arrangement produced droplets of decreasing size as the atomization pressure was increased, while changes in the spray rate had little effect on the mean droplet size. Increasing the HPC binder concentration from 2 to 8% w/w increased the binder droplet size and was most likely attributed to higher solution viscosity. The top spray granulation of mannitol showed induction type growth behavior. Process conditions like high spray rate, low fluidizing air velocity and binder solution concentration that promote the availability of HPC binder solution at the surface of the particles appeared to be key in enhancing nucleation and growth of the granules. Increasing the bed moisture level, up to a certain value, reduced the contribution of attrition to the overall growth profile of the granule and, more significantly, produced less granule breakage on drying. It was observed that the mean granule size could be reduced as much as 40% between the end of granulation and the end of drying for lower initial bed moisture level despite a shorter drying phase. High atomization pressure, especially when maintained during the drying phase, contributed substantially to granule breakage.

  8. Stator Indexing in Multistage Compressors

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1997-01-01

    The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.

  9. Fluid inclusion analysis of twinned selenite gypsum beds from the Miocene of the Madrid basin (Spain). Implication on dolomite bioformation

    NASA Astrophysics Data System (ADS)

    Ayllón-Quevedo, F.; Souza-Egipsy, V.; Sanz-Montero, M. E.; Rodríguez-Aranda, J. P.

    2007-09-01

    This research work is centred on continental lacustrine gypsum deposits of Miocene age cropping out in the easternmost part of the Madrid Basin. These gypsum deposits, accumulated in a continental saline lake, are characterized by a spectacular, distinctive Christmas-tree morphology and a peculiar dolomite replacement. A combination of microscopic (petrography and scanning electron microscopy) and analytical techniques (fluid inclusion microthermometry, X-ray energy dispersive spectroscopy and X-ray diffractometry) was used in order to study the crystallographic distribution and the composition of the fluid inclusions within the gypsum. The objectives were to characterize the continental brine from which the mineral precipitated, and to detect mineral and element traces that could indicate early diagenetic processes altering the gypsum deposits. Data from primary fluid inclusions indicated that gypsum precipitated from an aqueous fluid (lake water) of low to moderate total salinity (between 20 and 90 g/L NaCl). Secondary fluid inclusions represent interstitial lake brine in contact with gypsum, slightly enriched in total salt content as crystal formation proceeded. Textural, ultrastructural and microanalytical analysis indicate that the presence of dolomite precipitates inside the gypsum layers is related to the microbial colonization of the gypsum deposits and the biomineralization of the cell walls and extracellular polymeric substances around the cells. Our investigation emphasizes necessity of a multidisciplinary approach to assess geobiological processes.

  10. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated with ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.

  11. The application of preparative batch HPLC, supercritical fluid chromatography, steady-state recycling, and simulated moving bed for the resolution of a racemic pharmaceutical intermediate.

    PubMed

    Yan, Tony Q; Orihuela, Carlos; Swanson, David

    2008-02-01

    This article discusses the chromatographic resolution of a racemic pharmaceutical intermediate. Preparative batch high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC), steady-state recycling (SSR), and simulated moving bed (SMB) were used to resolve a total of 12.2 kg of a racemic pharmaceutical intermediate. In this study, a first batch of 0.8 kg of racemate was separated on the preparative batch HPLC and SFC, and subsequently another 5.9 kg of racemate was separated on the SSR. Lastly, a third batch of 5.5 kg was separated on the SMB. The separation conditions and results of these techniques are discussed. The productivities and solvent costs of SFC versus HPLC are compared. The productivities and solvent costs of SMB, SSR, and HPLC are also compared. The analytical method development and process optimization of these processes are also discussed in this article.

  12. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  13. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis.

    PubMed

    Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy

    2017-04-03

    Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer

  14. Multistage Pressure-Retarded Osmosis

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Devesh; Fyles, Thomas M.; Struchtrup, Henning

    2016-10-01

    One promising sustainable energy source is the chemical potential difference between salt and freshwater. The membrane process of pressure-retarded osmosis (PRO) has been the most widely investigated means to harvest salinity gradient energy. In this report, we analyse the thermodynamic efficiency of multistage PRO systems to optimize energy recovery from a salinity gradient. We establish a unified description of the efficiencies of the component pumps (P), turbines (T), pressure exchangers (PX), and membrane modules (M) and exploit this model to determine the maximum available work with respect to the volume of the brine produced, the volume of the sea water consumed, or the volume of the freshwater that permeates the membrane. In an idealized series configuration of 1-20 modules (P-M-T), the three optimization conditions have significantly different intermediate operating pressures in the modules, but demonstrate that multistage systems can recover a significantly larger fraction of the available work compared to single-stage PRO. The biggest proportional advantage occurs for one to three modules in series. The available work depends upon the component efficiencies, but the proportional advantage of multistage PRO is retained. We also optimize one- and two-stage PX-M-T and P-M-T configurations with respect to the three volume parameters, and again significantly different optimal operating conditions are found. PX-M-T systems are more efficient than P-M-T systems, and two-stage systems have efficiency advantages that transcend assumed component efficiencies. The results indicate that overall system design with a clear focus on critical optimization parameters has the potential to significantly improve the near-term practical feasibility of PRO.

  15. Effect of bed vicinity on vortex shedding and force coefficients of fluid flow on an offshore pipeline

    NASA Astrophysics Data System (ADS)

    Namazi-saleh, Fatemeh; Kurian, Velluruzhathil John; Mustaffa, Zahiraniza; Tahan, Mohammadreza; Kim, Dokyun

    2017-03-01

    The effect of rigid bed proximity on flow parameters and hydrodynamic loads in offshore pipelines exposed to turbulent flow is investigated numerically. The Galerkin finite volume method is employed to solve the unsteady incompressible 2D Navier-Stokes equations. The large eddy simulation turbulence model is solved using the artificial compressibility method and dual time-stepping approach. The proposed algorithm is developed for a wide range of turbulent flows with Reynolds numbers of 9500 to 1.5×104. Evaluation of the developed numerical model shows that the proposed technique is capable of properly predicting hydrodynamic forces and simulating the flow pattern. The obtained results show that the lift and drag coefficients are strongly affected by the gap ratio. The mean drag coefficient slightly increases as the gap ratio increases, although the mean lift coefficient rapidly decreases. The vortex shedding suppression happen at the gap ratio of less than 0.2.

  16. Granular activated carbon adsorption and fluid-bed reactivation at Manchester, New Hampshire. Final report Mar 77-Apr 82

    SciTech Connect

    Kittredge, D.; Beaurivage, R.; Paris, D.

    1983-10-01

    Treatment performances of virgin and reactivated GAC were evaluated during three reactivation-exhaustion cycles by measuring total organic carbon (TOC), trihalomethanes (THM), and trihalomethane formation potential (THMFP). GAC adsorptive capacity was measured using traditional test parameters including iodine number, molasses decolorizing index, BET, and pore-size distribution. The GAC was reactivated on-site by a 500 lb/hr fluidized-bed unit. Results of this study demonstrated that onsite reactivation was a cost-effective method of restoring the adsorptive properties of spent GAC. During a 10-month period, more than 1.8 million lb of GAC was reactivated at a total cost of less than 22 cents/lb as compared with a delivered cost of 61.5 cents/lb for virgin GAC. The average total carbon loss resulting from transportation and reactivation was 11.5% by volume.

  17. Effect of bed vicinity on vortex shedding and force coefficients of fluid flow on an offshore pipeline

    NASA Astrophysics Data System (ADS)

    Namazi-saleh, Fatemeh; Kurian, Velluruzhathil John; Mustaffa, Zahiraniza; Tahan, Mohammadreza; Kim, Dokyun

    2017-01-01

    The effect of rigid bed proximity on flow parameters and hydrodynamic loads in offshore pipelines exposed to turbulent flow is investigated numerically. The Galerkin finite volume method is employed to solve the unsteady incompressible 2D Navier-Stokes equations. The large eddy simulation turbulence model is solved using the artificial compressibility method and dual time-stepping approach. The proposed algorithm is developed for a wide range of turbulent flows with Reynolds numbers of 9500 to 1.5×104. Evaluation of the developed numerical model shows that the proposed technique is capable of properly predicting hydrodynamic forces and simulating the flow pattern. The obtained results show that the lift and drag coefficients are strongly affected by the gap ratio. The mean drag coefficient slightly increases as the gap ratio increases, although the mean lift coefficient rapidly decreases. The vortex shedding suppression happen at the gap ratio of less than 0.2.

  18. A study of multistage/multifunction column for fine particle separation

    SciTech Connect

    Chiang, Shiao-Hung

    1996-07-01

    The overall objective of the research program is to explore the potential application of a new invention involving a multistage column equipped with vortex-inducing loop-flow contactors (hereafter referred to as the multistage column) for fine coal cleaning process. The research work will identify the design parameters and their effects on the performance of the separation process. The results of this study will provide an engineering basis for further development of this technology in coal cleaning and in the general areas of fluid/particle separation. In the last quarter, we investigated the fine coal beneficiation behaviors in the multistage column and the conventional column. In this quarter, we have initiated the wastewater treatment tests program to verify the multifunction features of the multistage column. We also performed data analysis of the bubble sizes using a model based on the unified proportionality equation. 7 refs., 10 figs., 7 tabs.

  19. Feet swelling in a multistage ultraendurance triathlete: a case study

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Knechtle, Patrizia; Rosemann, Thomas; Rüst, Christoph Alexander

    2015-01-01

    Recent studies investigating ultraendurance athletes showed an association between excessive fluid intake and swelling of the lower limbs such as the feet. To date, this association has been investigated in single-stage ultraendurance races, but not in multistage ultraendurance races. In this case study, we investigated a potential association between fluid intake and feet swelling in a multistage ultraendurance race such as a Deca Iron ultratriathlon with ten Ironman triathlons within 10 consecutive days. A 49-year-old well-experienced ultratriathlete competed in autumn 2013 in the Deca Iron ultratriathlon held in Lonata del Garda, Italy, and finished the race as winner within 129:33 hours:minutes. Changes in body mass (including body fat and lean body mass), foot volume, total body water, and laboratory measurements were assessed. Food and fluid intake during rest and competing were recorded, and energy and fluid turnovers were estimated. During the ten stages, the volume of the feet increased, percentage body fat decreased, creatinine and urea levels increased, hematocrit and hemoglobin values decreased, and plasma [Na+] remained unchanged. The increase in foot volume was significantly and positively related to fluid intake during the stages. The poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. This case report shows that the volume of the foot increased during the ten stages, and the increase in volume was significantly and positively related to fluid intake during the stages. Furthermore, the poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. The continuous feet swelling during the race was most probably due to a combination of a high fluid intake and a progressive decline in renal function (ie, continuous increase in creatinine and urea), leading to body fluid retention (ie, increase in total body water). PMID:26508884

  20. Queuing register uses fluid logic elements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Queuing register /a multistage bit-shifting device/ uses a series of pure fluid elements to perform the required logic operations. The register has several stages of three-state pure fluid elements combined with two-input NOR gates.

  1. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed.

  2. Simulation of Multistage Turbine Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Mulac, R. A.; Adamczyk, J. J.

    1985-01-01

    The numerical simulation of turbine flows serves to enhance the understanding of the flow phenomena within multistage turbomachinery components. The direct benefit of this activity is improved modeling capability, which can be used to improve component efficiency and durability. A hierarchy of equations was formulated to assess the difficulty in analyzing the flow field within multistage turbomachinery components. The Navier-Stokes equations provides the most complete description. The simplest description is given by a set of equations that govern the quasi-one-dimensional flow. The number of unknowns to be solved for increases monotonically above the number of equations. The development of the additional set of equations needed to mathematically close the system of equations forms the closure problem associated with that level of description. For the Navier-Stokes equation there is no closure problem. For the quasi-one-dimensional equation set random flow fluctuations, unsteady fluctuations, nonaxisymmetric flow variations, and hub-to-shroud variations on the quasi-one-dimensional flow must be accounted for.

  3. Application of principal component analysis enables to effectively find important physical variables for optimization of fluid bed granulator conditions.

    PubMed

    Otsuka, Tomoko; Iwao, Yasunori; Miyagishima, Atsuo; Itai, Shigeru

    2011-05-16

    Principal component analysis was applied to effectively optimize the operational conditions of a fluidized bed granulator for preparing granules with excellent compaction and tablet physical properties. The crucial variables that affect the properties of the granules, their compactability and the resulting tablet properties were determined through analysis of a series of granulation and tabletting experiments. Granulation was performed while the flow rate and concentration of the binder were changed as independent operational variables, according to a two-factor central composite design. Thirteen physicochemical properties of granules and tablets were examined: powder properties (particle size, size distribution width, Carr's index, Hausner ratio and aspect ratio), compactability properties (pressure transmission ratio, die wall force and ejection force) and tablet properties (tensile strength, friability, disintegration time, weight variation and drug content uniformity). Principal component analysis showed that the pressure transmission ratio, die wall force and Carr's index were the most important variables in granule preparation. Multiple regression analysis also confirmed these results. Furthermore, optimized operational conditions obtained from the multiple regression analysis enabled the production of granules with desirable properties for tabletting. This study presents the first use of principle component analysis for identifying and successfully predicting the most important variables in the process of granulation and tabletting. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.

    PubMed

    Burggraeve, A; Van Den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2010-09-01

    In this study, the feasibility of spatial filter velocimetry (SFV) as process analytical technology tool for the in-line monitoring of the particle size distribution during top spray fluidized bed granulation was examined. The influence of several process (inlet air temperature during spraying and drying) and formulation variables (HPMC and Tween 20 concentration) upon the particle size distribution during processing, and the end product particle size distribution, tapped density and Hausner ratio was examined using a design of experiments (DOE) (2-level full factorial design, 19 experiments). The trend in end granule particle size distributions of all DOE batches measured with in-line SFV was similar to the off-line laser diffraction (LD) data. Analysis of the DOE results showed that mainly the HPMC concentration and slightly the inlet air temperature during drying had a positive effect on the average end granule size. The in-line SFV particle size data, obtained every 10s during processing, further allowed to explain and better understand the (in)significance of the studied DOE variables, which was not possible based on the LD data as this technique only supplied end granule size information. The variation in tapped density and Hausner ratio among the end granules of the different DOE batches could be explained by their difference in average end granule size. Univariate, multivariate PLS and multiway N-PLS models were built to relate these end granule properties to the in-line-measured particle size distribution. The multivariate PLS tapped density model and the multiway N-PLS Hausner ratio model showed the highest R(2) values in combination with the lowest RMSEE values (R(2) of 82% with an RMSEE of 0.0279 for tapped density and an R(2) of 52% with an RMSEE of 0.0268 for Hausner ratio, respectively). 2010 Elsevier B.V. All rights reserved.

  5. Multi-stage complex contagions

    NASA Astrophysics Data System (ADS)

    Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.

    2013-03-01

    The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.

  6. Multi-stage complex contagions.

    PubMed

    Melnik, Sergey; Ward, Jonathan A; Gleeson, James P; Porter, Mason A

    2013-03-01

    The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages-which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea-exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades-and hence collective action-can be driven not only by high-stage influencers but also by low-stage influencers.

  7. Wadeite (K2ZrSi3O9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: Its origin and response to multi-stage activities of alkaline fluids

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Wang, Ru-Cheng; Yang, Jin-Hui; Wu, Fu-Yuan; Zhang, Wen-Lan; Gu, Xiang-Ping; Zhang, Ai-Cheng

    2015-05-01

    The Triassic Saima alkaline complex in the Liaodong Peninsula of northeastern China covers an area of about 20 km2 and is dominated by nepheline syenite, with phonolite at its center, and a concealed body of eudialyte-bearing nepheline syenite in the northwest of the complex. The phonolite has similar features to miaskite, while the nepheline syenites are classified in the agpaitic group according to their mineral assemblage, and the alkalinity and aluminum saturation indexes. Zircon is the dominant Zr-bearing mineral in the phonolite, whereas wadeite occurs as the only primary Zr-bearing mineral in the nepheline syenites. The transitional crystallization from zircon to wadeite reveals an increase in alkalis and a high K/Na ratio as the magmas evolved from the volcanic to the intrusive stage. The primary wadeite grains underwent varying degrees of hydrothermal alteration. Overall, the areas of weak, medium, and strong alteration are characterized by the following respective associations: (1) wadeite + secondary catapleiite/gaidonnayite, (2) wadeite + secondary catapleiite/gaidonnayite + zircon, and (3) pseudomorphs after wadeite. The pseudomorphs are widespread and mainly consist of residual wadeite, secondary zircon, catapleiite/gaidonnayite, K-feldspar, calcite, and some Zr-bearing titanite and vesuvianite. All of the secondary zircon grains in the three associations are typically enriched in Ca and Al compared with the primary Ca-free zircons of the phonolite. The progressive alteration of wadeite suggests that the Saima complex underwent multiple episodes of fluid activity during a hydrothermal stage, including an initial Na-metasomatism via alkaline fluids, then stages most likely involving progressively CO2-rich fluids, and an intensive episode involving a mixture of these fluids with externally derived Ca-rich fluids.

  8. Thermal energy storage systems using fluidized bed heat exchangers

    NASA Technical Reports Server (NTRS)

    Weast, T.; Shannon, L.

    1980-01-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  9. Multi-stage desulfurizing fluid-bed combustor for coal-fired hot gas generator systems: Topical report No. 3. Task 6. Modifications to Materials Handling Equipment. Task 7. Testing

    SciTech Connect

    Lowell, C.

    1981-04-01

    This report covers the modification of Materials Handling Equipment, Testing and Program Management of Tasks 6, 7 and 8 of Phase 2. The Cohogg system contains a pyrolyzer for partial gasification of the coal through sub-stoichiometric combustion, a char burner which burns the char (generated in the pyrolyzer) in excess air, and an afterburner where the pyrolyzer gases and the char burner gases mix to produce a high temperature (approx. 3000/sup 0/F) environmentally clean flame capable of replacing an oil or gas burner. The system has operated successfully and demonstrated the capability of producing an environmentally clean high temperature flame. Operation with 15% excess air overall demonstrated a 3200/sup 0/F capability while sulfur retention was in excess of 90%. After more than 100 hours of operation the system shows itself to have flexibility in coal type, sorbent type, and operating temperatures while maintaining a clean high temperature flame and meeting or exceeding current pollution restrictions.

  10. Bed Bugs

    EPA Pesticide Factsheets

    Prevent, identify, and treat bed bug infestations using EPA’s step-by-step guides, based on IPM principles. Find pesticides approved for bed bug control, check out the information clearinghouse, and dispel bed bug myths.

  11. Influence of binder properties, method of addition, powder type and operating conditions on fluid-bed melt granulation and resulting tablet properties.

    PubMed

    Abberger, T

    2001-12-01

    The aim of the study was to investigate melt granulation in a laboratory scale fluid-bed granulator with respect to granule growth, granule properties and resulting tablet properties. The parameters investigated were method of addition of PEG (spray-on or addition as flakes), binder concentration, PEG type (3000, 4000 and 6000, sprayed-on), size (PEG 4000, added as three different sized flakes), powder type (two different sized lactose types and corn starch) and operating conditions (volume air flow and heating temperature). Addition of binder as flakes led to layering as a growth mechanism when the size of the flakes was high. Coalescence occurred when the size was low. Coalescence also occurred when spraying was the method of addition. Due to the greater viscosity of the PEG 6000 melt it produced bigger granules than 3000 or 4000. The influence of volume air flow was moderate and the influence of heating temperature in the range of 70-90 degrees C was very low with both methods of addition. The disintegration time of tablets from granules where PEG was added as flakes was shorter than from granules where PEG was sprayed-on. The latter method of binder addition led to tablets which did not disintegrate but eroded. This was apparently caused by formation of a binder matrix, which could not be destroyed by the disintegrant.

  12. Effectiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated soils.

    PubMed

    Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C

    2001-07-01

    An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor.

  13. Influence of the gap size and dielectric constant of the packing on the plasma discharge in a packed bed dielectric barrier discharge reactor: a fluid modeling study

    NASA Astrophysics Data System (ADS)

    van Laer, Koen; Bogaerts, Annemie

    2016-09-01

    Packed bed dielectric barrier discharge (DBD) reactors have proven to be very useful sources of non-thermal plasma for a wide range of applications, of which the environmental applications have received most attention in recent years. Compared to an empty DBD reactor, a packing was introduced to either enhance the energy efficiency of the process, or, if the packing is catalytically active, steer the process towards a preferred end product. A wide range of geometries, bead sizes and bead materials have been tested experimentally in the past. However, since experimental diagnostics become more difficult with a packing present, a computational study is proposed to gain more insight. Using COMSOL's built in plasma module, a 2D axisymmetric fluid model is developed to study the influence of the gap size and the dielectric constant (ɛ) of the packing. Helium is used as discharge gas, at atmospheric pressure and room temperature. By decreasing the gas gap, the electric field strength is enhanced, resulting in a higher number of current peaks per half cycle of applied rf potential. Increasing ɛ also enhances the electric field strength. However, after a certain ɛ, its influence saturates. The electric field strength will no longer increase, leaving the discharge behavior unchanged.

  14. Design and numerical analysis of cooling circuit for multistage canned pump

    NASA Astrophysics Data System (ADS)

    Zhou, Yisong; Kong, Fanyu; Bai, Yuxing; Cao, Ruijia

    2017-05-01

    When multistage canned pump works, the temperature rise of the canned motor is high. The designing of the cooling circuit is critical for the performance of the multistage canned pump. The cooling circulation circuit is designed for DPB40-50 × 8 multistage canned pump, and numerical simulation method is adopted. The whole flow domain is modeled by CREO2.0, and calculated and analyzed by CFX14.0. The information of temperature, flow field, pressure distribution in the canned sleeve gap where temperature changed greatly were obtained, the convective heat transfer coefficient between fluid and motor, and the flow rate of the cooling fluid were also gained. The results show that: Under the design condition, the temperature rise of the cooling circuit inside the shielded motor is less than 3K, which can cool the shielded motor very well. The convective heat transfer coefficient of the wall surface of the stator and rotor shielding sleeve, the flow field and thermal field were analyzed, which can reflect the forced convection heat transfer characteristics of the fluid in the canned sleeve gap. The flow of the cooling fluid is changing with different working condition and reached the peak of temperature at the outlet of the canned sleeve gap. The cooling cycle flow are related with the pressure at the drainage hole directly. It can be also concluded that the cooling circuit can satisfy the requirements of the multistage canned pump.

  15. Two fluxes multistage induction coilgun

    NASA Astrophysics Data System (ADS)

    Gherman, L.; Pearsica, M.; Circiu, I.; Rotaru, C.

    2017-05-01

    This paper presents a brand new induction electromagnetic launcher, which uses two magnetic fluxes in order to accelerate a projectile. One magnetic flux induce a current in the armature and the second magnetic flux is creating a radial magnetic field. This aproach offer multiple advantages over single flux designs. First we are able to control the induced current in armature because we use the coil just to induce current inside the ring with a great efficiency. Second advantage is the angle of 900 between magnetic field density B and the ring. We used the induction to avoid contact between armature and accelerator. In order to create the magnetic field radial we used four coils perpendicular on armature. This approach alove us to control the phase difference between induced current in armature and current in magnetic field coils for a maximum force. The phase difference is obtained by changing the frequency of magnetic field coils power source. We used simulation software to analyze, and simulate a multistage induction coilgun design with two fluxes. The simulation results demonstrated the theoretical results.

  16. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  17. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  18. Design of Multistage Axial-Flow Compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1983-01-01

    Program developed for computing aerodynamic design of multistage axialflow compressor and associated blading geometry input for internal flow analysis. Aerodynamic solution gives velocity diagrams on selected streamlines of revolution at blade row edges. Program written in FORTRAN IV.

  19. Multistage Simulations of the GE90 Turbine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Vitt, Paul H.; Topp, David A.; Saeidi, Sohrab; Hunter, Scott D.; Dailey, Lyle D.; Beach, Timothy A.

    1999-01-01

    The average passage approach has been used to analyze three multistage configurations of the GE90 turbine. These are a high pressure turbine rig, a low pressure turbine rig and a full turbine configuration comprising 18 blade rows of the GE90 engine at takeoff conditions. Cooling flows in the high pressure turbine have been simulated using source terms. This is the first time a dual-spool cooled turbine has been analyzed in 3D using a multistage approach. There is good agreement between the simulations and experimental results. Multistage and component interaction effects are also presented. The parallel efficiency of the code is excellent at 87.3% using 121 processors on an SGI Origin for the 18 blade row configuration. The accuracy and efficiency of the calculation now allow it to be effectively used in a design environment so that multistage effects can be accounted for in turbine design.

  20. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem.

  1. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  2. Matching multistage schemes to viscous flow

    NASA Astrophysics Data System (ADS)

    Kleb, William Leonard

    A method to accelerate convergence to steady state by explicit time-marching schemes for the compressible Navier-Stokes equations is presented. The combination of cell-Reynolds-number-based multistage time stepping and local preconditioning makes solving steady-state viscous flow problems competitive with the convergence rates typically associated with implicit methods, without the associated memory penalty. Initially, various methods are investigated to extend the range of multistage schemes to diffusion-dominated cases. It is determined that the Chebyshev polynomials are well suited to serve as amplification factors for these schemes; however, creating a method that can bridge the continuum from convection-dominated to diffusion-dominated regimes proves troublesome, until the Manteuffel family of polynomials is uncovered. This transformation provides a smooth transition between the two extremes; and armed with this information, sets of multistage coefficients are created for a given spatial discretization as a function of cell Reynolds number according to various design criteria. As part of this process, a precise definition for the numerical time step is hammered out, something which up to this time, has been set via algebraic arguments only. Next are numerical tests of these sets of variable multistage coefficients. To isolate the effects of the variable multistage coefficients, the test case chosen is very simple: circular advection-diffusion. The numerical results support the analytical analysis by demonstrating an order of magnitude improvement in convergence rate for single-grid relaxation and a factor of three for multigrid relaxation. Building upon the success of the scalar case, preconditioning is applied to make the Navier-Stokes system of equations behave more nearly as a single scalar equation. Then, by applying the variable multistage coefficient scheme to a typical boundary-layer flow problem, the results affirm the benefits of local preconditioning

  3. A quasi-one-dimensional CFD model for multistage turbomachines

    NASA Astrophysics Data System (ADS)

    Léonard, Olivier; Adam, Olivier

    2008-03-01

    The objective of this paper is to present a fast and reliable CFD model that is able to simulate stationary and transient operations of multistage compressors and turbines. This analysis tool is based on an adapted version of the Euler equations solved by a time-marching, finite-volume method. The Euler equations have been extended by including source terms expressing the blade-flow interactions. These source terms are determined using the velocity triangles and a row-by-row representation of the blading at mid-span. The losses and deviations undergone by the fluid across each blade row are supplied by correlations. The resulting flow solver is a performance prediction tool based only on the machine geometry, offering the possibility of exploring the entire characteristic map of a multistage compressor or turbine. Its efficiency in terms of CPU time makes it possible to couple it to an optimization algorithm or to a gas turbine performance tool. Different test-cases are presented for which the calculated characteristic maps are compared to experimental ones.

  4. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  5. Multi-megavolt low jitter multistage switch

    DOEpatents

    Humphreys, D.R.; Penn, K.J. Jr.

    1985-06-19

    It is one object of the present invention to provide a multistage switch capable of holding off numerous megavolts, until triggered, from a particle beam accelerator of the type used for inertial confinement fusion. The invention provides a multistage switch having low timing jitter and capable of producing multiple spark channels for spreading current over a wider area to reduce electrode damage and increase switch lifetime. The switch has fairly uniform electric fields and a short spark gap for laser triggering and is engineered to prevent insulator breakdowns.

  6. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  7. Multistage Magnetic Separator of Cells and Proteins

    NASA Technical Reports Server (NTRS)

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  8. Phase stability in a multistage Zeeman decelerator

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Merkt, F.

    2010-10-15

    The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.

  9. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  10. Automated Simultaneous Assembly for Multistage Testing

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Ariel, Adelaide; Veldkamp, Bernard P.

    2005-01-01

    This article offers some solutions used in the assembly of the computerized Uniform Certified Public Accountancy (CPA) licensing examination as practical alternatives for operational programs producing large numbers of forms. The Uniform CPA examination was offered as an adaptive multistage test (MST) beginning in April of 2004. Examples of…

  11. "MSTGen": Simulated Data Generator for Multistage Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2013-01-01

    Multistage testing, or MST, was developed as an alternative to computerized adaptive testing (CAT) for applications in which it is preferable to administer a test at the level of item sets (i.e., modules). As with CAT, the simulation technique in MST plays a critical role in the development and maintenance of tests. "MSTGen," a new MST…

  12. Multistage Deployment of the Army Theater Hospital

    DTIC Science & Technology

    2013-12-01

    capability on the battlefield to include myriad surgical capacity, emergency treatment, pharmacy , psychiatry, community health, clinical laboratory...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited MULTISTAGE...DEPLOYMENT OF THE ARMY THEATER HOSPITAL by Trisha A. Cobb December 2013 Thesis Advisor: Ned Dimitrov Second Reader: Lawrence Fulton THIS PAGE

  13. A Multistage Approach for Image Registration.

    PubMed

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  14. Detecting Differential Speededness in Multistage Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Breithaupt, Krista; Chuah, Siang Chee; Zhang, Yanwei

    2007-01-01

    A potential undesirable effect of multistage testing is differential speededness, which happens if some of the test takers run out of time because they receive subtests with items that are more time intensive than others. This article shows how a probabilistic response-time model can be used for estimating differences in time intensities and speed…

  15. "MSTGen": Simulated Data Generator for Multistage Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2013-01-01

    Multistage testing, or MST, was developed as an alternative to computerized adaptive testing (CAT) for applications in which it is preferable to administer a test at the level of item sets (i.e., modules). As with CAT, the simulation technique in MST plays a critical role in the development and maintenance of tests. "MSTGen," a new MST…

  16. Automated Simultaneous Assembly for Multistage Testing

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Ariel, Adelaide; Veldkamp, Bernard P.

    2005-01-01

    This article offers some solutions used in the assembly of the computerized Uniform Certified Public Accountancy (CPA) licensing examination as practical alternatives for operational programs producing large numbers of forms. The Uniform CPA examination was offered as an adaptive multistage test (MST) beginning in April of 2004. Examples of…

  17. The design and development of transonic multistage compressors

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Steinke, R. J.; Newman, F. A.

    1988-01-01

    The development of the transonic multistage compressor is reviewed. Changing trends in design and performance parameters are noted. These changes are related to advances in compressor aerodynamics, computational fluid mechanics and other enabling technologies. The parameters normally given to the designer and those that need to be established during the design process are identified. Criteria and procedures used in the selection of these parameters are presented. The selection of tip speed, aerodynamic loading, flowpath geometry, incidence and deviation angles, blade/vane geometry, blade/vane solidity, stage reaction, aerodynamic blockage, inlet flow per unit annulus area, stage/overall velocity ratio, and aerodynamic losses are considered. Trends in these parameters both spanwise and axially through the machine are highlighted. The effects of flow mixing and methods for accounting for the mixing in the design process are discussed.

  18. [Variance estimation considering multistage sampling design in multistage complex sample analysis].

    PubMed

    Li, Yichong; Zhao, Yinjun; Wang, Limin; Zhang, Mei; Zhou, Maigeng

    2016-03-01

    Multistage sampling is a frequently-used method in random sampling survey in public health. Clustering or independence between observations often exists in the sampling, often called complex sample, generated by multistage sampling. Sampling error may be underestimated and the probability of type I error may be increased if the multistage sample design was not taken into consideration in analysis. As variance (error) estimator in complex sample is often complicated, statistical software usually adopt ultimate cluster variance estimate (UCVE) to approximate the estimation, which simply assume that the sample comes from one-stage sampling. However, with increased sampling fraction of primary sampling unit, contribution from subsequent sampling stages is no more trivial, and the ultimate cluster variance estimate may, therefore, lead to invalid variance estimation. This paper summarize a method of variance estimation considering multistage sampling design. The performances are compared with UCVE and the method considering multistage sampling design by simulating random sampling under different sampling schemes using real world data. Simulation showed that as primary sampling unit (PSU) sampling fraction increased, UCVE tended to generate increasingly biased estimation, whereas accurate estimates were obtained by using the method considering multistage sampling design.

  19. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  20. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  1. Anaerobic fluid-bed treatment of coal conversion wastewater: Fifth quarterly technical progress report for the period August 15 to November 15, 1987

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhala, G.F.; Traegner, U.K.

    1987-01-01

    Anaerobic fluidized-bed granular activated carbon (GAC) reactors have been proven successful for the treatment of biologically inhibiting wastewaters such as coal conversion wastewaters. However, in treating such wastewaters which contain compounds that not only resist biodegradation, BUT ALSO INHIBIT THE DEGRADATION OF OTHER COMPOUNDS, adsorption on granular activated carbon represents a viable strategy for the removal of these inhibitory compounds. Since the adsorptive capacity of the reactor media is limited, partial replacement of the carbon bed is then necessary to maintain the concentration of inhibitory compounds below threshold levels. The hydraulic detention time and the associated carbon inventory maintenance represent the single most important capital cost parameter. The objectives of this research are to determine, using experimental and modeling strategies, the effects of hydraulic detention time and the schedule of GAC replacement on the performance of these fluidized bed GAC anaerobic reactors. This objective is realized by the following activities: operation of two expanded-bed GAC anaerobic reactors at empty-bed hydraulic detention times of 1.0 and 0.5 days. These reactors will be referred to as reactors 1 and 2, respectively. The wastewater fed to the two reactors includes phenol, acetic acid and o-cresol as model compounds of a real coal conversion wastewater. Development of a mathematical model of the expanded-bed GAC anaerobic reactor incorporating the various interactions that occur in this process such as biodegradation, adsorption on GAC, and the regular replacement of reactor GAC with virgin media. 1 ref., 1 fig., 6 tabs.

  2. Numerical Study of Usage Efficiency of Multistage Filters on Mineral Leaching Process

    NASA Astrophysics Data System (ADS)

    Inkarbekov, Medet; Kuljabekov, Alibek; Alibayeva, Karlygash; Kaltayev, Aidarkhan

    2013-11-01

    The numerical study of the usage efficiency of the multistage filters setting technology is carried out on the basis of mathematical simulation. And its application on in-situ mineral leaching process is considered. So long as mineral bearing sandstone in deposit mostly is separated by interbedded layers of sands and clays, it's expedient to use multistage filters setting technology at the mineral extraction. A comparison of the extraction degree at single and multistage filters is implemented. The results of calculations show that the distribution of flow (inflow) on well height is not uniform. In the calculations the well accepted as high-permeability channel, depending on the construction of the filter. Obtained results for a multistage filters setting qualitatively conform to the experimental findings. Wellbore is considered as a surface with a constant reduced pressure in the bottomhole formation zone. But such assumption does not show a qualitative picture of the fluid flow in the bottomhole zone [Brovin K.G., Grabovnikov V.A., 1997]. To construct an accurate mathematical model it's necessary to use Navier-Stokes equation for the interior of a vertical wellbore, and the filtration law for modeling the filtration in the reservoir. Strictly speaking, it would have had to sew two laws on the contact surface of a rock and filter. Such review requires enormous computing, as far as computational grid must be sufficiently thick to cover the interior of the wellbore.

  3. An epidemic model with a multistage vaccine.

    PubMed

    DeLegge, Anthony; Hunzinger, Katie; Khatri, Reema; Munir, Kiran

    2015-03-01

    Many diseases, such as the seasonal flu, tetanus, and smallpox, can be vaccinated against with a single dose of a vaccine. However, some diseases require multiple doses of a vaccine for immunity. For example, Hepatitis B requires three doses of a vaccine, with the second occurring about 1 month after the first and the third occurring about 5 months after the second, for immunity. Diseases requiring a multistage vaccine such as Hepatitis B can have extra complications with its vaccination program, as some who start the doses may forget to complete the program or could become infected before completing the program. This article concerns the setup and analysis of a model for disease spread with a multistage vaccine available to investigate how effective such a vaccine would be at establishing herd immunity for the disease as well as establishing the short-term and long-term effects of such a vaccine.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  6. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  7. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  8. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  9. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  10. Biodynamic modeling and simulation of multistage carcinogenesis.

    PubMed

    Ahangar, R; Iqbal, K

    2004-01-01

    We present a mathematical model of multistage carcinogenesis. The population genetic model is developed based on the reaction diffusion, logistic behavior, and Hollings Type II interactions between normal, benign, and premalignant mutant cells. Computer simulations are used to observe the behavior, stability, and traveling wave solution of the premalignant stage mutation as well as its survival under natural selection pressure. As a simple application of the model, the interaction between normal and tumor cells with one or two stages of mutation is analyzed.

  11. Multi-stage sampling in genetic epidemiology.

    PubMed

    Whittemore, A S; Halpern, J

    When data are expensive to collect, it can be cost-efficient to sample in two or more stages. In the first stage a simple random sample is drawn and then stratified according to some easily measured attribute. In each subsequent stage a random subset of previously selected units is sampled for more detailed observation, with a unit's sampling probability determined by its attributes as observed in the previous stages. These designs are useful in many medical studies; here we use them in genetic epidemiology. Two genetic studies illustrate the strengths and limitations of the approach. The first study evaluates nuclear and mitochondrial DNA in U.S. blacks. The goal is to estimate the relative contributions of white male genes and white female genes to the gene pool of African-Americans. This example shows that the Horvitz-Thompson estimators proposed for multi-stage designs can be inefficient, particularly when used with unnecessary stratification. The second example is a multi-stage study of familial prostate cancer. The goal is to gather pedigrees, blood samples and archived tissue for segregation and linkage analysis of familial prostate cancer data by first obtaining crude family data from prostate cancer cases and cancer-free controls. This second example shows the gains in efficiency from multi-stage sampling when the individual likelihood or quasilikelihood scores vary substantially across strata.

  12. Handling Imbalanced Data Sets in Multistage Classification

    NASA Astrophysics Data System (ADS)

    López, M.

    Multistage classification is a logical approach, based on a divide-and-conquer solution, for dealing with problems with a high number of classes. The classification problem is divided into several sequential steps, each one associated to a single classifier that works with subgroups of the original classes. In each level, the current set of classes is split into smaller subgroups of classes until they (the subgroups) are composed of only one class. The resulting chain of classifiers can be represented as a tree, which (1) simplifies the classification process by using fewer categories in each classifier and (2) makes it possible to combine several algorithms or use different attributes in each stage. Most of the classification algorithms can be biased in the sense of selecting the most populated class in overlapping areas of the input space. This can degrade a multistage classifier performance if the training set sample frequencies do not reflect the real prevalence in the population. Several techniques such as applying prior probabilities, assigning weights to the classes, or replicating instances have been developed to overcome this handicap. Most of them are designed for two-class (accept-reject) problems. In this article, we evaluate several of these techniques as applied to multistage classification and analyze how they can be useful for astronomy. We compare the results obtained by classifying a data set based on Hipparcos with and without these methods.

  13. Paragenesis and chemistry of multistage tourmaline formation in the sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1998-01-01

    Detailed petrographic study, scanning electron microscope imaging, and electron microprobe analyses of tourmalines from the Sullivan Pb-Zn-Ag massive sulfide deposit (British Columbia, Canada) document multiple paragenetic stages and large compositional variations. The tourmalines mainly belong to two common solid-solution series: dravite-schorl and dravite-uvite. Ca- and Fe-rich feruvite and alkali-deficient tourmalines are present locally. Products of tourmaline-forming stages include (from oldest to youngest): (1) rare Fe-rich dravite-schorl within black tourmalinite clasts in footwall fragmental rocks; (2) widespread Mg-rich, very fine grained, felted dravite in the footwall (the main type of tourmaline in the footwall tourmalinite pipe); (3) recrystallized, Fe-rich dravite-schorl (locally Ca-Fe feruvite) in the tourmalinite pipe, which preferentially occurs near postore gabbroic intrusions; (4) Mg-rich dravite or uvite associated with chlorite-pyrrhotite and chlorite-albite-pyrite-altered rocks in the shallow footwall and hanging wall; (5) discrete Mg-rich tourmaline grains associated with chlorite and discordant Mg-rich tourmaline rims which occur on disseminated Fe-rich schorl in the bedded Pb-Zn-Ag ores. The timing of rare Fe-rich schorl in the bedded ores is uncertain, but it most likely occurred during or between stages 2 and 3. The different paragenetic stages and their respective tourmaline compositions are interpreted in terms of a multistage evolution involving contributions from: (1) variable mixtures of synsedimentary, Fe-rich hydrothermal fluids and entrained seawater; (2) postore, Fe-rich, gabbro-related hydrothermal fluids; and (3) postore metamorphic reactions. Early synsedimentary, Fe-rich hydrothermal fluids which contained little or no entrained seawater formed Fe-rich black tourmalinite clasts locally in the footwall. The major type of tourmaline in the footwall tourmalinite pipe is Mg rich, recording seawater entrainment under high water

  14. A study of Multistage/Multifunction Column for Fine Coal Cleaning CRADA PC93-005, Final Report

    SciTech Connect

    Ralph Lai; Shiao-Hung Chiang; Daxin He; Yuru Feng

    1998-09-04

    The overall objective of the this research project is to explore the potential applicability of a multistage column for fine coal cleaning and other applications in fluid particle separation. The research work identifies the design parameters and their effects on the performance of the separation device. The results of this study provide an engineering data basis for further development of this technology in coal cleaning and in general areas of fluid and particle separations.

  15. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  16. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-12-31

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

  17. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  18. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD

  19. Anaerobic fluid-bed treatment of coal conversion wastewater: Third quarterly technical progress report for the period February 16-May 15, 1987

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhala, G.F.; Traegner, U.K.

    1987-06-01

    Anaerobic fluidized-bed GAC reactors have been proven successful for the treatment of biologically inhibiting wastewaters such as coal conversion wastewaters. However, in treating such wastewaters, which contain compounds that not only resist biodegradation but also inhibit the degradation of other compounds, adsorption on granular activated carbon (GAC) is a viable strategy for the removal of these inhibitory compounds. Since the adsorptive capacity of the reactor media is limited, partial replacement of the carbon bed is then necessary to maintain the concentration of inhibitory compounds below threshold levels. The cost of the GAC replacement thus represents a major operating cost of the system. The hydraulic detention time and the associated carbon inventory represents the single most important capital cost parameter. The objectives of this research are to determine, using experimental and modeling strategies, the effects of hydraulic detention time and the schedule of GAC replacement on the performance of fluidized bed GAC anaerobic reactors during the treatment of coal conversion wastewater. This objective is realized by the described activities.

  20. Anaerobic fluid-bed treatment of coal conversion wastewater: Eighth quarterly technical progress report for the period May 15, 1988--August 15, 1988

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhla, G.F.; Traegner, U.K.

    1988-01-01

    Anaerobic fluidized-bed GAC reactors have been proven successful for the treatment of biologically inhibiting wastewaters such as coal conversion wastewaters. However, in treating such wastewaters which contain compounds that not only resist biodegradation but also inhibit the degradation of other compounds, adsorption on granular activated carbon (GAC) represents a viable strategy for the removal of these inhibitory compounds. Since the adsorptive capacity of the reactor media is limited, partial replacement of the carbon bed is then necessary to maintain the concentration of inhibitory compounds below threshold levels. The cost of the GAC replacement thus represents a major operating cost of the system. The hydraulic detention time and the associated carbon inventory represent the single most important capital cost parameter. The objectives of this research are to determine, using experimental and modeling strategies, the effects of hydraulic detention time and the schedule of GAC replacement on the performance of fluidized-bed GAC anaerobic reactors during the treatment of coal conversion wastewater. 1 ref., 3 figs., 1 tab.

  1. Anaerobic fluid-bed treatment of coal conversion wastewater: Sixth quarterly technical progress report for the period November 15, 1987 to February 15, 1988

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhla, G.F.; Traegner, U.K.

    1988-01-01

    Anaerobic fluidized-bed GAC reactors have been proven successful for the treatment of biolgoically inhibiting watewaters such as coal conversion wastewaters. However, in treating such wastewaters which contain compounds that not only resist biodegradation but also inhibit the degradation of other compounds, adsorption on granular activated carbon (GAC) represent a viable strategy for the removal of these inhibitory compounds. Since the adsorptive capacity of the reactor media is limited, partial replacement of the carbon bed is then necessary to maintain the concentration of inhibitory compounds below threshold levels. The cost of the GAC replacement thus represents a major operating cost of the system. The hydraulic detention time and the assoicated carbon inventory represent the single most important capital cost parameter. The objectives of this research are to determine, using experimental and modeling strategies, the effects of hydraulic detention time and the schedule of GAC replacement on the performance of fluidized bed GAC anaerobic reactors during the treatment of coal conversion wastewater. 1 ref., 1 tab.

  2. Anaerobic fluid-bed treatment of coal conversion wastewater: Fourth quarterly technical progress report for the period May 15 to August 15, 1987

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhala, G.F.; Traegner, U.K.

    1987-01-01

    Anaerobic fluidized-bed GAC reactors have been proven successful for the treatment of biologically inhibiting wastewaters such as coal conversion wastewaters. However, in treating such wastewaters which contain compounds that not only resist biodegradation but also inhibit the degradation of other compounds, adsorption on granular activated carbon (GAC) is a viable strategy for the removal of these inhibitory compounds. Since the adsorptive capacity of the reactor media is limited, partial replacement of the carbon bed is then necessary to maintain the concentration of inhibitory compounds below threshold levels. The cost of the GAC replacement thus represents a major operating cost of the system. The hydraulic detention time and the associated carbon inventory represent the single most important capital cost parameter. The objectives of this research are to determine, using experimental and modeling strategies, the effects of hydraulic detention time and the schedule of GAC replacement on the performance of fluidized bed GAC anaerobic reactors during the treatment of coal conversion wastewater. 7 figs., 2 tabs.

  3. Bed-parallel calcite veins in the core of Wills Mountain anticline: Implications for deformation conditions and fluid flow during the Alleghanian orogeny

    SciTech Connect

    Evans, M.A.; Battles, D.A. . Dept. of Geology and Geography)

    1994-03-01

    Thick, bed-parallel to sub-bed-parallel calcite veins are found in Upper Ordovician Trenton and Black River Group limestones exposed in the core of Wills Mountain anticline, Pendleton County, West Virginia. The veins range in thickness from less than 5 centimeters to over 2 meters, and contain individual crystals up to 20 centimeters across. The veins have a 1 to 3 mete spacing, and are planar to lensoid. They are also subhorizontal, and can be traced for tens of meters along the outcrop. The calcite is opaque to translucent white, and occasionally colorless and transparent. Tectonic slickenlines are found at the top and bottom margins of the veins, as well as within the veins. These slickenlines indicate transport directed toward 280[degree]--315[degree]. When crushed the calcite emits a strong odor of H[sub 2]S. The calcite contains abundant two-phase aqueous inclusions that have ice melting temperatures (T[sub m]) of [minus]9.0 to [minus]14.1 C. This corresponds to a salinity of 13 to 17 wt.% NaCl equiv. Inclusion homogenization (T[sub b]) values range from 91.8 to 135.1 C, with a medium value of 124 C. Since the calcite veins are bed-parallel and subhorizontal, they must have formed under lithostatic conditions. The calcite veins occur along a fault that is proposed to be a splay from the Ordovician Martinsburg Fm. decollement. This major decollement separates two Cambro-Ordovician carbonate flats east of the Wills Mountain anticline. The splay served as a conduit for the release of massive amounts of H[sub 2]S-saturated brine from the decollement.

  4. Introduction to Bed Bugs

    MedlinePlus

    ... preventing infestations, increased resistance of bed bugs to pesticides, and ineffective pest control practices. The good news ... Bed Bugs — Do-it-yourself Bed Bug Control — Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ...

  5. Study of ebullated-bed fluid dynamics for h-coal. Quarterly progress report No. 2, October 1-December 31, 1980

    SciTech Connect

    Schaefer, R. J.; Rundell, D. N.

    1981-01-01

    Analysis of data from the fluid dynamics tests performed at Hydrocarbon Research, Inc., during Run PDU-10 was started. Data in the computer files were cross-checked with the original notebooks to verify accuracy. Gamma-ray mass absorption coefficients for material in the PDU reactor were calculated using characterization of selected oil and catalyst samples. Battelle Institute began viscosity measurement of PDU reactor liquid samples. Northwestern University began shakedown of the 6'' diameter test stand. Model fluids were selected and charged to the unit. Optical components were designed and assembly was started.

  6. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  7. Anaerobic fluid-bed treatment of coal conversion wastewater: Second quarterly technical progress report for the period November 16, 1986-February 15, 1987

    SciTech Connect

    Suidan, M.T.; Pfeffer, J.T.; Nakhla, G.F.; Traegner, U.K.

    1987-01-01

    The objectives of the research project are to determine, using simultaneous experimental and modeling strategies, the effects of the hydraulic detention time and the schedule of granular activated carbon (GAC) replacement on the performance of the expanded-bed GAC anaerobic reactor during the treatment of biologically inhibiting coal conversion wastewaters. The hydraulic detention time and the associated carbon inventory represents the single most important capital cost parameter while GAC replacement, which is needed to maintain the concentrations of toxic compounds below threshold levels, represents a major operating cost parameter.

  8. The numerical simulation of multistage turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.

    1990-01-01

    The need to account for momentum and energy transport by the unsteady deterministic flow field in modeling the time-averaged flow state within a blade row passage embedded in a multistage compressor is assessed. It was found that, within the endwall regions, large-scale three-dimensional unsteady structures existed which caused significant transport of momentum and energy across the time-averaged stream surface of a stator flow field. These experiments confirmed that the tranport process is dominated by turbulent diffusion in the midspan region. A model was then proposed for simulating this transport process, and a limited study was undertaken to assess its validity.

  9. Conditional statistical inference with multistage testing designs.

    PubMed

    Zwitser, Robert J; Maris, Gunter

    2015-03-01

    In this paper it is demonstrated how statistical inference from multistage test designs can be made based on the conditional likelihood. Special attention is given to parameter estimation, as well as the evaluation of model fit. Two reasons are provided why the fit of simple measurement models is expected to be better in adaptive designs, compared to linear designs: more parameters are available for the same number of observations; and undesirable response behavior, like slipping and guessing, might be avoided owing to a better match between item difficulty and examinee proficiency. The results are illustrated with simulated data, as well as with real data.

  10. Multistage optimization of reconstruction sequence of highways

    SciTech Connect

    Kiyota, Masaru; Vandebona, U.; Tanoue, Hiroshi

    1999-10-01

    A method to determine the optimal groups of road segments to be simultaneously treated during road widening programs is described. This methodology specifically addresses a prioritizing system and the closure strategy considering the disutility due to rehabilitation. The dynamic programming methodology is utilized for the optimization procedure where the problem has been formulated as a utility maximization problem. The mathematical modeling of the problem and its solution technique are described. An example is included. The results indicate that the proposed method differs from the conventional design method for the determination of reconstruction sequence because the closure strategy is simultaneously determined by the multistage optimization.

  11. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect

    John L. Marion; Nsakala ya Nsakala

    2003-11-09

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  12. Relationships Between sea bed Morphology, Chemosynthetic Biota and Fluid Flow in the Source area of the 1998 Papua New Guinea Tsunami.

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; McMurtry, G. M.; Matsumoto, T.

    2001-12-01

    The Sissano or Aitape tsunami that struck the north coast of Papua New Guinea (PNG) in the evening of July 17th 1998 left more than 2,000 people dead and 12,000 homeless as three villages were completely destroyed and four more badly damaged. The source of the local tsunami remains controversial and has been postulated as due to seabed dislocation either by thrust or sediment slump, although there is increasing recognition that the latter alternative is most likely. The alternative source mechanisms of the tsunami were addressed during 1999 to 2001 by offshore studies including the acquisition of multibeam bathymetry, sub-bottom profiling, sediment sampling, seabed observation from the JAMSTEC Dolphin 3K Remotely Operated Vehicle and Shinkai 2000 Manned Submersible and seismic profiling. One of the most intriguing discoveries during the offshore surveys was of extant chemosynthetic biological communities, comprising bacterial mats, mussels, and tubeworms. These were found in the amphitheatre region where the source of the tsunami was located. Their presence indicates the active expulsion of sulphide- and methane-rich pore fluids from the sediment. The spatial variation and style of the faunas provides evidence on the mechanisms controlling fluid expulsion, the chemical composition of the fluid, and the levels of fluid flow. There is also undoubtedly a close association between the chemosynthetic faunas, levels of fluid flow and the generation of sediment slumping. We present evidence that shows that the variations in the type and concentration of biota together with variation in the location of active venting and sulphide rich sediments allows discrimination between areas of recently active and less active seabed deformation. We surmise that variations in extant mussel shell size may enable the relative timing of deformation to be elucidated. In conclusion, we propose that detailed mapping of the features and biotas described above supports a slump origin for the

  13. Applications of supercritical fluids.

    PubMed

    Brunner, Gerd

    2010-01-01

    This review discusses supercritical fluids in industrial and near-to-industry applications. Supercritical fluids are flexible tools for processing materials. Supercritical fluids have been applied to mass-transfer processes, phase-transition processes, reactive systems, materials-related processes, and nanostructured materials. Some applications are already at industrial capacity, whereas others remain under development. In addition to extraction, application areas include impregnation and cleaning, multistage countercurrent separation, particle formation, coating, and reactive systems such as hydrogenation, biomass gasification, and supercritical water oxidation. Polymers are modified with supercritical fluids, and colloids and emulsions as well as nanostructured materials exhibit interesting phenomena when in contact with supercritical fluids that can be industrially exploited. For these applications to succeed, the properties of supercritical fluids in combination with the materials processed must be clearly determined and fundamental knowledge of the complex behavior must be made readily available.

  14. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process.

    PubMed

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W

    2017-05-01

    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  15. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  16. Multistage adsorption of diffusing macromolecules and viruses

    NASA Astrophysics Data System (ADS)

    Chou, Tom; D'Orsogna, Maria R.

    2007-09-01

    We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.

  17. Development of multistage magnetic deposition microscopy.

    PubMed

    Nath, Pulak; Strelnik, Joseph; Vasanji, Amit; Moore, Lee R; Williams, P Stephen; Zborowski, Maciej; Roy, Shuvo; Fleischman, Aaron J

    2009-01-01

    Magnetic deposition microscropy (MDM) combines magnetic deposition and optical analysis of magnetically tagged cells into a single platform. Our multistage MDM uses enclosed microfabricated channels and a magnet assembly comprising four zones in series. The enclosed channels alleviate the problem plaguing previous versions of MDM: scouring of the cell deposition layer by the air-liquid interface as the channel is drained. The four-zone magnet assembly was designed to maximize capture efficiency, and experiments yielded total capture efficiencies of >99% of fluorescent- and magnetically-labeled Jurkat cells at reasonable throughputs (10(3) cells/min). A digital image processing protocol was developed to measure the average pixel intensities of the deposited cells in different zones, indicative of the marker expression. Preliminary findings indicate that the multistage MDM may be suitable for depositing cells and particles in successive zones according to their magnetic properties (e.g., magnetic susceptibilities or magnetophoretic mobilities). The overall goal is to allow the screening of multiple disease conditions in a single platform.

  18. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  19. A Testlet Assembly Design for Adaptive Multistage Tests

    ERIC Educational Resources Information Center

    Luecht, Richard; Brumfield, Terry; Breithaupt, Krista

    2006-01-01

    This article describes multistage tests and some practical test development considerations related to the design and implementation of a multistage test, using the Uniform CPA (certified public accountant) Examination as a case study. The article further discusses the use of automated test assembly procedures in an operational context to produce…

  20. Exposure Control Using Adaptive Multi-Stage Item Bundles.

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…

  1. A Testlet Assembly Design for Adaptive Multistage Tests

    ERIC Educational Resources Information Center

    Luecht, Richard; Brumfield, Terry; Breithaupt, Krista

    2006-01-01

    This article describes multistage tests and some practical test development considerations related to the design and implementation of a multistage test, using the Uniform CPA (certified public accountant) Examination as a case study. The article further discusses the use of automated test assembly procedures in an operational context to produce…

  2. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  3. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  4. Biologically based multistage modeling of radiation effects

    SciTech Connect

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage

  5. Three-Dimensional, Unsteady, Parallel Simulation of a Multi-Stage Turbine with Conjugate Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lee, Daryl Yao-Wah

    A computational fluid dynamics (CFD) procedure has been developed to predict the three-dimensional unsteady flow through a multi-stage axial turbine including the effects of heat transfer. This procedure simultaneously solves the unsteady Reynold's-averaged Navier-Stokes equations for the flow along with the heat conduction equation for the solid. Solution time is minimized through the use of multiple central processing units (CPUs). The blades of the multi-stage turbine move in time and the flow interacts with adjacent vane (stationary) passages through the use of a parallel, sliding-grid, inter-blade-row treatment. Described are the techniques used to solve the governing equations, the inter-blade-row treatment, and the parallelization of the overall approach. The uniqueness of this prediction method lies in the unsteady, multi-stage conjugate solution and the use of multiple combined cores. The approach is validated for the High Impact Technology Turbine designed and tested at the Air Force Research Laboratory.

  6. The numerical simulation of multistage turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.

    1996-01-01

    The effect of the unsteady flow field in a multistage compressor on the time-averaged performance was assessed. The energy transport by the unsteady deterministic flow field was taken into account. The magnitude of the body force resulting from the aerodynamic loading on a blade row was compared to the gradient of the stress tensor associated with the unsteady time-resolved flow field generated by the blade row. The magnitude of the work performed by these forces was compared to the divergence of the energy correlations produced by the unsteady time-resolved flow field. The stress tensor and the energy correlations are non-negligible in the end wall regions. The results suggest that the turbulence is the primary source of flow mixing in the midspan region.

  7. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  8. Optimal Multistage Algorithm for Adjoint Computation

    SciTech Connect

    Aupy, Guillaume; Herrmann, Julien; Hovland, Paul; Robert, Yves

    2016-01-01

    We reexamine the work of Stumm and Walther on multistage algorithms for adjoint computation. We provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing algorithm of Griewank and Walther. Stumm and Walther extended that binomial checkpointing algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our optimal algorithm with that of Stumm and Walther to assess the difference in performance.

  9. Probabilistic Analysis of Multistage Interconnection Network Performance

    DTIC Science & Technology

    1992-04-01

    out itndep~endlence of channel loads has b~een pie -co.nr)tited. and channels have been assigned itatnes genleratedl from thle namies of the their nodes...lthe exam pie below: > (setq d8x8 (parse-multistage-network determinist ically-interwired-8x8-rep)) (HA PTER I. j1I:1?F� Nx(’l0 A ( I’ . iI’l.I...performs considerably worse than either. (71.1 I’TI’) I . tI’IIOXI.I.IJTO.\\’.0’ -)? A1 I’L TIPO I’ll Xl7J0IK.K 71 Throughput 12 1 10 8 O 6 4 2 0 0.2 0.4

  10. Condition monitoring of multistage printing presses

    NASA Astrophysics Data System (ADS)

    Wang, W.; Golnaraghi, F.; Ismail, F.

    2004-03-01

    The main concern in printing quality in multistage presses is doubling. Doubling is caused by imperfections either within stages (units) or in links connecting different stages, mainly resulting from machine vibration, gear damage, and excessive run-out. In this paper, we propose new means for printing quality control via geared system health condition monitoring. The diagnosis is based on the signals acquired from inexpensive magnetic pickups. A new technique is developed to monitor the gear rotation synchronization among different stages in order to isolate possible sources of the doubling problem. A new approach is proposed to determine the gear run-out. Moreover, gear tooth damage detection is conducted using the beta kurtosis and the continuous wavelet transform based on the overall residual signal. The beta kurtosis of original signal average is also shown here to be useful in detecting excessive gear run-out. Test results from printing presses demonstrated the viability of the proposed methods.

  11. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  12. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  13. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  14. Waterflooding simulation of reservoir containing horizontal well stimulated by multistage hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Mazo, A. B.; Khamidullin, M. R.; Potashev, K. A.

    2016-11-01

    The article presents a three-dimensional mathematical model for two-phase fluid flow near a multistage hydraulically fractured horizontal well (MSHFHW). The flow in the reservoir and in the fractures is simulated separately, and the flow rate is governed by Darcy's law. Finite volume method is used for spatial approximation. The obtained systems of linear equations for pressure in the reservoir and in the fractures are solved simultaneously, which allows us to avoid using iterative process for solution adjustment both in the fractures and the reservoir. Saturation is calculated by the implicit adaptive scheme AIM.

  15. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  16. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  17. Conceptual design of ECLSS microgravity test beds

    NASA Technical Reports Server (NTRS)

    Kolodney, Matt; Dall-Bauman, Liese

    1992-01-01

    Conceptual designs were prepared for Space Station Freedom ECLSS test beds for both the Air Revitalization Subsystem (ARS) and the Water Recovery and Management Subsystem (WRMS), which will allow extended testing of equipment under microgravity conditions. The separate designs for the ARS and the WRMS include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air or water treatment equipment of interest. The beds are designed to recycle process fluids to the greatest extent possible, thus minimizing the spacecraft/test bed interface requirements. Schematic diagrams of both the ARS and the WRMS test beds are included.

  18. P-Values for Multi-Stage and Sequential Tests.

    DTIC Science & Technology

    1981-10-01

    values for multi-stage tests about the parameter of an exponential distri- bution when test plans from MIL- STD -781C are used. DD I JAN 14173 F DIION OF I...tests. We also give some tables of p-values for multi-stage tests about the parameter of an exponential dis- tribution when test plans from MIL- STD -781C...We also give some tables of p-values for multi-stage tests about an exponential parameter using test plans from MIL- STD -781C. 2. DEFINITION OF P

  19. Multi-stage internal gear/turbine fuel pump

    SciTech Connect

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  20. Inter-bed fluid triggered slope failures of the Kaoping Canyon upstream area: Results from memorial R/V Ocean Researcher 5

    NASA Astrophysics Data System (ADS)

    Yeh, Yi-Ching; Shen, Tsung-Fu; Liu, Shao-Yung; Yu, Pai-Sen

    2015-04-01

    As a major pathway of the sediment transportation, the submarine canyons sculpture the seafloor then deposit sediments at the deep ocean. The submarine canyons could be classified to two categories: erosive or deposition based on geological environment or fluid flow down to the canyon. The erosive canyons often 'attack' the levee which may result in submarine landslides or mass transportations due to slope failure. Once slope failure occurs at geological weakness area such as gas hydrate dissociation zone, giant mass slumping will be triggered. These kinds of mass transportations will further develop turbidity current or hyperpycnal flow, which could damage the submarine cables or pipes. The giant mass transportation even triggers devastated tsunami. In this study, a latest swath bathymetric map was compiled by comprising seven cruises between December, 2012 and March 2013. The result shows that regressive erosion may take a place north of 500 meters contour (gas hydrate dissociation region), southwest off Taiwan. Moreover, high resolution seismic image (acquired by Edgetech SB-424 sub-bottom profiler) show that gas rich sediments co-exist with submarine landslide deposits in the edge of the upstream of Kaoping submarine canyon. It implies that slope failures in the study area might be caused by weaken sediment collapse.

  1. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  2. Differential gene expression during multistage carcinogenesis

    SciTech Connect

    Bowden, G.T. ); Krieg, P. )

    1991-06-01

    The use of the mouse skin multistage model of carcinogenesis has aided our understanding of critical target genes in chemical carcinogenesis. The mutagenic activation of the Harvey-ras proto-oncogene has been found to be an early event associated with the initiation of mouse skin tumors by the polycyclic aromatic hydrocarbon 7,12 dimethylbenz(a)anthracene and the pure initiator ethyl carbamate (urethane). In contrast to chemical initiation of mouse skin tumors, ionizing radiation-initiated malignant skin tumors have been shown to possess distinct non-ras transforming gene(s). Differential screening of cDNA libraries made from chemically initiated malignant skin tumors has been used to identify a number of cellular gene transcripts that are overexpressed during mouse skin tumor progression. These differentially expressed genes include {beta}-actin, ubiquitin, a hyperproliferative keratin (K6), a gene whose product is a member of a fatty acid or lipid-binding protein family, and a gene called transin or stromelysin. The overexpression of the stromelysin gene, which encodes a metalloproteinase that degrades proteins in the basement membrane, is hypothesized to play a functional role in malignant tumor cell invasion and metastasis. The authors believe that the cloning, identification, and characterization of gene sequences that are differentially expressed during tumor progression could lead to the discovery of gene products that either play functional roles in skin tumor progression or in the maintenance of various progressive tumor phenotypes.

  3. Aerodynamics and flow characterisation of multistage rockets

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  4. Abstract Convex Underestimation Assisted Multistage Differential Evolution.

    PubMed

    Zhou, Xiao-Gen; Zhang, Gui-Jun

    2017-09-01

    In differential evolution (DE), different strategies applied in different evolutionary stages may be more effective than a single strategy used in the entire evolutionary process. However, it is not trivial to appropriately determine the evolutionary stage. In this paper, we present an abstract convex underestimation-assisted multistage DE. In the proposed algorithm, the underestimation is calculated through the supporting vectors of some neighboring individuals. Based on the variation of the average underestimation error (UE), the evolutionary process is divided into three stages. Each stage includes a pool of suitable candidate strategies. At the beginning of each generation, the evolutionary stage is first estimated according to the average UE of the previous generation. Subsequently, a strategy is automatically chosen from the corresponding candidate pool to create a mutant vector. In addition, a centroid-based strategy which utilizes the information of multiple superior individuals is designed to balance the population diversity and convergence speed in the second stage. Experiments are conducted on 23 widely used test functions, CEC 2013, and CEC 2014 benchmark sets to demonstrate the performance of the proposed algorithm. The results reveal that the proposed algorithm exhibits better performance compared with several advanced DE variants and some non-DE approaches.

  5. Multistage integration model for human egomotion perception.

    PubMed

    Zacharias, G L; Miao, A X; Warren, R

    1995-01-01

    Human computational vision models that attempt to account for the dynamic perception of egomotion and relative depth typically assume a common three-stage process: first, compute the optical flow field based on the dynamically changing image; second, estimate the egomotion states based on the flow; and third, estimate the relative depth/shape based on the egomotion states and possibly on a model of the viewed surface. We propose a model more in line with recent work in human vision, employing multistage integration. Here the dynamic image is first processed to generate spatial and temporal image gradients that drive a mutually interconnected state estimator and depth/shape estimator. The state estimator uses the image gradient information in combination with a depth/shape estimate of the viewed surface and an assumed model of the viewer's dynamics to generate current state estimates; in tandem, the depth/shape estimator uses the image gradient information in combination with the viewer's state estimate and assumed shape model to generate current depth/shape estimates. In this paper, we describe the model and compare model predictions with empirical data.

  6. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  7. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release.

    PubMed

    Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy

    2017-04-03

    This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.

  8. NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment.

    PubMed

    Fonteyne, Margot; Arruabarrena, Julen; de Beer, Jacques; Hellings, Mario; Van Den Kerkhof, Tom; Burggraeve, Anneleen; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-11-01

    This study focuses on the thorough validation of an in-line NIR based moisture quantification method in the six-segmented fluid bed dryer of a continuous from-powder-to-tablet manufacturing line (ConsiGma™ 25, GEA Pharma Systems nv, Wommelgem, Belgium). The moisture assessment ability of an FT-NIR spectrometer (Matrix™-F Duplex, Bruker Optics Ltd, UK) equipped with a fiber-optic Lighthouse Probe™ (LHP, GEA Pharma Systems nv, Wommelgem, Belgium) was investigated. Although NIR spectroscopy is a widely used technique for in-process moisture determination, a minority of NIR spectroscopy methods is thoroughly validated. A moisture quantification PLS model was developed. Twenty calibration experiments were conducted, during which spectra were collected at-line and then regressed versus the corresponding residual moisture values obtained via Karl Fischer measurements. The developed NIR moisture quantification model was then validated by calculating the accuracy profiles on the basis of the analysis results of independent in-line validation experiments. Furthermore, as the aim of the NIR method is to replace the destructive, time-consuming Karl Fischer titration, it was statistically demonstrated that the new NIR method performs at least as good as the Karl Fischer reference method.

  9. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOEpatents

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  10. Performance of upflow gravel filtration in multi-stage filtration plants.

    PubMed

    Sánchez, L D; Visscher, J T; Rietveld, L C

    2015-01-01

    This paper presents the results of a study of four full-scale upflow gravel filters that are part of full-scale multi-stage filtration. The study explored the design criteria, the operation and maintenance (O&M) practices, and the performance of the systems. Findings showed that most design criteria and O&M procedures are following the recommendations as presented in the literature but several diversions were also identified. Performance data showed that removal efficiencies were on the low side when compared to the literature, possibly because of the good influent quality water that was treated. Cleaning efficiency was analyzed and the overall conclusion is that an adjustment of the design criteria and O&M procedures is needed to enhance system performance. This includes drainage system design, surface cleaning by weir, and filter bed cleaning to allow a reduction in cleaning cycles and an improvement in operation control.

  11. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and

  12. Bed Rest Worsens Impairments in Fat and Glucose Metabolism in Older, Overweight Adults

    PubMed Central

    2014-01-01

    Background. The effects of bed rest on the dysregulation of fatty acid and glucose metabolism have not been addressed in the older population. Objective. We examined the effect of 10 days of bed rest on fatty acid kinetics and hepatic and peripheral insulin resistance in aging. Methods. We utilized an octreotide, basal glucagon replacement, multistage insulin infusion, and the concomitant infusion of [6,6 2H2]glucose to derive insulin-mediated suppression of glucose production and insulin-stimulated glucose disposal in nine older, overweight individuals (body mass index 28.1 ± 1.7 kg m−2; 39.9% ± 1.9% fat). During the multistage insulin infusion, we also infused [1-13C]palmitate to examine free fatty acid rate of appearance (R a). Results. Body weight, % body fat, and energy metabolism did not change with bed rest. There was a significant decrease (−2291 ± 316cm3) in visceral fat, and no change in abdominal subcutaneous fat with bed rest. Insulin-mediated suppression of glucose production was modest prior to bed rest and was further reduced (>15% ± 2%) by bed rest. There was also a minor decrease in the insulin-mediated suppression of free fatty acid R a after bed rest and, as a consequence, a small variation in plasma free fatty acid from pre- to post-bed rest in the first stage of the multistage insulin infusion. There was also a significant bed rest–induced decline (>2.0 ± 0.6 mg kg FFM−1 min− 1) in insulin-stimulated glucose disposal. Conclusions. Preexisting impairments in insulin sensitivity are worsened by bed rest and seem linked to alterations in the regulation of free fatty acid in older, overweight individuals. PMID:23902932

  13. Packed Bed Reactor Experiment

    NASA Image and Video Library

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  14. A study of multistage/multifunction column for fine particle separation. Quarterly technical progress report, January 1, 1996-- March 31, 1996

    SciTech Connect

    Chiang, Shiao-Hung

    1996-04-20

    The overall objective of the proposed research program is to explore the potential application of a new invention involving a multistage column equipped with vortex-inducing loop-flow contactors (hereafter referred to as the multistage column) for fine coal cleaning process. The research work will identify the design parameters and their effects on the performance of the separation process. The results of this study will provide an engineering basis for further development of this technology in coal cleaning and in the general areas of fluid/particle separation. In the last quarter, we investigated the mixing and loop flow (circulation) behaviors around the contactors. In this quarter, the fine coal beneficiation tests were carried out in the multistage column and conventional column.

  15. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  16. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  17. A study of multistage/multifunction column for fine particle separation. Quarterly report, 1 October 1995--31 December 1995

    SciTech Connect

    Chiang, Shiao-Hung; Lai, Ralph W.

    1996-01-20

    The overall purpose of the proposed research program is to explore the potential application of a new invention involving a multistage column equipped with vortex-inducing loop-flow contactors hereafter referred to as (bold the multistage column) for fine coal cleaning process. The research work will identify the design parameters and their effects on the performance of the separation process. The results of this study will provide an engineering basis for further development of this technology in coal cleaning and in the general areas of fluid/particle separation. In the last quarter, the (bold bubble size) measurements were carried out in the conventional column. Also, correlations were developed for results on (bold gas holdup, bubble size and specific interfacial area). In this quarter, we investigated the mixing and loop flow (circulation) behaviors around the contactor.

  18. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  19. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  20. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2014-07-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency, positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than further downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  1. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2015-02-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  2. Parametric performance studies on fluidized-bed heat exchangers. Task 1: Fouling characteristics

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-09-01

    Analyses and experiments are being performed to investigate the heat transfer performance of single and multistage shallow fluidized beds for application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests were conducted to investigate the effects of liquid condensate fouling on fluidized bed heat exchanger performance. Liquid condensates used in these tests were water and glycerol (which is more viscous than water). The tests showed that fluidized bed heat exchanger performance is degraded by condensation within the bed and the degradation is caused by bed particles adhering to the heat exchanger surface, not by particle agglomeration. Liquid condensate did not continuously build up within the bed. After a period of dry out, heat transfer equal to that obtained prior to condensation was again obtained.

  3. [Weighted estimation methods for multistage sampling survey data].

    PubMed

    Hou, Xiao-Yan; Wei, Yong-Yue; Chen, Feng

    2009-06-01

    Multistage sampling techniques are widely applied in the cross-sectional study of epidemiology, while methods based on independent assumption are still used to analyze such complex survey data. This paper aims to introduce the application of weighted estimation methods for the complex survey data. A brief overview of basic theory is described, and then a practical analysis is illustrated to apply to the weighted estimation algorithm in a stratified two-stage clustered sampling data. For multistage sampling survey data, weighted estimation method can be used to obtain unbiased point estimation and more reasonable variance estimation, and so make proper statistical inference by correcting the clustering, stratification and unequal probability effects.

  4. Maisotsenko cycle applications for multistage compressors cooling

    NASA Astrophysics Data System (ADS)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  5. Fluidized bed heat treating system

    DOEpatents

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  6. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  7. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  8. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  9. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  10. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  11. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  12. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  13. 40 CFR 600.316-08 - Multistage manufacture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Multistage manufacture. 600.316-08 Section 600.316-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  14. Low-dose-rate extrapolation using the multistage model

    SciTech Connect

    Portier, C.; Hoel, D.

    1983-12-01

    The distribution of the maximum likelihood estimates of virtually safe levels of exposure to environmental chemicals is derived by using large-sample theory and Monte Carlo simulation according to the Armitage-Doll multistage model. Using historical dose-response we develop a set of 33 two-stage models upon which we base our conclusions. The large-sample distributions of the virtually safe dose are normal for cases in which the multistage-model parameters have nonzero expectation, and are skewed in other cases. The large-sample theory does not provide a good approximation of the distribution observed for small bioassays when Monte Carlo simulation is used. The constrained nature of the multistage-model parameters leads to bimodal distributions for small bioassays. The two modes are the direct result of estimating the linear parameter in the multistage model; the lower mode results from estimating this parameter to be nonzero, and the upper mode from estimating it to be zero. The results of this research emphasize the need for incorporation of the biological theory in the model-selection process.

  15. 40 CFR 600.316-08 - Multistage manufacture.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Multistage manufacture. 600.316-08 Section 600.316-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  16. 40 CFR 600.316-08 - Multistage manufacture.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Multistage manufacture. 600.316-08 Section 600.316-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  17. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  18. Lifting a large object from an anisotropic porous bed

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2016-09-01

    An analytical study of two dimensional problem of lifting an object from the top of a fully saturated rigid porous bed is discussed. It is assumed that the porous bed is anisotropic in nature. The flow within the gap region between the object and the porous bed is assumed to be governed by Stokes equation while the flow within the porous bed is governed by Brinkman equation. The breakout phenomenon for different kinds of soil is reported. The effect of mechanical properties like anisotropic permeability, grain diameter size, and porosity on streamlines, velocity, and force is analyzed. Relevant comparison with C. C. Mei, R. W. Yeung, and K. F. Liu ["Lifting a large object from a porous bed," J. Fluid. Mech. 152, 203-215 (1985)] and Y. Chang, L. H. Huang and F. P. Y. Yang ["Two-dimensional lift-up problem for a rigid porous bed," Phys. Fluids, 27, 053101 (2015)] is done.

  19. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  20. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  1. Effects Of Exercise During Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.; hide

    1992-01-01

    Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.

  2. Bed Bugs and Schools

    EPA Pesticide Factsheets

    Bed bugs have long been a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. They are successful hitchhikers, and can move from an infested site to furniture, bedding, baggage, boxes, and clothing.

  3. The influence of annular seal clearance to the critical speed of the multistage pump

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shen, H. P.; Y Ye, X.; Hu, J. N.; Feng, Y. N.

    2013-12-01

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest.

  4. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Cermak, J.; Dobrozemsky, J.; Fibinger, V.

    1982-04-20

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combuster, fuel bunker and crusher.

  5. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Dobrozemsky, J.; Fibinger, V.; Germak, J.

    1983-11-15

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combustor, fuel bunker and crusher.

  6. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  7. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  8. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  9. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  10. Collaborative Strategy on Bed Bugs

    EPA Pesticide Factsheets

    The Collaborative Strategy on Bed Bugs was developed by the Federal Bed Bug Workgroup to clarify the federal role in bed bug control and highlight ways that government, community, academia and private industry can work together on bed bug issues.

  11. Design of optimally smoothing multistage schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Van Leer, Bram; Lee, Wen-Tzong; Roe, Philip L.; Powell, Kenneth G.; Tai, Chang-Hsien

    1992-01-01

    A recently derived local preconditioning of the Euler equations is shown to be useful in developing multistage schemes suited for multigrid use. The effect of the preconditioning matrix on the spatial Euler operator is to equalize the characteristic speeds. When applied to the discretized Euler equations, the preconditioning has the effect of strongly clustering the operator's eigenvalues in the complex plane. This makes possible the development of explicit marching schemes that effectively damp most high-frequency Fourier modes, as desired in multigrid applications. The technique is the same as developed earlier for scalar convection schemes: placement of the zeros of the amplification factor of the multistage scheme in locations where eigenvalues corresponding to high-frequency modes abound.

  12. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.

  13. Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method

    PubMed Central

    Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  14. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  15. Modeling tip clearance effects in multistage axial compressors

    SciTech Connect

    Baghdadi, S.

    1996-10-01

    A variety of techniques for simulating the effects of rotor tip clearances in multistage axial compressors is discussed. Proper recognition of stage coupling and rematching effects is shown to be key to successful modeling of the overall behavior of actual engine compression systems. The application of a relatively simple one-dimensional unsteady row-by-row systems analysis is presented and shown to compare well to test data from several engine compressors.

  16. Multi-stage, isothermal CO preferential oxidation reactor

    DOEpatents

    Skala, Glenn William; Brundage, Mark A.; Borup, Rodney Lynn; Pettit, William Henry; Stukey, Kevin; Hart-Predmore, David James; Fairchok, Joel

    2000-01-01

    A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

  17. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  18. A Computerized Algorithm for Solving Multi-Stage Simultaneous Games.

    DTIC Science & Technology

    1981-12-01

    COMPUTERIZED ALGORITHM FOR SOLVING MULTI-STAGE SIMULTANEOUS GAMES I. Introduction The theory of games of strategy may be described as a mathematical...ticipants and the chance events [Ref 3:1]. Examples of games of strategy include poker, chess, and military battles. Each of these games allows the...In addition, the author learned a great deal from the book Games of Strategy by Melvin Dresher (Ref 3). A discussion of a solution developed by

  19. Solution of prey-predator problem by multistage decomposition method

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. S. H.; Hashim, I.; Mawa, S.

    2008-01-01

    The prey-predator problem is simulated by an adaptation of the classical Adomian decomposition method (ADM). The classical ADM is converted into a hybrid numeric-analytic method called the multistage ADM (MADM). The decomposition solutions presented by previous authors are corrected. The numerical results obtained from the MADM and the classical fourth-order Rungge-Kutta (RK4) method are in complete agreement.

  20. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  1. The automated multi-stage substructuring system for NASTRAN

    NASA Technical Reports Server (NTRS)

    Field, E. I.; Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.

    1975-01-01

    The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input.

  2. Unbiased statistical analysis for multi-stage proteomic search strategies.

    PubMed

    Everett, Logan J; Bierl, Charlene; Master, Stephen R

    2010-02-05

    "Multi-stage" search strategies have become widely accepted for peptide identification and are implemented in a number of available software packages. We describe limitations of these strategies for validation and decoy-based statistical analyses and demonstrate these limitations using a set of control sample spectra. We propose a solution that corrects the statistical deficiencies and describe its implementation using the open-source software X!Tandem.

  3. Low-noise preamplifier for multistage photorefractive image amplification

    NASA Astrophysics Data System (ADS)

    Breugnot, S.; Rajbenbach, H.; Defour, M.; Huignard, J.-P.

    1995-07-01

    We present a two-beam coupling configuration in photorefractive BaTiO3 that provides a low-noise amplification of the signal to be detected. A two-wave mixing gain of 100 is reached, in conjunction with very low beam fanning background in the signal direction. The extensions of this configuration to photorefractive heterodyne detection and to multistage image amplification are theoretically and experimentally studied.

  4. Mechanisms for decreased exercise capacity after bed rest in normal middle-aged men

    SciTech Connect

    Hung, J.; Goldwater, D.; Convertino, V.A.; McKillop, J.H.; Goris, M.L.; DeBusk, R.F.

    1983-01-15

    The mechanisms responsible for the decrease in exercise capacity after bed rest were assessed in 12 apparently healthy men aged 50 +/- 4 years who underwent equilibrium gated blood pool scintigraphy during supine and upright multistage bicycle ergometry before and after 10 days of bed rest. After bed rest, echocardiographically measured supine resting left ventricular end-diastolic volume decreased by 16% (p less than 0.05). Peak oxygen uptake during supine effort after bed rest was diminished by 6% (p . not significant (NS)), whereas peak oxygen uptake during upright effort declined by 15% (p less than 0.05). After bed rest, increases in heart rate were also greater during exercise in the upright than in the supine position (p less than 0.05). Values of left ventricular ejection fraction increased normally during both supine and upright effort after bed rest and were higher than corresponding values before bed rest (p less than 0.05). After bed rest, increased left ventricular ejection fraction and heart rate largely compensated for the reduced cardiac volume during supine effort, but these mechanisms were insufficient to maintain oxygen transport capacity at levels during upright effort before bed rest. These results indicate that orthostatically induced cardiac underfilling, not physical deconditioning or left ventricular dysfunction, is the major cause of reduced effort tolerance after 10 days of bed rest in normal middle-aged men.

  5. Figures of Merit for Multi-Stage Cryocoolers

    NASA Astrophysics Data System (ADS)

    Delmas, J.; Kadin, A. M.; Webber, R. J.; Track, E. K.

    2010-04-01

    The "coefficient of performance" (CoP) is often used as a measure of efficiency for single-stage cryocoolers, but such a parameter is not well defined for multi-stage cryocoolers. We propose a simple definition of an electrical "figure of merit" (FoM) representative of the distributed refrigeration power of multi-stage cryocoolers, that resolves this issue for applications where heat-sinking of power and signal leads at intermediate stages is an important end-user requirement. Two cases are considered which yield somewhat different results. A Power Lead FoM (PL-FoM) is derived, based on the largest electric current that can be flowed from ambient to the lowest temperature stage. A Signal Lead FoM (SL-FoM) is also derived, based on achieving minimum electrical attenuation on the signal leads. Each FoM represents a temperature-weighted combination of the heat lifts of the various stages. The two FoMs can aid in the selection of an optimal multi-stage cryocooler for operation of superconducting devices, for example.

  6. Simulating the multistage environment for single-stage compressor experiments

    SciTech Connect

    Place, J.M.M.; Howard, M.A.; Cumpsty, N.A.

    1996-10-01

    The performance of a single-stage low-speed compressor has been measured both before and after the introduction of certain features of the multistage flow environment. The aim is to make the single-stage rig more appropriate for developing design rules for multistage compressors. End-wall blockage was generated by teeth on the hub and casing upstream of the rotor. A grid fitted upstream produced free-stream turbulence at rotor inlet typical of multistage machines and raised stage efficiency by 1.8 percent at the design point. The potential field that would be generated by blade rows downstream of an embedded stage was replicated by introducing a pressure loss screen at stage exit. This reduced the stator hub corner separation and increased the rotor pressure rise at flow rates below design, changing the shape of the pressure-rise characteristic markedly. These results highlight the importance of features of the flow environment that are often omitted from single-stage experiments and offer improved understanding of stage aerodynamics.

  7. Multistage axial-flux PM machine for wheel direct drive

    SciTech Connect

    Caricchi, F.; Crescimbini, F.; Mezzetti, F.; Santini, E.

    1996-07-01

    The design of direct-drive wheel motors must comply with diameter restriction due to housing the motor in a wheel rim and allow the achievement of very high torque density and overload capability. Slotless axial-flux permanent magnet machines (AFPMs) prove to be the best candidate for application in electric vehicles as direct-drive wheel motors, as in comparison with conventional machines they allow designs with higher compactness, lightness and efficiency. The paper presents a newly conceived AFPM which has a multistage structure and a water-cooled ironless stator. In the proposed new topology of the machine the space formerly occupied by the toroidal core becomes a water duct, which removes heat directly from the interior surface of the stator winding. The high efficiency of the machine cooling arrangement allows long-term 100% overload operation and great reduction of the machine weight. The multistage structure of the machine is suited to overcome the restriction on the machine diameter and meet the torque required at the wheel shaft. The paper gives guidelines for the design of a multistage AFPM with water-cooled ironless stator, and describes characteristics of a two-stage prototype machine rated 215 N{center_dot}m, 1,100 r/min.

  8. Optimal software multicast in wormhole-routed multistage networks

    SciTech Connect

    Xu, H.; Gui, Y.D.; Ni, L.M.

    1994-12-31

    Multistage interconnection networks are a popular class of interconnection architecture for constructing scalable parallel computers (SPCs). The focus of this paper is on wormhole routed multistage networks supporting turnaround routing. Existing machines characterized by such a system model include the IBM SP-1, TMC CM-5, and Meiko CS-2. Efficient collective communication among processor nodes is critical to the performance of SPCS. A system-level multicast service, in which the same message is delivered from a source node to an arbitrary number of destination nodes, is fundamental in supporting collective communication primitives including the application-level broadcast, reduction, and barrier synchronization. This paper addresses how to efficiently implement multicast services in wormhole routed multistage networks, in the absence of hardware multicast support, by exploiting the properties of the switching technology. An optimal multicast algorithm is proposed. The results of implementations on a 64-node SP-1 show that the proposed algorithm significantly out performs the application-level broadcast primitives provided by currently existing collective communication libraries including the public domain MPI.

  9. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  10. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  11. Study report on modification of the long term circulatory model for the simulation of bed rest

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Grounds, D. J.

    1977-01-01

    Modifications were made of the circulatory, fluid, and electrolyte control model which was based on the model of Guyton. The modifications included separate leg compartments and the addition of gravity dependency. It was found that these modifications allowed for more accurate bed rest simulation by simulating changes in the orthostatic gradient and simulating the response to the fluid shifts associated with bed rest.

  12. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  13. River bed transport measurements show bed dilation and contraction

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    A new study of bed load transport—the movement of the gravel or other grains on a stream bed—has turned up a previously undetected effect. Marquis and Roy used several different methods to monitor bed load activity in a gravel bed river, Beard Creek in Quebec, Canada. They examined streamfow, bed load, and bed morphology before, during, and after 20 food events. The researchers found that two of the methods—measuring changes in bed topography between successive foods and surveying bed activity—gave inconsistent results. Changes in elevation of the bed did not always correspond to movement of bed load.

  14. An integral equation solution for multistage turbomachinery design calculations

    NASA Technical Reports Server (NTRS)

    Mcfarland, Eric R.

    1993-01-01

    A method was developed to calculate flows in multistage turbomachinery. The method is an extension of quasi-three-dimensional blade-to-blade solution methods. Governing equations for steady compressible inviscid flow are linearized by introducing approximations. The linearized flow equations are solved using integral equation techniques. The flows through both stationary and rotating blade rows are determined in a single calculation. Multiple bodies can be modelled for each blade row, so that arbitrary blade counts can be analyzed. The method's benefits are its speed and versatility.

  15. Multistage regulator based on tandem promoters and CRISPR/Cas.

    PubMed

    Jia, Hangxing; Liang, Tong; Wang, Zhaoning; He, Zhaoren; Liu, Yang; Yang, Lei; Zeng, Yan; Liu, Shaopeng; Tang, Linyi; Wang, Jianbo; Chen, Yu; Xie, Zhixiong

    2014-12-19

    Accurately controlling expression of target genes between several designed levels is essential for low-noise gene network and dynamic range of gene expression. However, such manipulations have been hard to achieve due to technical limitations. Based on tandem promoters and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system, we constructed a multistage regulator that could stably regulate the expression of the reporter gene on three levels, with more than 2-fold difference between each of them. Our findings provide novel insights into constructing a more powerful gene regulation system.

  16. A Valuation Method for Multi-Stage Development Projects

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiro; Kubo, Osamu; Ito, Junko; Ueda, Yoshikatsu

    A real-option based valuation method has been developed for multi-stage development projects which allow flexible stage-wise go/stop judgments. The proposed method measures the economic value of projects from potential future cash flow produced by them, and is characterized by following four functions: (1) Corporation of technical and market risks into project valuation, (2) Quantification of a project portfolio value, (3) Modeling of correlation between individual projects in a portfolio, and (4) Control of project portfolio risk with a risk index.

  17. Thermochemical production of hydrogen via multistage water splitting processes

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  18. Multistage optical system for broadcasting and switching information.

    PubMed

    Mendlovic, D; Leibner, B; Cohen, N

    1999-10-10

    Conventional switching systems connect each input channel to one output channel. Broadcasting systems permit the connection of each input channel to more than a single output. A broadcast 2 x 2 switch is presented. This switch is an extension of the standard bypass-exchange switch. It allows for the broadcasting of the inputs in addition to the conventional modes. Multistage interconnection networks can be constructed with this switch as the basic building block. Such networks will extend their capabilities, allowing for broadcasting features. Three implementations of this type are described, and experimental results for the 2 x 2 switch are also presented.

  19. Enhanced decomposition algorithm for multistage stochastic hydroelectric scheduling. Technical report

    SciTech Connect

    Morton, D.P.

    1994-01-01

    Handling uncertainty in natural inflow is an important part of a hydroelectric scheduling model. In a stochastic programming formulation, natural inflow may be modeled as a random vector with known distribution, but the size of the resulting mathematical program can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We develop an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of stochastic hydroelectric scheduling problems. Stochastic programming, Hydroelectric scheduling, Large-scale Systems.

  20. Multi-Stage Data Fusion in Security and Defence

    DTIC Science & Technology

    2010-05-01

    providing a lower bound on target cardinality. Equation (2.19) requires (2.4). ( )( ) ( ) ( )( )! exp 1| 0 1 kj qqiNjNp B kj B i k kki STTS ... algorithm and on many of the multi-stage architectures listed in table 3.1 may be found in [5] and references therein, as well as in more recent papers...more complex single-stage tracking solutions. Further, the MHT algorithmic module at the heart of these architectures is highly modular, thus

  1. Biological models and statistical interactions: an example from multistage carcinogenesis.

    PubMed

    Siemiatycki, J; Thomas, D C

    1981-12-01

    From the assessment of statistical interaction between risk factors it is tempting to infer the nature of the biologic interaction between the factors. However, the use of statistical analyses of epidemiologic data to infer biologic processes can be misleading. as an example, we consider the multistage model of carcinogenesis. Under this biologic model, it is shown, by means of simple hypothetical examples, that even if carcinogenic factors act independently, some pairs may fit an additive statistical model, some a multiplicative statistical model, and some neither. The elucidation of biological interactions by means of statistical models requires the imaginative and prudent use of inductive and deductive reasoning; it cannot be done mechanically.

  2. Multistage spectral relaxation method for solving the hyperchaotic complex systems.

    PubMed

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  3. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    PubMed Central

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624

  4. Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier

    NASA Astrophysics Data System (ADS)

    Xiao, Xianbin; Le, Due Dung; Morishita, Kayoko; Li, Liuyun; Takarada, Takayuki

    Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar cracking catalyst is studied at low temperature. Reaction conditions of the catalyst bed are discussed, including catalytic temperature and steam ratio. High energy efficiency and hydrogen-rich, low-tar product gas can be achieved in a properly designed multi-stage gasification process, together with high-performance catalyst. In addition, considering the economical feasibility, a newly-developed Ni-loaded brown coal char is developed and evaluated as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst shows a good ability and a hopeful prospect oftar decomposition, gas quality improvement and catalytic stability.

  5. Design and performance of a multi-stage cylindrical reconnection launcher

    SciTech Connect

    Kaye, R.J.; Brawley, E.L.; Duggin, B.W.; Cnare, E.C.; Rovang, D.C.; Widner, M.M. )

    1991-01-01

    A multi-stage, cylindrical reconnection launcher is being tested to demonstrate electrically-contactless, induction-launch technology for solenoidal coil geometry. A 6-stage launcher system is being developed to accelerate a 5 kg mass from rest to 300 m/s with a stored energy of {ge}200 kJ per coil stage. This launcher will provide data fro model verification and the engineering basis for proceeding with larger multistage systems. This paper describes the design of the multi-stage, discrete-coil launcher. Integration of coils, projectile, power systems, and real-time fire control are discussed. Results of multi-stage firings are presented.

  6. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  7. Fluidized-bed boilers

    SciTech Connect

    Makansi, J.; Schwieger, B.

    1982-08-01

    This report reviews the current state of atmospheric fluidized-bed combustion. The fundamentals of fluidized-bed combustion and design considerations are first discussed. Tables provide details of manufacturers, worldwide, and of the boilers now installed. Eight plants in various countries and burning a variety of fuels, are described more fully.

  8. Bed Bugs FAQs

    MedlinePlus

    ... allow them to fit into the smallest of spaces and stay there for long periods of time, even without a blood meal. Bed bugs are usually transported from place to place as people travel. The bed bugs travel in the seams and ...

  9. Long-duration bed rest as an analog to microgravity.

    PubMed

    Hargens, Alan R; Vico, Laurence

    2016-04-15

    Long-duration bed rest is widely employed to simulate the effects of microgravity on various physiological systems, especially for studies of bone, muscle, and the cardiovascular system. This microgravity analog is also extensively used to develop and test countermeasures to microgravity-altered adaptations to Earth gravity. Initial investigations of bone loss used horizontal bed rest with the view that this model represented the closest approximation to inactivity and minimization of hydrostatic effects, but all Earth-based analogs must contend with the constant force of gravity by adjustment of the G vector. Later concerns about the lack of similarity between headward fluid shifts in space and those with horizontal bed rest encouraged the use of 6 degree head-down tilt (HDT) bed rest as pioneered by Russian investigators. Headward fluid shifts in space may redistribute bone from the legs to the head. At present, HDT bed rest with normal volunteers is the most common analog for microgravity simulation and to test countermeasures for bone loss, muscle and cardiac atrophy, orthostatic intolerance, and reduced muscle strength/exercise capacity. Also, current physiologic countermeasures are focused on long-duration missions such as Mars, so in this review we emphasize HDT bed rest studies with durations of 30 days and longer. However, recent results suggest that the HDT bed rest analog is less representative as an analog for other important physiological problems of long-duration space flight such as fluid shifts, spinal dysfunction and radiation hazards.

  10. Optimal Control Framework for Multistage Endoreversible Engines with Heat and Mass Transfer

    NASA Astrophysics Data System (ADS)

    Sieniutycz, S.

    1999-04-01

    We develop a general optimal control framework for a difficult class of problems of work maximization in endoreversible multistage processes which yield mechanical work with finite rates and are characterized by multiple (vectorial) efficiencies. Bellman's method of dynamic programming is used either to construct his recurrence equation or to arrive at a discrete maximum principle of Pontryagin's type, in which a Hamiltonian is maximized with respect to controls. Both these algorithms are powerful computational tools which serve to maximize the power output and evaluate optimal controls. Equations of dynamics which follow from energy and matter balances and transfer equations are difference constraints for optimizing work. Irreversibilities caused by the energy and mass transport are essential. Variation of efficiencies is analyzed in terms of heat and mass fluxes as natural control variables. Enhanced bounds for the work released from an engine system or added to a heat-pump system are evaluated. Lagrangians and Hamiltonians of work functionals and discrete canonical equations are effective; they reach their continuous counterparts in the limit of an infinite number of stages. For a finite-time passage of a resource fluid between two given thermodynamic states, an optimal process is shown to be irreversible. Its optimal intensity is characterized well by the Hamiltonian H. Characteristic functions which describe extremal work are found numerically in terms of final states, process duration and number of stages. An extension of classical exergy to nonisothermal separation systems with a finite number of stages and finite holdup time of the resource fluid is one of the main results. This extended exergy simplifies to the classical thermal exergy in the limit of infinite duration and an infinite number of stages. The extended exergy exhibits a hysteretic property as a decrease of maximum work received from a multistage engine system and an increase of minimum work

  11. A multistaged automatic restoration of noisy microscopy cell images.

    PubMed

    Xu, Jinwei; Hu, Jiankun; Jia, Xiuping

    2015-01-01

    Automated cell segmentation for microscopy cell images has recently become an initial step for further image analysis in cell biology. However, microscopy cell images are easily degraded by noise during the readout procedure via optical-electronic imaging systems. Such noise degradations result in low signal-to-noise ratio (SNR) and poor image quality for cell identification. In order to improve SNR for subsequent segmentation and image-based quantitative analysis, the commonly used state-of-art restoration techniques are applied but few of them are suitable for corrupted microscopy cell images. In this paper, we propose a multistaged method based on a novel integration of trend surface analysis, quantile-quantile plot, bootstrapping, and the Gaussian spatial kernel for the restoration of noisy microscopy cell images. We show this multistaged approach achieves higher performance compared with other state-of-art restoration techniques in terms of peak signal-to-noise ratio and structure similarity in synthetic noise experiments. This paper also reports an experiment on real noisy microscopy data which demonstrated the advantages of the proposed restoration method for improving segmentation performance.

  12. Optimal multistage designs for randomised clinical trials with continuous outcomes

    PubMed Central

    Wason, James MS; Mander, Adrian P; Thompson, Simon G

    2012-01-01

    Multistage designs allow considerable reductions in the expected sample size of a trial. When stopping for futility or efficacy is allowed at each stage, the expected sample size under different possible true treatment effects (δ) is of interest. The δ-minimax design is the one for which the maximum expected sample size is minimised amongst all designs that meet the types I and II error constraints. Previous work has compared a two-stage δ-minimax design with other optimal two-stage designs. Applying the δ-minimax design to designs with more than two stages was not previously considered because of computational issues. In this paper, we identify the δ-minimax designs with more than two stages through use of a novel application of simulated annealing. We compare them with other optimal multistage designs and the triangular design. We show that, as for two-stage designs, the δ-minimax design has good expected sample size properties across a broad range of treatment effects but generally has a higher maximum sample size. To overcome this drawback, we use the concept of admissible designs to find trials which balance the maximum expected sample size and maximum sample size. We show that such designs have good expected sample size properties and a reasonable maximum sample size and, thus, are very appealing for use in clinical trials. Copyright © 2011 John Wiley & Sons, Ltd. PMID:22139822

  13. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

    PubMed Central

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348

  14. Optimal multistage designs for randomised clinical trials with continuous outcomes.

    PubMed

    Wason, James M S; Mander, Adrian P; Thompson, Simon G

    2012-02-20

    Multistage designs allow considerable reductions in the expected sample size of a trial. When stopping for futility or efficacy is allowed at each stage, the expected sample size under different possible true treatment effects (δ) is of interest. The δ-minimax design is the one for which the maximum expected sample size is minimised amongst all designs that meet the types I and II error constraints. Previous work has compared a two-stage δ-minimax design with other optimal two-stage designs. Applying the δ-minimax design to designs with more than two stages was not previously considered because of computational issues. In this paper, we identify the δ-minimax designs with more than two stages through use of a novel application of simulated annealing. We compare them with other optimal multistage designs and the triangular design. We show that, as for two-stage designs, the δ-minimax design has good expected sample size properties across a broad range of treatment effects but generally has a higher maximum sample size. To overcome this drawback, we use the concept of admissible designs to find trials which balance the maximum expected sample size and maximum sample size. We show that such designs have good expected sample size properties and a reasonable maximum sample size and, thus, are very appealing for use in clinical trials.

  15. Multistage Nanoparticles for Improved Delivery into Tumor Tissue

    PubMed Central

    Stylianopoulos, Triantafyllos; Wong, Cliff; Bawendi, Moungi G.; Jain, Rakesh K.; Fukumura, Dai

    2013-01-01

    The enhanced permeability and retention (EPR) effect has been a key rationale for the development of nanoscale carriers to solid tumors. As a consequence of EPR, nanotherapeutics are expected to improve drug and detection probe delivery, have less adverse effects than conventional chemotherapy, and thus result in improved detection and treatment of tumors. Physiological barriers posed by the abnormal tumor microenvironment, however, can hinder the homogeneous delivery of nanomedicine in amounts sufficient to eradicate cancer. To effectively enhance the therapeutic outcome of cancer patients by nanotherapeutics, we have to find ways to overcome these barriers. One possibility is to exploit the abnormal tumor microenvironment for selective and improved delivery of therapeutic agents to tumors. Recently, we proposed a multistage nanoparticle delivery system as a potential means to enable uniform delivery throughout the tumor and improve the efficacy of anticancer therapy. Here, we describe the synthesis of a novel multistage nanoparticle formulation that shrinks in size once it enters the tumor interstitial space to optimize the delivery to tumors as well as within tumors. Finally, we provide detailed experimental methods for the characterization of such nanoparticles. PMID:22449923

  16. Neuraminidase-1: A novel therapeutic target in multistage tumorigenesis

    PubMed Central

    Haxho, Fiona; Neufeld, Ronald J.; Szewczuk, Myron R.

    2016-01-01

    Several of the growth factors and their receptor tyrosine kinases (RTK) such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and insulin are promising candidate targets for cancer therapy. Indeed, tyrosine kinase inhibitors (TKI) have been developed to target these growth factors and their receptors, and have demonstrated dramatic initial responses in cancer therapy. Yet, most patients ultimately develop TKI drug resistance and relapse. It is essential in the clinical setting that the targeted therapies are to circumvent multistage tumorigenesis, including genetic mutations at the different growth factor receptors, tumor neovascularization, chemoresistance of tumors, immune-mediated tumorigenesis and the development of tissue invasion and metastasis. Here, we identify a novel receptor signaling platform linked to EGF, NGF, insulin and TOLL-like receptor (TLR) activations, all of which are known to play major roles in tumorigenesis. The importance of these findings signify an innovative and promising entirely new targeted therapy for cancer. The role of mammalian neuraminidase-1 (Neu1) in complex with matrix metalloproteinase-9 and G protein-coupled receptor tethered to RTKs and TLRs is identified as a major target in multistage tumorigenesis. Evidence exposing the link connecting growth factor-binding and immune-mediated tumorigenesis to this novel receptor-signaling paradigm will be reviewed in its current relationship to cancer. PMID:27029067

  17. Particle size variations between bed load and bed material in natural gravel bed channels

    Treesearch

    Thomas E. Lisle

    1995-01-01

    Abstract - Particle sizes of bed load and bed material that represent materials transported and stored over a period of years are used to investigate selective transport in 13 previously sampled, natural gravel bed channels. The ratio (D*) of median particle size of bed material to the transport- and frequency-weighted mean of median bed load size decreases to unity...

  18. Predicting apparent Sherwood numbers for fluidized beds

    SciTech Connect

    Groenewold, H.; Tsotsas, E.

    1999-09-01

    Mass transfer data of bubbling fluidized beds have been reevaluated with a new model which is completely predictive. The model is based on a two-phase approach with active bypass, formally plug flow for the suspension gas and a consideration of backmixing in the main kinetic coefficient, i.e. in the apparent particle-to-fluid Sherwood number. A good agreement with experimental results of various authors with a broad range of Reynolds numbers and particle diameters is demonstrated.

  19. How to Find Bed Bugs

    MedlinePlus

    ... or mattresses caused by bed bugs being crushed. Dark spots (about this size: •), which are bed bug ... to ensure sustained heat reaches the bugs no matter where they are hiding. Common bed bugs are ...

  20. A new model of water-lubricated rubber bearings for vibration analysis of flexible multistage rotor systems

    NASA Astrophysics Data System (ADS)

    Liu, Shibing; Yang, Bingen

    2015-08-01

    Flexible multistage rotating systems that are supported or guided by long water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Vibration analysis of this type of machinery for performance and duality requires accurate modeling of WLRBs and related rotor-bearing assemblies. This work presents a new model of WLRBs, with attention given to the determination of bearing dynamic coefficients. Due to its large length-to-diameter ratio, a WLRB cannot be described by conventional pointwise bearing models with good fidelity. The bearing model proposed in this paper considers spatially distributed bearing forces. For the first time in the literature, the current study addresses the issue of mixed lubrication in the operation of WLRBs, which involves interactions of shaft vibration, elastic deformation of rubber material and fluid film pressure, and validates the WLRB model in experiments. Additionally, with the new bearing model, vibration analysis of WLRB-supported flexible multistage rotating systems is performed through use of a distributed transfer function method, which delivers accurate and closed-form analytical solutions of steady-state responses without discretization.

  1. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhai, L. L.; Wu, P.; Jiang, Q. L.; Wang, L. Q.

    2012-11-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  2. Parametric performance studies on fluidized-bed heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-01-01

    The performance of single and multistage shallow fluidized beds is investigated for possible application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests are conducted to (1) investigate the effects of fouling due to liquid condensate in the gas stream on fluidized bed heat exchanger performance, (2) investigate the performance of fluidized beds which are staged using baffle plates, and (3) investigate the effects of different heat exchanger surface geometries. Work is progressing in selecting the conditions for that portion of the program involving fouling by a liquid condensate, and in modifying the fluidized bed heat exchanger facility for the fouling experiments. Preliminary tests were conducted with water vapor injection. Water vapor and glycerol vapor were chosen as the condensates. The results are summarized as follows: (1) heat exchanger performance is seriously degraded by condensation when the dew point temperature exceeds the heat exchanger wall temperature; and (2) the performance decrease occurs as a result of particle adherence to the heat exchanger surface and not as a result of particle agglomeration.

  3. Resuspension threshold of a granular bed by localized heating

    NASA Astrophysics Data System (ADS)

    Morize, C.; Herbert, E.; Sauret, A.

    2017-09-01

    The resuspension and dispersion of particles occur in industrial fluid dynamic processes as well as environmental and geophysical situations. In this paper, we experimentally investigate the ability to fluidize a granular bed with a vertical gradient of temperature. Using laboratory experiments with a localized heat source, we observe a large entrainment of particles into the fluid volume beyond a threshold temperature. The buoyancy-driven fluidized bed then leads to the transport of solid particles through the generation of particle-laden plumes. We show that the destabilization process is driven by the thermal conductivity inside the granular bed and demonstrate that the threshold temperature depends on the thickness of the granular bed and the buoyancy number, i.e., the ratio of the stabilizing density contrast to the destabilizing thermal density contrast.

  4. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  5. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1981-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600 900 C. Conditions favorable for heterogenous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mole, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  6. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1981-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600 900 C. Conditions favorable for heterogenous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mole, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  7. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  8. Interaction of frequency-modulated light beams in multistage parametric amplifiers at the maximum gain bandwidth

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Freidman, Gennadii I

    2009-05-31

    Conditions of the applicability of equations in the quasi-static approximation for studying the parametric interaction of frequency-modulated light beams in multistage amplifiers are considered. This approximation is used to simulate numerically processes in a multistage DKDP crystal amplifier with the output power exceeding 10 PW and suppressed luminescence. (lasers and amplifiers)

  9. Research on Multi-Stage Inventory Model by Markov Decision Process

    NASA Astrophysics Data System (ADS)

    Rong, Ke

    This paper researched multi-stage inventory system and established limited inventory Markov model, on the other hand it induced DP algorithm of limited inventory Markov model. The results proved that the reorder point of multi-stage inventory system can guarantee demand, and also allows the storage costs to a minimum level in accordance with the above model.

  10. In-bed tube bank for a fluidized-bed combustor

    DOEpatents

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  11. Multi-Stage System for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an

  12. Bed Bug Tips

    EPA Pesticide Factsheets

    How to deal with bed bugs in one printable page. Ten tips include ensuring correct insect identification, reducing clutter, understand integrated pest management, using mattress and box spring encasements, and heat treatment.

  13. Bed rest during pregnancy

    MedlinePlus

    ... pregnancy problems, including: High blood pressure Premature or preterm changes in the cervix Problems with the placenta ... shown that being on bed rest can prevent preterm birth or other pregnancy problems. And some complications ...

  14. Bed Bug Information Clearinghouse

    EPA Pesticide Factsheets

    Its purpose is to help states, communities, and consumers in efforts to prevent and control bed bug infestations. Currently includes only reviewed material from federal/state/local government agencies, extension services, and universities.

  15. Particle fuel bed tests

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H/sub 2/ for 12 hours with no visible reaction or weight loss.

  16. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  17. Moving-bed sorbents

    SciTech Connect

    Ayala, R.E.; Gupta, R.P.; Chuck, T.

    1995-12-01

    The objective of this program is to develop mixed-metal oxide sorbent formulations that are suitable for moving-bed, high-temperature, desulfurization of coal gas. Work continues on zinc titanates formulations and Z-sorb III sorbent.

  18. Bed Bugs - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bed Bugs URL of this page: https://medlineplus.gov/languages/bedbugs.html Other topics A-Z Expand Section ...

  19. Practice Hospital Bed Safety

    MedlinePlus

    ... 1, 1985 and January 1, 2013, FDA received reports of 901 incidents of patients caught, trapped, entangled, or strangled in ... Use Todd says there have been very few reports of safety incidents with hospital beds used in private residences. "This ...

  20. Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration.

    PubMed

    Jin, T; Yang, R; Wang, Y; Feng, Y; Tang, K

    2017-08-09

    Environmentally friendly and low-cost technologies to recover low-grade heat source into usable energy can contribute to ease the energy shortage. Thermoacoustic technology is expected as one promising approach in this ascendant field. In this work, the multi-stage looped thermoacoustic prime movers with asymmetric configuration, which can provide travelling-wave resonator and appropriate acoustic field for efficient regenerator, have been proposed and experimentally studied. The presented looped thermoacoustic prime movers can start to oscillate with quite low temperature difference along the regenerator. The lowest onset temperature difference obtained in the experiments is only 17 °C (the corresponding heating temperature is 29 °C), which can be achieved in both three-stage and four-stage looped thermoacoustic prime movers, with CO2 of 1 MPa or 1.5 MPa as the working fluid. An electric generator driven by a three-stage looped thermoacoustic prime mover with low heating temperature was tested to achieve the acoustic to electric conversion.

  1. Occurrence of sub-synchronous vibration in a multistage turbine pump and its prevention

    NASA Technical Reports Server (NTRS)

    Kanai, Yanosuke; Saito, Shinobu

    1994-01-01

    It is because of the critical importance the prevention of vibration for high-load rotary machinery assumes in ensuring reliability of a plant as a whole that so many investigations and studies have been performed. A peculiar vibration encountered in a multistage turbine pump is presented and discussed. The pump was serving an active power plant in a part that was a veritable 'heart' of the entire plant, and the major vibration component was about 80 percent frequency of revolution. At first, the propagating stall was thought to be responsible, but the absence of higher harmonics made this presumption untenable. Or else, even though previous reports dealt with seemingly similar mechanical vibration troubles, they offer no clear diagnosis nor suggest simple remedial measures. It is for these reasons that the problem was investigated. Through fundamental tests and experiments, several insights into the nature of this anomalous vibration were gained, the fluid force that caused such a vibration was determined, and effective countermeasures were devised.

  2. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  3. Bed exit alarms.

    PubMed

    2004-09-01

    Bed-exit alarms alert caregivers that a patient who should not get out of bed unassisted is doing so. These alarms can help reduce the likelihood of falls and can promote speedy assistance to patients who have already fallen. But as we described in our May 2004 Guidance Article on bed-exit alarms, they don't themselves prevent falls. They are only effective if used as part of an overall fall-prevention program and with a clear understanding of their limitations. This Evaluation examines the effectiveness of 16 bed-exit alarms from seven suppliers. Our ratings focus primarily on each product's reliability in detecting bed-exit events and alerting caregivers, its ability to minimize nuisance alarms (alarms that sound even though the patient isn't leaving the bed or that sound while a caregiver is helping the patient to leave the bed), and its resistance to deliberate or inadvertent tampering. Twelve of the products use pressure-sensor-activated alarms (mainly sensor pads placed on or under the mattress); three use a cord that can attach to the patient's garment, alarming if the cord is pulled loose from the control unit; and one is a position-sensitive alarm attached to a leg cuff. All the products reliably detect attempted or successful bed exits. But they vary greatly in how effectively they alert staff, minimize nuisance alarms, and resist tampering. Ease of use and battery performance also vary for many units. Of the pressure-sensor units, three are rated Preferred. Those units meet most of our criteria and have no significant disadvantages. Five of the other pressure-sensor products are Acceptable, and the remaining four are Not Recommended. All three cord-activated alarms are rated Acceptable, as is the patient-worn alarm.

  4. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  5. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  6. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  7. Applying a punch with microridges in multistage deep drawing processes.

    PubMed

    Lin, Bor-Tsuen; Yang, Cheng-Yu

    2016-01-01

    The developers of high aspect ratio components aim to minimize the processing stages in deep drawing processes. This study elucidates the application of microridge punches in multistage deep drawing processes. A microridge punch improves drawing performance, thereby reducing the number of stages required in deep forming processes. As an example, the original eight-stage deep forming process for a copper cylindrical cup with a high aspect ratio was analyzed by finite element simulation. Microridge punch designs were introduced in Stages 4 and 7 to replace the original punches. In addition, Stages 3 and 6 were eliminated. Finally, these changes were verified through experiments. The results showed that the microridge punches reduced the number of deep drawing stages yielding similar thickness difference percentages. Further, the numerical and experimental results demonstrated good consistency in the thickness distribution.

  8. Integrated quality control architecture for multistage machining processes

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Liu, Guixiong

    2010-12-01

    To solve problems concerning the process quality prediction control for the multistage machining processes, a integrated quality control architecture is proposed in this paper. First, a hierarchical multiple criteria decision model is established for the key process and the weight matrix method stratified is discussed. Predictive control of the manufacturing quality is not just for on-site monitoring and control layer, control layer in the enterprise, remote monitoring level of quality exists a variety of target predictive control demand, therefore, based on XML to achieve a unified description of manufacturing quality information, and in different source of quality information between agencies to achieve the transfer and sharing. This will predict complex global quality control, analysis and diagnosis data to lay a good foundation to achieve a more practical, open and standardized manufacturing quality with higher levels of information integration system.

  9. 'Bootstrap' Configuration for Multistage Pulse-Tube Coolers

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich; Nguyen, Lauren

    2008-01-01

    A bootstrap configuration has been proposed for multistage pulse-tube coolers that, for instance, provide final-stage cooling to temperatures as low as 20 K. The bootstrap configuration supplants the conventional configuration, in which customarily the warm heat exchangers of all stages reject heat at ambient temperature. In the bootstrap configuration, the warm heat exchanger, the inertance tube, and the reservoir of each stage would be thermally anchored to the cold heat exchanger of the next warmer stage. The bootstrapped configuration is superior to the conventional setup, in some cases increasing the 20 K cooler's coefficient of performance two-fold over that of an otherwise equivalent conventional layout. The increased efficiency could translate into less power consumption, less cooler mass, and/or lower cost for a given amount of cooling.

  10. Subsychronous vibration of multistage centrifugal compressors forced by rotating stall

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1987-01-01

    A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.

  11. A novel multistage kinetic modeling of flotation for wastewater treatment.

    PubMed

    Ksenofontov, B S; Ivanov, M V

    2013-01-01

    This study develops a new model for description of flotation kinetics. It defines flotation as a process that consists of several stages: separated air bubbles and particles, air bubbles and particles forming an aggregate, aggregate rising to the froth layer. This description significantly differs from known models, which are much simplified. The multistage model gives a novel in-depth description and considers different aspects of flotation, i.e. aggregate formation, which is critically important for flotation to take place. Experimental approval of the new model resulted in its accuracy. The model is to be used for a description of kinetics of all flotation processes in wastewater treatment. It helps in accurate design of flotation treatment plants and may be used for further research of the flotation process.

  12. Multistage audiovisual integration of speech: dissociating identification and detection.

    PubMed

    Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias S

    2011-02-01

    Speech perception integrates auditory and visual information. This is evidenced by the McGurk illusion where seeing the talking face influences the auditory phonetic percept and by the audiovisual detection advantage where seeing the talking face influences the detectability of the acoustic speech signal. Here, we show that identification of phonetic content and detection can be dissociated as speech-specific and non-specific audiovisual integration effects. To this end, we employed synthetically modified stimuli, sine wave speech (SWS), which is an impoverished speech signal that only observers informed of its speech-like nature recognize as speech. While the McGurk illusion only occurred for informed observers, the audiovisual detection advantage occurred for naïve observers as well. This finding supports a multistage account of audiovisual integration of speech in which the many attributes of the audiovisual speech signal are integrated by separate integration processes.

  13. Biodynamic modeling and simulation of multistage cell mutations.

    PubMed

    Ahangar, Reza; Ali, Nawab; Iqbal, Kamran; Altmayer, Kumud

    2004-10-01

    The aim of this study is to present a mathematical computer simulation model for multistage carcinogenesis. The population genetic model is developed based on the reaction diffusion, logistic behavior, and Hollings Type II interactions between normal, benign, and premalignant cells. The simple form of the Fisher-Haldane-Wright equation of the genetic model of tumor suppressor gene and oncogenes is used to describe this type of interaction. Through computer simulation, we observe the behavior, stability, and traveling wave solution of the premalignant stage mutation as well as its survival under natural selection pressure. As a simple case of this model, the interaction between normal and tumor cells with one or two stages of mutations is analyzed.

  14. Multi-stage methodology to detect health insurance claim fraud.

    PubMed

    Johnson, Marina Evrim; Nagarur, Nagen

    2016-09-01

    Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data.

  15. Multistep and Multistage Boundary Integral Methods for the Wave Equation

    NASA Astrophysics Data System (ADS)

    Banjai, Lehel

    2009-09-01

    We describe how time-discretized wave equation in a homogeneous medium can be solved by boundary integral methods. The time discretization can be a multistep, Runge-Kutta, or a more general multistep-multistage method. The resulting convolutional system of boundary integral equations falls in the family of convolution quadratures of Ch. Lubich. In this work our aim is to discuss a new technique for efficiently solving the discrete convolutional system and to present large scale 3D numerical experiments with a wide range of time-discretizations that have up to now not appeared in print. One of the conclusions is that Runge-Kutta methods are often the method of choice even at low accuracy; yet, in connection with hyperbolic problems BDF (backward difference formulas) have been predominant in the literature on convolution quadrature.

  16. Mixing for multi-stage axial-flow compressors

    NASA Astrophysics Data System (ADS)

    Li, Shiming; Chen, Maozhang

    1991-11-01

    A set of equations has been derived for through-flow fields in multistage axial-flow compressors, and all the spanwise mixing effects in a unified form are presented, including both turbulence and secondary flows. The relations have been discussed between 3D shear structures of the compressors' flow fields and the turbulent mixing effects in the 2D throughflow fields. It has been found that the turbulent mixing in the 2D throughflow fields is determined by the 3D shear structures, rather than the 2D shear structures alone. From the comparison of the computational results of the equations and experimental results as well as the results of Gallimore's mixing calculations, it has been shown that the characteristics of spanwise mixing can be modeled better by applying these equations.

  17. Extracting multistage screening rules from online dating activity data.

    PubMed

    Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun

    2016-09-20

    This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners ("deal breakers") that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for "big ticket" items.

  18. Multi-stage fuel cell system method and apparatus

    SciTech Connect

    George, Thomas J.; Smith, William C.

    1997-12-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  19. Study of fluidized-bed desulfurization with zinc ferrite

    SciTech Connect

    Grindley, T

    1991-01-01

    Previous work established the technical feasibility of desulfurizing the hot product gases of coal gasification with fixed beds of a regenerable zinc ferrite sorbent. This process, intended for integration with coal gasifiers and gas turbines, has been tested and studied in considerable detail in a process development unit. Though possessing the advantages of high-sulfur absorption at low-sulfur breakthrough and the lack of sorbent attrition characteristic of a stationary bed, fixed beds also have inherent disadvantages: susceptibility to plugging by particles and a large diluent requirement during regeneration to control the reaction zone temperature. Therefore, METC conducted a scoping laboratory test program to determine the desulfurizing capability of fluid beds of zinc ferrite. Results from this program are presented. The results generally demonstrated that fluid beds of zinc ferrite have the potential to lower the H{sub 2}S level in hot gas from 10,000 to 10 ppmv. To achieve this at a high-sorbent sulfur loading would require two fluid-bed stages. Sorbent attrition appears to be acceptably low. Planned future activities include tests at high pressure with both simulated gas and in a gasifier sidestream.

  20. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.

    1993-01-01

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

  1. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

    1993-10-19

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

  2. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Babayigit, Osman; Kocaaslan, Osman; Hilmi Aksoy, Muharrem; Melih Guleren, Kursad; Ozgoren, Muammer

    2015-05-01

    Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ɛ turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  3. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  4. Squeeze-film flow between a curved impermeable bearing and a flat porous bed

    NASA Astrophysics Data System (ADS)

    Knox, D. J.; Duffy, B. R.; McKee, S.; Wilson, S. K.

    2017-02-01

    Axisymmetric squeeze-film flow in the thin gap between a stationary flat thin porous bed and a curved impermeable bearing moving under a prescribed constant load is analysed. The unsteady Reynolds equation is formulated and solved for the fluid pressure. This solution is used to obtain the time for the minimum fluid layer thickness to reduce to a given value, and, in particular, the finite time for the bearing and the bed to come into contact. The effect of varying the shape of the bearing and the permeability of the layer is investigated, and, in particular, it is found that both the contact time and the fluid pressure behave qualitatively differently for beds with small and large permeabilities. In addition, the paths of fluid particles initially situated in both the fluid layer and the porous bed are calculated. In particular, it is shown that, unlike in the case of a flat bearing, for a curved bearing there are fluid particles, initially situated in the fluid layer, that flow from the fluid layer into the porous bed and then re-emerge into the fluid layer, and the region in which these fluid particles are initially situated is determined.

  5. Multistage amphiboles from the Galinge iron skarn deposit in Qiman Tagh, western China: evidence of igneous rocks replacement

    NASA Astrophysics Data System (ADS)

    Yu, M.; Feng, C.-Y.; Zhu, Y.-F.; Mao, J.-W.; Zhao, Y.-M.; Li, D.-X.

    2016-08-01

    Amphiboles from the Galinge skarn deposit, the largest iron (Fe) polymetallic skarn deposit in the Qiman Tagh metallogenic belt (western China), were formed by multistage fluid-rock interactions. Mineral analysis of the various amphiboles suggest that they were formed by the replacement of mafic to intermediate igneous rocks. The two alteration phases have formed three generations of compositionally distinct amphiboles: Amp-I: Ferro-edenitic hornblende (FE); Amp-II: Deep bluish-green magnesian-hastingsite (MH); Amp-III: Light greenish-beige ferro-actinolite (FA). The Amp-I preserves the primary igneous amphibole composition, and was subsequently replaced by Amp-II. The amphibole Cl content markedly increases from the FE (0.176 - 0.582 wt.%) to the MH (0.894 - 3.161 wt.%), and abruptly drops in the FA (0.017 - 0.039 wt.%). The Cl-rich MH contains the lowest concentration of Si [5.64 - 6.28 atoms per formula unit (apfu)], and the highest (K + Na) values (0.72 - 1.06 apfu) in the amphibole A-site with a high K/(K + Na) of 0.491 to 0.429. Both Mg and Fe contents of the MH and FA vary widely, possibly due to the interactions of magma-derived hydrothermal fluids with the basaltic / andesitic host rocks. Formation of the Cl-rich MH may have been associated with the early high-temperature and high-saline hydrothermal fluids, meanwhile the Cl-poor FA may have formed from later low-temperature and low-saline hydrothermal fluids. The MH plays an important role for consuming Cl carried by hydrothermal fluids. The Cl-rich fluids may have mobilized some elements, such as Fe, Al, Mg, Ca and Ti from the host rocks. Considerable amounts of Ti, Al, Mg and Fe were incorporated into the sphene and Fe-Ti oxides that coexist with the MH.

  6. Role of near-bed turbulence in bedload transport

    USGS Publications Warehouse

    Nelson, Jonathan M.; Shreve, Ronald L.; McLean, Stephen R.

    1995-01-01

    Bedload transport by a turbulent fluid moving over an erodible sediment bed results from complex interactions between flow field of the overlying fluid and the grains making up the bed. To develop a better view of these interactions, a method that combines high-speed photography with laser-Doppler velocimetry was devised. The methodology permits correlation of bedload transport with local turbulence structure at a frequency resolution of 10 hz. By making a suite of measurements at varying distances from a backward step, data were obtained for a variety of flows with different turbulence characteristics ranging from steady, uniform boundary layers to highly intermittent, nonuniform wake-like flows.

  7. Cross hospital bed management system.

    PubMed

    Abedian, S; Kazemi, H; Riazi, H; Bitaraf, E

    2014-01-01

    The lack of adequate numbers of hospital beds to accommodate the injured is a main problem in public hospitals. For control of occupancy of bed, we design a dynamic system that announces status of bed when it change with admission or discharge of a patient. This system provide a wide network in country for bed management, especially for ICU and CCU beds that help us to distribute injured patient in the hospitals.

  8. Exercise countermeasures for bed-rest deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  9. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  10. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  11. Adsorbent and adsorbent bed for materials capture and separation processes

    DOEpatents

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  12. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  13. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  14. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  15. The Safety of Hospital Beds

    PubMed Central

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  16. Unsteady Flow Field in a Multistage Axial Flow Compressor

    NASA Technical Reports Server (NTRS)

    Suryavamshi, N.; Lakshminarayana, B.; Prato, J.

    1997-01-01

    The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this

  17. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  18. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  19. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity

    NASA Technical Reports Server (NTRS)

    Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.

    2001-01-01

    Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.

  20. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity

    NASA Technical Reports Server (NTRS)

    Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.

    2001-01-01

    Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.

  1. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  2. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  3. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily

  4. Internal Combustion Engines as Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher

    2016-11-01

    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  5. Bed Bug Myths

    EPA Pesticide Factsheets

    Learn the truth about bed bugs, such as how easy they are to see with the naked eye, their preferred habitat, whether they transmit diseases, their public health effects, and whether pesticides are the best way to deal with an infestation.

  6. Deep Space Test Bed

    NASA Technical Reports Server (NTRS)

    Milton, Martha E.

    2005-01-01

    This viewgraph presentation describes the Deep Space Test Bed (DSTB), a balloon-borne device which can expose multiple payloads to the interplanetary Galactic Cosmic Ray environment on high altitude polar balloon flights. The DSTB is carried by National Scientific Balloon Facility (NSBF) Long Duration Balloons on polar flights so that its balloon-borne experiments can avoid geomagnetic cut-offs.

  7. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  8. Optimal design of multi-arm multi-stage trials.

    PubMed

    Wason, James M S; Jaki, Thomas

    2012-12-30

    In drug development, there is often uncertainty about the most promising among a set of different treatments. Multi-arm multi-stage (MAMS) trials provide large gains in efficiency over separate randomised trials of each treatment. They allow a shared control group, dropping of ineffective treatments before the end of the trial and stopping the trial early if sufficient evidence of a treatment being superior to control is found. In this paper, we discuss optimal design of MAMS trials. An optimal design has the required type I error rate and power but minimises the expected sample size at some set of treatment effects. Finding an optimal design requires searching over stopping boundaries and sample size, potentially a large number of parameters. We propose a method that combines quick evaluation of specific designs and an efficient stochastic search to find the optimal design parameters. We compare various potential designs motivated by the design of a phase II MAMS trial. We also consider allocating more patients to the control group, as has been carried out in real MAMS studies. We show that the optimal allocation to the control group, although greater than a 1:1 ratio, is smaller than previously advocated and that the gain in efficiency is generally small.

  9. Use of a continuous multistage bioreactor to mimic winemaking fermentation.

    PubMed

    Clement, T; Perez, M; Mouret, J R; Sablayrolles, J M; Camarasa, C

    2011-10-17

    Continuous fermentation set-ups are of great interest for studying the physiology of microorganisms. In winemaking conditions, yeasts go through a growth phase and a stationary phase during which more than half of the sugar is fermented. A comprehensive study of wine-yeast physiology must therefore include yeasts in a non-growing phase. This condition is impossible to achieve within a chemostat, which led us to design a multi-stage fermentation device. In this study, we evaluated the ability of such a device to reproduce, in a series of steady states, the conditions of batch fermentation. Two-stage and four-stage fermentations were carried out with two different strains of Saccharomyces cerevisiae. The main characteristics of the fermentation process (biomass growth, by-product content of the medium) were compared with those observed in batch mode at the same stage of fermentation, which was defined by glucose uptake. The four-stage configuration showed a better ability to reproduce batch fermentation characteristics than the two-stage set-up. It also allowed to uncouple the variations of environmental parameters and proved to be a promising tool to gain new insights into yeast metabolism during alcoholic fermentation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Fully Automated Operational Modal Analysis using multi-stage clustering

    NASA Astrophysics Data System (ADS)

    Neu, Eugen; Janser, Frank; Khatibi, Akbar A.; Orifici, Adrian C.

    2017-02-01

    The interest for robust automatic modal parameter extraction techniques has increased significantly over the last years, together with the rising demand for continuous health monitoring of critical infrastructure like bridges, buildings and wind turbine blades. In this study a novel, multi-stage clustering approach for Automated Operational Modal Analysis (AOMA) is introduced. In contrast to existing approaches, the procedure works without any user-provided thresholds, is applicable within large system order ranges, can be used with very small sensor numbers and does not place any limitations on the damping ratio or the complexity of the system under investigation. The approach works with any parametric system identification algorithm that uses the system order n as sole parameter. Here a data-driven Stochastic Subspace Identification (SSI) method is used. Measurements from a wind tunnel investigation with a composite cantilever equipped with Fiber Bragg Grating Sensors (FBGSs) and piezoelectric sensors are used to assess the performance of the algorithm with a highly damped structure and low signal to noise ratio conditions. The proposed method was able to identify all physical system modes in the investigated frequency range from over 1000 individual datasets using FBGSs under challenging signal to noise ratio conditions and under better signal conditions but from only two sensors.

  11. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  12. Multi-stage FE simulation of hot ring rolling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  13. Extracting multistage screening rules from online dating activity data

    PubMed Central

    Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun

    2016-01-01

    This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners (“deal breakers”) that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for “big ticket” items. PMID:27578870

  14. Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1998-01-01

    A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.

  15. Multi-stage constructed wetland systems for municipal wastewater treatment.

    PubMed

    Masi, F; Caffaz, S; Ghrabi, A

    2013-01-01

    In the present paper the detailed design and performances of two municipal wastewater treatment plants, a four-stage constructed wetlands (CW) system located in the city of Dicomano (about 3,500 inhabitants) in Italy, and a three-stage CW system for the village of Chorfech (about 500 inhabitants) in Tunisia, are presented. The obtained results demonstrate that multi-stage CWs provide an excellent secondary treatment for wastewaters with variable operative conditions, reaching also an appropriate effluent quality for reuse. Dicomano CWs have shown good performances, on average 86% of removal for the Organic Load, 60% for Total Nitrogen (TN), 43% for Total Phosphorus (TP), 89% for Total Suspended Solids (TSS) and 76% for Ammonium (NH4(+)). Even the disinfection process has performed in a very satisfactory way, reaching up to 4-5 logs of reduction of the inlet pathogens concentration, with an Escherichia coli average concentration in the outlet often below 200 UFC/100 mL. The mean overall removal rates of the Chorfech CWs during the monitored period have been, respectively, equal to 97% for TSS and Biochemical Oxygen Demand (BOD5), 95% for Chemical Oxygen Demand (COD), 71% for TN and 82% for TP. The observed removal of E. coli by the CW system was in this case 2.5 log units.

  16. Multi-Stage Multi-Task Feature Learning*

    PubMed Central

    Gong, Pinghua; Ye, Jieping; Zhang, Changshui

    2013-01-01

    Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to its looseness for approximating an ℓ0-type regularizer. In this paper, we propose a non-convex formulation for multi-task sparse feature learning based on a novel regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm. Moreover, we present a detailed theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature learning algorithms. PMID:24431924

  17. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  18. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  19. Theta gun, a multistage, coaxial, magnetic induction projectile accelerator

    NASA Astrophysics Data System (ADS)

    Burgess, T. J.; Duggin, B. W.; Cowan, M., Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a theta gun to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capacitor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun velocity breakeven in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated.

  20. Multistage optical smoke detection approach for smoke alarm systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Truc Kim Thi; Kim, Jong-Myon

    2013-05-01

    We propose a novel multistage smoke detection algorithm based on inherent optical characteristics such as diffusion, color, and texture of smoke. Moving regions in a video frame are detected by an approximate median background subtraction method using the diffusion behavior of smoke. These moving regions are segmented by a fuzzy C-means (FCM) clustering algorithm that uses the hue and saturation components of moving pixels in the hue-saturation-intensity color space. A decision rule is used to select candidate smoke regions from smoke-colored FCM clusters. An object tracking approach is employed in the candidate smoke region to detect candidate smoke objects in the video frame, and image texture parameters are extracted from these objects using a gray level co-occurrence matrix (GLCM). The thirteen GLCM features are selected to constitute the feature vector by applying principal components analysis, resulting in high-accuracy smoke detection. Finally, a back propagation neural network is utilized as a classifier to discriminate smoke and nonsmoke using the selected feature vector. Experimental results using a standard experimental dataset of video clips demonstrate that the proposed approach outperforms state-of-the-art smoke detection approaches in terms of accuracy, making real-life implementation feasible.