Science.gov

Sample records for multistage interconnection networks

  1. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost

  2. A survey and comparison of fault-tolerant multistage interconnection networks

    NASA Technical Reports Server (NTRS)

    Adams, George B., III; Agrawal, Dharma P.; Siegel, Howard Jay

    1987-01-01

    Intrinsically fault-tolerant multistage interconnection networks (MINs) are surveyed, categorizing the MINs by the amount of hardware modifications they use to provide redundancy. The diversity of such MINs and the scope of fault-tolerance techniques are examined. A hypothetical MIN with ideal engineering characteristics is defined, and the surveyed MINs are compared to this standard.

  3. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  4. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    PubMed

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications.

  5. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts.

    PubMed

    Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2015-04-22

    Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. PMID:25819791

  6. CAISSON: Interconnect Network Simulator

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  7. Building interconnected membrane networks.

    PubMed

    Holden, Matthew A

    2015-01-01

    Reconstituted replica cell membranes are easily created by contacting two lipid-monolayer-encased aqueous droplets under an oil phase. Called the droplet interface bilayer (DIB), this technique has been used to study a wide range of membrane processes. Importantly, this method is compatible with electrical measurements, meaning that membrane protein activities are easily observed in DIBs. By positioning droplets in two- and three-dimensional networks, sophisticated interconnected systems can be created that possess collective properties. The methods described here summarize the approaches used to create DIB networks and how to operate the devices that have been constructed so far.

  8. Policy issues in interconnecting networks

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  9. Optimal software multicast in wormhole-routed multistage networks

    SciTech Connect

    Xu, H.; Gui, Y.D.; Ni, L.M.

    1994-12-31

    Multistage interconnection networks are a popular class of interconnection architecture for constructing scalable parallel computers (SPCs). The focus of this paper is on wormhole routed multistage networks supporting turnaround routing. Existing machines characterized by such a system model include the IBM SP-1, TMC CM-5, and Meiko CS-2. Efficient collective communication among processor nodes is critical to the performance of SPCS. A system-level multicast service, in which the same message is delivered from a source node to an arbitrary number of destination nodes, is fundamental in supporting collective communication primitives including the application-level broadcast, reduction, and barrier synchronization. This paper addresses how to efficiently implement multicast services in wormhole routed multistage networks, in the absence of hardware multicast support, by exploiting the properties of the switching technology. An optimal multicast algorithm is proposed. The results of implementations on a 64-node SP-1 show that the proposed algorithm significantly out performs the application-level broadcast primitives provided by currently existing collective communication libraries including the public domain MPI.

  10. The performance of multicomputer interconnection networks

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Grunwald, Dirk C.

    1987-01-01

    The interdependency of nodes and multicomputer interconnection networks is examined using simple calculations based on the asymptotic properties of queueing networks. Methods are described for choosing interconnection networks that fit individual classes of applications. It is also shown how analytic models can be extended to benchmark existing interconnection networks.

  11. Interconnectivity structure of a general interdependent network.

    PubMed

    Van Mieghem, P

    2016-04-01

    A general two-layer network consists of two networks G_{1} and G_{2}, whose interconnection pattern is specified by the interconnectivity matrix B. We deduce desirable properties of B from a dynamic process point of view. Many dynamic processes are described by the Laplacian matrix Q. A regular topological structure of the interconnectivity matrix B (constant row and column sum) enables the computation of a nontrivial eigenmode (eigenvector and eigenvalue) of Q. The latter eigenmode is independent from G_{1} and G_{2}. Such a regularity in B, associated to equitable partitions, suggests design rules for the construction of interconnected networks and is deemed crucial for the interconnected network to show intriguing behavior, as discovered earlier for the special case where B=wI refers to an individual node to node interconnection with interconnection strength w. Extensions to a general m-layer network are also discussed.

  12. Epidemics in interconnected small-world networks.

    PubMed

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  13. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  14. Interconnection of VSAT and public data networks

    NASA Astrophysics Data System (ADS)

    Ramirez, Angel; Solana, Jesus; Berberana, Ignacio; Jimenez, Jose

    1991-10-01

    Technology advancements have made it possible to think of Very Small Aperture Terminals (VSAT) networks as a good technical alternative for WAN's development. With the foreseen single European market and the legal frame changes expected a rapid development of these systems is likely. A draft of standards for the interconnection of VSAT systems to Packet Switched Public Data Network (PSPDN's) has been issued in such an environment. An experiment with a two way VSAT system is being performed. The experiment covers several topics including sizing availability and reliability. Those related to the interconnection to the Spanish PSPDN, IBERPAC; interconnection scenarios, connection quality requirements, addressing and facilities are considered.

  15. Random walk centrality in interconnected multilayer networks

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; De Domenico, Manlio; Gómez, Sergio; Arenas, Alex

    2016-06-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influent nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  16. Nonlinear Dynamics on Interconnected Networks

    NASA Astrophysics Data System (ADS)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  17. Epidemic spread on interconnected metapopulation networks.

    PubMed

    Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2014-09-01

    Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns.

  18. Modeling and synthesis of multicomputer interconnection networks

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.; Auxter, D. Steve

    1990-01-01

    The type of interconnection network employed has a profound effect on the performance of a multicomputer and multiprocessor design. Adequate models are needed to aid in the design and development of interconnection networks. A novel modeling approach using statistical and optimization techniques is described. This method represents an attempt to compare diverse interconnection network designs in a way that allows not only the best of existing designs to be identified but to suggest other, perhaps hybrid, networks that may offer better performance. Stepwise linear regression is used to develop a polynomial surface representation of performance in a (k+1) space with a total of k quantitative and qualitative independent variables describing graph-theoretic characteristics such as size, average degree, diameter, radius, girth, node-connectivity, edge-connectivity, minimum dominating set size, and maximum number of prime node and edge cutsets. Dependent variables used to measure performance are average message delay and the ratio of message completion rate to network connection cost. Response Surface Methodology (RSM) optimizes a response variable from a polynomial function of several independent variables. Steepest ascent path may also be used to approach optimum points.

  19. Electric network interconnection of Mashreq Arab Countries

    SciTech Connect

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.

  20. Towards energy aware optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  1. Oscillations in interconnected complex networks under intentional attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei

    2016-01-01

    Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.

  2. Fault-tolerant interconnection networks for multiprocessor systems

    SciTech Connect

    Nassar, H.M.

    1989-01-01

    Interconnection networks represent the backbone of multiprocessor systems. A failure in the network, therefore, could seriously degrade the system performance. For this reason, fault tolerance has been regarded as a major consideration in interconnection network design. This thesis presents two novel techniques to provide fault tolerance capabilities to three major networks: the Beneline network and the Clos network. First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT technique is in fact the result of merging two widely known interconnection mechanisms: a normal interconnection network and a shared bus. This technique is most suitable for networks with small switches, such as the Baseline network and the Benes network. For the Clos network, whose switches may be large for the SFT, another technique is developed to produce the Fault-Tolerant Clos (FTC) network. In the FTC, one switch is added to each stage. The two techniques are described and thoroughly analyzed.

  3. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  4. Interacting Social Processes on Interconnected Networks

    PubMed Central

    Alvarez-Zuzek, Lucila G.; La Rocca, Cristian E.; Vazquez, Federico; Braunstein, Lidia A.

    2016-01-01

    We propose and study a model for the interplay between two different dynamical processes –one for opinion formation and the other for decision making– on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = −2,−1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = −1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r*(β), while a negative consensus happens for r < r*(β). In the r − β phase space, the system displays a transition at a critical threshold βc, from a coexistence of both orientations for β < βc to a dominance of one orientation for β > βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*). PMID:27689698

  5. High throughput network for multiprocessor interconnections

    NASA Astrophysics Data System (ADS)

    Raatikainen, Pertti; Zidbeck, Juha

    1993-05-01

    Multiprocessor architectures are needed to support modern broadband applications, since traditional bus structures are not capable of providing high throughput. New bus structures are needed, especially in the area of network components and terminals. A study to find an efficient and cost effective interconnection topology for the future high speed products is presented. The most common bus topologies are introduced, and their characteristics are estimated to decide which one of them offers best performance and lowest implementation cost. The ring topology is chosen to be studied in more detail. Four competing bus access schemes for the high throughput ring are introduced as well as simulation models for each of them. Using transfer delay and throughput results, as well as keeping the implementation point of view in mind, the best candidate is selected to be studied and experimented in the succeeding research project.

  6. Maximizing algebraic connectivity in interconnected networks

    NASA Astrophysics Data System (ADS)

    Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina

    2016-03-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.

  7. Maximizing algebraic connectivity in interconnected networks.

    PubMed

    Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina

    2016-03-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically. PMID:27078276

  8. Reaction-diffusion processes on interconnected scale-free networks

    NASA Astrophysics Data System (ADS)

    Garas, Antonios

    2015-08-01

    We study the two-particle annihilation reaction A +B →∅ on interconnected scale-free networks, using different interconnecting strategies. We explore how the mixing of particles and the process evolution are influenced by the number of interconnecting links, by their functional properties, and by the interconnectivity strategies in use. We show that the reaction rates on this system are faster than what was observed in other topologies, due to the better particle mixing that suppresses the segregation effect, in line with previous studies performed on single scale-free networks.

  9. Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers.

    PubMed

    Louri, A; Gupta, R

    1997-01-10

    A new interconnection network for massively parallel computing is introduced. This network is called a hierarchal optical ring interconnection (HORN). The HORN consists of a single-hop, scalable, constant-degree, strictly nonblocking, fault-tolerant interconnection topology that uses wavelength-division multiple access to provide better utilization of the terahertz bandwidth offered by optics. The proposed optical network integrates the attractive features of hierarchical ring interconnections, e.g., a simple node interface, a constant node degree, better support for the locality of reference, and fault tolerance, with the advantages of optics. The HORN topology is presented, its architectural properties are analyzed, and an optical design methodology for it is described. Furthermore, a brief feasibility study of the HORN is conducted. The study shows that the topology is highly amenable to optical implementation with commercially available optical elements.

  10. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  11. Optical interconnection networks for high-performance computing systems.

    PubMed

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  12. Rescue of endemic states in interconnected networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-07-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  13. Rescue of endemic states in interconnected networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-07-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  14. Rescue of endemic states in interconnected networks with adaptive coupling

    PubMed Central

    Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San

    2016-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime. PMID:27380771

  15. Rescue of endemic states in interconnected networks with adaptive coupling.

    PubMed

    Vazquez, F; Serrano, M Ángeles; Miguel, M San

    2016-07-06

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.

  16. Using SPEEDES to simulate the blue gene interconnect network

    NASA Technical Reports Server (NTRS)

    Springer, P.; Upchurch, E.

    2003-01-01

    JPL and the Center for Advanced Computer Architecture (CACR) is conducting application and simulation analyses of BG/L in order to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution.

  17. Brain tumour cells interconnect to a functional and resistant network.

    PubMed

    Osswald, Matthias; Jung, Erik; Sahm, Felix; Solecki, Gergely; Venkataramani, Varun; Blaes, Jonas; Weil, Sophie; Horstmann, Heinz; Wiestler, Benedikt; Syed, Mustafa; Huang, Lulu; Ratliff, Miriam; Karimian Jazi, Kianush; Kurz, Felix T; Schmenger, Torsten; Lemke, Dieter; Gömmel, Miriam; Pauli, Martin; Liao, Yunxiang; Häring, Peter; Pusch, Stefan; Herl, Verena; Steinhäuser, Christian; Krunic, Damir; Jarahian, Mostafa; Miletic, Hrvoje; Berghoff, Anna S; Griesbeck, Oliver; Kalamakis, Georgios; Garaschuk, Olga; Preusser, Matthias; Weiss, Samuel; Liu, Haikun; Heiland, Sabine; Platten, Michael; Huber, Peter E; Kuner, Thomas; von Deimling, Andreas; Wick, Wolfgang; Winkler, Frank

    2015-12-01

    Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.

  18. Derivatives and credit contagion in interconnected networks

    NASA Astrophysics Data System (ADS)

    Heise, S.; Kühn, R.

    2012-04-01

    The importance of adequately modeling credit risk has once again been highlighted in the recent financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic conditions, but also by directly triggering each other through contagion. Although credit default swaps have radically altered the dynamics of contagion for more than a decade, models quantifying their impact on systemic risk are still missing. Here, we examine contagion through credit default swaps in a stylized economic network of corporates and financial institutions. We analyse such a system using a stochastic setting, which allows us to exploit limit theorems to exactly solve the contagion dynamics for the entire system. Our analysis shows that, by creating additional contagion channels, CDS can actually lead to greater instability of the entire network in times of economic stress. This is particularly pronounced when CDS are used by banks to expand their loan books (arguing that CDS would offload the additional risks from their balance sheets). Thus, even with complete hedging through CDS, a significant loan book expansion can lead to considerably enhanced probabilities for the occurrence of very large losses and very high default rates in the system. Our approach adds a new dimension to research on credit contagion, and could feed into a rational underpinning of an improved regulatory framework for credit derivatives.

  19. Stuttgart Interconnection Network Project from PIX to NICS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The PIX follow-up project NICS is described. The purpose of PIX was access to X.25, the DATEX-P network of the Federal German Post Office. The development and implementation of higher protocols for levels 4-7 in the ISOSINN was the actual problem here. Results of the PIX project are given. NICS (Stuttgart Interconnection Network Project) is presented. International Protocols are reviewed. PAD service is described, which allows terminal access to DATEX-P network of the Federal German Post Office.

  20. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  1. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  2. Complexity in neuronal noise depends on network interconnectivity.

    PubMed

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example). PMID:21347547

  3. LTAR linkages with other research networks: Capitalizing on network interconnections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA’s Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation’s Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON)...

  4. Optical interconnections and networks; Proceedings of the Meeting, The Hague, Netherlands, Mar. 14, 15, 1990

    NASA Technical Reports Server (NTRS)

    Bartelt, Hartmut (Editor)

    1990-01-01

    The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.

  5. Scaling silicon photonic switch fabrics for data center interconnection networks.

    PubMed

    Nikolova, Dessislava; Rumley, Sébastien; Calhoun, David; Li, Qi; Hendry, Robert; Samadi, Payman; Bergman, Keren

    2015-01-26

    With the rapidly increasing aggregate bandwidth requirements of data centers there is a growing interest in the insertion of optically interconnected networks with high-radix transparent optical switch fabrics. Silicon photonics is a particularly promising and applicable technology due to its small footprint, CMOS compatibility, high bandwidth density, and the potential for nanosecond scale dynamic connectivity. In this paper we analyze the feasibility of building silicon photonic microring based switch fabrics for data center scale optical interconnection networks. We evaluate the scalability of a microring based switch fabric for WDM signals. Critical parameters including crosstalk, insertion loss and switching speed are analyzed, and their sensitivity with respect to device parameters is examined. We show that optimization of physical layer parameters can reduce crosstalk and increase switch fabric scalability. Our analysis indicates that with current state-of-the-art devices, a high radix 128 × 128 silicon photonic single chip switch fabric with tolerable power penalty is feasible. The applicability of silicon photonic microrings for data center switching is further supported via review of microring operations and control demonstrations. The challenges and opportunities for this technology platform are discussed.

  6. Architectural Exploration and Design Methodologies of Photonic Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Chan, Jong Wu

    Photonic technology is becoming an increasingly attractive solution to the problems facing today's electronic chip-scale interconnection networks. Recent progress in silicon photonics research has enabled the demonstration of all the necessary optical building blocks for creating extremely high-bandwidth density and energy-efficient links for on- and off-chip communications. From the feasibility and architecture perspective however, photonics represents a dramatic paradigm shift from traditional electronic network designs due to fundamental differences in how electronics and photonics function and behave. As a result of these differences, new modeling and analysis methods must be employed in order to properly realize a functional photonic chip-scale interconnect design. In this work, we present a methodology for characterizing and modeling fundamental photonic building blocks which can subsequently be combined to form full photonic network architectures. We also describe a set of tools which can be utilized to assess the physical-layer and system-level performance properties of a photonic network. The models and tools are integrated in a novel open-source design and simulation environment called PhoenixSim. Next, we leverage PhoenixSim for the study of chip-scale photonic networks. We examine several photonic networks through the synergistic study of both physical-layer metrics and system-level metrics. This holistic analysis method enables us to provide deeper insight into architecture scalability since it considers insertion loss, crosstalk, and power dissipation. In addition to these novel physical-layer metrics, traditional system-level metrics of bandwidth and latency are also obtained. Lastly, we propose a novel routing architecture known as wavelength-selective spatial routing. This routing architecture is analogous to electronic virtual channels since it enables the transmission of multiple logical optical channels through a single physical plane (i.e. the

  7. LTAR Linkages with Other Research Networks: Capitalizing on Network Interconnections

    NASA Astrophysics Data System (ADS)

    Havstad, K.

    2015-12-01

    The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA's Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation's Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON), and the USDA's Climate Hub Network. Each of these networks has distinct functions, missions, operational characteristics, and distinct scientific and management sub-cultures (though some are fairly new and developing). Some are a fairly independent collection of research sites functioning as a network in name only, and others are truly working to develop a research synergy that could be holistic and uniquely productive. All have real scientific value, and collectively represent an investment in US research infrastructure in biology and agriculture in excess of $3B. To effectively utilize and exploit this unique research infrastructure will require a concerted effort to meld attributes of each to the benefits of their common stakeholders. Real opportunities exist to collectively utilize this infrastructure to address grand research challenges.

  8. An efficient network for interconnecting remote monitoring instruments and computers

    SciTech Connect

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-08-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs.

  9. Exact coupling threshold for structural transition reveals diversified behaviors in interconnected networks

    NASA Astrophysics Data System (ADS)

    Darabi Sahneh, Faryad; Scoglio, Caterina; Van Mieghem, Piet

    2015-10-01

    An interconnected network features a structural transition between two regimes [F. Radicchi and A. Arenas, Nat. Phys. 9, 717 (2013), 10.1038/nphys2761]: one where the network components are structurally distinguishable and one where the interconnected network functions as a whole. Our exact solution for the coupling threshold uncovers network topologies with unexpected behaviors. Specifically, we show conditions that superdiffusion, introduced by Gómez et al. [Phys. Rev. Lett. 110, 028701 (2013), 10.1103/PhysRevLett.110.028701], can occur despite the network components functioning distinctly. Moreover, we find that components of certain interconnected network topologies are indistinguishable despite very weak coupling between them.

  10. High performance interconnection between high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.

    1992-01-01

    The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.

  11. Efficient routing and broadcasting in recursive interconnection networks

    SciTech Connect

    Fernandes, R.; Friesen, D.K.; Kanevsky, A.

    1994-12-31

    The WK-Recursive Network (WKRN) is a hierarchical interconnection network that is recursively defined and has excellent properties for scalable message-passing multicomputer systems. In this paper, we present efficient routing and broadcasting schemes in a WKRN. For efficient routing, we define the MP-graph between the source and destination nodes of the message. For efficient broadcasting, we define the EDHP-graph and the NDST-graph. The MP-graph can also be used for message routing in the presence of faulty nodes. Similarly, the EDHP-graph (the NDST-graph) can be used for message broadcast in the presence of faulty links (nodes). Fault-tolerance communication schemes using these graphs have the advantage that no information about the presence or location of faulty components is required. Moreover, the MP-graph and the NDST-graph can be used under different fault models. We analyze the communication delays for message routing (broadcast) along MP-graphs (EDHP-graphs and NDST-graphs) under fault-free and faulty conditions.

  12. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  13. Highly graphitized laterally interconnected SWCNT network synthesis via a sandwich-grown method

    NASA Astrophysics Data System (ADS)

    Teng, I.-Ju; Chen, Kai-Ling; Hsu, Hui-Lin; Jian, Sheng-Rui; Wang, Li-Chun; Chen, Jung-Hsuan; Wang, Wei-Hsiang; Kuo, Cheng-Tzu

    2011-04-01

    We present a sandwich-grown method for growing laterally interconnected single-walled carbon nanotube (SWCNT) networks with a high degree of graphitization by microwave plasma chemical vapour deposition (MPCVD). An Al2O3-supported Fe catalyst precursor layer deposited on an oxidized Si substrate with an upper Si cover is first pretreated in pure hydrogen, and then exposed to a gas mixture of methane/hydrogen for growth process at a lower growth temperature and a faster rate. The effects of various parameters, such as catalyst film thickness, gas flow rate, working pressure, growth time and plasma power, on the morphologies and structural characteristics of the SWCNT networks are investigated, and therefore provide the essential conditions for direct growth of laterally interconnected SWCNT networks. Analytical results demonstrate that the SWCNT-based lateral architecture comprises a mixture of graphene-sheet-wrapped catalyst particles and laterally interconnected nanotubes, isolated or branched or assembled into bundles. The results also show that the formation of the laterally interconnected SWCNT networks is related to the sandwich-like stack approach and the addition of an Al2O3 layer in the MPCVD process. The successful growth of lateral SWCNT networks provides new experimental information for simply and efficiently preparing lateral SWCNTs on unpatterned substrates, and opens a pathway to create network-structured nanotube-based devices.

  14. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages.

    PubMed

    Shi, Shengjing; Nuccio, Erin E; Shi, Zhou J; He, Zhili; Zhou, Jizhong; Firestone, Mary K

    2016-08-01

    While interactions between roots and microorganisms have been intensively studied, we know little about interactions among root-associated microbes. We used random matrix theory-based network analysis of 16S rRNA genes to identify bacterial networks associated with wild oat (Avena fatua) over two seasons in greenhouse microcosms. Rhizosphere networks were substantially more complex than those in surrounding soils, indicating the rhizosphere has a greater potential for interactions and niche-sharing. Network complexity increased as plants grew, even as diversity decreased, highlighting that community organisation is not captured by univariate diversity. Covariations were predominantly positive (> 80%), suggesting that extensive mutualistic interactions may occur among rhizosphere bacteria; we identified quorum-based signalling as one potential strategy. Putative keystone taxa often had low relative abundances, suggesting low-abundance taxa may significantly contribute to rhizosphere function. Network complexity, a previously undescribed property of the rhizosphere microbiome, appears to be a defining characteristic of this habitat. PMID:27264635

  15. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  16. Fuzzy-information-based robustness of interconnected networks against attacks and failures

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai

    2016-09-01

    Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.

  17. SPRINT: The Systolic Processor with a Reconfigurable Interconnection Network of Transputers

    SciTech Connect

    De Groot, A.J.; Johansson, E.M.; Fitch, J.P.; Grant, C.W.; Parker, S.R.

    1987-05-01

    The Systolic Processor with a Reconfigurable Interconnection Network of Transputers (SPRINT) is a sixty-four-processor multiprocessor developed at Lawrence Livermore National Laboratory for experimentally evaluating systolic algorithms and architectures. This paper describes the architecture of the SPRINT and several algorithms which have been executed on it.

  18. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    SciTech Connect

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-05-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni{sub 2}P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni{sub 2}P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni{sub 2}P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni{sub 2}P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni{sub 2}P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni{sub 2}P was postulated and discussed in detail. To investigate its catalytic properties, SiO{sub 2} supported three-dimensional Ni{sub 2}P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni{sub 2}P/SiO{sub 2}.

  19. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  20. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent. PMID:26367901

  1. Exabits/s integrated photonic interconnection technology for flexible data-centric optical networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.; Tao, Thomas W.; Ning, Gordon L.

    2016-03-01

    Optical networking is evolving from classical service-provider base data-center centric (DCC) internetworking environment with massive capacity, hence demanding novel optical switching and interconnecting technologies. The traditional telecom networks are under a flattening transformation to meet challenges from DCC networks for massive capacity serving in order of multi-Pb/s. We present proposed distributed and concentric data center based networks and the essential optical interconnection technologies, from the photonic kernels to electronic and optoelectronic server clusters, in both passive and active structures. Optical switching devices and integrated matrices are proposed composing of tunable (bandwidth and center wavelength) optical filters and switches as well as resonant microring modulators (μRM)(switching and spectral demux/mux) for multi-wavelength flexible-bandwidth optical channels of aggregate capacity reaching Ebps. The design principles and some experimental results are also reported.

  2. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Lancichinetti, Andrea; Arenas, Alex; Rosvall, Martin

    2015-01-01

    To comprehend interconnected systems across the social and natural sciences, researchers have developed many powerful methods to identify functional modules. For example, with interaction data aggregated into a single network layer, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow processes. However, many interconnected systems consist of agents or components that exhibit multiple layers of interactions, possibly from several different processes. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here, we propose a method based on a compression of network flows that can identify modular flows both within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic multilayer networks, with some layers originating from the same interaction process, show that the analysis fails in aggregated networks or when treating the layers separately, whereas the multilayer method can accurately identify modules across layers that originate from the same interaction process. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks with topics as layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected topics and reveals smaller modules with more overlap that better capture the actual organization.

  3. Multi-stage freezing of HEUR polymer networks with magnetite nanoparticles.

    PubMed

    Campanella, A; Holderer, O; Raftopoulos, K N; Papadakis, C M; Staropoli, M P; Appavou, M S; Müller-Buschbaum, P; Frielinghaus, H

    2016-04-01

    We observe a change in the segmental dynamics of hydrogels based on hydrophobically modified ethoxylated urethanes (HEUR) when hydrophobic magnetite nanoparticles (MNPs) are embedded in the hydrogels. The dynamics of the nanocomposite hydrogels is investigated using dielectric relaxation spectroscopy (DRS) and neutron spin echo (NSE) spectroscopy. The magnetic nanoparticles within the hydrophobic domains of the HEUR polymer network increase the size of these domains and their distance. The size increase leads to a dilution of the polymers close to the hydrophobic domain, allowing higher mobility of the smallest polymer blobs close to the "center". This is reflected in the decrease of the activation energy of the β-process detected in the DRS data. The increase in distance leads to an increase of the size of the largest hydrophilic polymer blobs. Therefore, the segmental dynamics of the largest blobs is slowed down. At short time scales, i.e. 10(-9) s < τ < 10(-3) s, the suppression of the segmental dynamics is reflected in the α-relaxation processes detected in the DRS data and in the decrease of the relaxation rate Γ of the segmental motion in the NSE data with increasing concentration of magnetic nanoparticles. The stepwise (multi-stage) freezing of the small blobs is only visible for the pure hydrogel at low temperatures. On the other hand, the glass transition temperature (Tg) decreases upon increasing the MNP loading, indicating an acceleration of the segmental dynamics at long time scales (τ∼ 100 s). Therefore, it would be possible to tune the Tg of the hydrogels by varying the MNP concentration. The contribution of the static inhomogeneities to the total scattering function Sst(q) is extracted from the NSE data, revealing a more ordered gel structure than the one giving rise to the total scattering function S(q), with a relaxed correlation length ξNSE = (43 ± 5) Å which is larger than the fluctuating correlation length from a static investigation

  4. Sub-Wavelength Silicon Photonic Devices for Optical Interconnect Networks

    NASA Astrophysics Data System (ADS)

    Dudley, Eric F.

    As our demand for information grows, so too does the demand for networks capable of handling this flood of data. Conventional on-chip electrical networks are approaching their limits in terms of latency, power consumption and data rates and will need to be replaced with new technology in the near future. Photonic networks promise great improvements over electrical networks, but several key challenges still hinder their widespread deployment. This thesis focuses on addressing the problem of encoding and routing data inside integrated optical communication networks. This is accomplished through electrically driven optical switches or modulators that are able to produce a binary optical data stream from a binary electrical input signal. The primary metrics used to evaluate the performance of these devices are spatial footprint, modulation/switching speed, operating voltage and power consumption per bit. Secondary concerns are device bandwidth, CMOS compatibility, tolerance to fabrication errors and device losses. In this thesis, we present a theoretical design for an electrically driven optical switch utilizing hybrid silicon-insulator-metal waveguides with a 30 square micrometer footprint, 57 Gbit/s switching speed, 2.6 fJ/bit power consumption and 1V operation. We also present experimental confirmation of the optical properties of hybrid silicon-insulator-metal waveguides which form the basis of this design.

  5. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  6. Interconnected network motifs control podocyte morphology and kidney function.

    PubMed

    Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi

    2014-02-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  7. Interplay between the magnetic and magneto-transport properties of 3D interconnected nanowire networks

    NASA Astrophysics Data System (ADS)

    da Câmara Santa Clara Gomes, Tristan; De La Torre Medina, Joaquín; Velázquez-Galván, Yenni G.; Martínez-Huerta, Juan Manuel; Encinas, Armando; Piraux, Luc

    2016-07-01

    We have explored the interplay between the magnetic and magneto-transport properties of 3D interconnected nanowire networks made of various magnetic metals by electrodeposition into nanoporous membranes with crossed channels and controlled topology. The close relationship between their magnetic and structural properties has a direct impact on their magneto-transport behavior. In order to accurately and reliably describe the effective magnetic anisotropy and anisotropic magnetoresistance, an analytical model inherent to the topology of 3D nanowire networks is proposed and validated. The feasibility to obtain magneto-transport responses in nanowire network films based on interconnected nanowires makes them very attractive for the development of mechanically stable superstructures that are suitable for potential technological applications.

  8. An analysis of inhibitory pseudo-interconnections in unsupervised neural networks

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Triet; Le, Nam Do-Hoang

    2013-12-01

    Lateral connection is a fundamental element of human neural networks which enables sparse learning and topographical order in feature maps. Due to high complexity and computational cost, computer scientists tend to simplify it in practical implementations. To utilize the simplicity of traditional networks while preserving the effects of interconnections, the authors employ numerical filters in unsupervised learning networks. These filters suppress low activations and decorrelate high ones, which are similar to how inhibitory lateral connections behave. Inhibitory networks outperform conventional approach in both standard datasets CIFAR-10 and STL-10. Our method also yields competitive results in comparison with other single-layer unsupervised networks. Furthermore, it is promising to apply inhibitory networks into deep learning systems for complex recognition problem.

  9. An analytical model for a class of processor-memory interconnection networks

    SciTech Connect

    Conterno, R.; Melen, R.

    1987-11-01

    The performance of a delta interconnection network for multiprocessors is evaluated in a circuit switching environment. An error is pointed out in previous literature and an exact analytical model is given for regeneration systems, where a connection request is considered lost if not immediately granted. An approximated numerical method is suggested for the correction of the analytical results, which gave outputs in very good agreement with the simulation of real systems where requests are maintained.

  10. Multistage optical system for broadcasting and switching information.

    PubMed

    Mendlovic, D; Leibner, B; Cohen, N

    1999-10-10

    Conventional switching systems connect each input channel to one output channel. Broadcasting systems permit the connection of each input channel to more than a single output. A broadcast 2 x 2 switch is presented. This switch is an extension of the standard bypass-exchange switch. It allows for the broadcasting of the inputs in addition to the conventional modes. Multistage interconnection networks can be constructed with this switch as the basic building block. Such networks will extend their capabilities, allowing for broadcasting features. Three implementations of this type are described, and experimental results for the 2 x 2 switch are also presented.

  11. Nature-inspired interconnects for self-assembled large-scale network-on-chip designs

    NASA Astrophysics Data System (ADS)

    Teuscher, Christof

    2007-06-01

    Future nanoscale electronics built up from an Avogadro number of components need efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the networks-on-chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design tradeoffs and properties of an irregular, abstract, yet physically plausible three-dimensional (3D) small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, number of switch nodes, and distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nanoscale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local two-dimensional and 3D regular topologies.

  12. Prolonging the Lifetime of Wireless Sensor Networks Interconnected to Fixed Network Using Hierarchical Energy Tree Based Routing Algorithm

    PubMed Central

    Kalpana, M.; Dhanalakshmi, R.; Parthiban, P.

    2014-01-01

    This research work proposes a mathematical model for the lifetime of wireless sensor networks (WSN). It also proposes an energy efficient routing algorithm for WSN called hierarchical energy tree based routing algorithm (HETRA) based on hierarchical energy tree constructed using the available energy in each node. The energy efficiency is further augmented by reducing the packet drops using exponential congestion control algorithm (TCP/EXP). The algorithms are evaluated in WSNs interconnected to fixed network with seven distribution patterns, simulated in ns2 and compared with the existing algorithms based on the parameters such as number of data packets, throughput, network lifetime, and data packets average network lifetime product. Evaluation and simulation results show that the combination of HETRA and TCP/EXP maximizes longer network lifetime in all the patterns. The lifetime of the network with HETRA algorithm has increased approximately 3.2 times that of the network implemented with AODV. PMID:25535626

  13. Generalized methodology for modeling and simulating optical interconnection networks using diffraction analysis

    NASA Astrophysics Data System (ADS)

    Louri, Ahmed; Major, Michael C.

    1995-07-01

    Research in the field of free-space optical interconnection networks has reached a point where simula-tors and other design tools are desirable for reducing development costs and for improving design time. Previously proposed methodologies have only been applicable to simple systems. Our goal was to develop a simulation methodology capable of evaluating the performance characteristics for a variety of different free-space networks under a range of different configurations and operating states. The proposed methodology operates by first establishing the optical signal powers at various locations in the network. These powers are developed through the simulation by diffraction analysis of the light propagation through the network. After this evaluation, characteristics such as bit-error rate, signal-to-noise ratio, and system bandwidth are calculated. Further, the simultaneous evaluation of this process for a set of component misalignments provides a measure of the alignment tolerance of a design. We discuss this simulation process in detail as well as provide models for different optical interconnection network components.

  14. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.

    PubMed

    Fu, Wenbin; Han, Weihua; Zha, Heming; Mei, Junfeng; Li, Yunxia; Zhang, Zemin; Xie, Erqing

    2016-09-21

    Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications. PMID:27539193

  15. An interconnected network of core-forming melts produced by shear deformation

    PubMed

    Bruhn; Groebner; Kohlstedt

    2000-02-24

    The formation mechanism of terrestrial planetary cores is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal--mainly iron with some nickel--could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a 'magma ocean'. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (non-hydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle. PMID:10706283

  16. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  17. Experimental demonstration of the optical multi-mesh hypercube: scaleable interconnection network for multiprocessors and multicomputers

    NASA Astrophysics Data System (ADS)

    Louri, Ahmed; Furlonge, Stephen; Neocleous, Costas

    1996-12-01

    A prototype of a novel topology for scaleable optical interconnection networks called the optical multi-mesh hypercube (OMMH) is experimentally demonstrated to as high as a 150-Mbit s data rate (2 7 1 nonreturn-to-zero pseudo-random data pattern) at a bit error rate of 10 13 link by the use of commercially available devices. OMMH is a scaleable network Appl. Opt. 33, 7558 (1994); J. Lightwave Technol. 12, 704 (1994) architecture that combines the positive features of the hypercube (small diameter, connectivity, symmetry, simple routing, and fault tolerance) and the mesh (constant node degree and size scaleability). The optical implementation method is divided into two levels: high-density local connections for the hypercube modules, and high-bit-rate, low-density, long connections for the mesh links connecting the hypercube modules. Free-space imaging systems utilizing vertical-cavity surface-emitting laser (VCSEL) arrays, lenslet arrays, space-invariant holographic techniques, and photodiode arrays are demonstrated for the local connections. Optobus fiber interconnects from Motorola are used for the long-distance connections. The OMMH was optimized to operate at the data rate of Motorola s Optobus (10-bit-wide, VCSEL-based bidirectional data interconnects at 150 Mbits s). Difficulties encountered included the varying fan-out efficiencies of the different orders of the hologram, misalignment sensitivity of the free-space links, low power (1 mW) of the individual VCSEL s, and noise.

  18. SP2I interconnection network and extension of the iteration method of automatic vector-routing

    SciTech Connect

    Wang Rong-quan; Zhang Xiang; Gao Qing-shi

    1982-01-01

    In this paper the SP2I (single-stage plus 2/sup i/) interconnection network, which is applicable to the CVCVHP with VCM (cellular vector computer of vertical-horizontal processing with virtual common memory) and other multiprocessor systems, is discussed. Starting from the need for dynamic and parallel data alignment, the authors investigate various properties of conflict-free routing, and describes the iteration method of automatic vector-routing which may be used to solve the conflict problem in the SP2I network. Furthermore, they extend the iteration method to the networks of ADM, omega, delta, indirect binary n-cube, baseline, etc. The problem of routing conflict in these networks, which has not been well solved so far, may be solved efficiently. Finally, the implementation methods of several common data manipulation functions without conflict are given. 11 references.

  19. All-optical code routing in interconnected optical CDMA and WDM ring networks.

    PubMed

    Deng, Yanhua; Fok, Mable P; Prucnal, Paul R; Wang, Ting

    2010-11-01

    We propose an all-optical hybrid network composed of optical code division multiple access (CDMA) rings interconnecting through a reconfigurable wavelength division multiplexing (WDM) metro area ring. This network retains the advantages of both the optical CDMA and WDM techniques, including asynchronous access and differentiated quality of service, while removing the hard limit on the number of subscribers and increasing network flexibility. The all-optical network is enabled by using nonlinear optical loop mirrors in an add/drop router (ADR) that performs code conversion, dropping, and switching asynchronously. We experimentally demonstrate the functionalities of the ADR in the proposed scheme asynchronously and obtain error-free performance. The bit-error rate measurements show acceptable power penalties for different code routes.

  20. Real-time observation of polymer network formation by liquid- and solid-state NMR revealing multistage reaction kinetics.

    PubMed

    Kovermann, Michael; Saalwächter, Kay; Chassé, Walter

    2012-06-28

    The reaction rate for the end-cross-linking process of vinyl-terminated poly(dimethylsiloxane) by a cross-linker with four Si-H functionalities in the presence of solvent was studied by (1)H liquid-state NMR in dependence of the reaction temperature. The properties of the resulting polymer networks, i.e., the gel-point and the formation of the elastically effective network, were monitored in situ during the reaction by single-evolution-time (1)H double-quantum (SET-DQ) low-field NMR. It was found that the cross-linking kinetics shows no uniform reaction order for the conversions of the functional groups before the topological gelation threshold of the polymer network. The two NMR methods are combined to investigate the formation of the elastically effective network in dependence of the conversion of the functional groups of the precursor polymers and the cross-linker. The high chemical and time resolution of the experiments enabled an in-depth analysis of the reaction kinetics, allowing us to conclude on a multistage model for PDMS network formation by hydrosilylation-based end-linking in the presence of solvent. We found that the nonuniform network formation kinetics originates from a dependence of the apparent reaction rate on the number of the Si-H groups of the cross-linker that have already reacted during the progress of the reaction. The fastest overall reaction rate is observed in a range until each cross-linker has reacted once on average, and a uniform apparent overall reaction order of unity with respect to cross-linker concentration is only found at a later stage, when multiply reacted cross-linker molecules with similar reactivity dominate. PMID:22650309

  1. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    PubMed

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  2. Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Ksherim, Baruch; Cohen, Reuven; Havlin, Shlomo

    2011-12-01

    Robustness of two coupled networks systems has been studied separately only for dependency coupling [Buldyrev , Nature (London)NATUAS0028-083610.1038/nature08932 464, 1025 (2010)] and only for connectivity coupling [Leicht and D’Souza, e-print arXiv:0907.0894]. Here we study, using a percolation approach, a more realistic coupled networks system where both interdependent and interconnected links exist. We find rich and unusual phase-transition phenomena including hybrid transition of mixed first and second order, i.e., discontinuities like in a first-order transition of the giant component followed by a continuous decrease to zero like in a second-order transition. Moreover, we find unusual discontinuous changes from second-order to first-order transition as a function of the dependency coupling between the two networks.

  3. Experimental demonstration of time-aware software defined networking for OpenFlow-based intra-datacenter optical interconnection networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Han, Jianrui; Lin, Yi; Qiu, Shaofeng; Lee, Young

    2014-06-01

    Nowadays, most service providers offer their services and support their applications through federated sets of data centers which need to be interconnected using high-capacity optical networks in intra-datacenter networks. Many datacenter applications in the environment require lower delay and higher availability with the end-to-end guaranteed quality of service. In this paper, we propose a novel time-aware software defined networking (TaSDN) architecture for OpenFlow-based intra-datacenter optical interconnection networks. Based on the proposed architecture, a time-aware service scheduling (TaSS) strategy is introduced to allocate the network and datacenter resources optimally, which considers the datacenter service scheduling with flexible service time and service bandwidth according to the various time sensitivity requirements. The TaSDN can arrange and accommodate the applications with required QoS considering the time factor, and enhance the data center responsiveness to quickly provide for intra-datacenter service demands. The overall feasibility of the proposed architecture is experimentally verified on our testbed with real OpenFlow-enabled tunable optical modules. The performance of TaSS strategy under heavy traffic load scenario is also evaluated based on TaSDN architecture in terms of blocking probability and resource occupation rate.

  4. Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor.

    PubMed

    Wang, Shuqi; Xu, Li-Ping; Liang, Hai-Wei; Yu, Shu-Hong; Wen, Yongqiang; Wang, Shutao; Zhang, Xueji

    2015-07-14

    One-dimensional Pt nanostructures are of considerable interest for the development of highly stable and sensitive electrochemical sensors. This paper describes a self-interconnecting Pt nanowire network electrode (PtNNE) for the detection of hydrogen peroxide (H2O2) and glucose with ultrahigh sensitivity and stability. The as-prepared PtNNE consists of polycrystalline nanowires with high-index facets along the side surface which provides more active surface atoms on kinks and steps, those ultralong nanowires being interconnected with each other to form a free-standing network membrane. The excellent structural features of the PtNNE promoted its performance as a Pt-based electrochemical sensor both in terms of electrocatalytic activity and stability. Amperometric measurements towards hydrogen peroxide were performed; the PtNNE sensor showed an extremely high sensitivity of 1360 μA mM(-1) cm(-2). This excellent sensitivity is mainly attributed to the high-index facets of the nanowires resulting in their superior electrocatalytic activity towards H2O2, and the interconnected nanowire network forming an "electron freeway" transport model, which could provide multiple electron pathways and fast electron transport on the electrode, leading to rapid reaction and sensitive signal detection. The as-prepared PtNNE also holds promise as an oxidase-based biosensor. As a proof of concept, a PtNNE-based glucose biosensor also showed an outstanding sensitivity as high as 114 μA mM(-1) cm(-2), a low detection limit of 1.5 μM, and an impressive detection range from 5 μM to 30 mM. PMID:26083932

  5. Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor.

    PubMed

    Wang, Shuqi; Xu, Li-Ping; Liang, Hai-Wei; Yu, Shu-Hong; Wen, Yongqiang; Wang, Shutao; Zhang, Xueji

    2015-07-14

    One-dimensional Pt nanostructures are of considerable interest for the development of highly stable and sensitive electrochemical sensors. This paper describes a self-interconnecting Pt nanowire network electrode (PtNNE) for the detection of hydrogen peroxide (H2O2) and glucose with ultrahigh sensitivity and stability. The as-prepared PtNNE consists of polycrystalline nanowires with high-index facets along the side surface which provides more active surface atoms on kinks and steps, those ultralong nanowires being interconnected with each other to form a free-standing network membrane. The excellent structural features of the PtNNE promoted its performance as a Pt-based electrochemical sensor both in terms of electrocatalytic activity and stability. Amperometric measurements towards hydrogen peroxide were performed; the PtNNE sensor showed an extremely high sensitivity of 1360 μA mM(-1) cm(-2). This excellent sensitivity is mainly attributed to the high-index facets of the nanowires resulting in their superior electrocatalytic activity towards H2O2, and the interconnected nanowire network forming an "electron freeway" transport model, which could provide multiple electron pathways and fast electron transport on the electrode, leading to rapid reaction and sensitive signal detection. The as-prepared PtNNE also holds promise as an oxidase-based biosensor. As a proof of concept, a PtNNE-based glucose biosensor also showed an outstanding sensitivity as high as 114 μA mM(-1) cm(-2), a low detection limit of 1.5 μM, and an impressive detection range from 5 μM to 30 mM.

  6. A Visually Attractive "Interconnected Network of Ideas" for Organizing the Teaching and Learning of Descriptive Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rodgers, Glen E.

    2014-01-01

    A visually attractive interconnected network of ideas that helps general and second-year inorganic chemistry students make sense of the descriptive inorganic chemistry of the main-group elements is presented. The eight network components include the periodic law, the uniqueness principle, the diagonal effect, the inert-pair effect, the…

  7. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions

    SciTech Connect

    Shi, Crystal Y.; Zhang, Li; Yang, Wenge; Liu, Yijin; Wang, Junyue; Meng, Yue; Andrews, Joy C.; Mao, Wendy L.

    2013-10-06

    Core formation represents the most significant differentiation event in Earth’s history. Our planet’s present layered structure with a metallic core and an overlying mantle implies that there must be a mechanism to separate iron alloy from silicates in the initially accreted material. At upper mantle conditions, percolation has been ruled out as an efficient mechanism because of the tendency of molten iron to form isolated pockets at these pressures and temperatures. Here we present experimental evidence of a liquid iron alloy forming an interconnected melt network within a silicate perovskite matrix under pressure and temperature conditions of the Earth’s lower mantle. Using nanoscale synchrotron X-ray computed tomography, we image a marked transition in the shape of the iron-rich melt in three-dimensional reconstructions of samples prepared at varying pressures and temperatures using a laser-heated diamond-anvil cell. We find that, as the pressure increases from 25 to 64GPa, the iron distribution changes from isolated pockets to an interconnected network. Our results indicate that percolation could be a viable mechanism of core formation at Earth’s lower mantle conditions.

  8. Study on the energy-efficient scheme based on the interconnection of optical-network-units for next generation optical access network

    NASA Astrophysics Data System (ADS)

    Lv, Yunxin; Jiang, Ning; Qiu, Kun; Xue, Chenpeng

    2014-12-01

    An energy-efficient scheme based on the interconnection of optical network unit (ONU) is introduced, which can significantly reduce the energy consumption of the low-traffic operation. The energy consumption model for the ONU-interconnected optical access network (OAN) based on the electronic switch (ES) technology is established, and the energy efficiency of the proposed scheme is analyzed and compared with that of the OAN using optical switch (OS). The simulation results demonstrate that the ONU-interconnected scheme can efficiently reduce the energy consumption of OAN, and it shows a good energy consumption performance under daily traffic model.

  9. Design of wide-area time-delay supplementary controller for interconnected Network based on Hamilton function method

    NASA Astrophysics Data System (ADS)

    Hailati, G.; Hu, Z. H.

    2016-08-01

    The transient stability of interconnected network with supplementary time-delay controller for generator excitations and static var compensator (SVC) has been investigated in this paper. Firstly, a delay-dependent stability criterion based on Hamilton function method is derived, and the criterion is in term of matrix inequalities. Secondly, a nonlinear time-delay Hamilton function model of interconnected network with SVCs is constructed. Thirdly, the wide-area time-delay supplementary controller (WATSC) for the interconnected network is designed and converted into the form of Hamiltonian system. The delay-dependent stability of the closed-loop power system is analysed. The gains of the WATSC are determined by using the theoretical analysis results. It is effective for the designed WATSC installed in the 16- machine, 68-bus power system for damping the inter-area modes. Then simulation results show that the method of the controller is effective.

  10. Reverberation of excitation in neuronal networks interconnected through voltage-gated gap junction channels

    PubMed Central

    Maciunas, Kestutis; Snipas, Mindaugas; Paulauskas, Nerijus

    2016-01-01

    We combined Hodgkin–Huxley equations and gating models of gap junction (GJ) channels to simulate the spread of excitation in two-dimensional networks composed of neurons interconnected by voltage-gated GJs. Each GJ channel contains two fast and slow gates, each exhibiting current–voltage (I-V) rectification and gating properties that depend on transjunctional voltage (Vj). The data obtained show how junctional conductance (gj), which is necessary for synchronization of the neuronal network, depends on its size and the intrinsic firing rate of neurons. A phase shift between action potentials (APs) of neighboring neurons creates bipolar, short-lasting Vj spikes of approximately ±100 mV that induce Vj gating, leading to a small decay of gj, which can accumulate into larger decays during bursting activity of neurons. We show that I-V rectification of GJs in local regions of the two-dimensional network of neurons can lead to unidirectional AP transfer and consequently to reverberation of excitation. This reverberation can be initiated by a single electrical pulse and terminated by a low-amplitude pulse applied in a specific window of reverberation cycle. Thus, the model accounts for the influence of dynamically modulatable electrical synapses in shaping the function of a neuronal network and the formation of reverberation, which, as proposed earlier, may be important for the development of short-term memory and its consolidation into long-term memory. PMID:26880752

  11. Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions.

    PubMed

    Manley, Ed

    2015-01-01

    The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC) framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain.

  12. Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions.

    PubMed

    Manley, Ed

    2015-01-01

    The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC) framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain. PMID:26009884

  13. Synthesis and mechanical properties of interconnected carbon nanofiber network reinforced polydimethylsiloxane composites.

    PubMed

    Zhao, Z Y; Khatri, N D; Nguyen, K; Song, S Q; Sun, L

    2011-02-01

    Carbon nanofiber (CNF) reinforced elastomer composites with light weight, sustainability of large deformation, chemical stability, corrosion and fatigue resistance, and vibration and noise reduction capability can have positive impact on a wide range of applications. However, this type of composite is still a under studied research area due to the difficulties in material handling and processing. To improve processing control and reproducibility for large scale engineering applications, cost effective carbon nanofibers (CNFs) in form of interconnected porous network structure were used as nanofillers. Processing, microstructure and mechanical properties of carbon nanofibers reinforced polydimethylsiloxane (PDMS) have been studied. Mechanical measurements on the composites show that the CNF-PDMS interfacial bonding can be until failure, interfacial debonding happens in the CNF-PDMS composites and the resulted permanent deformation stabilizes with increasing load-unload cycles with significant energy dissipation. PMID:21456144

  14. Interconnection between biological abnormalities in borderline personality disorder: use of the Bayesian networks model.

    PubMed

    De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel

    2011-04-30

    There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD.

  15. Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network.

    PubMed

    Kurt, H; Giden, I H; Citrin, D S

    2011-12-19

    Nanophotonic wire waveguides play an important role for the realization of highly dense integrated photonic circuits. The miniaturization of optoelectronic devices and realization of ultra-small integrated circuits strongly demand compact waveguide branches. T-shaped versions of nanophotonic wires are the first stage of both power splitting and optical-interconnection systems based on guided-wave optics; however, the acute transitions at the waveguide junctions typically induce huge bending losses in terms of radiated modes. Both 2D and 3D finite-difference time-domain methods are employed to monitor the efficient light propagation. By introducing appropriate combinations of dielectric posts around the dielectric-waveguide junctions within the 4.096μm×4.096μm region, we are able to reduce the bending losses dramatically and increase the transmission efficiency from low values of 18% in the absence of the dielectric posts to approximately 49% and 43% in 2D and 3D cases, respectively. These findings may lead to the implementation of such T-junctions in near-future high-density integrated photonics to deliver optical-clock signals via H-tree network.

  16. Standards in process: Foundation and profiles of ISDN (Integrated Services Digital Network) and OSI (Open Systems Interconnection) studies

    NASA Astrophysics Data System (ADS)

    Cerni, D. M.

    1984-12-01

    Telecommunication and computer technologies are merging, stimulating such global communication projects as the Integrated Services Digital Network (ISDN) and the Open Systems Interconnection (OSI) Reference Model. The systems of standards needed to ensure worldwide success of these projects are being developed. These efforts, of unprecedented complexity, are demanding an increase in knowledgeable dedicated standards workers. This report offers background material on the meaning, significance, and changing nature of standards and their development, both in the United States and internationally.

  17. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations

    PubMed Central

    O’Roak, Brian J.; Vives, Laura; Girirajan, Santhosh; Karakoc, Emre; Krumm, Nik; Coe, Bradley P.; Levy, Roie; Ko, Arthur; Lee, Choli; Smith, Joshua D.; Turner, Emily H.; Stanaway, Ian B.; Vernot, Benjamin; Malig, Maika; Baker, Carl; Reilly, Beau; Akey, Joshua M.; Borenstein, Elhanan; Rieder, Mark J.; Nickerson, Deborah A.; Bernier, Raphael; Shendure, Jay; Eichler, Evan E.

    2012-01-01

    It is well established that autism spectrum disorders (ASD) have a strong genetic component. However, for at least 70% of cases, the underlying genetic cause is unknown1. Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes—so-called sporadic or simplex families2,3, we sequenced all coding regions of the genome, i.e. the exome, for parent-child trios exhibiting sporadic ASD, including 189 new trios and 20 previously reported4. Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19)4, for a total of 677 individual exomes from 209 families. Here we show de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD5. Moreover, 39% (49/126) of the most severe or disruptive de novo mutations map to a highly interconnected beta-catenin/chromatin remodeling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes, CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3, and SCN1A. Combined with copy number variant (CNV) data, these results suggest extreme locus heterogeneity but also provide a target for future discovery, diagnostics, and therapeutics. PMID:22495309

  18. Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection.

    PubMed

    Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Li, Hui; Lin, Yi; Li, Gang; Han, Jianrui; Lee, Young; Ma, Teng

    2014-07-28

    Data center interconnection with elastic optical networks is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. We previously implemented enhanced software defined networking over elastic optical network for data center application [Opt. Express 21, 26990 (2013)]. On the basis of it, this study extends to consider the time-aware data center service scheduling with elastic service time and service bandwidth according to the various time sensitivity requirements. A novel time-aware enhanced software defined networking (TeSDN) architecture for elastic data center optical interconnection has been proposed in this paper, by introducing a time-aware resources scheduling (TaRS) scheme. The TeSDN can accommodate the data center services with required QoS considering the time dimensionality, and enhance cross stratum optimization of application and elastic optical network stratums resources based on spectrum elasticity, application elasticity and time elasticity. The overall feasibility and efficiency of the proposed architecture is experimentally verified on our OpenFlow-based testbed. The performance of TaRS scheme under heavy traffic load scenario is also quantitatively evaluated based on TeSDN architecture in terms of blocking probability and resource occupation rate.

  19. Optical Backplane Interconnection

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1991-01-01

    Optical backplane interconnection (OBIT), method of optically interconnecting many parallel outputs from data processor to many parallel inputs of other data processors by optically changing wavelength of output optical beam. Requires only one command: exact wavelength necessary to make connection between two desired processors. Many features, including smallness advantageous to incorporate OBIT into integrated optical device. Simplifies or eliminates wiring and speeds transfer of data over existing electrical or optical interconnections. Computer hookups and fiber-optical communication networks benefit from concept.

  20. Selective Broadcast Interconnection (sbi) For Wideband Fiber-Optic Local Area Networks

    NASA Astrophysics Data System (ADS)

    Birk, Yitzhak; Marhic, Michel E.; Tobagi, Fouad A.

    1986-07-01

    The selective broadcast interconnection (SBI) is a scheme for directly interconnecting transmitting stations, each equipped with CT transmitters, and receiving stations, each equipped with CR receivers, such that each transmitting station is always connected to all receiving stations through passive communication channels with no intermediate switches. S BI consists of CT CR separate broadcast subnetworks, each of which interconnects a subset of transmitting stations and a subset of receiving stations, such that each transmitting station and receiving station are interconnected through a single subnetwork. Each subnetwork is shared by its transmitting members via some multiple-access scheme. Comparing S B I with CT=CR=C with the use of C broadcast buses, each connecting all transmitting stations to all receiving stations, one finds that in some cases, including that of equal single-destination traffic requirements for all source-destination pairs, the aggregate throughput with S B I can be higher by a factor of C, while the stations' hardware is the same. For nonuniform traffic requirements, however, the maximum aggregate throughput with S B 1 can be C times lower (in extreme situations). For fiber-optic implementations employing a central wiring closet, the two schemes require the same amount of fiber and, if the same elementary couplers are used to construct the required star couplers, SBI requires fewer couplers. Clearly, the same number of couplers and up to C times more fibers may be required for S B I in a linear-bus implementation. In all cases, transmitter power need only reach N/C receivers with S B I (instead of N with C parallel buses); this allows to accommodate a larger number of stations when implementing the interconnection with passive components.

  1. Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits.

    PubMed

    Kanner, Sivan; Bisio, Marta; Cohen, Gilad; Goldin, Miri; Tedesco, Marieteresa; Hanein, Yael; Ben-Jacob, Eshel; Barzilai, Ari; Chiappalone, Michela; Bonifazi, Paolo

    2015-04-15

    The brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems. This work describes an in vitro experimental methodology which allows growing of modular networks composed by spatially distinct, functionally interconnected neuronal assemblies. The protocol allows controlling the two-dimensional (2D) architecture of the neuronal network at different levels of topological complexity. A desired network patterning can be achieved both on regular cover slips and substrate embedded micro electrode arrays. Micromachined structures are embossed on a silicon wafer and used to create biocompatible polymeric stencils, which incorporate the negative features of the desired network architecture. The stencils are placed on the culturing substrates during the surface coating procedure with a molecular layer for promoting cellular adhesion. After removal of the stencils, neurons are plated and they spontaneously redirected to the coated areas. By decreasing the inter-compartment distance, it is possible to obtain either isolated or interconnected neuronal circuits. To promote cell survival, cells are co-cultured with a supporting neuronal network which is located at the periphery of the culture dish. Electrophysiological and optical recordings of the activity of modular networks obtained respectively by using substrate embedded micro electrode arrays and calcium imaging are presented. While each module shows spontaneous global synchronizations, the occurrence of inter-module synchronization

  2. Selective broadcast interconnection - A novel scheme for fiber-optic local-area networks

    NASA Technical Reports Server (NTRS)

    Marhic, M. E.; Birk, Y.; Tobagi, F. A.

    1985-01-01

    A passive, unswitched scheme is introduced for directly interconnecting N stations, each of which has C transmitters and receivers. Implementations using fiber optics with spatial multiplexing and optionally wavelength multiplexing are discussed. This scheme utilizes the same resources as standard topologies with C parallel buses but outperforms them in two respects: (1) the aggregate throughput is proportional to C squared rather than to C; and (2) the power of each transmitter need reach only N/C, instead of N, receivers.

  3. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2015-12-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.

  4. Modelling the effects of cell-to-cell variability on the output of interconnected gene networks in bacterial populations

    PubMed Central

    2015-01-01

    Background The interconnection of quantitatively characterized biological devices may lead to composite systems with apparently unpredictable behaviour. Context-dependent variability of biological parts has been investigated in several studies, measuring its entity and identifying the factors contributing to variability. Such studies rely on the experimental analysis of model systems, by quantifying reporter genes via population or single-cell approaches. However, cell-to-cell variability is not commonly included in predictability analyses, thus relying on predictive models trained and tested on central tendency values. This work aims to study in silico the effects of cell-to-cell variability on the population-averaged output of interconnected biological circuits. Methods The steady-state deterministic transfer function of individual devices was described by Hill equations and lognormal synthetic noise was applied to their output. Two- and three-module networks were studied, where individual devices implemented inducible/repressible functions. The single-cell output of such networks was simulated as a function of noise entity; their population-averaged output was computed and used to investigate the expected variability in transfer function identification. The study was extended by testing different noise models, module logic, intrinsic/extrinsic noise proportions and network configurations. Results First, the transfer function of an individual module was identified from simulated data of a two-module network. The estimated parameter variability among different noise entities was limited (14%), while a larger difference was observed (up to 62%) when estimated and true parameters were compared. Thus, low-variability parameter estimates can be obtained for different noise entities, although deviating from the true parameters, whose measurement requires noise knowledge. Second, the black-box input-output function of a two/three-module network was predicted from the

  5. Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes.

    PubMed

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films.

  6. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes

    PubMed Central

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films. PMID:24763208

  7. Longitudinal Multistage Testing

    ERIC Educational Resources Information Center

    Pohl, Steffi

    2013-01-01

    This article introduces longitudinal multistage testing (lMST), a special form of multistage testing (MST), as a method for adaptive testing in longitudinal large-scale studies. In lMST designs, test forms of different difficulty levels are used, whereas the values on a pretest determine the routing to these test forms. Since lMST allows for…

  8. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media

    PubMed Central

    Wu, Nan; Wang, Yingde; Lei, Yongpeng; Wang, Bing; Han, Cheng; Gou, Yanzi; Shi, Qi; Fang, Dong

    2015-01-01

    One-dimensional electrospun nanofibers have emerged as a potential candidate for high-performance oxygen reduction reaction (ORR) catalysts. However, contact resistance among the neighbouring nanofibers hinders the electron transport. Here, we report the preparation of interconnected Fe-N/C nanofiber networks (Fe-N/C NNs) with low electrical resistance via electrospinning followed by maturing and pyrolysis. The Fe-N/C NNs show excellent ORR activity with onset and half-wave potential of 55 and 108 mV less than those of Pt/C catalyst in 0.5 M H2SO4. Intriguingly, the resulting Fe-N/C NNs exhibit 34% higher peak current density and superior durability than generic Fe-N/C ones with similar microstructure and chemical compositions. Additionally, it also displays much better durability and methanol tolerance than Pt/C catalyst. The higher electroactivity is mainly due to the more effective electron transport between the interconnected nanofibers. Thus, our findings provide a novel insight into the design of functional electrospun nanofibers for the application in energy storage and conversion fields. PMID:26615799

  9. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Yingde; Lei, Yongpeng; Wang, Bing; Han, Cheng; Gou, Yanzi; Shi, Qi; Fang, Dong

    2015-11-01

    One-dimensional electrospun nanofibers have emerged as a potential candidate for high-performance oxygen reduction reaction (ORR) catalysts. However, contact resistance among the neighbouring nanofibers hinders the electron transport. Here, we report the preparation of interconnected Fe-N/C nanofiber networks (Fe-N/C NNs) with low electrical resistance via electrospinning followed by maturing and pyrolysis. The Fe-N/C NNs show excellent ORR activity with onset and half-wave potential of 55 and 108 mV less than those of Pt/C catalyst in 0.5 M H2SO4. Intriguingly, the resulting Fe-N/C NNs exhibit 34% higher peak current density and superior durability than generic Fe-N/C ones with similar microstructure and chemical compositions. Additionally, it also displays much better durability and methanol tolerance than Pt/C catalyst. The higher electroactivity is mainly due to the more effective electron transport between the interconnected nanofibers. Thus, our findings provide a novel insight into the design of functional electrospun nanofibers for the application in energy storage and conversion fields.

  10. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect

    Janet.twomey@wichita.edu

    2010-04-30

    EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  11. Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hou, Hongshuai; Jing, Mingjun; Yang, Yingchang; Zhang, Yan; Song, Weixin; Yang, Xuming; Chen, Jun; Chen, Qiyuan; Ji, Xiaobo

    2015-06-01

    Interconnected carbon nanofibers networks (ICNNs) prepared through the carbonization of polypyrrole (PPy) precursor are utilized as conductive pathways and buffer to improve the Na storage performance of antimony (Sb) as anode for sodium-ion batteries (SIBs). The as-obtained Sb/ICNNs composite exhibits excellent cycle stability. The reversible capacity can remain 542.5 mAh g-1 with a high capacity retention of 96.7% after 100 cycles at a current density of 100 mA g-1. And the superior rate performance is also observed, the reversible capacity can still reach 325 mAh g-1 at a high current density of 3200 mA g-1. These great electrochemical performances observed above suggest that this type of composite can be a nice option for advanced SIBs anode materials and may be extended to other active materials/ICNNs composite electrode.

  12. A Proxy Design to Leverage the Interconnection of CoAP Wireless Sensor Networks with Web Applications

    PubMed Central

    Ludovici, Alessandro; Calveras, Anna

    2015-01-01

    In this paper, we present the design of a Constrained Application Protocol (CoAP) proxy able to interconnect Web applications based on Hypertext Transfer Protocol (HTTP) and WebSocket with CoAP based Wireless Sensor Networks. Sensor networks are commonly used to monitor and control physical objects or environments. Smart Cities represent applications of such a nature. Wireless Sensor Networks gather data from their surroundings and send them to a remote application. This data flow may be short or long lived. The traditional HTTP long-polling used by Web applications may not be adequate in long-term communications. To overcome this problem, we include the WebSocket protocol in the design of the CoAP proxy. We evaluate the performance of the CoAP proxy in terms of latency and memory consumption. The tests consider long and short-lived communications. In both cases, we evaluate the performance obtained by the CoAP proxy according to the use of WebSocket and HTTP long-polling. PMID:25585107

  13. A proxy design to leverage the interconnection of CoAP Wireless Sensor Networks with Web applications.

    PubMed

    Ludovici, Alessandro; Calveras, Anna

    2015-01-01

    In this paper, we present the design of a Constrained Application Protocol (CoAP) proxy able to interconnect Web applications based on Hypertext Transfer Protocol (HTTP) and WebSocket with CoAP based Wireless Sensor Networks. Sensor networks are commonly used to monitor and control physical objects or environments. Smart Cities represent applications of such a nature. Wireless Sensor Networks gather data from their surroundings and send them to a remote application. This data flow may be short or long lived. The traditional HTTP long-polling used by Web applications may not be adequate in long-term communications. To overcome this problem, we include the WebSocket protocol in the design of the CoAP proxy. We evaluate the performance of the CoAP proxy in terms of latency and memory consumption. The tests consider long and short-lived communications. In both cases, we evaluate the performance obtained by the CoAP proxy according to the use of WebSocket and HTTP long-polling.

  14. A connecting network with fault tolerance capabilities

    SciTech Connect

    Ciminiera, L.; Serra, A.

    1986-06-01

    A new multistage interconnection network is presented in this paper. It is able to handle the communications between the connected devices correctly, even in the presence of fault(s) in the network. This goal is achieved by using redundant paths with a fast procedure able to dynamically reroute the message. It is also shown that the rerouting properties are still valid when broadcasting transmission is used.

  15. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  16. Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway.

    PubMed

    Figeac, Nicolas; Jagla, Teresa; Aradhya, Rajaguru; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2010-06-01

    In Drosophila, a population of muscle-committed stem-like cells called adult muscle precursors (AMPs) keeps an undifferentiated and quiescent state during embryonic life. The embryonic AMPs are at the origin of all adult fly muscles and, as we demonstrate here, they express repressors of myogenic differentiation and targets of the Notch pathway known to be involved in muscle cell stemness. By targeting GFP to the AMP cell membranes, we show that AMPs are tightly associated with the peripheral nervous system and with a subset of differentiated muscles. They send long cellular processes running along the peripheral nerves and, by the end of embryogenesis, form a network of interconnected cells. Based on evidence from laser ablation experiments, the main role of these cellular extensions is to maintain correct spatial positioning of AMPs. To gain insights into mechanisms that lead to AMP cell specification, we performed a gain-of-function screen with a special focus on lateral AMPs expressing the homeobox gene ladybird. Our data show that the rhomboid-triggered EGF signalling pathway controls both the specification and the subsequent maintenance of AMP cells. This finding is supported by the identification of EGF-secreting cells in the lateral domain and the EGF-dependent regulatory modules that drive expression of the ladybird gene in lateral AMPs. Taken together, our results reveal an unsuspected capacity of embryonic AMPs to form a cell network, and shed light on the mechanisms governing their specification and maintenance.

  17. A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers

    PubMed Central

    Pearsall, Matthew; Cropek, Donald; Langer, Robert

    2012-01-01

    3D microfluidic networks are fabricated in a gelatin hydrogel using sacrificial melt-spun microfibers made from a material with pH-dependent solubility. The fibers, after being embedded within the gel, can be removed by changing the gel pH to induce dissolution. This process is performed in an entirely aqueous environment, avoiding extreme temperatures, low pressures, and toxic organic solvents. PMID:22826135

  18. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    SciTech Connect

    Coddington, M. H.; Kroposki, B. D.; Basso, T.; Berger, D.; Crowell, K.; Hayes, J.

    2011-01-01

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizes current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art

  19. SYMNET: an optical interconnection network for scalable high-performance symmetric multiprocessors.

    PubMed

    Louri, Ahmed; Kodi, Avinash Karanth

    2003-06-10

    We address the primary limitation of the bandwidth to satisfy the demands for address transactions in future cache-coherent symmetric multiprocessors (SMPs). It is widely known that the bus speed and the coherence overhead limit the snoop/address bandwidth needed to broadcast address transactions to all processors. As a solution, we propose a scalable address subnetwork called symmetric multiprocessor network (SYMNET) in which address requests and snoop responses of SMPs are implemented optically. SYMNET not only has the ability to pipeline address requests, but also multiple address requests from different processors can propagate through the address subnetwork simultaneously. This is in contrast with all electrical bus-based SMPs, where only a single request is broadcast on the physical address bus at any given point in time. The simultaneous propagation of multiple address requests in SYMNET increases the available address bandwidth and lowers the latency of the network, but the preservation of cache coherence can no longer be maintained with the usual fast snooping protocols. A modified snooping cache-coherence protocol, coherence in SYMNET (COSYM) is introduced to solve the coherence problem. We evaluated SYMNET with a subset of Splash-2 benchmarks and compared it with the electrical bus-based MOESI (modified, owned, exclusive, shared, invalid) protocol. Our simulation studies have shown a 5-66% improvement in execution time for COSYM as compared with MOESI for various applications. Simulations have also shown that the average latency for a transaction to complete by use of COSYM protocol was 5-78% better than the MOESI protocol. SYMNET can scale up to hundreds of processors while still using fast snooping-based cache-coherence protocols, and additional performance gains may be attained with further improvement in optical device technology.

  20. Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.

    PubMed

    Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan

    2016-05-01

    Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosity and N,O-dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O-dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells. PMID:27028729

  1. Application of Percolation Theory to Complex Interconnected Networks in Advanced Functional Composites

    NASA Astrophysics Data System (ADS)

    Hing, P.

    2011-11-01

    Percolation theory deals with the behaviour of connected clusters in a system. Originally developed for studying the flow of liquid in a porous body, the percolation theory has been extended to quantum computation and communication, entanglement percolation in quantum networks, cosmology, chaotic situations, properties of disordered solids, pandemics, petroleum industry, finance, control of traffic and so on. In this paper, the application of various models of the percolation theory to predict and explain the properties of a specially developed family of dense sintered and highly refractory Al2O3-W composites for potential application in high intensity discharge light sources such as high pressure sodium lamps and ceramic metal halide lamps are presented and discussed. The low cost, core-shell concept can be extended to develop functional composite materials with unusual dielectric, electrical, magnetic, superconducting, and piezoelectric properties starting from a classical insulator. The core shell concept can also be applied to develop catalysts with high specific surface areas with minimal amount of expensive platinium, palladium or rare earth nano structured materials for light harvesting, replicating natural photosynthesis, in synthetic zeolite composites for the cracking and separation of crude oil. There is also possibility of developing micron and nanosize Faraday cages for quantum devices, nano electronics and spintronics. The possibilities are limitless.

  2. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  3. Committed regional electrical interconnection projects in the Middle East

    SciTech Connect

    Azzam, M.; Al-Said, A.

    1994-12-01

    Due to the well-known advantages of electrical interconnections and their consequent benefits, Jordan considers the interconnection of its electrical network with the neighboring electrical networks as one of its main corporate strategies. At present the electrical interconnection project of the networks of Egypt, Iraq, Jordan, Syria, and Turkey is progressing. To achieve this interconnection project, two feasibility studies were conducted: interconnection of the Egyptian and Jordanian electrical power systems; interconnection of the electrical networks of Egypt, Iraq, Jordan, Syria, and Turkey (EIJST interconnection). This presentation reviews these studies and their results.

  4. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is...

  5. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  6. Electrical interconnect

    DOEpatents

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  7. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  8. Simulation of multistage turbine flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.; Mulac, Richard A.

    1987-01-01

    A flow model has been developed for analyzing multistage turbomachinery flows. This model, referred to as the average passage flow model, describes the time-averaged flow field with a typical passage of a blade row embedded within a multistage configuration. Computer resource requirements, supporting empirical modeling, formulation code development, and multitasking and storage are discussed. Illustrations from simulations of the space shuttle main engine (SSME) fuel turbine performed to date are given.

  9. Multistage Zeeman deceleration

    NASA Astrophysics Data System (ADS)

    Wiederkehr, A. W.; Hogan, S. D.; Andrist, M.; Schmutz, H.; Lambilotte, B.; Merkt, F.

    2009-05-01

    In recent years multistage Zeeman deceleration of open shell atoms and molecules has been developed as a possible method to produce cold (< 1 K) samples for applications in precision spectroscopy and studies of cold reactive collisions [1-7]. This contribution will present the strategy followed at ETH Zurich which relies on (i) the generation of strong magnetic field pulses (> 2 T) with rise and fall times of only a few microseconds, (ii) the deceleration and loading of samples into quadrupole magnetic traps, (iii) 3D particle trajectory simulations of the complete deceleration and trapping processes, and (iv) comparison of the simulations with measurements of the velocity and spatial distributions of the decelerated and trapped samples. The four generations of Zeeman deceleration and trapping devices developed in our group will be presented and compared using results obtained with different samples. [0pt] [1] N. Vanhaecke et al., Phys. Rev. A 75, 031402(R)(2007).[0pt] [2] S. D. Hogan et al., Phys. Rev. A 76, 023412 (2007).[0pt] [3] E. Narevicius et al., New. J. Phys. 9, 358 (2007).[0pt] [4] E. Narevicius et al., Phys. Rev. Lett. 100, 093003 (2008).[0pt] [5] E. Narevicius et al., Phys. Rev. A 77, 051401(R) (2008).[0pt] [6] S. D. Hogan et al., J. Phys. B 41, 081005 (2008).[0pt] [7] S. D. Hogan et al., Phys. Rev. Lett. 101, 143001 (2008).

  10. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  11. The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance.

    PubMed

    Gruszka, Damian

    2013-01-01

    Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture. PMID:23615468

  12. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  13. Multi-stage flash degaser

    DOEpatents

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  14. Multistage integration model for human egomotion perception.

    PubMed

    Zacharias, G L; Miao, A X; Warren, R

    1995-01-01

    Human computational vision models that attempt to account for the dynamic perception of egomotion and relative depth typically assume a common three-stage process: first, compute the optical flow field based on the dynamically changing image; second, estimate the egomotion states based on the flow; and third, estimate the relative depth/shape based on the egomotion states and possibly on a model of the viewed surface. We propose a model more in line with recent work in human vision, employing multistage integration. Here the dynamic image is first processed to generate spatial and temporal image gradients that drive a mutually interconnected state estimator and depth/shape estimator. The state estimator uses the image gradient information in combination with a depth/shape estimate of the viewed surface and an assumed model of the viewer's dynamics to generate current state estimates; in tandem, the depth/shape estimator uses the image gradient information in combination with the viewer's state estimate and assumed shape model to generate current depth/shape estimates. In this paper, we describe the model and compare model predictions with empirical data.

  15. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.

    PubMed

    Grabowska, M; Toth, T I; Smarandache-Wellmann, C; Daun-Gruhn, S

    2015-06-01

    Inter-segmental coordination is crucial for the locomotion of animals. Arthropods show high variability of leg numbers, from 6 in insects up to 750 legs in millipedes. Despite this fact, the anatomical and functional organization of their nervous systems show basic similarities. The main similarities are the segmental organization, and the way the function of the segmental units is coordinated. We set out to construct a model that could describe locomotion (walking) in animals with more than 6 legs, as well as in 6-legged animals (insects). To this end, we extended a network model by Daun-Gruhn and Tóth (Journal of Computational Neuroscience, doi: 10.1007/s10827-010-0300-1 , 2011). This model describes inter-segmental coordination of the ipsilateral legs in the stick insect during walking. Including an additional segment (local network) into the original model, we could simulate coordination patterns that occur in animals walking on eight legs (e.g., crayfish). We could improve the model by modifying its original cyclic connection topology. In all model variants, the phase relations between the afferent segmental excitatory sensory signals and the oscillatory activity of the segmental networks played a crucial role. Our results stress the importance of this sensory input on the generation of different stable coordination patterns. The simulations confirmed that using the modified connection topology, the flexibility of the model behaviour increased, meaning that changing a single phase parameter, i.e., gating properties of just one afferent sensory signal was sufficient to reproduce all coordination patterns seen in the experiments. PMID:25904469

  16. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  17. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism.

    PubMed

    Pérez-Delgado, Carmen M; Moyano, Tomás C; García-Calderón, Margarita; Canales, Javier; Gutiérrez, Rodrigo A; Márquez, Antonio J; Betti, Marco

    2016-05-01

    Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes. PMID:27117340

  18. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism

    PubMed Central

    Pérez-Delgado, Carmen M.; Moyano, Tomás C.; García-Calderón, Margarita; Canales, Javier; Gutiérrez, Rodrigo A.; Márquez, Antonio J.; Betti, Marco

    2016-01-01

    Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes. PMID:27117340

  19. Translating the Interconnections between Ecological and Hydrological Processes in a Small Watershed into Process Networks using Information Theory

    NASA Astrophysics Data System (ADS)

    Kim, J.; Woo, N. C.; Kim, S.; Yun, J.; Kim, S.; Kang, M.; Cho, C. H.; Chun, J. H.

    2014-12-01

    We demonstrate how field measurements can inform the selection of model frameworks in small watershed applications. Based on the assumption that ecohydrological systems are open and complex, we employ the process network analysis to identify the system state and the subsystems architecture with changing environment conditions. Ecohydrological and biogeochemical processes in a watershed can be viewed as a network of processes of a wide range of scales involving various feedback loops and time delay. Using the KoFlux tower-based measurements of energy, water and CO2 flux time series along with those representing the soil-plant-atmospheric continuum; we evaluated statistical measures of characterizing the organization of the information flows in the system. We used Shannon's information entropy and calculated the mutual information and transfer entropy, following Ruddell and Kumar (2009). Transfer entropy can measure the relative strength and time scale of couplings between the variables. In this analysis, we selected 15 variables associated with ecohydrological processes, which are groundwater table height, water temperature, specific conductivity, soil moisture contents at three depths, ecosystem respiration, gross primary productivity, sensible heat flux, latent heat flux, precipitation, air temperature, vapor pressure deficit, atmospheric pressure, and solar radiation. The data-driven nature of this investigation may shed a light on reconciling model parsimony with equifinality in small watershed applications. (Acknowledgment: This work and the data used in the study were funded by the Korea Meteorological Administration Research and Development Program under Grant Weather Information Service Engine (WISE) project,153-3100-3133-302-350 and Grant CATER 2014-3030, respectively. The KoFlux site was supported by the Long-term Ecological Study and Monitoring of Forest Ecosystem Project of Korea Forest Research Institute.)

  20. DSS-13 - Using an OSI process control standard for monitor and control. [Deep Space Network experimental station applying Open System interconnection

    NASA Technical Reports Server (NTRS)

    Heuser, W. R.; Chen, Richard L.; Stockett, Michael H.

    1993-01-01

    The flexibility and robustness of a monitor and control (M&C) system are a direct result of the underlying inter-processor communications architecture. A new architecture for M&C at the Deep Space Communications Complexes has been developed based on the manufacturing message specification (MMS) process control standard of the open system interconnection (OSI) suite of protocols. This architecture has been tested both in a laboratory environment and under operational conditions at the Deep Space Network experimental station (DSS-13). The DSS-13 experience in the application of OSI standards to support M&C has been extremely successful. MMS meets the functional needs of the station and provides a level of flexibility and responsiveness previously unknown in that environment. The architecture is robust enough to meet current operational needs and flexible enough to provide a migration path for new subsystems. This paper describes the architecture of the DSS-13 M&C system, discuss how MMS was used and the requirements this imposed on other parts of the system, and provides results from systems and operational testing at DSS-13.

  1. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.

    PubMed

    Yao, Yanhua; Tsuchiyama, Scott; Yang, Ciyu; Bulteau, Anne Laure; He, Chong; Robison, Brett; Tsuchiya, Mitsuhiro; Miller, Delana; Briones, Valeria; Tar, Krisztina; Potrero, Anahi; Friguet, Bertrand; Kennedy, Brian K; Schmidt, Marion

    2015-01-01

    blocks lifespan extension in both strains. Thus, our findings suggest that proteasomes, Sir2, Snf1 and Hxk2 form an interconnected aging network that controls metabolism through coordinated regulation of Mig1.

  2. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  3. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode.

    PubMed

    Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong

    2015-07-13

    We propose a 'weaving' evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based 'microflowers' which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO 'microflower' is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g(-1), and an energy density of 15.9 Wh kg(-1) at a current density of 0.5 A g(-1). This research not only contributes to understanding the formation mechanism of such 'microflower' structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability.

  4. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode

    NASA Astrophysics Data System (ADS)

    Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong

    2015-07-01

    We propose a ‘weaving’ evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based ‘microflowers’ which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO ‘microflower’ is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g-1, and an energy density of 15.9 Wh kg-1 at a current density of 0.5 A g-1. This research not only contributes to understanding the formation mechanism of such ‘microflower’ structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability.

  5. Multi-stage flash degaser

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  6. Multistage Turbomachinery Flows Simulated Numerically

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Adamczyk, John J.; Shabbir, Aamir; Wellborn, Steven R.

    1999-01-01

    At the NASA Lewis Research Center, a comprehensive assessment was made of the predictive capability of the average passage flow model as applied to multistage axial-flow compressors. This model, which describes the time-averaged flow field within a typical passage of a blade row embedded in a multistage configuration, is being widely used throughout U.S. aircraft industry as an integral part of their design systems. Rotor flow-angle deviation. In this work, detailed data taken within a four and one-half stage large low-speed compressor were used to assess the weaknesses and strengths of the predictive capabilities of the average passage flow model. The low-speed compressor blading is of modern design and employs stator end-bends. Measurements were made with slow- and high response instrumentation. The high-response measurements revealed the velocity components of both the rotor and stator wakes. From the measured wake profiles, we found that the flow exiting the rotors deviated from the rotor exit metal angle to a lesser degree than was predicted by the average passage flow model. This was found to be due to blade boundary layer transition, which recently has been shown to exist on multistage axial compressor rotor and stator blades, but was not accounted for in the average passage model. Consequently, a model that mimics the effects of blade boundary layer transition, Shih k-epsilon model, was incorporated into the average passage model. Simulations that incorporated this transition model showed a dramatic improvement in agreement with data. The altered model thus improved predictive capability for multistage axial-flow compressors, and this was verified by detailed experimental measurement.

  7. 47 CFR 95.1313 - Interconnection prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities of the public switched telephone network to permit the transmission of messages or signals between points in the wireline or radio network of a public telephone company and persons served by multi-use... prohibited. MURS stations are prohibited from interconnection with the public switched...

  8. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  9. Perforation patterned electrical interconnects

    DOEpatents

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  10. Simulation of Multistage Turbine Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Mulac, R. A.; Adamczyk, J. J.

    1985-01-01

    The numerical simulation of turbine flows serves to enhance the understanding of the flow phenomena within multistage turbomachinery components. The direct benefit of this activity is improved modeling capability, which can be used to improve component efficiency and durability. A hierarchy of equations was formulated to assess the difficulty in analyzing the flow field within multistage turbomachinery components. The Navier-Stokes equations provides the most complete description. The simplest description is given by a set of equations that govern the quasi-one-dimensional flow. The number of unknowns to be solved for increases monotonically above the number of equations. The development of the additional set of equations needed to mathematically close the system of equations forms the closure problem associated with that level of description. For the Navier-Stokes equation there is no closure problem. For the quasi-one-dimensional equation set random flow fluctuations, unsteady fluctuations, nonaxisymmetric flow variations, and hub-to-shroud variations on the quasi-one-dimensional flow must be accounted for.

  11. Interconnections for fluidic circuits

    NASA Technical Reports Server (NTRS)

    Mangion, C.

    1972-01-01

    Circuit elements are grouped on functional basis in rectangular two-dimensional planar arrays or modules. Another interconnection method brings all connections out to module edge. For smaller fluidic circuits, manifold and interconnections are fabricated as single blocks. Advantages of methods are given.

  12. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  13. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  14. Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance.

    PubMed

    Lan, Wen-Jie; Kuo, Cheng-Chi; Chen, Chun-Hu

    2013-04-14

    A general redox procedure was successfully developed for the controlled synthesis of substituted cobalt oxides with hierarchical flower-like nanostructures comprising unique Y-shaped interconnections. The substitution and nanostructures synergistically enhance the material's electrochemical activities for highly efficient sensing of H2O2.

  15. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  16. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  17. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  18. Application of optical interconnect technology at Lawrence Livermore National Laboratory

    SciTech Connect

    Haigh, R.E.; Lowry, M.E.; McCammon, K.; Hills, R.; Mitchell, R.; Sweider, D.

    1995-08-10

    Optical interconnects will be required to meet the information bandwidth requirements of future communication and computing applications. At Lawrence Livermore National Laboratory, the authors are involved in applying optical interconnect technologies in two distinct application areas: Multi-Gigabit/sec Computer Backplanes and Gigabit/sec Wide Area Networking using Wavelength Division Multiplexing. In this paper, the authors discuss their efforts to integrate optical interconnect technologies into prototype computing and communication systems.

  19. Thin film interconnect processes

    NASA Astrophysics Data System (ADS)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  20. Zee electrical interconnect

    NASA Technical Reports Server (NTRS)

    Rust, Thomas M. (Inventor); Gaddy, Edward M. (Inventor); Herriage, Michael J. (Inventor); Patterson, Robert E. (Inventor); Partin, Richard D. (Inventor)

    2001-01-01

    An interconnect, having some length, that reliably connects two conductors separated by the length of the interconnect when the connection is made but in which one length if unstressed would change relative to the other in operation. The interconnect comprises a base element an intermediate element and a top element. Each element is rectangular and formed of a conducting material and has opposed ends. The elements are arranged in a generally Z-shape with the base element having one end adapted to be connected to one conductor. The top element has one end adapted to be connected to another conductor and the intermediate element has its ends disposed against the other end of the base and the top element. Brazes mechanically and electrically interconnect the intermediate element to the base and the top elements proximate the corresponding ends of the elements. When the respective ends of the base and the top elements are connected to the conductors, an electrical connection is formed therebetween, and when the conductors are relatively moved or the interconnect elements change length the elements accommodate the changes and the associated compression and tension forces in such a way that the interconnect does not mechanically fatigue.

  1. Research Resource: dkCOIN, the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) Consortium Interconnectivity Network: A Pilot Program to Aggregate Research Resources Generated by Multiple Research Consortia

    PubMed Central

    McKenna, Neil J.; Howard, Christopher L.; Aufiero, Michael; Easton-Marks, Jeremy; Steffen, David L.; Becnel, Lauren B.; Magnuson, Mark A.; McIndoe, Richard A.

    2012-01-01

    The National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) supports multiple basic science consortia that generate high-content datasets, reagent resources, and methodologies, in the fields of kidney, urology, hematology, digestive, and endocrine diseases, as well as metabolic diseases such as diabetes and obesity. These currently include the Beta Cell Biology Consortium, the Nuclear Receptor Signaling Atlas, the Diabetic Complications Consortium, and the Mouse Metabolic Phenotyping Centers. Recognizing the synergy that would accrue from aggregating information generated and curated by these initiatives in a contiguous informatics network, we created the NIDDK Consortium Interconnectivity Network (dkCOIN; www.dkcoin.org). The goal of this pilot project, organized by the NIDDK, was to establish a single point of access to a toolkit of interconnected resources (datasets, reagents, and protocols) generated from individual consortia that could be readily accessed by biologists of diverse backgrounds and research interests. During the pilot phase of this activity dkCOIN collected nearly 2000 consortium-curated resources, including datasets (functional genomics) and reagents (mouse strains, antibodies, and adenoviral constructs) and built nearly 3000 resource-to-resource connections, thereby demonstrating the feasibility of further extending this database in the future. Thus, dkCOIN promises to be a useful informatics solution for rapidly identifying useful resources generated by participating research consortia. PMID:22734043

  2. Multistage Simulations of the GE90 Turbine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Vitt, Paul H.; Topp, David A.; Saeidi, Sohrab; Hunter, Scott D.; Dailey, Lyle D.; Beach, Timothy A.

    1999-01-01

    The average passage approach has been used to analyze three multistage configurations of the GE90 turbine. These are a high pressure turbine rig, a low pressure turbine rig and a full turbine configuration comprising 18 blade rows of the GE90 engine at takeoff conditions. Cooling flows in the high pressure turbine have been simulated using source terms. This is the first time a dual-spool cooled turbine has been analyzed in 3D using a multistage approach. There is good agreement between the simulations and experimental results. Multistage and component interaction effects are also presented. The parallel efficiency of the code is excellent at 87.3% using 121 processors on an SGI Origin for the 18 blade row configuration. The accuracy and efficiency of the calculation now allow it to be effectively used in a design environment so that multistage effects can be accounted for in turbine design.

  3. Architecture for on-die interconnect

    DOEpatents

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  4. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Yu; Harrington, R.E.

    1987-05-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

  5. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Y.; Harrington, Richard E.

    1989-01-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

  6. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  7. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  8. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2003-06-06

    This report summarizes the interconnect work being performed at Delphi. Materials were chosen for this interconnect project were chosen from ferritic and austenitic stainless steels, and nickel-based superalloys. The alloys are thermally cycled in air and a wet hydrogen atmosphere. The oxide scale adherence, electrical resistance and oxidation resistance are determined after long-term oxidation of each alloy. The oxide scale adherence will be observed using a scanning electron microscope. The electrical resistance of the oxidized alloys will be determined using an electrical resistance measurement apparatus which has been designed and is currently being built. Data from the electrical resistance measurement is expected to be provided in the second quarter.

  9. Hybrid interconnection structures for real-time parallel processing

    NASA Technical Reports Server (NTRS)

    Kim, K. H.; Samson, John R., Jr.

    1989-01-01

    The use of hybrid interconnection structures that combine link connections and bus connections for real-time parallel processing is discussed. Idealistic parallel computation models for two real-time computing applications are described with attention given to a tightly coupled network model for object tracking and a network model for image processing. Consideration is given to the following different interconnection structures: the crossbar, the hypercube, the circular linked array, and the bus array.

  10. Coplanar interconnection module

    NASA Technical Reports Server (NTRS)

    Steward, R. D.; Windsor, H. F.

    1970-01-01

    Module for interconnecting a semiconductor array to external leads or components incorporates a metal external heat sink for cooling the array. Heat sink, extending down from the molded block that supports the array, is immersed in a liquid nitrogen bath which is designed to maintain the desired array temperature.

  11. Interconnecting with VIPs

    ERIC Educational Resources Information Center

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  12. Capillary interconnect device

    SciTech Connect

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  13. Efficient hierarchical interconnection for multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Wei, Sizheng; Levy, Saul

    1992-01-01

    The authors present a novel approach to the design of a class of hierarchical interconnection networks for multiprocessor systems. This approach, based on an architecture providing separate networks for each level, gives a general and flexible way to construct efficient hierarchical networks. The performance and cost-effectiveness of the resulting networks are analyzed and compared in detail, using both unbuffered and buffered network models. It is shown that, if the design parameters are determined based on the degree of locality, the cost-effectiveness of a hierarchical network can be significantly improved. In addition, the authors investigate how to construct a cost-effectiveness hierarchical network by determining appropriate design parameters. Two associated algorithms are developed for this purpose.

  14. A new approach to: (a) grid generation for numerical optimization, and (b) interconnect networks for beowulf clusters, leveraging n-dimensional sphere-packings

    NASA Astrophysics Data System (ADS)

    Bewley, Thomas; Cessna, Joseph; Belitz, Paul

    2008-11-01

    The abstract field of n-dimensional sphere packing theory is well developed (for a comprehensive review, see Sphere Packings, Lattices and Groups by Conway and Sloane). This theory forms the theoretical underpinning of the error-correcting codes used in both deep space communications and in computer memory. The present work extends this elegant theory to two important and immensely practical problems in computational fluid dynamics: (a) the generation of efficient grids for the coordination of grid-based derivative-free optimization algorithms in n dimensions, and (b) the effective n-dimensional interconnection of massively-parallel clusters of computational nodes. As we will illustrate and quantify, the first problem benefits tremendously from dense sphere packings with large kissing numbers >> 2n, whereas the latter problem benefits tremendously from rare sphere packings with kissing number = n+1.

  15. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    PubMed

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  16. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  17. Matching multistage schemes to viscous flow

    NASA Astrophysics Data System (ADS)

    Kleb, William Leonard

    A method to accelerate convergence to steady state by explicit time-marching schemes for the compressible Navier-Stokes equations is presented. The combination of cell-Reynolds-number-based multistage time stepping and local preconditioning makes solving steady-state viscous flow problems competitive with the convergence rates typically associated with implicit methods, without the associated memory penalty. Initially, various methods are investigated to extend the range of multistage schemes to diffusion-dominated cases. It is determined that the Chebyshev polynomials are well suited to serve as amplification factors for these schemes; however, creating a method that can bridge the continuum from convection-dominated to diffusion-dominated regimes proves troublesome, until the Manteuffel family of polynomials is uncovered. This transformation provides a smooth transition between the two extremes; and armed with this information, sets of multistage coefficients are created for a given spatial discretization as a function of cell Reynolds number according to various design criteria. As part of this process, a precise definition for the numerical time step is hammered out, something which up to this time, has been set via algebraic arguments only. Next are numerical tests of these sets of variable multistage coefficients. To isolate the effects of the variable multistage coefficients, the test case chosen is very simple: circular advection-diffusion. The numerical results support the analytical analysis by demonstrating an order of magnitude improvement in convergence rate for single-grid relaxation and a factor of three for multigrid relaxation. Building upon the success of the scalar case, preconditioning is applied to make the Navier-Stokes system of equations behave more nearly as a single scalar equation. Then, by applying the variable multistage coefficient scheme to a typical boundary-layer flow problem, the results affirm the benefits of local preconditioning

  18. Multi-megavolt low jitter multistage switch

    DOEpatents

    Humphreys, D.R.; Penn, K.J. Jr.

    1985-06-19

    It is one object of the present invention to provide a multistage switch capable of holding off numerous megavolts, until triggered, from a particle beam accelerator of the type used for inertial confinement fusion. The invention provides a multistage switch having low timing jitter and capable of producing multiple spark channels for spreading current over a wider area to reduce electrode damage and increase switch lifetime. The switch has fairly uniform electric fields and a short spark gap for laser triggering and is engineered to prevent insulator breakdowns.

  19. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  20. Butterfly interconnection implementation for an n-bit parallel full adder/subtractor

    NASA Astrophysics Data System (ADS)

    Sun, De-Gui; Xiang, Qian; Wang, Na-Xin; Weng, Zhao-Heng

    1992-07-01

    Free-space optical interconnections are important in both massive digital optical computing and communication systems. The architectural features of three interconnection networks are analyzed and compared, and the optical butterfly interconnection is shown to have many advantages over other interconnections in implementing various basic logic functions such as addition, subtraction, multiplication, and fast Fourier transforms. Starting with conventional Karnaugh maps and Boolean algebra, the characteristics of full addition and full subtraction are analyzed and compared. An n-bit parallel calculator that can implement both ripple carry full additions and ripple borrow full subtractions using multilayer butterfly interconnection networks is designed. Then the schematic and architecture of the full adder/subtractor, interconnection networks, and the patterns of key devices such as masks to implement AND and OR operations in this calculation are described in detail. The correct simulation results of several groups of multibit digits are provided. Finally, the development of the interconnections in implementing logic operations is discussed.

  1. "MSTGen": Simulated Data Generator for Multistage Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2013-01-01

    Multistage testing, or MST, was developed as an alternative to computerized adaptive testing (CAT) for applications in which it is preferable to administer a test at the level of item sets (i.e., modules). As with CAT, the simulation technique in MST plays a critical role in the development and maintenance of tests. "MSTGen," a new MST…

  2. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  3. Phase stability in a multistage Zeeman decelerator

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Merkt, F.

    2010-10-15

    The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.

  4. Automated Simultaneous Assembly for Multistage Testing

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Ariel, Adelaide; Veldkamp, Bernard P.

    2005-01-01

    This article offers some solutions used in the assembly of the computerized Uniform Certified Public Accountancy (CPA) licensing examination as practical alternatives for operational programs producing large numbers of forms. The Uniform CPA examination was offered as an adaptive multistage test (MST) beginning in April of 2004. Examples of…

  5. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  6. [Variance estimation considering multistage sampling design in multistage complex sample analysis].

    PubMed

    Li, Yichong; Zhao, Yinjun; Wang, Limin; Zhang, Mei; Zhou, Maigeng

    2016-03-01

    Multistage sampling is a frequently-used method in random sampling survey in public health. Clustering or independence between observations often exists in the sampling, often called complex sample, generated by multistage sampling. Sampling error may be underestimated and the probability of type I error may be increased if the multistage sample design was not taken into consideration in analysis. As variance (error) estimator in complex sample is often complicated, statistical software usually adopt ultimate cluster variance estimate (UCVE) to approximate the estimation, which simply assume that the sample comes from one-stage sampling. However, with increased sampling fraction of primary sampling unit, contribution from subsequent sampling stages is no more trivial, and the ultimate cluster variance estimate may, therefore, lead to invalid variance estimation. This paper summarize a method of variance estimation considering multistage sampling design. The performances are compared with UCVE and the method considering multistage sampling design by simulating random sampling under different sampling schemes using real world data. Simulation showed that as primary sampling unit (PSU) sampling fraction increased, UCVE tended to generate increasingly biased estimation, whereas accurate estimates were obtained by using the method considering multistage sampling design.

  7. Multi-Stage System for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an

  8. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  9. Local network interconnection through a satellite point-to-multipoint link. Ph.D. Thesis - Ecole Nationale Superieure des Telecommunications, 6 Jul. 1985

    NASA Technical Reports Server (NTRS)

    Duarte, O. Muniz Bandeira

    1986-01-01

    Four architectures to implement a point to multipoint satellite link protocol for communication services offered by the Telecom 1 satellite network are presented. A safe communication service with error correction and flow control facilities is described. It is shown that a time transparent communication system combines simplicity and cost advantages.

  10. Self-assembly of 1D mixed-metal tubular network with coordination bonds through the interconnection of organometallic metallamacrocycles by Ag(I) centers.

    PubMed

    Wang, Guo-Liang; Lin, Yue-Jian; Jin, Guo-Xin

    2011-05-21

    The combination of a ditopic ligand containing a functional "third site" as a bridge and organometallic half-sandwich iridium unit Cp*Ir as the corner leads to the formation of the tetranuclear metallamacrocycle 1, which is reacted with silver compound, resulting in the formation of mixed-metal infinitely tubular coordination network 2.

  11. Optical Interconnection Via Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  12. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  13. Fuel cell system with interconnect

    DOEpatents

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  14. Fuel cell system with interconnect

    DOEpatents

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  15. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  16. Reconfigurable Hybrid Interconnection for Static and DynamicScientific Applications

    SciTech Connect

    Kamil, Shoaib; Pinar, Ali; Gunter, Daniel; Lijewski, Michael; Oliker, Leonid; Shalf, John; Skinner, David

    2006-04-25

    As we enter the era of petascale computing, system architects must plan for machines composed of tens of thousands or even hundreds of thousands of processors. Although fully connected networks such as fat-tree interconnects currently dominate HPC network designs, such approaches are inadequate for thousands of processors due to the superlinear growth of component costs. Traditional low-degree interconnect topologies, such as the 3D torus, have reemerged as a competitive solution because the number of switch components scales linearly with the node count, but such networks are poorly suited for the requirements of many scientific applications. We present our latest work on a hybrid switch architecture called HFAST that uses circuit switches to dynamically reconfigure a lower-degree interconnect to suit the topological requirements of each scientific application. This paper expands upon our prior work on the requirements of non-adaptive applications by analyzing the communication characteristics of dynamically adapting AMR code and presents a methodology that captures the evolving communication requirements. We also present a new optimization that computes the under-utilization of fat-tree interconnects for a given communication topology, showing the potential of constructing a ''fit-tree'' for the application by using the HFAST circuit switches to provision an optimal interconnect topology for each application. Finally, we apply our new optimization technique to the communication requirements of the AMR code to demonstrate the potential of using dynamic reconfiguration of the HFAST interconnect between the communication intensive phases of a dynamically adapting application.

  17. A Multistage Method for Multiobjective Route Selection

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Gen, Mitsuo

    The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.

  18. Impedance characteristics of multistage ion diodes

    SciTech Connect

    Desjarlais, M.

    1994-09-01

    We further develop a theory of multistage diodes that includes the possibility of emission of ions in the final stage. The exact solutions are extremely cumbersome and are not practical for most applications. We have developed approximate solutions that are very accurate, require no integrations, and may be rapidly calculated using a simple iterative scheme. These solutions for the total current as a function of voltage are used in time-dependent modeling of a two-stage diode.

  19. Handling Imbalanced Data Sets in Multistage Classification

    NASA Astrophysics Data System (ADS)

    López, M.

    Multistage classification is a logical approach, based on a divide-and-conquer solution, for dealing with problems with a high number of classes. The classification problem is divided into several sequential steps, each one associated to a single classifier that works with subgroups of the original classes. In each level, the current set of classes is split into smaller subgroups of classes until they (the subgroups) are composed of only one class. The resulting chain of classifiers can be represented as a tree, which (1) simplifies the classification process by using fewer categories in each classifier and (2) makes it possible to combine several algorithms or use different attributes in each stage. Most of the classification algorithms can be biased in the sense of selecting the most populated class in overlapping areas of the input space. This can degrade a multistage classifier performance if the training set sample frequencies do not reflect the real prevalence in the population. Several techniques such as applying prior probabilities, assigning weights to the classes, or replicating instances have been developed to overcome this handicap. Most of them are designed for two-class (accept-reject) problems. In this article, we evaluate several of these techniques as applied to multistage classification and analyze how they can be useful for astronomy. We compare the results obtained by classifying a data set based on Hipparcos with and without these methods.

  20. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium. PMID:27582071

  1. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  2. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  3. 47 CFR 51.321 - Methods of obtaining interconnection and access to unbundled elements under section 251 of the Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or access to unbundled network elements at a particular point upon a request by a telecommunications carrier. (b) Technically feasible methods of obtaining interconnection or access to unbundled network... method of obtaining interconnection or access to unbundled network elements at a particular premises...

  4. Reconfigurable high-speed optoelectronic interconnect technology for multiprocessor computers

    NASA Astrophysics Data System (ADS)

    Cheng, Julian

    1995-06-01

    We describe a compact optoelectronic switching technology for interconnecting multiple computer processors and shared memory modules together through dynamically reconfigurable optical paths to provide simultaneous, high speed communication amongst different nodes. Each switch provides a optical link to other nodes as well as electrical access to an individual processor, and it can perform optical and optoelectronic switching to covert digital data between various electrical and optical input/output formats. This multifunctional switching technology is based on the monolithic integration of arrays of vertical-cavity surface-emitting lasers with photodetectors and heterojunction bipolar transistors. The various digital switching and routing functions, as well as optically cascaded multistage operation, have been experimentally demonstrated.

  5. Implementation of interconnect simulation tools in spice

    NASA Technical Reports Server (NTRS)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  6. Interconnection of Europe`s power systems

    SciTech Connect

    Manos, P.

    1996-03-01

    More than six years have passed since the Berlin Wall fell during Christmas of 1989, and a unified pan-European electricity-supply system is still not a reality. Progress toward that goal has been certain but slow. Technical and political differences still block the final step in the integration process: a full hookup between the grids of western and northern Europe and the transmission networks of the former Warsaw Pact nations. It has fallen to unified Germany, as the bridge between East and West, to serve as the catalyst of Europe`s electrical congress. This paper discusses the existing and planned interconnection along with a historical perspective.

  7. The numerical simulation of multistage turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.

    1990-01-01

    The need to account for momentum and energy transport by the unsteady deterministic flow field in modeling the time-averaged flow state within a blade row passage embedded in a multistage compressor is assessed. It was found that, within the endwall regions, large-scale three-dimensional unsteady structures existed which caused significant transport of momentum and energy across the time-averaged stream surface of a stator flow field. These experiments confirmed that the tranport process is dominated by turbulent diffusion in the midspan region. A model was then proposed for simulating this transport process, and a limited study was undertaken to assess its validity.

  8. Active holographic interconnects for interfacing volume storage

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.

    1992-04-01

    In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels

  9. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  10. Parallel optical interconnects utilizing VLSI/FLC spatial light modulators

    NASA Astrophysics Data System (ADS)

    Genco, Sheryl M.

    1991-12-01

    Interconnection architectures are a cornerstone of parallel computing systems. However, interconnections can be a bottleneck in conventional computer architectures because of queuing structures that are necessary to handle the traffic through a switch at very high data rates and bandwidths. These issues must find new solutions to advance the state of the art in computing beyond the fundamental limit of silicon logic technology. Today's optoelectronic (OE) technology in particular VLSI/FLC spatial light modulators (SLMs) can provide a unique and innovative solution to these issues. This paper reports on the motivations for the system, describes the major areas of architectural requirements, discusses interconnection topologies and processor element alternatives, and documents an optical arbitration (i.e., control) scheme using `smart' SLMs and optical logic gates. The network topology is given in section 2.1 `Architectural Requirements -- Networks,' but it should be noted that the emphasis is on the optical control scheme (section 2.4) and the system.

  11. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  12. Multistage adsorption of diffusing macromolecules and viruses

    NASA Astrophysics Data System (ADS)

    Chou, Tom; D'Orsogna, Maria R.

    2007-09-01

    We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.

  13. Robust multi-stage approach for the detection of moving target from infrared imagery

    NASA Astrophysics Data System (ADS)

    Chen, Bingwen; Wang, Wenwei; Qin, Qianqing

    2012-06-01

    We present a multi-stage classification approach to detect targets in widely varying thermal imagery. A multi-level spatial-temporal median filter is utilized to extract the background frame, with which the background clutters are suppressed by using the principal component analysis technique. A spatially related fuzzy adaptive resonance theory (ART) neural network is then applied to identify the local regions-of-interest. Within each region, another fuzzy ART neural network is utilized to detect the targets. Experimental results demonstrate that the proposed approach is capable of detecting infrared moving targets effectively for F1 measurement up to 96.3%.

  14. A Testlet Assembly Design for Adaptive Multistage Tests

    ERIC Educational Resources Information Center

    Luecht, Richard; Brumfield, Terry; Breithaupt, Krista

    2006-01-01

    This article describes multistage tests and some practical test development considerations related to the design and implementation of a multistage test, using the Uniform CPA (certified public accountant) Examination as a case study. The article further discusses the use of automated test assembly procedures in an operational context to produce…

  15. Exposure Control Using Adaptive Multi-Stage Item Bundles.

    ERIC Educational Resources Information Center

    Luecht, Richard M.

    This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…

  16. 40 CFR 600.316-78 - Multistage manufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Later Model Year Automobiles-Labeling § 600.316-78 Multistage manufacture. Where more than one person is the manufacturer of a vehicle, the final stage vehicle manufacturer (as defined in 49 CFR 549.3... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Multistage manufacture....

  17. 40 CFR 600.316-78 - Multistage manufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Later Model Year Automobiles-Labeling § 600.316-78 Multistage manufacture. Where more than one person is the manufacturer of a vehicle, the final stage vehicle manufacturer (as defined in 49 CFR 549.3... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Multistage manufacture....

  18. European Transmission Interconnection; Eurasian power grid

    SciTech Connect

    Posch, J. )

    1991-09-01

    Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studies have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.

  19. Message Passing Framework for Globally Interconnected Clusters

    NASA Astrophysics Data System (ADS)

    Hafeez, M.; Asghar, S.; Malik, U. A.; Rehman, A.; Riaz, N.

    2011-12-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  20. Biologically based multistage modeling of radiation effects

    SciTech Connect

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage

  1. The performance of multicomputer interconnection networks

    SciTech Connect

    Reed, D.A.; Grunwald, D.C.

    1987-06-01

    The spectrum of parallel processor designs can be divided into three sections according to the number and complexity of the processors. At one end there are simple, bit-serial processors. Any one of thee processors is of little value, but when it is coupled with many others, the aggregate computing power can be large. This approach to parallel processing can be likened to a colony of termites devouring a log. The most notable examples of this approach are the NASA/Goodyear Massively Parallel Processor, which has 16K one-bit processors, and the Thinking Machines Connection Machine, which has 64K one-bit processors. At the other end of the spectrum, a small number of processors, each built using the fastest available technology and the most sophisticated architecture, are combined. An example of this approach is the Cray X-MP. This type of parallel processing is akin to four woodmen attacking the log with chainsaws.

  2. Interconnecting Networks of Practice for Professional Learning

    ERIC Educational Resources Information Center

    Mackey, Julie; Evans, Terry

    2011-01-01

    The article explores the complementary connections between communities of practice and the ways in which individuals orchestrate their engagement with others to further their professional learning. It does so by reporting on part of a research project conducted in New Zealand on teachers' online professional learning in a university graduate…

  3. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  4. Modern multistage depressed collectors - A review

    NASA Astrophysics Data System (ADS)

    Kosmahl, H. G.

    1982-11-01

    The design and performance of the Lewis Research Center (LeRC) electrostatic collector and the associated passive permanent magnetic beam reconditioning (refocusing) are discussed and compared with numerous experimental results on wide- and narrow-band TWT and two klystron cases. Universal designs for efficient collectors for TV klystrons are presented. Collectors other than those based on the symmetric LeRC concept are reviewed only briefly, either because they have not been treated analytically or because only sporadic or incomplete experimental evaluation results are available. It is concluded that significant, a priori predictable performance improvements for TWTs have been demonstrated and that a substantial reduction in the dc power input to TV klystron transmitters could be effected by using well-designed multistage depressed collectors.

  5. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  6. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  7. The numerical simulation of multistage turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.

    1996-01-01

    The effect of the unsteady flow field in a multistage compressor on the time-averaged performance was assessed. The energy transport by the unsteady deterministic flow field was taken into account. The magnitude of the body force resulting from the aerodynamic loading on a blade row was compared to the gradient of the stress tensor associated with the unsteady time-resolved flow field generated by the blade row. The magnitude of the work performed by these forces was compared to the divergence of the energy correlations produced by the unsteady time-resolved flow field. The stress tensor and the energy correlations are non-negligible in the end wall regions. The results suggest that the turbulence is the primary source of flow mixing in the midspan region.

  8. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  9. Shuffle-equivalent interconnection topologies based on computer-generated binary-phase gratings.

    PubMed

    Cloonan, T J; Richards, G W; Morrison, R L; Lentine, A L; Sasian, J M; McCormick, F B; Hinterlong, S J; Hinton, H S

    1994-03-10

    Several different shuffle-equivalent interconnection topologies that can be used within the optical link stages of photonic-switching networks are studied. These schemes include the two shuffle, the two banyan, and the segmented two shuffle, which can be used to interconnect two-input, two-output switching nodes. The schemes also include the four shuffle and the four banyan, which can be used to interconnect four-input, four-output switching nodes. (Note: The segmented two shuffle and the four banyan are novel interconnection topologies that were developed to satisfy some of the constraints of free-space digital optics). It is shown that each of these interconnection topologies can be implemented by the use of relatively simple imaging optics that contain space-invariant computer-generated binaryphase gratings. The effects of node type and interconnection topology on the laser power requirements and the optical component complexity within the resulting systems are also studied. The general class of networks nown as extended generalized shuffle networks is used as a baseline for the analysis. It is shown that (2, 1, 1) nodes and (2, 2, 2) nodes connected by two-banyan interconnections can produce power-efficient and cost-effective systems. The results should help identify the architectural trade-offs that exist when a node type and an interconnection topology are selected for implementation within a switching system based on free-space digital optics.

  10. Multistage optical smoke detection approach for smoke alarm systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Truc Kim Thi; Kim, Jong-Myon

    2013-05-01

    We propose a novel multistage smoke detection algorithm based on inherent optical characteristics such as diffusion, color, and texture of smoke. Moving regions in a video frame are detected by an approximate median background subtraction method using the diffusion behavior of smoke. These moving regions are segmented by a fuzzy C-means (FCM) clustering algorithm that uses the hue and saturation components of moving pixels in the hue-saturation-intensity color space. A decision rule is used to select candidate smoke regions from smoke-colored FCM clusters. An object tracking approach is employed in the candidate smoke region to detect candidate smoke objects in the video frame, and image texture parameters are extracted from these objects using a gray level co-occurrence matrix (GLCM). The thirteen GLCM features are selected to constitute the feature vector by applying principal components analysis, resulting in high-accuracy smoke detection. Finally, a back propagation neural network is utilized as a classifier to discriminate smoke and nonsmoke using the selected feature vector. Experimental results using a standard experimental dataset of video clips demonstrate that the proposed approach outperforms state-of-the-art smoke detection approaches in terms of accuracy, making real-life implementation feasible.

  11. Multi-stage internal gear/turbine fuel pump

    DOEpatents

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  12. Model equation for simulating flows in multistage turbomachinery

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1984-01-01

    A steady, three-dimensional average-passage equation system is derived for use in simulating multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. From this system of equations, various reduced forms can be derived for use in simulating the three-dimensional flow field within multistage machinery. It is suggested that a properly scaled form of the average-passage equation system would provide an improved mathematical model for simulating the flow in multistage machines at design and, in particular, at off-design conditions.

  13. Model equation for simulating flows in multistage turbomachinery

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1985-01-01

    A steady, three-dimensional average-passage equation system is derived for use in simulating multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. From this system of equations, various reduced forms can be derived for use in simulating the three-dimensional flow field within multistage machinery. It is suggested that a properly scaled form of the averaged-passage equation system would provide an improved mathematical model for simulating the flow in multistage machines at design and, in particular, at off-design conditions.

  14. Dynamically reconfigurable optical interconnect architecture for parallel multiprocessor systems

    NASA Astrophysics Data System (ADS)

    Girard, Mary M.; Husbands, Charles R.; Antoszewska, Reza

    1991-12-01

    The progress in parallel processing technology in recent years has resulted in increased requirements to process large amounts of data in real time. The massively parallel architectures proposed for these applications require the use of a high speed interconnect system to achieve processor-to-processor connectivity without incurring excessive delays. The characteristics of optical components permit high speed operation while the nonconductive nature of the optical medium eliminates ground loop and transmission line problems normally associated with a conductive medium. The MITRE Corp. is evaluating an optical wavelength division multiple access interconnect network design to improve interconnectivity within parallel processor systems and to allow reconfigurability of processor communication paths. This paper describes the architecture and control of and highlights the results from an 8- channel multiprocessor prototype with effective throughput of 3.2 Gigabits per second (Gbps).

  15. Aspects of short-range interconnect packaging

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Denis; Brenner, Karl-Heinz

    2012-01-01

    In short-range interconnect applications, one question arises frequently: When should optical solutions be chosen over electrical wiring? The answer to this question of course depends on several factors like costs, performance, reliability, availability of testing equipment and knowledge about optical technologies, and last but not least, it strongly depends on the application itself. Networking in high performance computing (HPC) is one such example. With bit rates around 10 Gbit/s per channel and cable length above 2 m, the high attenuation of electrical cables leads to a clear preference of optical or active optical cables (AOC) for most planned HPC systems. For AOCs, the electro-optical conversion is realized inside the connector housing, while for purely optical cables, the conversion is done at the edge of the board. Proceeding to 25 Gbit/s and higher, attenuation and loss of signal quality become critical. Therefore, either significantly more effort has to be spent on the electrical side, or the package for conversion has to be integrated closer to the chip, thus requiring new packaging technologies. The paper provides a state of the art overview of packaging concepts for short range interconnects, it describes the main challenges of optical package integration and illustrates new concepts and trends in this research area.

  16. Mapping of interconnection of climate risks

    NASA Astrophysics Data System (ADS)

    Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan

    2015-04-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by

  17. Optical interconnection techniques for Hypercube

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Bergman, L. A.; Wu, W. H.

    1988-01-01

    Direct free-space optical interconnection techniques are described for the Hypercube concurrent processor machine using a holographic optical element. Computational requirements and optical constraints on implementation are briefly summarized with regard to topology, power consumption, and available technologies. A hybrid lens/HOE approach is described that can support an eight-dimensional cube of 256 nodes.

  18. Polyguide polymeric technology for optical interconnect circuits and components

    NASA Astrophysics Data System (ADS)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  19. Automatic variance analysis of multistage care pathways.

    PubMed

    Li, Xiang; Liu, Haifeng; Zhang, Shilei; Mei, Jing; Xie, Guotong; Yu, Yiqin; Li, Jing; Lakshmanan, Geetika T

    2014-01-01

    A care pathway (CP) is a standardized process that consists of multiple care stages, clinical activities and their relations, aimed at ensuring and enhancing the quality of care. However, actual care may deviate from the planned CP, and analysis of these deviations can help clinicians refine the CP and reduce medical errors. In this paper, we propose a CP variance analysis method to automatically identify the deviations between actual patient traces in electronic medical records (EMR) and a multistage CP. As the care stage information is usually unavailable in EMR, we first align every trace with the CP using a hidden Markov model. From the aligned traces, we report three types of deviations for every care stage: additional activities, absent activities and violated constraints, which are identified by using the techniques of temporal logic and binomial tests. The method has been applied to a CP for the management of congestive heart failure and real world EMR, providing meaningful evidence for the further improvement of care quality. PMID:25160280

  20. A novel multistage estimation of signal parameters

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1990-01-01

    A multistage estimation scheme is presented for estimating the parameters of a received carrier signal possibly phase-modulated by unknown data and experiencing very high Doppler, Doppler rate, etc. Such a situation arises, for example, in the case of the Global Positioning Systems (GPS). In the proposed scheme, the first-stage estimator operates as a coarse estimator of the frequency and its derivatives, resulting in higher rms estimation errors but with a relatively small probability of the frequency estimation error exceeding one-half of the sampling frequency (an event termed cycle slip). The second stage of the estimator operates on the error signal available from the first stage, refining the overall estimates, and in the process also reduces the number of cycle slips. The first-stage algorithm is a modified least-squares algorithm operating on the differential signal model and referred to as differential least squares (DLS). The second-stage algorithm is an extended Kalman filter, which yields the estimate of the phase as well as refining the frequency estimate. A major advantage of the is a reduction in the threshold for the received carrier power-to-noise power spectral density ratio (CNR) as compared with the threshold achievable by either of the algorithms alone.

  1. Multistage sampling for latent variable models.

    PubMed

    Thomas, Duncan C

    2007-12-01

    I consider the design of multistage sampling schemes for epidemiologic studies involving latent variable models, with surrogate measurements of the latent variables on a subset of subjects. Such models arise in various situations: when detailed exposure measurements are combined with variables that can be used to assign exposures to unmeasured subjects; when biomarkers are obtained to assess an unobserved pathophysiologic process; or when additional information is to be obtained on confounding or modifying variables. In such situations, it may be possible to stratify the subsample on data available for all subjects in the main study, such as outcomes, exposure predictors, or geographic locations. Three circumstances where analytic calculations of the optimal design are possible are considered: (i) when all variables are binary; (ii) when all are normally distributed; and (iii) when the latent variable and its measurement are normally distributed, but the outcome is binary. In each of these cases, it is often possible to considerably improve the cost efficiency of the design by appropriate selection of the sampling fractions. More complex situations arise when the data are spatially distributed: the spatial correlation can be exploited to improve exposure assignment for unmeasured locations using available measurements on neighboring locations; some approaches for informative selection of the measurement sample using location and/or exposure predictor data are considered.

  2. Multistage integrated process for upgrading olefins

    SciTech Connect

    Harandi, M.N.

    1991-03-19

    This patent describes a continuous multi-stage process for increasing octane quality and yield of liquid hydrocarbons from an integrated fluidized catalytic cracking unit and olefins oligomerization reaction zone. It comprises: contacting heavy hydrocarbon feedstock in a primary fluidized bed reaction stage with cracking catalyst comprising particulate solid large pore acid aluminosilicate zeolite catalyst at conversion conditions to produce a hydrocarbon effluent comprising gas containing C{sub 2}-C{sub 6} olefins intermediate hydrocarbons in the gasoline and distillate range, and cracked bottoms; regenerating the primary stage zeolite cracking catalyst in a primary stage regeneration zone and returning at least a portion of the resulting regenerated zeolite cracking catalyst to the primary reaction stage; withdrawing another portion of the catalyst from the regeneration zone and adding fresh makeup catalyst thereto separating primary stage effluent to recover olefinic gas containing C{sub 2}-C{sub 6} olefins; reacting at least a portion of the olefinic gas in a secondary fluidized bed reactor stage in contact with a closed fluidized bed of acid zeolite catalyst particles.

  3. Interconnecting compressors control coalbed gas production

    SciTech Connect

    Payton, R.; Niederhofer, J. )

    1992-10-05

    This paper reports that centralized compressors afford Taurus Exploration Inc.'s coalbed gas operations optimum control of gas production. Unlike satellite stations, the centralized system allows methane gas to e shifted from station to station via the interconnecting low-pressure pipeline network. The operations area encompasses approximately 40,000 acres, about 40 miles southwest of Birmingham, Ala. The project includes about 250-miles of low-pressure gas flow lines to almost 400 wells. The centralized system is less costly than a satellite station to build and operate. Unlike a satellite station that requires each compressor to have a complete set of ancillary equipment, the centralized system requires only one suction manifold, one dehydration setup, and one metering facility for every five compressor sets.

  4. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  5. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  6. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  7. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  8. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  9. Designing Scalable PGAS Communication Subsystems on Cray Gemini Interconnect

    SciTech Connect

    Vishnu, Abhinav; Daily, Jeffrey A.; Palmer, Bruce J.

    2012-12-26

    The Cray Gemini Interconnect has been recently introduced as a next generation network architecture for building multi-petaflop supercomputers. Cray XE6 systems including LANL Cielo, NERSC Hopper, ORNL Titan and proposed NCSA BlueWaters leverage the Gemini Interconnect as their primary Interconnection network. At the same time, programming models such as the Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) models such as Unified Parallel C (UPC) and Co-Array Fortran (CAF) have become available on these systems. Global Arrays is a popular PGAS model used in a variety of application domains including hydrodynamics, chemistry and visualization. Global Arrays uses Aggregate Re- mote Memory Copy Interface (ARMCI) as the communication runtime system for Remote Memory Access communication. This paper presents a design, implementation and performance evaluation of scalable and high performance communication subsystems on Cray Gemini Interconnect using ARMCI. The design space is explored and time-space complexities of commu- nication protocols for one-sided communication primitives such as contiguous and uniformly non-contiguous datatypes, atomic memory operations (AMOs) and memory synchronization is presented. An implementation of the proposed design (referred as ARMCI-Gemini) demonstrates the efficacy on communication primitives, application kernels such as LU decomposition and full applications such as Smooth Particle Hydrodynamics (SPH) application.

  10. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  11. High temperature superconductors for computer interconnect applications

    SciTech Connect

    Nilsson, B.J.L.

    1994-12-31

    High temperature superconductors, because of their extremely low loss at high frequencies and their high current handling capability, have the potential for use in computer interconnect boards. They offer the potential advantages of high interconnect density, reduced interconnect delays, and higher data rate. Because silicon CMOS circuits dramatically improve in performance at low temperatures, cooled computers may become attractive in the future to capture both the improved interconnect and circuit benefits.

  12. 47 CFR 69.124 - Interconnection charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection charge. 69.124 Section 69.124... Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange carriers not subject to price cap regulation shall assess an interconnection charge expressed in dollars...

  13. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent...

  14. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701... Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system must— (1) Be synchronized by a mechanical interconnection between the movable flap surfaces that...

  15. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  16. Multilevel Dual Damascene copper interconnections

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  17. Deciphering Multistage Crystal Histories in Arc Magmas

    NASA Astrophysics Data System (ADS)

    George, R.; Turner, S.; Berlo, K.; Pearson, N.

    2005-12-01

    Discrepancy between crystal ages derived by short-lived chronometers with vastly differing half-lives is one manifestation of the potential for complex, multistage evolution of phenocrysts in arc magmatic systems. Deciphering these processes is critical for estimating realistic crystal histories and, ultimately, the physical mechanisms of differentiation. Some of the biggest chronological discrepancies are evident in the andesitic compositional range, the most ubiquitous material erupted at arcs. In some systems, such as Sangeang Api in the Sunda arc, U-Th and Ra-Th systematics of bulk plagioclase separates are not in conflict and indicate that differentiation occurred over several 1000 years via crystallization due to cooling in the lower crust. Here, 210Pb data indicate significant degassing occurred in the decade prior to eruption but post-dated phenocryst growth and magma differentiation. Combined textural and U-Th-Ra isotope approaches often, however, provide compelling evidence that plagioclase phenocrysts contain old cores and thus are zoned in both age and composition. One of the best examples of apparently conflicting time-scale information comes from Soufriere volcano on St. Vincent in the Lesser Antilles. U-Th isotopes analyses of bulk plagioclase separates conflict with whole-rock and mineral Ra-Th disequilibria and attest to non-linear growth histories, and involvement of recycled cumulates upon which renewed crystal growth has taken place. We augment this well-constrained case study with new in situ Sr isotope analyses for one of the Soufriere lavas and a cumulate xenolith erupted in 1979. Significant isotope heterogeneity is observed, and complimentary isotope variations exist between cumulate xenolith and lava plagioclase phenocryst cores, lending further support to the model of heterogeneous core-rim evolution in the Soufriere system. We conclude that mineral time scales should always be cross-examined with other textural and/or isotope techniques

  18. Quantitation of multistage carcinogenesis in rat liver.

    PubMed

    Pitot, H C; Dragan, Y P; Teeguarden, J; Hsia, S; Campbell, H

    1996-01-01

    A well characterized model of multistage carcinogenesis is that of hepatocarcinogenesis in the rat. The histopathology as well as the cell and molecular biology of the stages of initiation, promotion, and progression have been elucidated to varying degrees in this system. Putatively single initiated hepatocytes are identified by their expression of the ubiquitous marker of hepatocarcinogenesis, glutathione-S-transferase pi (GSTP). 0.5-1.0 x 10(6) GSTP-positive "initiated" hepatocytes developed within 14 days after initiation with a subcarcinogenic dose of diethylnitrosamine (DEN). Approximately 1% of these cells develop clonally into altered hepatic foci (AHF) in animals administered promoting agents, such as phenobarbital, chronically for 4-8 mo. Hepatocytes within AHF during the stage of promotion exhibit normal diploid karyotypes but various phenotypes depending on the chemical nature of the promoting agent. Continued administration of the promoting agent results in the infrequent development of hepatocellular carcinomas; however, administration of a complete carcinogen or a progressor agent during the stage of promotion results in substantial numbers of hepatic neoplasms. In order to quantitate the development of the stage of progression more accurately, markers selective for this stage have been sought. Transforming growth factor-alpha (TGF-alpha) appears to be such a marker of progression. About 500 TGF-alpha-positive lesions develop spontaneously following initiation and continued promotion, usually within GSTP-positive AHF, but administration of a single dose of a progressor agent such as ethylnitrosourea may increase this number 3-fold or more. Some agents such as gamma radiation and hydroxyurea, when administered as single or a few closely spaced multiple doses, result in no increased number in TGF-alpha-positive lesions but a markedly enhanced increase in their growth rate. By monitoring gene expression using quantitative stereology, the stages of

  19. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  20. Bodypart Recognition Using Multi-stage Deep Learning.

    PubMed

    Yan, Zhennan; Zhan, Yiqiang; Peng, Zhigang; Liao, Shu; Shinagawa, Yoshihisa; Metaxas, Dimitris N; Zhou, Xiang Sean

    2015-01-01

    Automatic medical image analysis systems often start from identifying the human body part contained in the image; Specifically, given a transversal slice, it is important to know which body part it comes from, namely "slice-based bodypart recognition". This problem has its unique characteristic--the body part of a slice is usually identified by local discriminative regions instead of global image context, e.g., a cardiac slice is differentiated from an aorta arch slice by the mediastinum region. To leverage this characteristic, we design a multi-stage deep learning framework that aims at: (1) discover the local regions that are discriminative to the bodypart recognition, and (2) learn a bodypart identifier based on these local regions. These two tasks are achieved by the two stages of our learning scheme, respectively. In the pre-train stage, a convolutional neural network (CNN) is learned in a multi-instance learning fashion to extract the most discriminative local patches from the training slices. In the boosting stage, the learned CNN is further boosted by these local patches for bodypart recognition. By exploiting the discriminative local appearances, the learned CNN becomes more accurate than global image context-based approaches. As a key hallmark, our method does not require manual annotations of the discriminative local patches. Instead, it automatically discovers them through multi-instance deep learning. We validate our method on a synthetic dataset and a large scale CT dataset (7000+ slices from wholebody CT scans). Our method achieves better performances than state-of-the-art approaches, including the standard CNN. PMID:26221694

  1. Dynamic Model Validation with Governor Deadband on the Eastern Interconnection

    SciTech Connect

    Kou, Gefei; Hadley, Stanton W; Liu, Yilu

    2014-04-01

    This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.

  2. Power System Study for Renewable Energy Interconnection in Malaysia

    NASA Astrophysics Data System (ADS)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  3. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  4. Simple method for performance evaluation of multistage rockets

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro; Teofilatto, Paolo

    2014-01-01

    Multistage rockets are commonly employed to place spacecraft and satellites in their operational orbits. Performance evaluation of multistage rockets is aimed at defining the maximum payload mass at orbit injection, for specified structural, propulsive, and aerodynamic data of the launch vehicle. This work proposes a simple method for a fast performance evaluation of multistage rockets. The technique at hand is based on three steps: (i) the flight-path angle at each stage separation is guessed, (ii) the spacecraft velocity is maximized at the first and second stage separation, and (iii) for the last stage the thrust direction is obtained through the particle swarm optimization technique, in conjunction with the use of the Euler-Lagrange equations and the Pontryagin minimum principle. The coast duration at the second stage separation is optimized as well. The method at hand is extremely simple and easy-to-implement, but nevertheless it proves to be capable of yielding near-optimal ascending trajectories for a multistage launch vehicle with realistic structural, propulsive, and aerodynamic characteristics. The solutions found with the technique under consideration can be employed either for a rapid evaluation of the multistage rocket performance or as guesses for more refined optimization algorithms.

  5. Multistage Magnetic Separator of Cells and Proteins

    NASA Technical Reports Server (NTRS)

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  6. Double interconnection fuel cell array

    DOEpatents

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  7. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  8. Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis.

    PubMed

    Kao, Robert M; Vasilyev, Aleksandr; Miyawaki, Atsushi; Drummond, Iain A; McMahon, Andrew P

    2012-10-01

    Formation of a functional renal network requires the interconnection of two epithelial tubes: the nephron, which arises from kidney mesenchyme, and the collecting system, which originates from the branching ureteric epithelium. How this connection occurs, however, is incompletely understood. Here, we used high-resolution image analysis in conjunction with genetic labeling of epithelia to visualize and characterize this process. Although the focal absence of basal lamina from renal vesicle stages ensures that both epithelial networks are closely apposed, we found that a patent luminal interconnection is not established until S-shaped body stages. Precursor cells of the distal nephron in the interconnection zone exhibit a characteristic morphology consisting of ill-defined epithelial junctional complexes but without expression of mesenchymal markers such as vimentin and Snai2. Live-cell imaging revealed that before luminal interconnection, distal cells break into the lumen of the collecting duct epithelium, suggesting that an invasive behavior is a key step in the interconnection process. Furthermore, loss of distal cell identity, which we induced by activating the Notch pathway, prevented luminal interconnection. Taken together, these data support a model in which establishing the distal identity of nephron precursor cells closest to the nascent collecting duct epithelium leads to an active cell invasion, which in turn contributes to a patent tubular interconnection between the nephron and collecting duct epithelia.

  9. Understanding the Impact of Interconnect Failures on System Operation

    SciTech Connect

    Ezell, Matthew A

    2013-01-01

    Hardware failures are inevitable on large high performance computing systems. Faults or performance degradations in the high-speed network can reduce the entire system s performance. Since the introduction of the Gemini interconnect, Cray systems have become resilient to many networking faults that were fatal in their previous generation systems. These new network reliability and resiliency features have enabled higher uptimes on Cray systems by allowing them to continue running with reduced network performance. Oak Ridge National Laboratory has developed a set of user-level diagnostics that stresses the high-speed network and searches for components that are not performing as expected. Nearest-neighbor bandwidth tests check every network chip and network link in the system. Additionally, performance counters stored on the network ASIC s memory mapped registers (MMRs) are used to better understand the state of the network. Applications have also been characterized under various suboptimal network conditions to better understand what impact network problems have on user codes.

  10. Model equations for simulating flows in multistage turbomachinery

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.

    1996-01-01

    A steady, three dimensional average-passage equation system was derived. The purpose was to simulate multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. Moreover, these equations have a closure problem that is similar to that of the Reynolds-average Navier-Stokes equations. A scaled form of the average-passage equation system could provide an improved mathematical model for simulating the flow in the design and in the off-design conditions of a multistage machine.

  11. Multi-Stage Bunch Compressors for the International Linear Collider

    SciTech Connect

    Tenenbaum, P.; Raubenheimer, T.O.; Wolski, A.; /LBL, Berkeley

    2005-05-27

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.

  12. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  13. Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System

    NASA Technical Reports Server (NTRS)

    Lin, Tsung Han (Hank)

    2011-01-01

    JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.

  14. Single stage and multistage classification models for the prediction of liver fibrosis degree in patients with chronic hepatitis C infection.

    PubMed

    Hashem, Ahmed M; Rasmy, M Emad M; Wahba, Khaled M; Shaker, Olfat G

    2012-03-01

    Predicting significant fibrosis or cirrhosis in patients with hepatitis C virus has persistently preoccupied the research agenda of many specialized research centers. Many studies have been conducted to evaluate the use of readily available laboratory tests to predict significant fibrosis or cirrhosis with the purpose to substantially reduce the number of biopsies performed. Although many of them reported significant predictive values of several serum markers for the diagnosis of cirrhosis, none of these diagnostic techniques was successful in accurately predicting early stages of liver fibrosis. Therefore, in this study a single stage classification model and a multistage stepwise classification model based on Neural Network, Decision Tree, Logistic Regression, and Nearest Neighborhood clustering, have been developed to predict individual's liver fibrosis degree. Results showed that the area under the receiver operator curve (AUROC) values of the multistage model ranged from 0.874 to 0.974 which is a higher range than what is reported in current researches with similar conditions.

  15. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  16. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  17. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  18. Optimal Testlet Pool Assembly for Multistage Testing Designs

    ERIC Educational Resources Information Center

    Ariel, Adelaide; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the test, such as measurement precision. In an MST…

  19. Low-dose-rate extrapolation using the multistage model

    SciTech Connect

    Portier, C.; Hoel, D.

    1983-12-01

    The distribution of the maximum likelihood estimates of virtually safe levels of exposure to environmental chemicals is derived by using large-sample theory and Monte Carlo simulation according to the Armitage-Doll multistage model. Using historical dose-response we develop a set of 33 two-stage models upon which we base our conclusions. The large-sample distributions of the virtually safe dose are normal for cases in which the multistage-model parameters have nonzero expectation, and are skewed in other cases. The large-sample theory does not provide a good approximation of the distribution observed for small bioassays when Monte Carlo simulation is used. The constrained nature of the multistage-model parameters leads to bimodal distributions for small bioassays. The two modes are the direct result of estimating the linear parameter in the multistage model; the lower mode results from estimating this parameter to be nonzero, and the upper mode from estimating it to be zero. The results of this research emphasize the need for incorporation of the biological theory in the model-selection process.

  20. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  1. Covalently interconnected three-dimensional graphene oxide solids.

    PubMed

    Sudeep, Parambath M; Narayanan, Tharangattu N; Ganesan, Aswathi; Shaijumon, Manikoth M; Yang, Hyunseung; Ozden, Sehmus; Patra, Prabir K; Pasquali, Matteo; Vajtai, Robert; Ganguli, Sabyasachi; Roy, Ajit K; Anantharaman, Maliemadom R; Ajayan, Pulickel M

    2013-08-27

    The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers.

  2. Interconnected microbiomes and resistomes in low-income human habitats.

    PubMed

    Pehrsson, Erica C; Tsukayama, Pablo; Patel, Sanket; Mejía-Bautista, Melissa; Sosa-Soto, Giordano; Navarrete, Karla M; Calderon, Maritza; Cabrera, Lilia; Hoyos-Arango, William; Bertoli, M Teresita; Berg, Douglas E; Gilman, Robert H; Dantas, Gautam

    2016-05-12

    Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by exchange of resistance genes between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. Here we characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human faecal and environmental samples from two low-income Latin American communities. We found that resistomes across habitats are generally structured by bacterial phylogeny along ecological gradients, but identified key resistance genes that cross habitat boundaries and determined their association with mobile genetic elements. We also assessed the effectiveness of widely used excreta management strategies in reducing faecal bacteria and resistance genes in these settings representative of low- and middle-income countries. Our results lay the foundation for quantitative risk assessment and surveillance of resistance gene dissemination across interconnected habitats in settings representing over two-thirds of the world's population. PMID:27172044

  3. Holographic optical interconnects for VLSI

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Wu, W. H.; Johnston, A. R.; Nixon, R.; Esener, Sadik C.

    1986-01-01

    This paper introduces new applications and design trade-offs anticipated for free-space optical interconnections of VLSI chips. New implementation s of VLSI functions are described that use the capability of making optical inputs at any point on a chip and take advantage of greater flexibility in on-chip signal routing. These include n-port addressable memories, CPU clock phase distribution, hardware multipliers, and dynamic memory refresh, as well as enhanced testability. Fault tolerance and production yields may be improved by reprogramming the optical imaging system to circumvent defective elements. These attributes, as well as those related to performance alone, will affect the design methodology of future VLSI ICs. This paper focuses on identifying the design issues, their possible solutions, and their impact on VLSI design techniques and, finally, presents some preliminary measurements on various system components.

  4. Holographic optical interconnects for VLSI

    NASA Astrophysics Data System (ADS)

    Bergman, L. A.; Wu, W. H.; Johnston, A. R.; Nixon, R.; Esener, Sadik C.

    1986-10-01

    This paper introduces new applications and design trade-offs anticipated for free-space optical interconnections of VLSI chips. New implementation s of VLSI functions are described that use the capability of making optical inputs at any point on a chip and take advantage of greater flexibility in on-chip signal routing. These include n-port addressable memories, CPU clock phase distribution, hardware multipliers, and dynamic memory refresh, as well as enhanced testability. Fault tolerance and production yields may be improved by reprogramming the optical imaging system to circumvent defective elements. These attributes, as well as those related to performance alone, will affect the design methodology of future VLSI ICs. This paper focuses on identifying the design issues, their possible solutions, and their impact on VLSI design techniques and, finally, presents some preliminary measurements on various system components.

  5. Automatic Multi-Stage Clock Gating Optimization Using ILP Formulation

    NASA Astrophysics Data System (ADS)

    Man, Xin; Horiyama, Takashi; Kimura, Shinji

    Clock gating is supported by commercial tools as a power optimization feature based on the guard signal described in HDL (structural method). However, the identification of control signals for gated registers is hard and designer-intensive work. Besides, since the clock gating cells also consume power, it is imperative to minimize the number of inserted clock gating cells and their switching activities for power optimization. In this paper, we propose an automatic multi-stage clock gating algorithm with ILP (Integer Linear Programming) formulation, including clock gating control candidate extraction, constraints construction and optimum control signal selection. By multi-stage clock gating, unnecessary clock pulses to clock gating cells can be avoided by other clock gating cells, so that the switching activity of clock gating cells can be reduced. We find that any multi-stage control signals are also single-stage control signals, and any combination of signals can be selected from single-stage candidates. The proposed method can be applied to 3 or more cascaded stages. The multi-stage clock gating optimization problem is formulated as constraints in LP format for the selection of cascaded clock-gating order of multi-stage candidate combinations, and a commercial ILP solver (IBM CPLEX) is applied to obtain the control signals for each register with minimum switching activity. Those signals are used to generate a gate level description with guarded registers from original design, and a commercial synthesis and layout tools are applied to obtain the circuit with multi-stage clock gating. For a set of benchmark circuits and a Low Density Parity Check (LDPC) Decoder (6.6k gates, 212 F.F.s), the proposed method is applied and actual power consumption is estimated using Synopsys NanoSim after layout. On average, 31% actual power reduction has been obtained compared with original designs with structural clock gating, and more than 10% improvement has been achieved for some

  6. Vega rocket series of multi-stage amateur's rocket program 1965-1968

    NASA Astrophysics Data System (ADS)

    Kerstein, Aleksander; Krmelj, Miloš

    2003-08-01

    The Astronautical and Rocket Society of Celje (ARSC — Astronavtično in raketno društvo Celje) Slovenia has been involved in experimental programs for students and adults since early in 1962 when the early maned space flight inspired many young people. In the history of ARSC (1962-1999) many project undergone the period 37 years, but one is significant; the PROJECT MULTISTAGE ROCKETS VEGA. The present paper contains chronological and systematical presentation of most rockets, launching and static tests undergone during the period of 1965-1968. VEGA - III - C launching was viewed by some of 500 participants of XVIII International Astronautic Federation Congress, which was held in Belgrade in the former Yugoslavia at that time. Project VEGA, whose main objecture was solid fuel ≫micrograne≪ motor of 100 mm to 160 mm diameter improvements and interconnecting motors in parallel spree and sequentially in stages has been completed with rocket VEGA - IV. This rocket has never been launched and it is still in storage.

  7. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making. PMID:21632161

  8. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making.

  9. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  10. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  11. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  12. Stretchable Si Logic Devices with Graphene Interconnects.

    PubMed

    Lee, Wonho; Jang, Houk; Jang, Bongkyun; Kim, Jae-Hyun; Ahn, Jong-Hyun

    2015-12-16

    Stretchable integrated circuits consisting of ultrathin Si transistors connected by multilayer graphene are demonstrated. Graphene interconnects act as an effective countervailing component to maintain the electrical performance of Si integrated circuits against external strain. Concentration of the applied strain on the graphene interconnect parts can stably protect the Si active devices against applied strains over 10%.

  13. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  14. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Interconnected controls. 27.674 Section...

  15. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section...

  16. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Interconnected controls. 27.674 Section...

  17. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section...

  18. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Interconnected controls. 29.674 Section...

  19. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section...

  20. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Interconnected controls. 29.674 Section...

  1. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Interconnected controls. 27.674 Section...

  2. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section...

  3. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Interconnected controls. 29.674 Section...

  4. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  5. Interconnections For Stacked Parallel Computer Modules

    NASA Technical Reports Server (NTRS)

    Johannesson, Richard T.

    1996-01-01

    Concept for interconnecting modules in parallel computers leads to cheaper, smaller, lighter, lower-power computing systems for aerospace, industrial, business, and consumer applications. Computer modules stacked and interconnected in various configurations. Connections among stacks controlled by switching within gateways and/or by addresses on buses.

  6. 47 CFR 95.141 - Interconnection prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection prohibited. 95.141 Section 95.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.141 Interconnection prohibited. No...

  7. Tevatron low-beta quadrupole triplet interconnects

    SciTech Connect

    Oleck, A.R.; Carson, J.A.; Koepke, K.; Sorenson, D.

    1992-04-01

    Installation of cold iron quadrupole magnets in the Low Beta (Superconducting High-Luminosity) upgrade at Fermilab required a newly designed magnet interconnect. The interconnect design and construction experience is presented. Considered are the connections carrying cryogenic fluids, beam vacuum, insulating vacuum, superconducting bus leads, their insulation and mechanical support. Details of the assembly and assembly experience are presented. 2 refs.

  8. Government Open Systems Interconnection: Profile in Progress.

    ERIC Educational Resources Information Center

    Mills, Kevin L.

    1990-01-01

    Describes the emergence of Open Systems Interconnection (OSI) as it relates to the U.S. Government Open Systems Interconnection Profile (GOSIP); defines GOSIP; and speculates about its future. Challenges facing GOSIP that are related to test policies and procedures, strategic and tactical planning, additional functionality, and international…

  9. Modeling interconnect corners under double patterning misalignment

    NASA Astrophysics Data System (ADS)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  10. A multistage linear array assignment problem

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Shier, D. R.; Kincaid, R. K.; Richards, D. S.

    1988-01-01

    The implementation of certain algorithms on parallel processing computing architectures can involve partitioning contiguous elements into a fixed number of groups, each of which is to be handled by a single processor. It is desired to find an assignment of elements to processors that minimizes the sum of the maximum workloads experienced at each stage. This problem can be viewed as a multi-objective network optimization problem. Polynomially-bounded algorithms are developed for the case of two stages, whereas the associated decision problem (for an arbitrary number of stages) is shown to be NP-complete. Heuristic procedures are therefore proposed and analyzed for the general problem. Computational experience with one of the exact problems, incorporating certain pruning rules, is presented with one of the exact problems. Empirical results also demonstrate that one of the heuristic procedures is especially effective in practice.

  11. EPRI PEAC Corp.: Certification Model Program and Interconnection Agreement Tools

    SciTech Connect

    Not Available

    2003-10-01

    Summarizes the work of EPRI PEAC Corp., under contract to DOE's Distribution and Interconnection R&D, to develop a certification model program and interconnection agreement tools to support the interconnection of distributed energy resources.

  12. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  13. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.

  14. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  15. Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method

    PubMed Central

    Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  16. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  17. Robustness of networks of networks with degree-degree correlation

    NASA Astrophysics Data System (ADS)

    Min, Byungjoon; Canals, Santiago; Makse, Hernan

    Many real-world complex systems ranging from critical infrastructure and transportation networks to living systems including brain and cellular networks are not formed by an isolated network but by a network of networks. Randomly coupled networks with interdependency between different networks may easily result in abrupt collapse. Here, we seek a possible explanation of stable functioning in natural networks of networks including functional brain networks. Specifically, we analyze the robustness of networks of networks focused on one-to-many interconnections between different networks and degree-degree correlation. Implication of the network robustness on functional brain networks of rats is also discussed.

  18. Ring-array processor distribution topology for optical interconnects

    NASA Technical Reports Server (NTRS)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  19. Power economy using point-to-point optical interconnect links

    NASA Astrophysics Data System (ADS)

    Hartman, Davis H.; Reith, Leslie A.; Habiby, Sarry F.; Lalk, Gail R.; Booth, Bruce L.; Marchegiano, Joseph E.; Hohman, James L.

    1991-04-01

    Future communications networks will be required to provide the switching of very broad-band digita'' channels (typically 155. 52 Mb/s or higher) for as many as 60 customers. Power consumption and cable management are a major factor in the systems level design considerations. It is shown that through the use of ultra-low threshold laser diode arrays optical fiber ribbon cables and a thoughtful packaging strategy significant electrical power advantage can be accrued over conventional electrical interconnection approaches. 1_a

  20. Multi-stage, isothermal CO preferential oxidation reactor

    DOEpatents

    Skala, Glenn William; Brundage, Mark A.; Borup, Rodney Lynn; Pettit, William Henry; Stukey, Kevin; Hart-Predmore, David James; Fairchok, Joel

    2000-01-01

    A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

  1. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  2. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  3. Multistage aerospace craft. [perspective drawings of conceptual design

    NASA Technical Reports Server (NTRS)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  4. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  5. Simulating the multistage environment for single-stage compressor experiments

    SciTech Connect

    Place, J.M.M.; Howard, M.A.; Cumpsty, N.A.

    1996-10-01

    The performance of a single-stage low-speed compressor has been measured both before and after the introduction of certain features of the multistage flow environment. The aim is to make the single-stage rig more appropriate for developing design rules for multistage compressors. End-wall blockage was generated by teeth on the hub and casing upstream of the rotor. A grid fitted upstream produced free-stream turbulence at rotor inlet typical of multistage machines and raised stage efficiency by 1.8 percent at the design point. The potential field that would be generated by blade rows downstream of an embedded stage was replicated by introducing a pressure loss screen at stage exit. This reduced the stator hub corner separation and increased the rotor pressure rise at flow rates below design, changing the shape of the pressure-rise characteristic markedly. These results highlight the importance of features of the flow environment that are often omitted from single-stage experiments and offer improved understanding of stage aerodynamics.

  6. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  7. Implementation of optical interconnections for VLSI

    NASA Technical Reports Server (NTRS)

    Wu, Wennie H.; Bergman, Larry A.; Johnston, Alan R.; Guest, Clark C.; Esener, Sadik C.

    1987-01-01

    This paper reports on the progress in implementing optical interconnections for VLSI. Four areas are covered: (1) the holographic optical element (HOE), (2) the laser sources, (3) the detectors and associated circuits forming an optically addressed gate, and (4) interconnection experiments in which five gates are actuated from one source. A laser scanner system with a resolution of 12 x 20 microns has been utilized to generate the HOEs. Diffraction efficiency of the HOE and diffracted spot size have been measured. Stock lasers have been modified with a high-frequency package for interconnect experiments, and buried heterostructure fabrication techniques have been pursued. Measurements have been made on the fabricated photodetectors to determine dark current, responsivity, and response time. The optical gates and the overall chip have been driven successfully with an input light beam, as well as with the optical signal interconnected through the one to five holograms.

  8. One-dimensional nano-interconnection formation.

    PubMed

    Ji, Jianlong; Zhou, Zhaoying; Yang, Xing; Zhang, Wendong; Sang, Shengbo; Li, Pengwei

    2013-09-23

    Interconnection of one-dimensional nanomaterials such as nanowires and carbon nanotubes with other parts or components is crucial for nanodevices to realize electrical contacts and mechanical fixings. Interconnection has been being gradually paid great attention since it is as significant as nanomaterials properties, and determines nanodevices performance in some cases. This paper provides an overview of recent progress on techniques that are commonly used for one-dimensional interconnection formation. In this review, these techniques could be categorized into two different types: two-step and one-step methods according to their established process. The two-step method is constituted by assembly and pinning processes, while the one-step method is a direct formation process of nano-interconnections. In both methods, the electrodeposition approach is illustrated in detail, and its potential mechanism is emphasized.

  9. INTERCONNECTIONS BETWEEN HUMAN HEALTH AND ECOLOGICAL INTEGRITY

    EPA Science Inventory

    Interconnections between Human Health and Ecological Integrity emanates from a June 2000 Pellston Workshop in Snowbird, Utah, USA. Jointly sponsored by the Society of Environmental Toxicology and Chemistry (SETAC) and the Society of Toxicology (SOT), the workshop was motivated by...

  10. Five-Segment Interconnection For Electromigration Tests

    NASA Technical Reports Server (NTRS)

    Hannaman, David J.; Buehler, Martin G.

    1991-01-01

    Proposed integrated-circuit conductive pattern intended for use in electromigration lifetime testing of interconnection lines of integrated circuits. Designed for collection of statistics on electromigration from smallest possible area. Includes 5 interconnection segments with Kelvin voltage taps, with total of 12 contact pads, and provides for simultaneous measurements on all of segments. Attempts to minimize thermal gradients within each segment and conforms to guidelines on electromigration test structures promulgated by National Institute of Standards and Technology (NIST).

  11. Design of a 12-GHz Multicarrier Earth-Terminal for Satellite-CATV Interconnection.

    ERIC Educational Resources Information Center

    Newman, Burton A.; And Others

    If a satellite-based educational networking and delivery system is to find wide acceptance in the United States and is to be economically viable, it must be capable of interconnecting many headends or nodes on the ground and of delivering quantities of diverse program material. A large number of TV-equivalent bandwidth channels will be required to…

  12. Interconnect Performance Evaluation of SGI Altix 3700 BX2, Cray X1, Cray Opteron Cluster, and Dell PowerEdge

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod; Saini, Subbash; Ciotti, Robert

    2006-01-01

    We study the performance of inter-process communication on four high-speed multiprocessor systems using a set of communication benchmarks. The goal is to identify certain limiting factors and bottlenecks with the interconnect of these systems as well as to compare these interconnects. We measured network bandwidth using different number of communicating processors and communication patterns, such as point-to-point communication, collective communication, and dense communication patterns. The four platforms are: a 512-processor SGI Altix 3700 BX2 shared-memory machine with 3.2 GB/s links; a 64-processor (single-streaming) Cray XI shared-memory machine with 32 1.6 GB/s links; a 128-processor Cray Opteron cluster using a Myrinet network; and a 1280-node Dell PowerEdge cluster with an InfiniBand network. Our, results show the impact of the network bandwidth and topology on the overall performance of each interconnect.

  13. 76 FR 39870 - PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of Date...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Energy Regulatory Commission PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection... applicability of the PJM Interconnection, LLC (PJM) Minimum Offer Price Rule (MOPR) as it relates to self-supply... base residual auction.\\2\\ \\1\\ PJM Interconnection, LLC, 135 FERC ] 61,022 (2011). \\2\\...

  14. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  15. Network congestion can be controlled: Routing algorithms in optical networks and Ethernets

    SciTech Connect

    Goldberg, L.A.; MacKenzie, P.D.; Greenberg, D.S.

    1997-12-01

    Congestion and contention can greatly reduce the effective performance of an interconnection network. This report gathers together research done under a Laboratory Research and Development Program (LDRD) project at Sandia National Laboratories. The goal of the project was to explore the contention properties of novel optical interconnects. In the process of exploring optical interconnects the project also gained new insights into the use of backoff protocols in the current dominant interconnect technology, Ethernet.

  16. Evolution of intrachip interconnects and performance constraints

    NASA Astrophysics Data System (ADS)

    Caignet, Fabrice; Collet, Jacques H.; Sellaye, F.

    2003-04-01

    This work aims at defining the marks that optoelectronic solutions will have to beat for replacing electric interconnects at chip level. Thus, we first anlayze the communication performance of future electrical interconnects considering the reduction of the lithographic feature size λ from 0.7 to 0.05 μm. We mostly analyze the results with reduced units: Lengths are calculated in multiples of λ times are compared to the chip clock cycle Tc that we estimate from the foreseeable evolution of the processor operation frequency. From our simulations, we conclude that: 1) it does not seem necessary to consider the integration of optical interconnects (OI) over distance shorter than 1000λ, because the performacne of electric interconnects is sufficient; 2) The penetration of IOs between blocks separated by more than 10λ could be envisaged provided that the present performence of OIs could be dramatically improved to beat electric solutions at chip level. New generations of low-threshold high-effieincy VCSELs and ultra-fast high-efficiency photodiode are needed; 3) The first possible application of OIs in chips is likely not for inter-block communication but for clock distribution as the energy constaints are weaker and because the clock tree is an extremely long interconnect.

  17. Thermochemical production of hydrogen via multistage water splitting processes

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  18. The evolution of the cancer niche during multistage carcinogenesis.

    PubMed

    Barcellos-Hoff, Mary Helen; Lyden, David; Wang, Timothy C

    2013-07-01

    The concept of the tumour microenvironment recognizes that the interplay between cancer cells and stromal cells is a crucial determinant of cancer growth. In this Perspectives article, we propose the novel concept that the tumour microenvironment is built through rate-limiting steps during multistage carcinogenesis. Construction of a 'precancer niche' is a necessary and early step that is required for initiated cells to survive and evolve; subsequent niche expansion and maturation accompany tumour promotion and progression, respectively. As such, cancer niches represent an emergent property of a tumour that could be a robust target for cancer prevention and therapy.

  19. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    PubMed Central

    Saberi Nik, Hassan; Rebelo, Paulo

    2014-01-01

    We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624

  20. An integral equation solution for multistage turbomachinery design calculations

    NASA Technical Reports Server (NTRS)

    Mcfarland, Eric R.

    1993-01-01

    A method was developed to calculate flows in multistage turbomachinery. The method is an extension of quasi-three-dimensional blade-to-blade solution methods. Governing equations for steady compressible inviscid flow are linearized by introducing approximations. The linearized flow equations are solved using integral equation techniques. The flows through both stationary and rotating blade rows are determined in a single calculation. Multiple bodies can be modelled for each blade row, so that arbitrary blade counts can be analyzed. The method's benefits are its speed and versatility.

  1. On the use of ANN interconnection weights in optimal structural design

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Szewczyk, Z.

    1992-01-01

    The present paper describes the use of interconnection weights of a multilayer, feedforward network, to extract information pertinent to the mapping space that the network is assumed to represent. In particular, these weights can be used to determine an appropriate network architecture, and an adequate number of training patterns (input-output pairs) have been used for network training. The weight analysis also provides an approach to assess the influence of each input parameter on a selected output component. The paper shows the significance of this information in decomposition driven optimal design.

  2. Panel C report: Standards needed for the use of ISO Open Systems Interconnection - basic reference model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The use of an International Standards Organization (ISO) Open Systems Interconnection (OSI) Reference Model and its relevance to interconnecting an Applications Data Service (ADS) pilot program for data sharing is discussed. A top level mapping between the conjectured ADS requirements and identified layers within the OSI Reference Model was performed. It was concluded that the OSI model represents an orderly architecture for the ADS networking planning and that the protocols being developed by the National Bureau of Standards offer the best available implementation approach.

  3. Interconnection Testing of Distributed Resources: Preprint

    SciTech Connect

    Kroposki, B.; Basso, T.; DeBlasio, R.

    2004-02-01

    With the publication of IEEE 1547-2003(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems, the electric power industry has a need to develop tests and procedures to verify that interconnection equipment meets 1547 technical requirements. A new standard, IEEE P1547.1(TM), is being written to give detailed tests and procedures for confirming that equipment meets the interconnection requirements. The National Renewable Energy Laboratory has been validating test procedures being developed as part of IEEE P1547.1. As work progresses on the validation of those procedures, information and test reports are passed on to the working group of IEEE P1547.1 for future revisions.

  4. Ssip-a processor interconnection simulator

    SciTech Connect

    Navaux, P.; Weber, R.; Prezzi, J.; Tazza, M.

    1982-01-01

    Recent growing interest in multiple processor architectures has given rise to the study of procesor-memory interconnections for the determination of better architectures. This paper concerns the development of the SSIP-sistema simulador de interconexao de processadores (processor interconnection simulating system) which allows the evaluation of different interconnection structures comparing its performance in order to provide parameters which would help the designer to define an architcture. A wide spectrum of systems may be evaluated, and their behaviour observed due to the features incorporated into the simulator program. The system modelling and the simulator program implementation are described. Some results that can be obtained are shown, along with the discussion of their usefulness. 12 references.

  5. Global optical free-space smart interconnects

    NASA Astrophysics Data System (ADS)

    Guilfoyle, Peter S.; Hessenbruch, John M.; Zeise, Frederick F.

    1993-07-01

    High fan-in/fan-out, low power (1 fJ per gate), high performance computing (HPC) modules are being developed that integrate global (multidimensional) free space `smart' optical interconnects with GaAs DANE technology. This new architecture implements N4 global free space optical interconnects coupled with 2-D arrays of N-bit Boolean multiplications by DeMorgan's theorem on wide word fan-ins. `Smart' interconnects provide a high speed inter- module alternative without the power requirements and cross-talk limitations of GaAs circuitry. Selected algorithms such as 64-bit addition can operate at lower power and higher speeds using global technology and GaAs logic. Thus, faster processing can be fully realized which allows for a reduction in pipeline delays.

  6. The motion of interconnected flexible bodies

    NASA Technical Reports Server (NTRS)

    Hopkins, A. S.

    1975-01-01

    The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.

  7. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  8. Fiber optic interconnects: physical design for reliability

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2010-02-01

    The paper deals with the application of methods and approaches of the engineering mechanics to fiber optics systems. The emphasis is on fiber optics interconnects. We address traditional problems of the mechanical behavior of optical fiber interconnects subjected to mechanical and/or thermally induced loading, as well as the application of nanotechnology in optical fiber engineering. Particularly, we elaborate on the application of a newly developed advanced nano-particle material (NPM) as an attractive substitute for the existing optical fiber coatings and perhaps even claddings. The solutions to the majority of the examined problems were obtained using analytical ("mathematical") modeling, i.e., methods of classical structural analysis.

  9. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  10. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  11. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  12. Graphene Nanoribbons (GNRs) for Future Interconnect

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat

    2016-05-01

    Selecting and developing materials for the future devices require a sound understanding of design requirements. Miniaturization of electronic devices, as commonly expressed by Moore Law, has involved the integration level. Increase of the level has caused some consequences in the design and selection of materials for interconnection. The present paper deals with the challenge of materials design and selection beyond the nanoscale limit and the ability of traditional materials to cope with. One of the emerging materials, i.e. Graphene, will be reviewed with particular reference to its characteristics and potentials for future interconnection.

  13. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  14. A multistaged automatic restoration of noisy microscopy cell images.

    PubMed

    Xu, Jinwei; Hu, Jiankun; Jia, Xiuping

    2015-01-01

    Automated cell segmentation for microscopy cell images has recently become an initial step for further image analysis in cell biology. However, microscopy cell images are easily degraded by noise during the readout procedure via optical-electronic imaging systems. Such noise degradations result in low signal-to-noise ratio (SNR) and poor image quality for cell identification. In order to improve SNR for subsequent segmentation and image-based quantitative analysis, the commonly used state-of-art restoration techniques are applied but few of them are suitable for corrupted microscopy cell images. In this paper, we propose a multistaged method based on a novel integration of trend surface analysis, quantile-quantile plot, bootstrapping, and the Gaussian spatial kernel for the restoration of noisy microscopy cell images. We show this multistaged approach achieves higher performance compared with other state-of-art restoration techniques in terms of peak signal-to-noise ratio and structure similarity in synthetic noise experiments. This paper also reports an experiment on real noisy microscopy data which demonstrated the advantages of the proposed restoration method for improving segmentation performance. PMID:25291801

  15. Multi-stage circulating fluidized bed syngas cooling

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  16. Multistage Nanoparticles for Improved Delivery into Tumor Tissue

    PubMed Central

    Stylianopoulos, Triantafyllos; Wong, Cliff; Bawendi, Moungi G.; Jain, Rakesh K.; Fukumura, Dai

    2013-01-01

    The enhanced permeability and retention (EPR) effect has been a key rationale for the development of nanoscale carriers to solid tumors. As a consequence of EPR, nanotherapeutics are expected to improve drug and detection probe delivery, have less adverse effects than conventional chemotherapy, and thus result in improved detection and treatment of tumors. Physiological barriers posed by the abnormal tumor microenvironment, however, can hinder the homogeneous delivery of nanomedicine in amounts sufficient to eradicate cancer. To effectively enhance the therapeutic outcome of cancer patients by nanotherapeutics, we have to find ways to overcome these barriers. One possibility is to exploit the abnormal tumor microenvironment for selective and improved delivery of therapeutic agents to tumors. Recently, we proposed a multistage nanoparticle delivery system as a potential means to enable uniform delivery throughout the tumor and improve the efficacy of anticancer therapy. Here, we describe the synthesis of a novel multistage nanoparticle formulation that shrinks in size once it enters the tumor interstitial space to optimize the delivery to tumors as well as within tumors. Finally, we provide detailed experimental methods for the characterization of such nanoparticles. PMID:22449923

  17. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  18. Numerical Simulation of Multi-Stage Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.; Hathaway, Michael D.; Shabbir, Aamir; Wellborn, Steven R.

    1999-01-01

    A comprehensive assessment is made of the predictive capability of the average passage flow model as applied to multi-stage axial flow compressors. The average passage flow model describes the time average flow field within a typical passage of a blade row embedded in a multi-stage configuration. In this work data taken within a four and one-half stage large low speed compressor will be used to assess the weakness and strengths of the predictive capabilities of the average passage flow model. The low speed compressor blading is of modern design and employs stators with end-bends. Measurements were made with slow and high response instrumentation. The high response measurements revealed the velocity components of both the rotor and stator wakes. Based on the measured wake profiles it will be argued that blade boundary layer transition is playing an important role in setting compressor performance. A model which mimics the effects of blade boundary layer transition within the frame work of the average passage model will be presented. Simulations which incorporated this model showed a dramatic improvement in agreement with data.

  19. A multistaged automatic restoration of noisy microscopy cell images.

    PubMed

    Xu, Jinwei; Hu, Jiankun; Jia, Xiuping

    2015-01-01

    Automated cell segmentation for microscopy cell images has recently become an initial step for further image analysis in cell biology. However, microscopy cell images are easily degraded by noise during the readout procedure via optical-electronic imaging systems. Such noise degradations result in low signal-to-noise ratio (SNR) and poor image quality for cell identification. In order to improve SNR for subsequent segmentation and image-based quantitative analysis, the commonly used state-of-art restoration techniques are applied but few of them are suitable for corrupted microscopy cell images. In this paper, we propose a multistaged method based on a novel integration of trend surface analysis, quantile-quantile plot, bootstrapping, and the Gaussian spatial kernel for the restoration of noisy microscopy cell images. We show this multistaged approach achieves higher performance compared with other state-of-art restoration techniques in terms of peak signal-to-noise ratio and structure similarity in synthetic noise experiments. This paper also reports an experiment on real noisy microscopy data which demonstrated the advantages of the proposed restoration method for improving segmentation performance.

  20. Multi-stage apodized pupil Lyot coronagraph experimental results

    NASA Astrophysics Data System (ADS)

    Abe, L.; Venet, M.; Enya, K.; Kataza, H.; Nakagawa, T.; Tamura, M.

    2008-07-01

    Prolate (Pupil) Apodized Lyot Coronagraphs (PPALC) are known to offer optimal performances for a Lyot-type Coronagraph configuration, i.e. with an opaque occulting focal mask. One additional benefit of PPALC is its possible use in a multi-stage configuration. In theory, the coronagraphic performance can be QN, where Q is the energy rejection factor of one stage (the first one), and N the number of stages. Several ground-based telescopes are considering PPALC as an option for their high-contrast instrumentation (e.g. Gemini/GPI, EELT/EPICS, Subaru HiCIAO). Although the PPALC suffers from several limitations, several works are currently focused on fabricating entrance pupil apodizers and trying to find ways to overcome chromatism issues. In this work, we present the first experimental results from Multi-Stage PPALC (MS-PPALC) that was done in the context of the Japanese space telescope SPICA coronagraph project. Our entrance pupil apodizers use small diameter High Energy Beam Sensitive glass (HEBS-glass) from Canyon Materials Inc. The current results show modest coronagraphic performance due to uncompensated phase aberrations inherent to HEBS-glass material. In addition, and due to these uncompensated phase aberrations, the present optical configuration is an altered version of the originally planned set-up. However, we can demonstrate the validity the MS-PPALC concept and compare it to numerical simulations.

  1. Interconnectivity testing in Japan for equipment based on ITU-T recommendations for audiovisual services

    NASA Astrophysics Data System (ADS)

    Koga, Toshio

    1995-12-01

    With the advent of ISDN/OSI products conforming to international standards, interconnectivity or interoperability has been attracting users' attention over the world. By means of interconnectivity testing, domestic or international, interconnectivity of H.320 terminals through commercial ISDN networks is getting more and more reliable. Currently, ratio of successful calls is about 90% according to measurements made by HATS Conference (Japan). This means one out of ten (10) calls will be incomplete on the average. To make users very comfortable with H.320 terminals, higher ratio is expected and it is well within our reach according to the author's experience. In order to realize higher reliability and better utility of H.320 terminals, international cooperation throughout the world is strongly desired.

  2. Passive optical interconnects at top of the rack: offering high energy efficiency for datacenters.

    PubMed

    Gong, Yu; Hong, Xuezhi; Lu, Yang; He, Sailing; Chen, Jiajia

    2015-03-23

    This paper introduces a new concept, namely passive optical interconnect at top of the rack in the datacenter networks, and investigates several architectures, which use only passive optical components to interconnect different servers. In such a manner, the proposed schemes are able to offer higher bandwidth and significantly improve energy efficiency compared to their electronic counterpart that is based on commodity switches. The proposed passive optical interconnect schemes are experimentally demonstrated in order to validate the transmission performance. Besides, an assessment in terms of energy consumption and cost has also been carried out, which shows our proposed concept can significantly outperform the conventional commodity switches on energy efficiency while keeping the cost in the similar level.

  3. Interaction of frequency-modulated light beams in multistage parametric amplifiers at the maximum gain bandwidth

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Freidman, Gennadii I

    2009-05-31

    Conditions of the applicability of equations in the quasi-static approximation for studying the parametric interaction of frequency-modulated light beams in multistage amplifiers are considered. This approximation is used to simulate numerically processes in a multistage DKDP crystal amplifier with the output power exceeding 10 PW and suppressed luminescence. (lasers and amplifiers)

  4. Advances in integrated photonic circuits for packet-switched interconnection

    NASA Astrophysics Data System (ADS)

    Williams, Kevin A.; Stabile, Ripalta

    2014-03-01

    Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.

  5. Due-date assignment for multi-server multi-stage assembly systems

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Saeed

    2015-05-01

    In this paper, we attempt to present a constant due-date assignment policy in a multi-server multi-stage assembly system. This system is modelled as a queuing network, where new product orders are entered into the system according to a Poisson process. It is assumed that only one type of product is produced by the production system and multi-servers can be settled in each service station. Each operation of every work is operated at a devoted service station with only one of the servers located at a node of the network based on first come, first served (FCFS) discipline, while the processing times are independent random variables with exponential distributions. It is also assumed that the transport times between each pair of service stations are independent random variables with generalised Erlang distributions. Each product's end result has a penalty cost that is some linear function of its due date and its actual lead time. The due date is calculated by adding a constant to the time that the order enters into the system. Indeed, this constant value is decided at the beginning of the time horizon and is the constant lead time that a product might expect between the time of placing the order and the time of delivery. For computing the due date, we first convert the queuing network into a stochastic network with exponentially distributed arc lengths. Then, by constructing an appropriate finite-state continuous-time Markov model, a system of differential equations is created to find the manufacturing lead-time distribution for any particular product, analytically. Finally, the constant due date for delivery time is obtained by using a linear function of its due date and minimising the expected aggregate cost per product.

  6. Network Leadership: An Emerging Practice

    ERIC Educational Resources Information Center

    Tremblay, Christopher W.

    2012-01-01

    Network leadership is an emerging approach that can have an impact on change in education and in society. According to Merriam-Webster (2011), a network is "an interconnected or interrelated chain, group, or system." Intentional interconnectedness is what separates network leadership from other leadership theories. Network leadership has the…

  7. Healing Voids In Interconnections In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas

    1989-01-01

    Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.

  8. Demonstrated results of welded and soldered interconnections

    NASA Technical Reports Server (NTRS)

    Hart, R. E., Jr.

    1985-01-01

    Solar cell modules with welded and soldered interconnections were constructed using a flexible substrate material. These modules were thermally cycled between approx. 80 deg C at rates 100 cycles/day to demonstrate survivability under simulated low Earth orbit (LEO) temperature conditions. The modules, cycled in an inert atmosphere, show durability for 36,000 cycles.

  9. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  10. Formation of interconnected morphologies via nanorod inclusion in the confined assembly of symmetric block copolymers.

    PubMed

    Park, Jay Hoon; Joo, Yong Lak

    2014-05-21

    We have investigated the effect of nanorods on the symmetry breaking of a model diblock copolymer under cylindrical confinement using coarse-grained molecular dynamics. Unlike nanoparticles, nanorods can readily be interconnected with each other and also induce connection across self-assembly domains at much lower loading than nanoparticles. Such interconnecting nanorods, when incorporated within the nanofiber confined assembled block copolymer, have great potential for providing highly conductive pathways for energy applications, such as battery electrodes and separators. Symmetric block copolymers (BCP) under cylindrical confinement with a nanorod aspect ratio (N) of 1, 5, and 10 are examined with three different types of nanorod-BCP attractions: (a) neutral nanorods, (b) A (wall-attractive phase)-attractive nanorods, and (c) B (wall-repulsive phase)-attractive nanorods. The system was studied with both selective and neutral walls, which affect the orientation of the interconnected nanorod network. Upon close examination of the BCP-nanorod self-assembly, we discovered that the ratio of the interphase distance to the nanorod aspect ratio (I/N) can be correlated to the onset of nanorod interconnectivity and formation of asymmetrical interconnected BCP morphology. By developing a phase diagram with respect to I/N, one can predict the formation of desired BCP morphology and the critical loading of nanorods for connected morphologies in cylindrical confinement. PMID:24682243

  11. Towards energy-efficient photonic interconnects

    NASA Astrophysics Data System (ADS)

    Demir, Yigit; Hardavellas, Nikos

    2015-03-01

    Silicon photonics have emerged as a promising solution to meet the growing demand for high-bandwidth, low-latency, and energy-efficient on-chip and off-chip communication in many-core processors. However, current silicon-photonic interconnect designs for many-core processors waste a significant amount of power because (a) lasers are always on, even during periods of interconnect inactivity, and (b) microring resonators employ heaters which consume a significant amount of power just to overcome thermal variations and maintain communication on the photonic links, especially in a 3D-stacked design. The problem of high laser power consumption is particularly important as lasers typically have very low energy efficiency, and photonic interconnects often remain underutilized both in scientific computing (compute-intensive execution phases underutilize the interconnect), and in server computing (servers in Google-scale datacenters have a typical utilization of less than 30%). We address the high laser power consumption by proposing EcoLaser+, which is a laser control scheme that saves energy by predicting the interconnect activity and opportunistically turning the on-chip laser off when possible, and also by scaling the width of the communication link based on a runtime prediction of the expected message length. Our laser control scheme can save up to 62 - 92% of the laser energy, and improve the energy efficiency of a manycore processor with negligible performance penalty. We address the high trimming (heating) power consumption of the microrings by proposing insulation methods that reduce the impact of localized heating induced by highly-active components on the 3D-stacked logic die.

  12. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  13. Eating on an interconnected planet

    NASA Astrophysics Data System (ADS)

    MacDonald, Graham K.

    2013-06-01

    Calls to boost agricultural production in order to meet the demands of a growing global population are now commonplace. Yet, depending on where productivity changes and population growth occur, international trade could be increasingly necessary in the transfer of food from farms to consumers. Fader et al (2013) offer a nuanced view of this spatial disconnect and its food security implications by considering a valuable thought experiment: what countries could foreseeably meet their food requirements from internal production alone circa 2000 and for contrasting scenarios in 2050? They investigate the extent to which available renewable water and land resources constrain domestic per capita crop production, assuming current as well as broadly improved yields. The findings convey an intuitive, though often overlooked, point that population growth is likely to increase the reliance of certain regions on food imports unless substantial productivity improvements are realized. It is unlikely that any nation would be compelled to produce all of its food domestically, but reflecting on potential food self-sufficiency is a worthwhile endeavor. Importing crops may be matter of choice, but also one of necessity if available land, water, and yields limit production. Dependence on food imports can involve uncertainty: production shortfalls arising from drought and other factors have been associated with price volatility—or even restrictions on crop exports—posing challenges to countries anticipating consistent import arrangements (Headey 2011). Compounding this uncertainty is that a relatively small number of countries produce the bulk of staple crops for global markets. Just eight countries comprising 11% of the global population produced, on average, 70% of cereal exports during the past decade (FAO 2013). Although trade networks are dynamic, some net-importing countries have developed entrenched relationships with particular producers that entail very large crop transfers

  14. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    NASA Astrophysics Data System (ADS)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  15. Eating on an interconnected planet

    NASA Astrophysics Data System (ADS)

    MacDonald, Graham K.

    2013-06-01

    Calls to boost agricultural production in order to meet the demands of a growing global population are now commonplace. Yet, depending on where productivity changes and population growth occur, international trade could be increasingly necessary in the transfer of food from farms to consumers. Fader et al (2013) offer a nuanced view of this spatial disconnect and its food security implications by considering a valuable thought experiment: what countries could foreseeably meet their food requirements from internal production alone circa 2000 and for contrasting scenarios in 2050? They investigate the extent to which available renewable water and land resources constrain domestic per capita crop production, assuming current as well as broadly improved yields. The findings convey an intuitive, though often overlooked, point that population growth is likely to increase the reliance of certain regions on food imports unless substantial productivity improvements are realized. It is unlikely that any nation would be compelled to produce all of its food domestically, but reflecting on potential food self-sufficiency is a worthwhile endeavor. Importing crops may be matter of choice, but also one of necessity if available land, water, and yields limit production. Dependence on food imports can involve uncertainty: production shortfalls arising from drought and other factors have been associated with price volatility—or even restrictions on crop exports—posing challenges to countries anticipating consistent import arrangements (Headey 2011). Compounding this uncertainty is that a relatively small number of countries produce the bulk of staple crops for global markets. Just eight countries comprising 11% of the global population produced, on average, 70% of cereal exports during the past decade (FAO 2013). Although trade networks are dynamic, some net-importing countries have developed entrenched relationships with particular producers that entail very large crop transfers

  16. Results on 3D interconnection from AIDA WP3

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther

    2016-09-01

    From 2010 to 2014 the EU funded AIDA project established in one of its work packages (WP3) a network of groups working collaboratively on advanced 3D integration of electronic circuits and semiconductor sensors for applications in particle physics. The main motivation came from the severe requirements on pixel detectors for tracking and vertexing at future Particle Physics experiments at LHC, super-B factories and linear colliders. To go beyond the state-of-the-art, the main issues were studying low mass, high bandwidth applications, with radiation hardness capabilities, with low power consumption, offering complex functionality, with small pixel size and without dead regions. The interfaces and interconnects of sensors to electronic readout integrated circuits are a key challenge for new detector applications.

  17. The design and development of transonic multistage compressors

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Steinke, R. J.; Newman, F. A.

    1988-01-01

    The development of the transonic multistage compressor is reviewed. Changing trends in design and performance parameters are noted. These changes are related to advances in compressor aerodynamics, computational fluid mechanics and other enabling technologies. The parameters normally given to the designer and those that need to be established during the design process are identified. Criteria and procedures used in the selection of these parameters are presented. The selection of tip speed, aerodynamic loading, flowpath geometry, incidence and deviation angles, blade/vane geometry, blade/vane solidity, stage reaction, aerodynamic blockage, inlet flow per unit annulus area, stage/overall velocity ratio, and aerodynamic losses are considered. Trends in these parameters both spanwise and axially through the machine are highlighted. The effects of flow mixing and methods for accounting for the mixing in the design process are discussed.

  18. Isotropic graphite multistage depressed collectors - A progress report

    NASA Astrophysics Data System (ADS)

    Ramins, Peter; Ebihara, Ben T.

    1989-04-01

    A small isotropic-graphite-electrode multistage depressed collector (MDC) was designed, fabricated, and evaluated in conjunction with a 500-W CW 4.8-9.6-GHz TWT. The carbon electrode surfaces were used to improve the TWT overall efficiency by minimizing the secondary-electron emission losses in the MDC. The design and fabrication of the brazed graphite MDC assembly are described. The TWT and graphite-electrode MDC bakeout and processing (outgassing) characteristics were evaluated and found to be comparable to those for TWTs equipped with copper-electrode MDCs. The TWT and MDC performance was optimized for broadband CW operation at saturation. The average RF, overall, and MDC efficiencies were 14.9, 46.4, and 83.6 percent, respectively, across the octave operating band. A 1500-h CW test showed no gas buildup and excellent stability of the electrode surfaces.

  19. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  20. Extracting multistage screening rules from online dating activity data.

    PubMed

    Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun

    2016-09-20

    This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners ("deal breakers") that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for "big ticket" items.

  1. Multistep and Multistage Boundary Integral Methods for the Wave Equation

    NASA Astrophysics Data System (ADS)

    Banjai, Lehel

    2009-09-01

    We describe how time-discretized wave equation in a homogeneous medium can be solved by boundary integral methods. The time discretization can be a multistep, Runge-Kutta, or a more general multistep-multistage method. The resulting convolutional system of boundary integral equations falls in the family of convolution quadratures of Ch. Lubich. In this work our aim is to discuss a new technique for efficiently solving the discrete convolutional system and to present large scale 3D numerical experiments with a wide range of time-discretizations that have up to now not appeared in print. One of the conclusions is that Runge-Kutta methods are often the method of choice even at low accuracy; yet, in connection with hyperbolic problems BDF (backward difference formulas) have been predominant in the literature on convolution quadrature.

  2. Subsychronous vibration of multistage centrifugal compressors forced by rotating stall

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1987-01-01

    A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.

  3. Multi-stage methodology to detect health insurance claim fraud.

    PubMed

    Johnson, Marina Evrim; Nagarur, Nagen

    2016-09-01

    Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data.

  4. 'Bootstrap' Configuration for Multistage Pulse-Tube Coolers

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich; Nguyen, Lauren

    2008-01-01

    A bootstrap configuration has been proposed for multistage pulse-tube coolers that, for instance, provide final-stage cooling to temperatures as low as 20 K. The bootstrap configuration supplants the conventional configuration, in which customarily the warm heat exchangers of all stages reject heat at ambient temperature. In the bootstrap configuration, the warm heat exchanger, the inertance tube, and the reservoir of each stage would be thermally anchored to the cold heat exchanger of the next warmer stage. The bootstrapped configuration is superior to the conventional setup, in some cases increasing the 20 K cooler's coefficient of performance two-fold over that of an otherwise equivalent conventional layout. The increased efficiency could translate into less power consumption, less cooler mass, and/or lower cost for a given amount of cooling.

  5. Feet swelling in a multistage ultraendurance triathlete: a case study

    PubMed Central

    Knechtle, Beat; Zingg, Matthias Alexander; Knechtle, Patrizia; Rosemann, Thomas; Rüst, Christoph Alexander

    2015-01-01

    Recent studies investigating ultraendurance athletes showed an association between excessive fluid intake and swelling of the lower limbs such as the feet. To date, this association has been investigated in single-stage ultraendurance races, but not in multistage ultraendurance races. In this case study, we investigated a potential association between fluid intake and feet swelling in a multistage ultraendurance race such as a Deca Iron ultratriathlon with ten Ironman triathlons within 10 consecutive days. A 49-year-old well-experienced ultratriathlete competed in autumn 2013 in the Deca Iron ultratriathlon held in Lonata del Garda, Italy, and finished the race as winner within 129:33 hours:minutes. Changes in body mass (including body fat and lean body mass), foot volume, total body water, and laboratory measurements were assessed. Food and fluid intake during rest and competing were recorded, and energy and fluid turnovers were estimated. During the ten stages, the volume of the feet increased, percentage body fat decreased, creatinine and urea levels increased, hematocrit and hemoglobin values decreased, and plasma [Na+] remained unchanged. The increase in foot volume was significantly and positively related to fluid intake during the stages. The poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. This case report shows that the volume of the foot increased during the ten stages, and the increase in volume was significantly and positively related to fluid intake during the stages. Furthermore, the poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. The continuous feet swelling during the race was most probably due to a combination of a high fluid intake and a progressive decline in renal function (ie, continuous increase in creatinine and urea), leading to body fluid retention (ie, increase in total body water). PMID:26508884

  6. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD

  7. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-12-31

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

  8. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  9. Feet swelling in a multistage ultraendurance triathlete: a case study.

    PubMed

    Knechtle, Beat; Zingg, Matthias Alexander; Knechtle, Patrizia; Rosemann, Thomas; Rüst, Christoph Alexander

    2015-01-01

    Recent studies investigating ultraendurance athletes showed an association between excessive fluid intake and swelling of the lower limbs such as the feet. To date, this association has been investigated in single-stage ultraendurance races, but not in multistage ultraendurance races. In this case study, we investigated a potential association between fluid intake and feet swelling in a multistage ultraendurance race such as a Deca Iron ultratriathlon with ten Ironman triathlons within 10 consecutive days. A 49-year-old well-experienced ultratriathlete competed in autumn 2013 in the Deca Iron ultratriathlon held in Lonata del Garda, Italy, and finished the race as winner within 129:33 hours:minutes. Changes in body mass (including body fat and lean body mass), foot volume, total body water, and laboratory measurements were assessed. Food and fluid intake during rest and competing were recorded, and energy and fluid turnovers were estimated. During the ten stages, the volume of the feet increased, percentage body fat decreased, creatinine and urea levels increased, hematocrit and hemoglobin values decreased, and plasma [Na(+)] remained unchanged. The increase in foot volume was significantly and positively related to fluid intake during the stages. The poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. This case report shows that the volume of the foot increased during the ten stages, and the increase in volume was significantly and positively related to fluid intake during the stages. Furthermore, the poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. The continuous feet swelling during the race was most probably due to a combination of a high fluid intake and a progressive decline in renal function (ie, continuous increase in creatinine and urea), leading to body fluid retention (ie, increase in total body water). PMID:26508884

  10. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  11. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  12. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  13. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    SciTech Connect

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John

    2007-11-12

    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  14. Weaves as an Interconnection Fabric for ASIM's and Nanosatellites

    NASA Technical Reports Server (NTRS)

    Gorlick, Michael M.

    1995-01-01

    Many of the micromachines under consideration require computer support, indeed, one of the appeals of this technology is the ability to intermix mechanical, optical, analog, and digital devices on the same substrate. The amount of computer power is rarely an issue, the sticking point is the complexity of the software required to make effective use of these devices. Micromachines are the nano-technologist's equivalent of 'golden screws'. In other words, they will be piece parts in larger assemblages. For example, a nano-satellite may be composed of stacked silicon wafers where each wafer contains hundreds to thousands of micromachines, digital controllers, general purpose computers, memories, and high-speed bus interconnects. Comparatively few of these devices will be custom designed, most will be stock parts selected from libraries and catalogs. The novelty will lie in the interconnections. For example, a digital accelerometer may be a component part in an adaptive suspension, a monitoring element embedded in the wrapper of a package, or a portion of the smart skin of a launch vehicle. In each case, this device must inter-operate with other devices and probes for the purposes of command, control, and communication. We propose a software technology called 'weaves' that will permit large collections of micromachines and their attendant computers to freely intercommunicate while preserving modularity, transparency, and flexibility. Weaves are composed of networks of communicating software components. The network, and the components comprising it, may be changed even while the software, and the devices it controls, are executing. This unusual degree of software plasticity permits micromachines to dynamically adapt the software to changing conditions and allows system engineers to rapidly and inexpensively develop special purpose software by assembling stock software components in custom configurations.

  15. Integrated silicon photonic interconnect with surface-normal optical interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zanyun; Huang, Beiju; Zhang, Zan; Cheng, Chuantong; Liu, Hongwei; Li, Hongqiang; Chen, Hongda

    2016-05-01

    An integrated silicon photonic interconnect with surface-normal optical interface is demonstrated by connecting a bidirectional grating based E-O modulator and a germanium waveguide photodetector. To investigate this photonic interconnect, both static and dynamic performance of the discrete devices are characterized respectively. Based on the characterization work, data transmission experiment is carried out for the photonic interconnect. Eye diagram results indicate the photonic interconnect can operate up to 7 Gb/s.

  16. Are there any factors influencing the course of multistage treatment in Hirschsprung's disease?

    PubMed Central

    Błaszczyński, Michał; Moryciński, Sebastian; Porzucek, Witold; Mańkowski, Przemysław

    2016-01-01

    Introduction Surgical treatment of Hirschsprung's disease may be performed in a single step, or in stages with a temporary stoma. The therapy depends on the clinical condition of the patient and the severity of symptoms. Planned multistage treatment is carried out in two or three steps. Aim To analyse our 15 years of experience with multistage surgery for the treatment of Hirschsprung's disease, to identify multistage-related factors influencing the course of surgery and hospitalisation, and to evaluate the probability of complications during multistage treatment. Material and methods The study material was collected on the basis of documentation of patients treated during the years 2000 to 2014. The parameters concerning surgery and hospitalisation were statistically analysed. Results Twenty nine patients were treated with multistage surgery using the following methods: Duhamel-Martin and Transanal Endorectal Pull-Through (TEPT). There were significant correlations (p < 0.05) between length of resected intestine and operative time. Classification and Regression Tree (CRT) was used to classify the operated children depending on the presentence of complications after surgery. Conclusions The incidence of complications during multistage treatment for both methods was comparable. It is difficult to objectively compare the Duhamel-Martin and TEPT techniques because of the different indicators for their use in multistage surgery. Intestinal adhesions were the most common complication after definitive surgery. Younger age of the operated patients was associated with greater risk of adhesion formation. PMID:27350842

  17. Real-Time Reconfigurable Interconnections for Parallel Optical Processing

    NASA Astrophysics Data System (ADS)

    McArdle, Neil; Taghizadeh, Mohammad R.

    1995-06-01

    In this letter we describe the advantages of a dynamic optical interconnection system for parallel information processing applications. The system is based on a liquid crystal television which acts as a binary phase-only spatial light modulator. We describe example algorithms where reconfigurable interconnects would be useful and present results of several interconnection topologies which have been implemented.

  18. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  19. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  20. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  1. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  2. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  3. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  4. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  5. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  6. Hot Chips and Hot Interconnects for High End Computing Systems

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  7. Local network assessment

    NASA Astrophysics Data System (ADS)

    Glen, D. V.

    1985-04-01

    Local networks, related standards activities of the Institute of Electrical and Electronics Engineers the American National Standards Institute and other elements are presented. These elements include: (1) technology choices such as topology, transmission media, and access protocols; (2) descriptions of standards for the 802 local area networks (LAN's); high speed local networks (HSLN's) and military specification local networks; and (3) intra- and internetworking using bridges and gateways with protocols Interconnection (OSI) reference model. The convergence of LAN/PBX technology is also described.

  8. Optical interconnects for multiprocessors in computer backplane

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Jin; Tu, Kun-Yii; Ramsey, Darrell; Oh, Tchang-Hun; Kostuk, Raymond K.

    1995-04-01

    Optical interconnects have potential advantage over electrical methods at the backplane level. In this paper we present a free-space optical connection cube for backplane interconnect applications. The connection cube has a symmetric structure which reduces skew between boards. It can be expanded into a 3-dimensional configuration for parallel communication using vertical-cavity surface-emitting laser (VCSEL) and receiver arrays. Fan-out and fan-in of propagation beams for the connection cube are realized using volume holographic optical elements formed in dichromated gelatin (DCG) emulsion. A four-port communication system has been demonstrated using the connection cube and tested at 500 MHz. In this paper, advantages and detailed implementation of the free-space optical connection cube are presented. Design considerations for fan-out/in holographic gratings and alignment tolerances for the connection cube are discussed. Characteristics of the connection cube are also presented.

  9. Interconnection of bundled solid oxide fuel cells

    DOEpatents

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  10. Development of Interconnect Technologies for Particle Detectors

    SciTech Connect

    Tripathi, Mani

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  11. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  12. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  13. A covariance analysis algorithm for interconnected systems

    NASA Technical Reports Server (NTRS)

    Cheng, Victor H. L.; Curley, Robert D.; Lin, Ching-An

    1987-01-01

    A covariance analysis algorithm for propagation of signal statistics in arbitrarily interconnected nonlinear systems is presented which is applied to six-degree-of-freedom systems. The algorithm uses statistical linearization theory to linearize the nonlinear subsystems, and the resulting linearized subsystems are considered in the original interconnection framework for propagation of the signal statistics. Some nonlinearities commonly encountered in six-degree-of-freedom space-vehicle models are referred to in order to illustrate the limitations of this method, along with problems not encountered in standard deterministic simulation analysis. Moreover, the performance of the algorithm shall be numerically exhibited by comparing results using such techniques to Monte Carlo analysis results, both applied to a simple two-dimensional space-intercept problem.

  14. Hydraulically interconnected vehicle suspension: background and modelling

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Smith, Wade A.; Jeyakumaran, Jeku

    2010-01-01

    This paper presents a novel approach for the frequency domain analysis of a vehicle fitted with a general hydraulically interconnected suspension (HIS) system. Ideally, interconnected suspensions have the capability, unique among passive systems, to provide stiffness and damping characteristics dependent on the all-wheel suspension mode in operation. A basic, lumped-mass, four-degree-of-freedom half-car model is used to illustrate the proposed methodology. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. The fluid system itself is modelled using the hydraulic impedance method, in which the relationships between the dynamic fluid states, i.e. pressures and flows, at the extremities of a single fluid circuit are determined by the transfer matrix method. A set of coupled, frequency-dependent equations, which govern the dynamics of the integrated half-car system, are then derived and the application of these equations to both free and forced vibration analysis is explained. The fluid system impedance matrix for the two general wheel-pair interconnection types-anti-synchronous and anti-oppositional-is also given. To further outline the application of the proposed methodology, the paper finishes with an example using a typical anti-roll HIS system. The integrated half-car system's free vibration solutions and frequency response functions are then obtained and discussed in some detail. The presented approach provides a scientific basis for investigating the dynamic characteristics of HIS-equipped vehicles, and the results offer further confirmation that interconnected suspension schemes can provide, at least to some extent, individual control of modal stiffness and damping characteristics.

  15. Stackable Electronic Computer Modules And Interconnections

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary S.

    1996-01-01

    Design concept for multiprocessor computer system calls for digital electronic processing circuits of various functionalities contained within identically shaped and sized regular polygonal modules interconnected and stacked by use of rings around edges. Rings contain wide-band bus circuits configured to provide connections to adjacent modules in same layer of stack and/or to modules in different layers. Provides flexibility of configuration to implement any of large variety of designs.

  16. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  17. Lymphoma diagnosis in histopathology using a multi-stage visual learning approach

    NASA Astrophysics Data System (ADS)

    Codella, Noel; Moradi, Mehdi; Matasar, Matt; Sveda-Mahmood, Tanveer; Smith, John R.

    2016-03-01

    This work evaluates the performance of a multi-stage image enhancement, segmentation, and classification approach for lymphoma recognition in hematoxylin and eosin (H and E) stained histopathology slides of excised human lymph node tissue. In the first stage, the original histology slide undergoes various image enhancement and segmentation operations, creating an additional 5 images for every slide. These new images emphasize unique aspects of the original slide, including dominant staining, staining segmentations, non-cellular groupings, and cellular groupings. For the resulting 6 total images, a collection of visual features are extracted from 3 different spatial configurations. Visual features include the first fully connected layer (4096 dimensions) of the Caffe convolutional neural network trained from ImageNet data. In total, over 200 resultant visual descriptors are extracted for each slide. Non-linear SVMs are trained over each of the over 200 descriptors, which are then input to a forward stepwise ensemble selection that optimizes a late fusion sum of logistically normalized model outputs using local hill climbing. The approach is evaluated on a public NIH dataset containing 374 images representing 3 lymphoma conditions: chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Results demonstrate a 38.4% reduction in residual error over the current state-of-art on this dataset.

  18. Optimizing Baseload Power of Interconnected Wind Farms

    NASA Astrophysics Data System (ADS)

    Kobrin, B. H.

    2010-12-01

    Interconnecting wind farms has been proposed as a way to reduce the natural unreliability of wind power caused by the intermittency of winds. In a previous study, the benefits of interconnecting up to 19 sites in the Midwestern United States were evaluated with the assumption that the same number of turbines would be installed at each site. The goal of this study was to avoid this assumption and examine the advantages of optimizing the ratio of turbines at each site. An optimization algorithm based on the gradient method was used to maximize the baseload power, or guaranteed power 87.5% of the year, using hourly wind speed data for the same 19 sites. The result was a significant improvement in the reliability of the array, increasing the baseload power by 38% compared to the array with equally-weighted sites. Further analysis showed that the turbines were generally distributed according to the average wind power at each site and the wind correlation among sites. In addition to optimizing the average baseload of the array, this study examined the benefits of optimizing the baseload for peak usage time (between noon and 7 p.m), and thus a simplified model was created to analyze how interconnecting wind farms could increase correlation with energy consumption. Optimization for peak usage hours, however, provided no additional benefit over the original optimized array because the variation of average hourly wind speeds was well-correlated among the sites.

  19. Integrated nanophotonic devices for optical interconnections

    NASA Astrophysics Data System (ADS)

    Huang, Yidong; Feng, Xue; Cui, Kaiyu; Li, Yongzhuo; Wang, Yu

    2016-03-01

    Nanostructure is an effective solution for realizing optoelectronic devices with compact size and high performances simultaneously. This paper reports our research progress on integrated nanophotonic devices for optical interconnections. We proposed a parent-sub micro ring structure for optical add-drop multiplexer (OADM) with compact footprint, large free spectral range, and uniform channel spacing. All eight channels can be multiplexed and de-multiplexed with 2.6 dB drop loss, 0.36 nm bandwidth (>40 GHz), -20 dB channel crosstalk, and high thermal tuning efficiency of 0.15 nm/mW. A novel principle of optical switch was proposed and demonstrated based on the coupling of the defect modes in photonic crystal waveguide. Switching functionality with bandwidth up to 24 nm and extinction ratio in excess of 15 dB over the entire bandwidth was achieved, while the footprint was only 8 μm×17.6 μm. We proposed an optical orbital angular momentum (OAM) coding and decoding method to increase the data-carrying capacity of wireless optical interconnect. An integrated OAM emitter, where the topological charge can be continuously varied from -4 to 4 was realized. Also we studied ultrafast modulated nLED as the integrated light source for optical interconnections using a nanobeam cavity with stagger holes.

  20. Dimensioning of nearby substations interconnected ground system

    SciTech Connect

    Sobral, S.T. ); Costa, V.S. ); Campos, M.S.; Goldman, B. ); Mukhedkar, D. )

    1988-10-01

    This paper deals with the ground mat dimensioning of two or more neighbor interconnected substations, a situation that is very common in the Electrical Industry. The paper recalls that the external ground circuits connected to the ground grid of each substation can drastically reduce the percentage of total ground current injected into the soil through the mat (from 40% up to 2% of the total fault current). The paper presents a set of specific calculation procedures to deal with nearby interconnected ground mats. These procedures correspond to a particular illustration of the general ''Decoupled Method'' (3,4,5), showing how to apply its 8 sequencial steps to solve this type of circuit. The paper shows that the electric neighborhood of nearby substations depends on the ''Space Constant'' (or ''Characteristic Length'') of the ground circuits interconnecting them such as transmission line ground-wires, power cable sheaths, etc. This paper complements also Ref. (3,4), introducing the complete derivation of useful expressions used to solve lumped parameter ladder circuits of any size (from one pi to an infinite number of pis). The derivation of these expressions also used in (3,4) were not included in these References due to lack of space. In the paper it is also shown a simple procedure to determine the suitable number of ACSR ground-wire spans near a substation necessary to allow a reduction of the ground grid conductor extension.

  1. Reconfigurable Optical Interconnections Using Dynamic Optoelectronic Holograms

    NASA Astrophysics Data System (ADS)

    Schulze, Elmar

    1988-04-01

    Increasing complexity and processing speed of electronic circuits and a high device density have led to serious problems in electrical interconnections. Their limitations arise from their signal transmission capacity. power consumption. crosstalk. and reliability. Optical links may solve such problems by offering high data rates of several gigabits per second. large fanouts of up to 100 loads. good reliability and less power expenditure. Optical fibers, integrated optical waveguides or free-space transmission links may be applicable. For the free-space links, lenses. mirrors and holograms can be used to guide the light waves. In this paper, reconfigurable optical interconnection schemes are proposed and described which are based on optoelectronic holograms. Their interference patterns can be changed dynamically. To establish connections as free-space links, the light beams emitted from even hundreds of light sources are imaged onto an array of small dynamic holograms. Their interference patterns are optically and electronically controllable. These holograms diffract and focus each of the incident light beams individually onto the receiving photo-diodes. By changing the hologram interference patterns dynamically. an optical switch is obtained. It renders the establishment of reconfigurable optical interconnections. As optoelectronic holograms very-high-resolution spatial light modulators are proposed.

  2. A STUDY OF MULTISTAGE/MULTIFUNCTION COLUMN FOR FINE PARTICLE SEPARATION

    SciTech Connect

    Dr. Shiao-Hung Chiang

    1999-10-01

    A non-agitated multi-stage column was constructed and applied to wastewater treatment. Preliminary oil/water separation tests were performed. Excellent separation results verifies the multi-function feature of the multi-stage column. Hydrodynamic behavior is considered as the underlying cause for the separation performance. Therefore, a series of experiments were carried out to investigate the hydrodynamic parameters, including gas holdups and liquid circulating velocities. The experimental data will be used to create a mathematical model to simulate the multi-stage column process. The model will further shed light on the future scale-up of the MSTLFLO process.

  3. A Study of Multistage/Multifunction Column for Fine Particle Separation.

    SciTech Connect

    Chiang, S.

    1997-09-15

    A non-agitated multi-stage column was constructed and applied to wastewater treatment. Preliminary oil/water separation tests were performed. Excellent separation results verifies the multi-function feature of the multi-stage column. Hydrodynamic behavior is considered as the underlying cause for the separation performance. Therefore, a series of experiments were carried out to investigate the hydrodynamic parameters, including gas holdups and liquid circulating velocities. The experimental data will be used to create a mathematical model to simulate the multi-stage column process. The model will further shed light on the future scale-up of the MSTLFLO process.

  4. Potential roles of optical interconnections within broadband switching modules

    NASA Astrophysics Data System (ADS)

    Lalk, Gail R.; Habiby, Sarry F.; Hartman, Davis H.; Krchnavek, Robert R.; Wilson, Donald K.; Young, Kenneth C., Jr.

    1991-04-01

    An investigation of potential physical design bottlenecks in future broadband telecommunication switches has led to the identification of several areas where optical interconnections may play a role in the practical realization of required system performance. In the model used the speed and interconnection densities as well as requirements for ease-of-access and efficient power utilization challenge conventional partitioning and packaging strategies. Potential areas where optical interconnections may relieve some of the physical design bottlenecks include fiber management at the customer interface to the switch routing and distribution of high-density interconnections within the fabric of the switch and backplane interconnections to increase system throughput.

  5. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  6. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  7. Unsteady Flow Field in a Multistage Axial Flow Compressor

    NASA Technical Reports Server (NTRS)

    Suryavamshi, N.; Lakshminarayana, B.; Prato, J.

    1997-01-01

    The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this

  8. Design of a multistage depressed collector for the F-16 radar dual mode transmitter tube

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1982-01-01

    The design of a multistage depressed collector (MDC) for use with the F-16 radar dual mode transmitter tube is described. The methods employed and the rationale on which the design is based are presented.

  9. A study of multistage/multifunction column for fine particle seperation

    SciTech Connect

    Chiang, S.

    1997-09-07

    The objective if this program is to explore the potential application of a multistage column equipped with concentric draft- tubes (multistage column) for fine coal cleaning. The aim is to identify design parameters of the separation process. In the last quarter we conducted the gas holdup measurement which is an essential part of the hydrodynamic experiments for establishing a process model for engineering design and scale-up.

  10. Multi-stage methodology to detect health insurance claim fraud.

    PubMed

    Johnson, Marina Evrim; Nagarur, Nagen

    2016-09-01

    Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data. PMID:25600704

  11. Multistage DFTB-DFT Strategy for Energy Surface Search

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai; Polovina, Dusan; Horchidan, Bogdan; Jackson, Koblar A.

    2002-03-01

    Recently we proposed a multistage DFTB-DFT strategy to find the absolute minimum energy configuration of a cluster of atoms: (i) in a first stage we use the Density Functional Tight Binding (DFTB) method to generate a collection of candidate optimal structures; (ii) subsequently, we relax the DFTB structures using full Density Functional Theory (DFT). This approach was successfully used to identify new lowest energy configurations of several Sin clusters with n<20 (I. Rata, et al., Phys. Rev. Lett. 85, 546(2000)). In the present contribution we report an improvement to this algorithm based on the observation that there is a strong correlation between the unrelaxed DFT energies of the DFTB clusters and the final energies of the relaxed DFT structures. The modification increases the efficiency of the search algorithm by a factor of 50, allowing the analysis of more DFTB candidate structures. We use the new strategy to analyze the oblate-compact shape transition, from Si_25 to Si_27, observed in the experiment (R.R. Hudgins et al, J.Chem.Phys. 111, 7865 (1999)).

  12. AEROELASTIC DIVERGENCE CHARACTERISTICS OF UNGUIDED, SLENDER BODY, MULTISTAGE LAUNCH VEHICLES

    NASA Technical Reports Server (NTRS)

    Young, C. P.

    1994-01-01

    The primary function of this computer program is the calculation of the divergence dynamic pressure and associated divergence modal characteristics of unguided, slender-body, multistage launch vehicles. The divergence dynamic pressure is obtained as the non-trivial solution to a homogenous stability equation using matrix recurrence techniques. Provision is made for modulating the distributed lift curve coefficient slope function and the stiffness function. The program also includes an option for calculating a generalized static margin which approximates the degeneration in rigid-body static margin due to aeroelasticity effects. Evaluated equations are also programmed to allow for the exclusion of the effect of aerodynamic crossflow resulting from vehicle angular velocities if desired. Other physical and aerodynamic properties calculated include total mass, center of mass, moments of inertia in pitch about the reference station, total aerodynamic lift curve slope, static aerodynamic center of pressure, rigid body static margin, and short period frequency. Input to the program is via the Fortran NAMELIST option with output printed. The program is written in CDC Fortran IV (Version 2.3) and has been implemented on a CDC 6600 computer under the SCOPE 3.2 monitor in central memory field lengths less than 57K octal 60 bit words.

  13. Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1998-01-01

    A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.

  14. Multistage carcinogenesis modeling including cell cycle and DNA damage states

    NASA Astrophysics Data System (ADS)

    Hazelton, W.; Moolgavkar, S.

    The multistage clonal expansion model of carcinogenesis is generalized to include cell cycle states and corresponding DNA damage states with imperfect repair for normal and initiated stem cells. Initiated cells may undergo transformation to a malignant state, eventually leading to cancer incidence or death. The model allows oxidative or radiation induced DNA damage, checkpoint delay, DNA repair, apoptosis, and transformation rates to depend on the cell cycle state or DNA damage state of normal and initiated cells. A probability generating function approach is used to represent the time dependent probability distribution for cells in all states. The continuous time coupled Markov system representing this joint distribution satisfies a partial differential equation (pde). Time dependent survival and hazard functions are found through numerical solution of the characteristic equations for the pde. Although the hazard and survival can be calculated numerically, number and size distributions of pre-malignant lesions from models that are developed will be approximated through simulation. We use the model to explore predictions for hazard and survival as parameters representing cell cycle regulation and arrest are modified. Modification of these parameters may influence rates for cell division, apoptosis and malignant transformation that are important in carcinogenesis. We also explore enhanced repair that may be important for low-dose hypersensitivity and adaptive response, and degradation of repair processes or loss of checkpoint control that may drive genetic instability.

  15. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  16. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  17. A cascaded three-phase symmetrical multistage voltage multiplier

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Singh, G. K.; Besar, R.; Muhammad, G.

    2006-10-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM.

  18. Multi-stage FE simulation of hot ring rolling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  19. Extracting multistage screening rules from online dating activity data.

    PubMed

    Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun

    2016-09-20

    This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners ("deal breakers") that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for "big ticket" items. PMID:27578870

  20. Multipurpose image watermarking algorithm based on multistage vector quantization.

    PubMed

    Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He

    2005-06-01

    The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility. PMID:15971780

  1. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  2. Ether production with multi-stage reaction of olefins

    SciTech Connect

    Harandi, M.N.

    1993-07-13

    A multistage process is described for etherifying a mixed C[sub 4] + olefinic hydrocarbon feedstock containing diene, isoalkene and nalkene, comprising: contacting the olefinic feedstock and aliphatic alcohol in a first reaction stage reaction zone under etherification conditions with acid etherification catalyst to convert a major amount of the isoalkene to C[sub 5] + tertiary-alkyl ether; recovering a reactant effluent from the first stage containing tertiary-alkyl ether product, unreacted alcohol and unreacted olefin comprising n-alkene and diene; separating an ether-rich C[sub 5] + liquid product stream from the first stage effluent in a first product recovery section; reacting at least a fraction of the first stage effluent unconverted olefins and alcohol fraction under low severity oligomerization conditions comprising moderate temperature between 70 C and 280 C and space velocity of 0.5-50 WHSV based on total olefin in the feed in a secondary stage catalytic reaction zone containing porous solid acid oligomerization catalyst particles to oligomerize a major portion of diene; recovering a C[sub 5]+ liquid product stream from secondary stage effluent; and recovering n-alkene substantially free of diene from secondary stage effluent.

  3. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  4. Tuning of the droplet motion in interconnected microfluidic devices

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Song, Kui; Zhang, Li

    2010-11-01

    The problem of controlling the droplet motions in multiphase flows on the microscale has gained increasing attention because the droplet-based microfluidic devices provide great potentials for chemical/biological applications such as drug discovery, chemical kinetics study, material synthesis, and DNA/cell assays. It is critical to understand the relevant physics on droplet hydrodynamics and thus control the generation, motion, splitting, and coalescence of droplets in complex microfluidic networks. The operation of those applications sometimes requires the arrival of droplets from different branch microchannels at a designated location within a transit time. We propose a simple design for interconnected microfluidic devices that implement the feedback mechanism to synchronize the droplet motion via a passive way. Numerical simulations using the Volume of Fluid (VOF) algorithm are conducted to investigate the time-dependent dynamics of droplets in both gas-liquid and liquid-liquid systems. An analytical mode based on the electronic-hydraulic analogy is also developed to describe the transit behavior of the droplet traffic. Both the numerical and theoretical results agree well with the corresponding experimental results. Furthermore, we optimize the microfluidic networks to control the motion of a series of droplets.

  5. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  6. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

  7. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies.

  8. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  9. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  10. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  11. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  12. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  13. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  14. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect

    Markham, Penn N; Liu, Yilu; Young II, Marcus Aaron

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  15. Spatial-light-modulator interconnected computers

    SciTech Connect

    Mc Aulay, A.D.

    1987-10-01

    Optical technologies perform the basic computer operations of communications, switching, and storage, have already proven superior to electronics for many communications situations, and advances in devices and materials suggest that optics are important for switching and storage. The spatial light modulator (SLM) is one of the devices expected to play an important role in optical computing. An SLM acts as a piece of film whose transmittance or reflectance may be varied spatially and temporally by electronic or optical means. Types of SLMs, the use of optics for computation and three proposed, as well as diverse optical computing systems that use SLMs for interconnections are described in this article.

  16. Mutually connected component of networks of networks with replica nodes

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2015-01-01

    We describe the emergence of the giant mutually connected component in networks of networks in which each node has a single replica node in any layer and can be interdependent only on its replica nodes in the interdependent layers. We prove that if, in these networks, all the nodes of one network (layer) are interdependent on the nodes of the same other interconnected layer, then, remarkably, the mutually connected component does not depend on the topology of the network of networks. This component coincides with the mutual component of the fully connected network of networks constructed from the same set of layers, i.e., a multiplex network.

  17. Networks.

    ERIC Educational Resources Information Center

    Cerf, Vinton G.

    1991-01-01

    The demands placed on the networks transporting the information and knowledge generated by the increased diversity and sophistication of computational machinery are described. What is needed to support this increased flow, the structures already in place, and what must be built are topics of discussion. (KR)

  18. Modular assembly and interconnects for fluidic microsystems

    NASA Astrophysics Data System (ADS)

    Gonzalez, Carlos; Collins, Scott D.; Smith, Rosemary L.

    1998-03-01

    At this early phase in the development of microfabricated fluidic systems, only a few components or functions have been microfabricated. Some sort of interface to the remaining 'off chip' components is required. For example, a variety of analysis techniques have been demonstrated in microfabricated channels, and cells, but sample preparation is to date still mostly performed off chip, involving pipetting, tubing and titer plate interfacing. The transition from micro to macro components has been to date rather crude, consisting mostly of tubing glued into or over holes etched into silicon or glass substrates. This paper presents new, micromachinable, joining and interconnecting structures that enable the modular, plug-in assembly of fluidic components to one another, to tubing, and into a fluid channel breadboard. Micro-to-miniature interfacing elements for making connections between microchannels and standard tubing, and both horizontal and vertical channel- to-channel interconnects will be demonstrated. Excellent seals are created using photopatternable silicone O-rings that are held in compression by the connecting structure. This technology allows one to assemble a fluidic microsystem with both custom and off the shelf, micro or miniature components. The connections are all reversible, making the system design reconfigurable and components easily exchanged.

  19. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  20. IETI – Isogeometric Tearing and Interconnecting

    PubMed Central

    Kleiss, Stefan K.; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra

    2012-01-01

    Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167

  1. Thermoelectric Coolers with Sintered Silver Interconnects

    NASA Astrophysics Data System (ADS)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  2. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  3. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  4. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  5. High-rate serial interconnections for embedded and distributed systems with power and resource constraints

    NASA Astrophysics Data System (ADS)

    Sheynin, Yuriy; Shutenko, Felix; Suvorova, Elena; Yablokov, Evgenej

    2008-04-01

    interfaces due to the number of additional cable conductors involved. In order to compensate for these drawbacks, higher quality cables, shorter cable runs and fewer devices on the bus have been the norm. Finally, the physical bulk of the parallel cables makes them more difficult to route inside an enclosure, hinders cooling airflow and is incompatible with the trend toward smaller form-factor devices. Parallel busses worked in systems during the past 20 years, but the accumulated problems dictate the need for change and the technology is available to spur the transition. The general trend in high-rate interconnections turned from parallel bussing to scalable interconnections with a network architecture and high-rate point-to-point links. Analysis showed that data links with serial information transfer could achieve higher throughput and efficiency and it was confirmed in various research and practical design. Serial interfaces offer an improvement over older parallel interfaces: better performance, better scalability, and also better reliability as the parallel interfaces are at their limits of speed with reliable data transfers and others. The trend was implemented in major standards' families evolution: e.g. from PCI/PCI-X parallel bussing to PCIExpress interconnection architecture with serial lines, from CompactPCI parallel bus to ATCA (Advanced Telecommunications Architecture) specification with serial links and network topologies of an interconnection, etc. In the article we consider a general set of characteristics and features of serial interconnections, give a brief overview of serial interconnections specifications. In more details we present the SpaceWire interconnection technology. Have been developed for space on-board systems applications the SpaceWire has important features and characteristics that make it a prospective interconnection for wide range of embedded systems.

  6. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Peters, Kevin C.; Comi, Troy J.; Perry, Richard H.

    2015-09-01

    Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM n -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM n -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM 1 -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment.

  7. The multistage 20 metre shuttle run test for aerobic fitness.

    PubMed

    Léger, L A; Mercier, D; Gadoury, C; Lambert, J

    1988-01-01

    A maximal multistage 20 m shuttle run test was designed to determine the maximal aerobic power of schoolchildren, healthy adults attending fitness class and athletes performing in sports with frequent stops and starts (e.g. basketball, fencing and so on). Subjects run back and forth on a 20 m course and must touch the 20 m line; at the same time a sound signal is emitted from a prerecorded tape. Frequency of the sound signals is increased 0.5 km h-1 each minute from a starting speed of 8.5 km h-1. When the subject can no longer follow the pace, the last stage number announced is used to predict maximal oxygen uptake (VO2max) (Y, ml kg-1 min-1) from the speed (X, km h-1) corresponding to that stage (speed = 8 + 0.5 stage no.) and age (A, year): Y = 31.025 + 3.238 X - 3.248A + 0.1536AX, r = 0.71 with 188 boys and girls aged 8-19 years. To obtain this regression, the test was performed individually. Right upon termination VO2 was measured with four 20 s samples and VO2max was estimated by retroextrapolating the O2 recovery curve at time zero of recovery. For adults, similar measurements indicated that the same equation could be used keeping age constant at 18 (r = 0.90, n = 77 men and women 18-50 years old). Test-retest reliability coefficients were 0.89 for children (139 boys and girls 6-16 years old) and 0.95 for adults (81 men and women, 20-45 years old).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Probability density function modeling for sub-powered interconnects

    NASA Astrophysics Data System (ADS)

    Pater, Flavius; Amaricǎi, Alexandru

    2016-06-01

    This paper proposes three mathematical models for reliability probability density function modeling the interconnect supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed analysis aims at determining the most appropriate fitting for the switching delay - probability of correct switching for sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of interconnects for 45 nm CMOS technology supplied at 0.25V.

  9. Social Network Visualization in Epidemiology

    PubMed Central

    Christakis, Nicholas A.; Fowler, James H.

    2010-01-01

    Epidemiological investigations and interventions are increasingly focusing on social networks. Two aspects of social networks are relevant in this regard: the structure of networks and the function of networks. A better understanding of the processes that determine how networks form and how they operate with respect to the spread of behavior holds promise for improving public health. Visualizing social networks is a key to both research and interventions. Network images supplement statistical analyses and allow the identification of groups of people for targeting, the identification of central and peripheral individuals, and the clarification of the macro-structure of the network in a way that should affect public health interventions. People are inter-connected and so their health is inter-connected. Inter-personal health effects in social networks provide a new foundation for public health. PMID:22544996

  10. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  11. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

    2014-01-07

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

  12. Optical implementation of polarization-independent, bidirectional, nonblocking Clos network using polarization control technique in free space

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Yang, Jiankun; Li, Xiujian; Chang, Shengli; Su, Xianyu; Ping, Xu

    2011-04-01

    The clos network is one of the earliest multistage interconnection networks. Recently, it has been widely studied in parallel optical information processing systems, and there have been many efforts to develop this network. In this paper, a smart and compact Clos network, including Clos(2,3,2) and Clos(2,4,2), is proposed by using polarizing beam-splitters (PBS), phase spatial light modulators (PSLM), and mirrors. PBS features that are s-component (perpendicular to the incident plane) of the incident light beam is reflected, and the p-component (parallel to the incident plane) passes through it. According to switching logic, under control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e., the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. This new type of configuration grants the features of less optical components, compact in structure, efficient in performance, and insensitive to polarization of signal beam. In addition, the straight, the exchange, and the broadcast functions of the basic switch element are implemented bidirectionally in free-space. Furthermore, the new optical experimental module of 2×3 and 2×4 optical switch is also presented by a cascading polarization-independent bidirectional 2×2 optical switch. Simultaneously, the routing state-table of 2×3 and 2×4 optical switch to perform all permutation output and nonblocking switch for the input signal beam, is achieved. Since the proposed optical setup consists of only optical polarization elements, it is compact in structure, and possesses a low energy loss, a high signal-to-ratio, and an available large number of optical channels. Finally, the discussions and the experimental results show that the Clos network proposed here should be helpful in the design of large-scale network matrix, and may be used in optical communication and optical information processing.

  13. Multistage late Cenozoic evolution of the Amargosa River drainage, southwestern Nevada and eastern California Society of America. All rights reserved

    USGS Publications Warehouse

    Menges, C.M.

    2008-01-01

    Stratigraphic and geomorphic analyses reveal that the regional drainage basin of the modern Amargosa River formed via multistage linkage of formerly isolated basins in a diachronous series of integration events between late Miocene and latest Pleistocene-Holocene time. The 275-km-long Amargosa River system drains generally southward across a large (15,540 km 2) watershed in southwestern Nevada and eastern California to its terminus in central Death Valley. This drainage basin is divided into four major subbasins along the main channel and several minor subbasins on tributaries; these subbasins contain features, including central valley lowlands surrounded by highlands that form external divides or internal paleodivides, which suggest relict individual physiographic-hydrologic basins. From north to south, the main subbasins along the main channel are: (1) an upper headwaters subbasin, which is deeply incised into mostly Tertiary sediments and volcanic rocks; (2) an unincised low-gradient section within the Amargosa Desert; (3) a mostly incised section centered on Tecopa Valley and tributary drainages; and (4) a west- to northwest-oriented mostly aggrading lower section along the axis of southern Death Valley. Adjoining subbasins are hydro-logically linked by interconnecting narrows or canyon reaches that are variably incised into formerly continuous paleodivides. The most important linkages along the main channel include: (1) the Beatty narrows, which developed across a Tertiary bedrock paleodivide between the upper and Amargosa Desert subbasins during a latest Miocene-early Pliocene to middle Pleistocene interval (ca. 4-0.5 Ma); (2) the Eagle Mountain narrows, which cut into a mostly alluvial paleodivide between the Amar-gosa Desert and Tecopa subbasins in middle to late Pleistocene (ca. 150-100 ka) time; and (3) the Amargosa Canyon, which formed in late middle Pleistocene (ca. 200140 ka) time through a breached, actively uplifting paleodivide between

  14. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation.

    PubMed

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain.

  15. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  16. Virtual interconnection platform initiative scoping study

    SciTech Connect

    Liu, Yong; Kou, Gefei; Pan, Zuohong; Liu, Yilu; King Jr., Thomas J.

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  17. Microfabricated structures with electrical isolation and interconnections

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Roessig, Allen W. (Inventor); Lemkin, Mark A. (Inventor)

    2001-01-01

    The invention is directed to a microfabricated device. The device includes a substrate that is etched to define mechanical structures at least some of which are anchored laterally to the remainder of the substrate. Electrical isolation at points where mechanical structures are attached to the substrate is provided by filled isolation trenches. Filled trenches may also be used to electrically isolate structure elements from each other at points where mechanical attachment of structure elements is desired. The performance of microelectromechanical devices is improved by 1) having a high-aspect-ratio between vertical and lateral dimensions of the mechanical elements, 2) integrating electronics on the same substrate as the mechanical elements, 3) good electrical isolation among mechanical elements and circuits except where electrical interconnection is desired.

  18. Forming electrical interconnections through semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1981-01-01

    An information processing system based on CMOS/SOS technology is being developed by NASA to process digital image data collected by satellites. An array of holes is laser drilled in a semiconductor wafer, and a conductor is formed in the holes to fabricate electrical interconnections through the wafers. Six techniques are used to form conductors in the silicon-on-sapphire (SOS) wafers, including capillary wetting, wedge extrusion, wire intersection, electroless plating, electroforming, double-sided sputtering and through-hole electroplating. The respective strengths and weaknesses of these techniques are discussed and compared, with double-sided sputtering and the through-hole plating method achieving best results. In addition, hollow conductors provided by the technique are available for solder refill, providing a natural way of forming an electrically connected stack of SOS wafers.

  19. Interconnection capacitance models for VLSI circuits

    NASA Astrophysics Data System (ADS)

    Wong, Shyh-Chyi; Liu, Patrick S.; Ru, Jien-Wen; Lin, Shi-Tron

    1998-06-01

    A new set of capacitance models is developed for delay estimation of VLSI interconnections. The set of models is derived for five representative wiring structures, with their combinations covering arbitrary VLSI layouts. A semi-empirical approach is adopted to deal with complicated geometry nature in VLSI and to allow for closed-form capacitance formulas to be developed to provide direct observation of capacitance variation vs process parameters as well as computational efficiency for circuit simulation. The formulas are given explicitly in terms of wire width, wire thickness, dielectric thickness and inter-wire spacing. The models show good agreement with numerical solutions from RAPHAEL and measurement data of fabricated capacitance test structures. The models are further applied and validated on a ring oscillator. It is shown that the frequency of the ring oscillator obtained from HSPICE simulation with our models agrees well with the bench measurement.

  20. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  1. Analysis of the Impact of Variations on Signal Electro-Migration and Optimization of Interconnects in FinFET Designs.

    PubMed

    Ban, Yongchan

    2016-05-01

    The An AC current induced electro-migration (EM) on clock and logic signals becomes a significant problem even in the presence of reverse-recovery effect. Compared to power network, clock and logic signal interconnects are much narrower and suffer from fast switching and large driving current from FinFETs. Thus, the high current density on those signal interconnects can cause a serious failure. In this paper, we analyze EM on signal interconnects in 16 nm FinFET design, and characterize the impact of process variations, e.g., lithography and etch process, CMP (chemical-mechanical polishing) process, redundant via, etc. We also analyze signal-line EM with transistor-level PVT (process-voltage-temperature) variation corners. Then we optimize the signal lines with various design approaches to mitigate EM problem in 16 nm design.

  2. Analysis of the Impact of Variations on Signal Electro-Migration and Optimization of Interconnects in FinFET Designs.

    PubMed

    Ban, Yongchan

    2016-05-01

    The An AC current induced electro-migration (EM) on clock and logic signals becomes a significant problem even in the presence of reverse-recovery effect. Compared to power network, clock and logic signal interconnects are much narrower and suffer from fast switching and large driving current from FinFETs. Thus, the high current density on those signal interconnects can cause a serious failure. In this paper, we analyze EM on signal interconnects in 16 nm FinFET design, and characterize the impact of process variations, e.g., lithography and etch process, CMP (chemical-mechanical polishing) process, redundant via, etc. We also analyze signal-line EM with transistor-level PVT (process-voltage-temperature) variation corners. Then we optimize the signal lines with various design approaches to mitigate EM problem in 16 nm design. PMID:27483808

  3. Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach.

    PubMed

    Liu, Derong; Wang, Ding; Li, Hongliang

    2014-02-01

    In this paper, using a neural-network-based online learning optimal control approach, a novel decentralized control strategy is developed to stabilize a class of continuous-time nonlinear interconnected large-scale systems. First, optimal controllers of the isolated subsystems are designed with cost functions reflecting the bounds of interconnections. Then, it is proven that the decentralized control strategy of the overall system can be established by adding appropriate feedback gains to the optimal control policies of the isolated subsystems. Next, an online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman equations related to the optimal control problem. Through constructing a set of critic neural networks, the cost functions can be obtained approximately, followed by the control policies. Furthermore, the dynamics of the estimation errors of the critic networks are verified to be uniformly and ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness of the present decentralized control scheme. PMID:24807039

  4. Building an organic computing device with multiple interconnected brains.

    PubMed

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A L

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  5. Mashreq Arab interconnected power system potential for economic energy trading

    SciTech Connect

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.

  6. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  7. Surface-normal cascaded planar interconnection with easy alignment

    NASA Astrophysics Data System (ADS)

    Kakizaki, Sunao; Horan, Paul; Hegarty, John

    1995-11-01

    A robust scheme for the surface-normal optical interconnection of arrays of optoelectronic devices is demonstrated. Allowing for inversion, the optical system maintains registration between input and image planes in one direction and full registration between every second plane, thus making for stable and accurate interconnection between elements of arrays.

  8. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... about system conditions at a Point of Interconnection in order to help that customer select the best... Interconnection Customer with the option of requesting from the Transmission Provider a pre-application report... SGIP; revise the customer options meeting and the supplemental review following failure of the...

  9. Updating Small Generator Interconnection Procedures for New Market Conditions

    SciTech Connect

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  10. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  11. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  12. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  13. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  14. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  15. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flow between interconnected tanks. 25.957 Section 25.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be...

  16. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flow between interconnected tanks. 29.957 Section 29.957 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where...

  17. Determining the Utility Value of Water-Supply Interconnections.

    ERIC Educational Resources Information Center

    Hardman, James L.; Cheremisinoff, Paul N.

    1979-01-01

    This article is the third in a series which discusses a mathematical methodology for evaluating interconnections of water supply systems. The model can be used to analyze the carrying capacity of proposed links or predict the impact of abandoning interconnections. (AS)

  18. ENVIRONMENTAL-HUMAN HEALTH INTERCONNECTIONS: A WORKSHOP REPORT

    EPA Science Inventory

    A Pellston Workshop jointly sponsored by SETAC and SOT to discuss this topic of "Interconnections" was held in June, 2000 in Snowbird, Utah. This workshop was motivated by a deep concern shared by many human health, environmental, and social scientists for the interconnections, ...

  19. Networks in cognitive science.

    PubMed

    Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H

    2013-07-01

    Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences.

  20. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows.

    PubMed

    Ivanov, Mark V; Levitsky, Lev I; Gorshkov, Mikhail V

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms. Graphical Abstract ᅟ. PMID:27349255