Sample records for multistep electrolytic process

  1. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  2. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  3. Theoretical analysis of the effects of light intensity on the photocorrosion of semiconductor electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, R.M.; Nozik, A.J.

    1985-07-18

    A kinetic model was developed to describe the effects of light intensity on the photocorrosion of n-type semiconductor electrodes. The model is an extension of previous work by Gomes and co-workers that includes the possibility of multiple steps for the oxidation reaction of the reducing agent in the electrolyte. Six cases are considered where the semiconductor decomposition reaction is multistep (each step involves a hole); the oxidation reaction of the reducing agent is multistep (each step after the first involves a hole or a chemical intermediate), and the first steps of the competing oxidation reactions are reversible or irreversible. Itmore » was found, contrary to previous results, that the photostability of semiconductor electrodes could increase with increased light intensity if the desired oxidation reaction of the reducing agent in the electrolyte was multistep with the first step being reversible. 14 references, 5 figures, 1 table.« less

  4. 48 CFR 15.202 - Advisory multi-step process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Advisory multi-step... Information 15.202 Advisory multi-step process. (a) The agency may publish a presolicitation notice (see 5.204... participate in the acquisition. This process should not be used for multi-step acquisitions where it would...

  5. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    PubMed

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  6. The mechanism of Li2S activation in lithium-sulfur batteries: Can we avoid the polysulfide formation?

    NASA Astrophysics Data System (ADS)

    Vizintin, Alen; Chabanne, Laurent; Tchernychova, Elena; Arčon, Iztok; Stievano, Lorenzo; Aquilanti, Giuliana; Antonietti, Markus; Fellinger, Tim-Patrick; Dominko, Robert

    2017-03-01

    Electrochemical reactions in the Lisbnd S batteries are considered as a multistep reaction process with at least 2-3 equilibrium states. Here we report a possibility of having a conversion of Li2S into sulfur without detectible formation of polysulfides. That was confirmed by using a novel material system consisting of carbon coated Li2S particles prepared by carbothermal reduction of Li2SO4. Two independent in operando measurements showed direct oxidation of Li2S into sulfur for this system, with almost negligible formation of polysulfides at potentials above 2.5 V vs. Li/Li+. Our results link the diversity of first charge profiles in the literature to the Li2S oxidation mechanism and show the importance of ionic wiring within the material. Furthermore, we demonstrate that the Li2S oxidation mechanism depends on the relative amount of soluble sulfur in the electrolyte. By controlling the type and the amount of electrolyte within the encapsulating carbon shell, it is thereby possible to control the reaction mechanism of Li2S activation.

  7. Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte

    DOE PAGES

    Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...

    2016-09-08

    Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less

  8. Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic

    PubMed Central

    Shukla, Chinmay A

    2017-01-01

    The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature. PMID:28684977

  9. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    DTIC Science & Technology

    2012-09-01

    make end of life ( EOL ) and remaining useful life (RUL) estimations. Model-based prognostics approaches perform these tasks with the help of first...in parameters Degradation Modeling Parameter estimation Prediction Thermal / Electrical Stress Experimental Data State Space model RUL EOL ...distribution at given single time point kP , and use this for multi-step predictions to EOL . There are several methods which exits for selecting the sigma

  10. Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.

    2016-04-01

    This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.

  11. Sweeping as a multistep enrichment process in micellar electrokinetic chromatography: the retention factor gradient effect.

    PubMed

    El-Awady, Mohamed; Pyell, Ute

    2013-07-05

    The application of a new method developed for the assessment of sweeping efficiency in MEKC under homogeneous and inhomogeneous electric field conditions is extended to the general case, in which the distribution coefficient and the electric conductivity of the analyte in the sample zone and in the separation compartment are varied. As test analytes p-hydroxybenzoates (parabens), benzamide and some aromatic amines are studied under MEKC conditions with SDS as anionic surfactant. We show that in the general case - in contrast to the classical description - the obtainable enrichment factor is not only dependent on the retention factor of the analyte in the sample zone but also dependent on the retention factor in the background electrolyte (BGE). It is shown that in the general case sweeping is inherently a multistep focusing process. We describe an additional focusing/defocusing step (the retention factor gradient effect, RFGE) quantitatively by extending the classical equation employed for the description of the sweeping process with an additional focusing/defocusing factor. The validity of this equation is demonstrated experimentally (and theoretically) under variation of the organic solvent content (in the sample and/or the BGE), the type of organic solvent (in the sample and/or the BGE), the electric conductivity (in the sample), the pH (in the sample), and the concentration of surfactant (in the BGE). It is shown that very high enrichment factors can be obtained, if the pH in the sample zone makes possible to convert the analyte into a charged species that has a high distribution coefficient with respect to an oppositely charged micellar phase, while the pH in the BGE enables separation of the neutral species under moderate retention factor conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Multi-objective optimization of process parameters of multi-step shaft formed with cross wedge rolling based on orthogonal test

    NASA Astrophysics Data System (ADS)

    Han, S. T.; Shu, X. D.; Shchukin, V.; Kozhevnikova, G.

    2018-06-01

    In order to achieve reasonable process parameters in forming multi-step shaft by cross wedge rolling, the research studied the rolling-forming process multi-step shaft on the DEFORM-3D finite element software. The interactive orthogonal experiment was used to study the effect of the eight parameters, the first section shrinkage rate φ1, the first forming angle α1, the first spreading angle β1, the first spreading length L1, the second section shrinkage rate φ2, the second forming angle α2, the second spreading angle β2 and the second spreading length L2, on the quality of shaft end and the microstructure uniformity. By using the fuzzy mathematics comprehensive evaluation method and the extreme difference analysis, the influence degree of the process parameters on the quality of the multi-step shaft is obtained: β2>φ2L1>α1>β1>φ1>α2L2. The results of the study can provide guidance for obtaining multi-stepped shaft with high mechanical properties and achieving near net forming without stub bar in cross wedge rolling.

  13. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  14. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

    PubMed

    Zhang, Zhengyang; Lambrev, Petar H; Wells, Kym L; Garab, Győző; Tan, Howe-Siang

    2015-07-31

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  15. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor); Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  16. Long-Life and High-Power Binder-Free Cathode Based on One-Step Synthesis of Radical Polymers with Multi-Pendant Groups.

    PubMed

    Chen, Yaoguang; Zhang, Yangfan; Liu, Xiu; Fan, Xuliang; Bai, Bing; Yang, Kang; Liang, Zhongxin; Zhang, Zishou; Mai, Kancheng

    2018-05-16

    The main bottlenecks for the widespread application of radical polymers in organic radical batteries are poor cycling stability, due to the dissolution of radical polymers into the electrolyte, and the low efficiency of multi-step synthesis strategies. Herein, a kind of electrolyte-resistant radical polymer bearing multi-pendant groups (poly(ethylene-alt-TEMPO maleate) (PETM)) is designed and synthesized through a one-step esterification reaction to graft 4-hydroxy-2,2,6,6-teramethylpiperidinyl-1-oxy into the commercially available poly(ethylene-alt-maleic anhydride). Interestingly, PETM is hardly soluble in the ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate-based electrolyte, showing an extremely low solubility of 0.59 mg mL -1 , but is easily soluble in tetrahydrofuran and N-Methyl pyrrolidone. The derived binder-free PETM cathode exhibits nearly 100% utilization of the grafted nitroxide radicals (88 mA h g -1 ) and excellent rate capability with almost invariant capacitance from 10 C to 40 C. Significantly, the PETM cathodes retain 94% of the initial capacity after 1000 cycles, outperforming most reported radical polymer-based cathodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A generalized theory of chromatography and multistep liquid extraction

    NASA Astrophysics Data System (ADS)

    Chizhkov, V. P.; Boitsov, V. N.

    2017-03-01

    A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.

  18. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  19. The 5-(4-Ethynylophenoxy) isophthalic chloride

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J. (Inventor)

    1986-01-01

    Sulfone-ester polymers containing pendent ethynyl groups and a direct and multistep process for preparing them are disclosed. The multistep process involves the conversion of a pendent bromo group to the ethynyl group while the direct route involves reating hydroxy-terminated sulfone oligomer or polymers with a stoichiometric amount of 5-(4-ethynylphenoxy) isophthaloyl chloride. The 5-(4-ethynylphenoxy) isophthaloyl chloride and the process for preparing it are also disclosed.

  20. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    NASA Technical Reports Server (NTRS)

    Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  1. INDES User's guide multistep input design with nonlinear rotorcraft modeling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.

  2. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries

    PubMed Central

    Helen, M.; Reddy, M. Anji; Diemant, Thomas; Golla-Schindler, Ute; Behm, R. Jürgen; Kaiser, Ute; Fichtner, Maximilian

    2015-01-01

    Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4–8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell. PMID:26173723

  3. Titanium deposition from ionic liquids - appropriate choice of electrolyte and precursor.

    PubMed

    Berger, Claudia A; Arkhipova, Maria; Farkas, Attila; Maas, Gerhard; Jacob, Timo

    2016-02-14

    In this study titanium isopropoxide was dissolved in 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI) and further in a custom-made guanidinium-based ionic liquid (N11N11NpipGuaTFSI). Electrochemical investigations were carried out by means of cyclic voltammetry (CV) and the initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). For BMITFSI we found one large cathodic reduction peak at a potential of -1.2 V vs. Pt, corresponding to the growth of monoatomic high islands. The obtained deposit was identified as elemental titanium by Auger Electron Spectroscopy (AES). Furthermore, we found a corresponding anodic peak at -0.3 V vs. Pt, which is associated with the dissolution of the islands. This observation leads to the assumption that titanium deposition from the imidazolium-based room-temperature ionic liquid (RTIL) proceeds in a one-step electron transfer. In contrast, for the guanidinium-based RTIL we found several peaks during titanium reduction and oxidation, which indicates a multi-step electron transfer in this alternative electrolyte.

  4. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    PubMed

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  5. Multistep translation and cultural adaptation of the Penn acoustic neuroma quality-of-life scale for German-speaking patients.

    PubMed

    Kristin, Julia; Glaas, Marcel Fabian; Stenin, Igor; Albrecht, Angelika; Klenzner, Thomas; Schipper, Jörg; Eysel-Gosepath, Katrin

    2017-11-01

    Monitoring the health-related quality of life (HRQOL) for patients with vestibular schwannoma (VS) has garnered increasing interest. In German-speaking countries, there is no disease-specific questionnaire available similar to the "Penn Acoustic Neuroma Quality-of-life Scale" (PANQOL). We translated the PANQOL for German-speaking patients based on a multistep protocol that included not only a forward-backward translation but also linguistic and sociocultural adaptations. The process consists of translation, synthesis, back translation, review by an expert committee, administration of the prefinal version to our patients, submission and appraisal of all written documents by our research team. The required multidisciplinary team for translation comprised head and neck surgeons, language professionals (German and English), a professional translator, and bilingual participants. A total of 123 patients with VS underwent microsurgical procedures via different approaches at our clinic between January 2007 and January 2017. Among these, 72 patients who underwent the translabyrinthine approach participated in the testing of the German-translated PANQOL. The first German version of the PANQOL questionnaire was created by a multistep translation process. The responses indicate that the questionnaire is simple to administer and applicable to our patients. The use of a multistep process to translate quality-of-life questionnaires is complex and time-consuming. However, this process was performed properly and resulted in a version of the PANQOL for assessing the quality of life of German-speaking patients with VS.

  6. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    PubMed Central

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  7. Purification of crude glycerol from transesterification reaction of palm oil using direct method and multistep method

    NASA Astrophysics Data System (ADS)

    Nasir, N. F.; Mirus, M. F.; Ismail, M.

    2017-09-01

    Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.

  8. Using the Binary Phase-Field Crystal Model to Describe Non-Classical Nucleation Pathways in Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Provatas, Nikolas

    Recent experimental work has shown that gold nanoparticles can precipitate from an aqueous solution through a non-classical, multi-step nucleation process. This multi-step process begins with spinodal decomposition into solute-rich and solute-poor liquid domains followed by nucleation from within the solute-rich domains. We present a binary phase-field crystal theory that shows the same phenomology and examine various cross-over regimes in the growth and coarsening of liquid and solid domains. We'd like to the thank Canada Research Chairs (CRC) program for funding this work.

  9. Optimal generalized multistep integration formulae for real-time digital simulation

    NASA Technical Reports Server (NTRS)

    Moerder, D. D.; Halyo, N.

    1985-01-01

    The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.

  10. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration.

    PubMed

    Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-07-01

    The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Round-off error in long-term orbital integrations using multistep methods

    NASA Technical Reports Server (NTRS)

    Quinlan, Gerald D.

    1994-01-01

    Techniques for reducing roundoff error are compared by testing them on high-order Stormer and summetric multistep methods. The best technique for most applications is to write the equation in summed, function-evaluation form and to store the coefficients as rational numbers. A larger error reduction can be achieved by writing the equation in backward-difference form and performing some of the additions in extended precision, but this entails a larger central processing unit (cpu) cost.

  12. Improved perovskite phototransistor prepared using multi-step annealing method

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  13. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  14. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    NASA Astrophysics Data System (ADS)

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.

  15. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: towards a global multi-step design space.

    PubMed

    Eon-duval, Alex; Valax, Pascal; Solacroup, Thomas; Broly, Hervé; Gleixner, Ralf; Strat, Claire L E; Sutter, James

    2012-10-01

    The article describes how Quality by Design principles can be applied to the drug substance manufacturing process of an Fc fusion protein. First, the quality attributes of the product were evaluated for their potential impact on safety and efficacy using risk management tools. Similarly, process parameters that have a potential impact on critical quality attributes (CQAs) were also identified through a risk assessment. Critical process parameters were then evaluated for their impact on CQAs, individually and in interaction with each other, using multivariate design of experiment techniques during the process characterisation phase. The global multi-step Design Space, defining operational limits for the entire drug substance manufacturing process so as to ensure that the drug substance quality targets are met, was devised using predictive statistical models developed during the characterisation study. The validity of the global multi-step Design Space was then confirmed by performing the entire process, from cell bank thawing to final drug substance, at its limits during the robustness study: the quality of the final drug substance produced under different conditions was verified against predefined targets. An adaptive strategy was devised whereby the Design Space can be adjusted to the quality of the input material to ensure reliable drug substance quality. Finally, all the data obtained during the process described above, together with data generated during additional validation studies as well as manufacturing data, were used to define the control strategy for the drug substance manufacturing process using a risk assessment methodology. Copyright © 2012 Wiley-Liss, Inc.

  16. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  17. Personalized multistep cognitive behavioral therapy for obesity

    PubMed Central

    Dalle Grave, Riccardo; Sartirana, Massimiliano; El Ghoch, Marwan; Calugi, Simona

    2017-01-01

    Multistep cognitive behavioral therapy for obesity (CBT-OB) is a treatment that may be delivered at three levels of care (outpatient, day hospital, and residential). In a stepped-care approach, CBT-OB associates the traditional procedures of weight-loss lifestyle modification, ie, physical activity and dietary recommendations, with specific cognitive behavioral strategies that have been indicated by recent research to influence weight loss and maintenance by addressing specific cognitive processes. The treatment program as a whole is delivered in six modules. These are introduced according to the individual patient’s needs in a flexible and personalized fashion. A recent randomized controlled trial has found that 88 patients suffering from morbid obesity treated with multistep residential CBT-OB achieved a mean weight loss of 15% after 12 months, with no tendency to regain weight between months 6 and 12. The treatment has also shown promising long-term results in the management of obesity associated with binge-eating disorder. If these encouraging findings are confirmed by the two ongoing outpatient studies (one delivered individually and one in a group setting), this will provide evidence-based support for the potential of multistep CBT-OB to provide a more effective alternative to standard weight-loss lifestyle-modification programs. PMID:28615960

  18. Identification of Steady and Non-Steady Gait of Humanexoskeleton Walking System

    NASA Astrophysics Data System (ADS)

    Żur, K. K.

    2013-08-01

    In this paper a method of analysis of exoskeleton multistep locomotion was presented by using a computer with the preinstalled DChC program. The paper also presents a way to analytically calculate the ",motion indicator", as well as the algorithm calculating its two derivatives. The algorithm developed by the author processes data collected from the investigation and then a program presents the obtained final results. Research into steady and non-steady multistep locomotion can be used to design two-legged robots of DAR type and exoskeleton control system

  19. Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates.

    PubMed

    Andris, Sebastian; Wendeler, Michaela; Wang, Xiangyang; Hubbuch, Jürgen

    2018-07-20

    Antibody-drug conjugates (ADCs) form a rapidly growing class of biopharmaceuticals which attracts a lot of attention throughout the industry due to its high potential for cancer therapy. They combine the specificity of a monoclonal antibody (mAb) and the cell-killing capacity of highly cytotoxic small molecule drugs. Site-specific conjugation approaches involve a multi-step process for covalent linkage of antibody and drug via a linker. Despite the range of parameters that have to be investigated, high-throughput methods are scarcely used so far in ADC development. In this work an automated high-throughput platform for a site-specific multi-step conjugation process on a liquid-handling station is presented by use of a model conjugation system. A high-throughput solid-phase buffer exchange was successfully incorporated for reagent removal by utilization of a batch cation exchange step. To ensure accurate screening of conjugation parameters, an intermediate UV/Vis-based concentration determination was established including feedback to the process. For conjugate characterization, a high-throughput compatible reversed-phase chromatography method with a runtime of 7 min and no sample preparation was developed. Two case studies illustrate the efficient use for mapping the operating space of a conjugation process. Due to the degree of automation and parallelization, the platform is capable of significantly reducing process development efforts and material demands and shorten development timelines for antibody-drug conjugates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville

    1998-01-01

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  1. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  2. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  3. Syntactic processing in the absence of awareness and semantics.

    PubMed

    Hung, Shao-Min; Hsieh, Po-Jang

    2015-10-01

    The classical view that multistep rule-based operations require consciousness has recently been challenged by findings that both multiword semantic processing and multistep arithmetic equations can be processed unconsciously. It remains unclear, however, whether pure rule-based cognitive processes can occur unconsciously in the absence of semantics. Here, after presenting 2 words consciously, we suppressed the third with continuous flash suppression. First, we showed that the third word in the subject-verb-verb format (syntactically incongruent) broke suppression significantly faster than the third word in the subject-verb-object format (syntactically congruent). Crucially, the same effect was observed even with sentences composed of pseudowords (pseudo subject-verb-adjective vs. pseudo subject-verb-object) without any semantic information. This is the first study to show that syntactic congruency can be processed unconsciously in the complete absence of semantics. Our findings illustrate how abstract rule-based processing (e.g., syntactic categories) can occur in the absence of visual awareness, even when deprived of semantics. (c) 2015 APA, all rights reserved).

  4. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  5. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  6. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    PubMed

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  7. Adaptation to Vocal Expressions Reveals Multistep Perception of Auditory Emotion

    PubMed Central

    Maurage, Pierre; Rouger, Julien; Latinus, Marianne; Belin, Pascal

    2014-01-01

    The human voice carries speech as well as important nonlinguistic signals that influence our social interactions. Among these cues that impact our behavior and communication with other people is the perceived emotional state of the speaker. A theoretical framework for the neural processing stages of emotional prosody has suggested that auditory emotion is perceived in multiple steps (Schirmer and Kotz, 2006) involving low-level auditory analysis and integration of the acoustic information followed by higher-level cognition. Empirical evidence for this multistep processing chain, however, is still sparse. We examined this question using functional magnetic resonance imaging and a continuous carry-over design (Aguirre, 2007) to measure brain activity while volunteers listened to non-speech-affective vocalizations morphed on a continuum between anger and fear. Analyses dissociated neuronal adaptation effects induced by similarity in perceived emotional content between consecutive stimuli from those induced by their acoustic similarity. We found that bilateral voice-sensitive auditory regions as well as right amygdala coded the physical difference between consecutive stimuli. In contrast, activity in bilateral anterior insulae, medial superior frontal cortex, precuneus, and subcortical regions such as bilateral hippocampi depended predominantly on the perceptual difference between morphs. Our results suggest that the processing of vocal affect recognition is a multistep process involving largely distinct neural networks. Amygdala and auditory areas predominantly code emotion-related acoustic information while more anterior insular and prefrontal regions respond to the abstract, cognitive representation of vocal affect. PMID:24920615

  8. Adaptation to vocal expressions reveals multistep perception of auditory emotion.

    PubMed

    Bestelmeyer, Patricia E G; Maurage, Pierre; Rouger, Julien; Latinus, Marianne; Belin, Pascal

    2014-06-11

    The human voice carries speech as well as important nonlinguistic signals that influence our social interactions. Among these cues that impact our behavior and communication with other people is the perceived emotional state of the speaker. A theoretical framework for the neural processing stages of emotional prosody has suggested that auditory emotion is perceived in multiple steps (Schirmer and Kotz, 2006) involving low-level auditory analysis and integration of the acoustic information followed by higher-level cognition. Empirical evidence for this multistep processing chain, however, is still sparse. We examined this question using functional magnetic resonance imaging and a continuous carry-over design (Aguirre, 2007) to measure brain activity while volunteers listened to non-speech-affective vocalizations morphed on a continuum between anger and fear. Analyses dissociated neuronal adaptation effects induced by similarity in perceived emotional content between consecutive stimuli from those induced by their acoustic similarity. We found that bilateral voice-sensitive auditory regions as well as right amygdala coded the physical difference between consecutive stimuli. In contrast, activity in bilateral anterior insulae, medial superior frontal cortex, precuneus, and subcortical regions such as bilateral hippocampi depended predominantly on the perceptual difference between morphs. Our results suggest that the processing of vocal affect recognition is a multistep process involving largely distinct neural networks. Amygdala and auditory areas predominantly code emotion-related acoustic information while more anterior insular and prefrontal regions respond to the abstract, cognitive representation of vocal affect. Copyright © 2014 Bestelmeyer et al.

  9. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    PubMed

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  10. Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium-Sulfur Battery Cathodes.

    PubMed

    Li, Xiang; Cheng, Xuanbing; Gao, Mingxia; Ren, Dawei; Liu, Yongfeng; Guo, Zhengxiao; Shang, Congxiao; Sun, Lixian; Pan, Hongge

    2017-03-29

    Porous carbon can be tailored to great effect for electrochemical energy storage. In this study, we propose a novel structured spherical carbon with a macrohollow core and a microporous shell derived from a sustainable biomass, amylose, by a multistep pyrolysis route without chemical etching. This hierarchically porous carbon shows a particle distribution of 2-10 μm and a surface area of 672 m 2 g -1 . The structure is an effective host of sulfur for lithium-sulfur battery cathodes, which reduces the dissolution of polysulfides in the electrolyte and offers high electrical conductivity during discharge/charge cycling. The hierarchically porous carbon can hold 48 wt % sulfur in its porous structure. The S@C hybrid shows an initial capacity of 1490 mAh g -1 and retains a capacity of 798 mAh g -1 after 200 cycles at a discharge/charge rate of 0.1 C. A capacity of 487 mAh g -1 is obtained at a rate of 3 C. Both a one-step pyrolysis and a chemical-reagent-assisted pyrolysis are also assessed to obtain porous carbon from amylose, but the obtained carbon shows structures inferior for sulfur cathodes. The multistep pyrolysis and the resulting hierarchically porous carbon offer an effective approach to the engineering of biomass for energy storage. The micrometer-sized spherical S@C hybrid with different sizes is also favorable for high-tap density and hence the volumetric density of the batteries, opening up a wide scope for practical applications.

  11. Progress in the development of paper-based diagnostics for low-resource point-of-care settings

    PubMed Central

    Byrnes, Samantha; Thiessen, Gregory; Fu, Elain

    2014-01-01

    This Review focuses on recent work in the field of paper microfluidics that specifically addresses the goal of translating the multistep processes that are characteristic of gold-standard laboratory tests to low-resource point-of-care settings. A major challenge is to implement multistep processes with the robust fluid control required to achieve the necessary sensitivity and specificity of a given application in a user-friendly package that minimizes equipment. We review key work in the areas of fluidic controls for automation in paper-based devices, readout methods that minimize dedicated equipment, and power and heating methods that are compatible with low-resource point-of-care settings. We also highlight a focused set of recent applications and discuss future challenges. PMID:24256361

  12. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  13. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference

    PubMed Central

    Foerster, Rebecca M.; Carbone, Elena; Schneider, Werner X.

    2014-01-01

    Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM. PMID:24847304

  14. Formation of Stone-Wales edge: Multistep reconstruction and growth mechanisms of zigzag nanographene.

    PubMed

    Dang, Jing-Shuang; Wang, Wei-Wei; Zheng, Jia-Jia; Nagase, Shigeru; Zhao, Xiang

    2017-10-05

    Although the existence of Stone-Wales (5-7) defect at graphene edge has been clarified experimentally, theoretical study on the formation mechanism is still imperfect. In particular, the regioselectivity of multistep reactions at edge (self-reconstruction and growth with foreign carbon feedstock) is essential to understand the kinetic behavior of reactive boundaries but investigations are still lacking. Herein, by using finite-sized models, multistep reconstructions and carbon dimer additions of a bared zigzag edge are introduced using density functional theory calculations. The zigzag to 5-7 transformation is proved as a site-selective process to generate alternating 5-7 pairs sequentially and the first step with largest barrier is suggested as the rate-determining step. Conversely, successive C 2 insertions on the active edge are calculated to elucidate the formation of 5-7 edge during graphene growth. A metastable intermediate with a triple sequentially fused pentagon fragment is proved as the key structure for 5-7 edge formation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  16. Data-based control of a multi-step forming process

    NASA Astrophysics Data System (ADS)

    Schulte, R.; Frey, P.; Hildenbrand, P.; Vogel, M.; Betz, C.; Lechner, M.; Merklein, M.

    2017-09-01

    The fourth industrial revolution represents a new stage in the organization and management of the entire value chain. However, concerning the field of forming technology, the fourth industrial revolution has only arrived gradually until now. In order to make a valuable contribution to the digital factory the controlling of a multistage forming process was investigated. Within the framework of the investigation, an abstracted and transferable model is used to outline which data have to be collected, how an interface between the different forming machines can be designed tangible and which control tasks must be fulfilled. The goal of this investigation was to control the subsequent process step based on the data recorded in the first step. The investigated process chain links various metal forming processes, which are typical elements of a multi-step forming process. Data recorded in the first step of the process chain is analyzed and processed for an improved process control of the subsequent process. On the basis of the gained scientific knowledge, it is possible to make forming operations more robust and at the same time more flexible, and thus create the fundament for linking various production processes in an efficient way.

  17. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  18. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    ERIC Educational Resources Information Center

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  19. Genetics Home Reference: tyrosinemia

    MedlinePlus

    ... in the multistep process that breaks down the amino acid tyrosine, a building block of most proteins. If ... Resources MedlinePlus (4 links) Encyclopedia: Aminoaciduria Health Topic: Amino Acid Metabolism Disorders Health Topic: Liver Diseases Health Topic: ...

  20. Apparatus and process for the electrolytic reduction of uranium and plutonium oxides

    DOEpatents

    Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt

    1991-01-01

    An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.

  1. Effects of pretanning processes on collagen structure and reactivity

    USDA-ARS?s Scientific Manuscript database

    The cattle hide, a major byproduct of the US meat industry, is the tanner’s substrate, and also the source of collagen for the food and biomaterials industries. Conversion of animal hides into leather is a multistep process that continually evolves in response to economic and environmental concerns...

  2. Powdered hide for research on tanning mechanisms

    USDA-ARS?s Scientific Manuscript database

    The conversion of animal hides into leather, the most valuable coproduct of the US meat industry, is a multistep process that has evolved more as art form than as science. A variety of dehairing and other hide preparation processes have been adopted without an understanding of how they affect the c...

  3. Meta-Analysis: An Introduction Using Regression Models

    ERIC Educational Resources Information Center

    Rhodes, William

    2012-01-01

    Research synthesis of evaluation findings is a multistep process. An investigator identifies a research question, acquires the relevant literature, codes findings from that literature, and analyzes the coded data to estimate the average treatment effect and its distribution in a population of interest. The process of estimating the average…

  4. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    PubMed

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  5. 75 FR 42378 - Fisheries of the South Atlantic; Southeast Data, Assessment, and Review (SEDAR); South Atlantic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... (SEDAR) process, a multi-step method for determining the status of fish stocks in the Southeast Region. SEDAR includes a Data Workshop, a Stock Assessment Process and a Review Workshop. The product of the... datasets are appropriate for assessment analyses. The product of the Stock Assessment Process is a stock...

  6. Implementing a Structured Reporting Initiative Using a Collaborative Multistep Approach.

    PubMed

    Goldberg-Stein, Shlomit; Walter, William R; Amis, E Stephen; Scheinfeld, Meir H

    To describe the successful implementation of a structured reporting initiative in a large urban academic radiology department. We describe our process, compromises, and top 10 lessons learned in overhauling traditional reporting practices and comprehensively implementing structured reporting at our institution. To achieve our goals, we took deliberate steps toward consensus building, undertook multistep template refinement, and achieved close collaboration with the technical staff, department coders, and hospital information technologists. Following institutional review board exemption, we audited radiologist compliance by evaluating 100 consecutive cases of 12 common examination types. Fisher exact test was applied to determine significance of association between trainee initial report drafting and template compliance. We produced and implemented structured reporting templates for 95% of all departmental computed tomography, magnetic resonance, and ultrasound examinations. Structured templates include specialized reports adhering to the American College of Radiology's Reporting and Data Systems (ACR's RADS) recommendations (eg, Lung-RADS and Li-RADS). We attained 94% radiologist compliance within 2 years, without any financial incentives. We provide a blueprint of how to successfully achieve structured reporting using a collaborative multistep approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    PubMed

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  8. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

    PubMed Central

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-01-01

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876

  9. Macro-fingerprint analysis-through-separation of licorice based on FT-IR and 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Ping; Xu, Changhua; Yang, Yan; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili; Zhou, Qun; Sun, Suqin; Li, Huifen

    2014-07-01

    In this paper, a step-by-step analysis-through-separation method under the navigation of multi-step IR macro-fingerprint (FT-IR integrated with second derivative IR (SD-IR) and 2DCOS-IR) was developed for comprehensively characterizing the hierarchical chemical fingerprints of licorice from entirety to single active components. Subsequently, the chemical profile variation rules of three parts (flavonoids, saponins and saccharides) in the separation process were holistically revealed and the number of matching peaks and correlation coefficients with standards of pure compounds was increasing along the extracting directions. The findings were supported by UPLC results and a verification experiment of aqueous separation process. It has been demonstrated that the developed multi-step IR macro-fingerprint analysis-through-separation approach could be a rapid, effective and integrated method not only for objectively providing comprehensive chemical characterization of licorice and all its separated parts, but also for rapidly revealing the global enrichment trend of the active components in licorice separation process.

  10. The Tensile and Shear Bond Strengths of Poly (Methyl Methacrylate) Processed on Electrolytically Etched Ticonium.

    DTIC Science & Technology

    1986-05-01

    METHYL NETHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM A THESIS Presented to the Faculty of The University of Texas Graduate School of...were cast utilizing the manufacturer’s directions for investment, burnout , and casting. Two groups of metal specimens were prepared: 20 for...STRENGTHS OF POLY (METHYL METHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM JOHN EDWARD ZURASKY, M.S. The University of Texas Graduate School

  11. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    PubMed Central

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-01-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682

  12. Chemical sensors from the cooperative actuation of multistep electrochemical molecular machines of polypyrrole: potentiostatic study. Trying to replicate muscle’s fatigue signals

    NASA Astrophysics Data System (ADS)

    Beaumont, Samuel; Otero, Toribio F.

    2018-07-01

    Polypyrrole film electrodes are constituted by multielectronic electrochemical molecular machines (every polymeric molecule) counterions and water, mimicking the intracellular matrix of muscular cells. The influence of the electrolyte concentration on the reversible oxidation/reduction of polypyrrole films was studied in NaCl aqueous solutions by consecutive square potential waves. The consumed redox charge and the consumed electrical energy change as a function of the concentration. That means that the extension (the consumed charge) of the reaction involving conformational, or allosteric, movements of the reacting polymeric chains (molecular machines) responds to (senses) the chemical energy of the reaction ambient. A theoretical description of the attained empirical results is presented getting the sensing equations and the concomitant sensitivities. Those results could indicate the origin and nature of the neural signals sent to the brain from biological haptic muscles working by cooperative actuation of the actin-myosin molecular machines driven by chemical reactions and sensing, simultaneously, the fatigue state of the muscle.

  13. Lessons from the synthetic chemist nature.

    PubMed

    Jürjens, Gerrit; Kirschning, Andreas; Candito, David A

    2015-05-01

    This conceptual review examines the ideal multistep synthesis from the perspective of nature. We suggest that besides step- and redox economies, one other key to efficiency is steady state processing with intermediates that are immediately transformed to the next intermediate when formed. We discuss four of nature's strategies (multicatalysis, domino reactions, iteration and compartmentation) that commonly proceed via short-lived intermediates and show that these strategies are also part of the chemist's portfolio. We particularly focus on compartmentation which in nature is found microscopically within cells (organelles) and between cells and on a molecular level on multiprotein scaffolds (e.g. in polyketide synthases) and demonstrate how compartmentation is manifested in modern multistep flow synthesis.

  14. 78 FR 15707 - Fisheries of the Atlantic and Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Southeast Data, Assessment and Review (SEDAR) process, a multi-step method for determining the status of... Center. Participants include: data collectors and database managers; stock assessment scientists...

  15. Cold-in-place recycling in New York State.

    DOT National Transportation Integrated Search

    2010-07-01

    Cold in-place recycling (CIPR) is a continuous multi-step process in which the existing asphalt pavement is : recycled using specialized equipment that cold mills the asphaltic pavement and blends asphalt emulsion and : aggregate (if necessary) with ...

  16. 78 FR 13868 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    .... It is an important early step in what will be a multi-step process to develop the policy. The agenda... opportunity for communications between participants about management and science issues that relate to the ABC...

  17. Multi-Step Lithiation of Tin Sulfide: An Investigation Using In Situ Electron Microscopy

    DOE PAGES

    Hwang, Sooyeon; Yao, Zhenpeng; Zhang, Lei; ...

    2018-04-03

    Two-dimensional metal sulfides have been widely explored as promising electrodes for lithium ion batteries since their two-dimensional layered structure allows lithium ions to intercalate between layers. For tin disulfide, the lithiation process proceeds via a sequence of three different types of reactions: intercalation, conversion, and alloying but the full scenario of reaction dynamics remains nebulous. In this paper, we investigate the dynamical process of the multi-step reactions using in situ electron microscopy and discover an intermediate rock-salt phase with the disordering of Li and Sn cations, after the initial 2-dimensional intercalation. The disordered cations occupy all the octahedral sites andmore » block the channels for intercalation, which alter the reaction pathways during further lithiation. Our first principles calculations of the non-equilibrium lithiation of SnS2 corroborate the energetic preference of the disordered rock-salt structure over known layered polymorphs. The in situ observations and calculations suggest a two-phase reaction nature for intercalation, disordering, and following conversion reactions. In addition, in situ de-lithiation observation confirms that the alloying reaction is reversible while the conversion reaction is not, which is consistent to the ex situ analysis. This work reveals the full lithiation characteristic of SnS2 and sheds light on the understanding of complex multistep reactions in two-dimensional materials.« less

  18. Multi-Step Lithiation of Tin Sulfide: An Investigation Using In Situ Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Yao, Zhenpeng; Zhang, Lei

    Two-dimensional metal sulfides have been widely explored as promising electrodes for lithium ion batteries since their two-dimensional layered structure allows lithium ions to intercalate between layers. For tin disulfide, the lithiation process proceeds via a sequence of three different types of reactions: intercalation, conversion, and alloying but the full scenario of reaction dynamics remains nebulous. In this paper, we investigate the dynamical process of the multi-step reactions using in situ electron microscopy and discover an intermediate rock-salt phase with the disordering of Li and Sn cations, after the initial 2-dimensional intercalation. The disordered cations occupy all the octahedral sites andmore » block the channels for intercalation, which alter the reaction pathways during further lithiation. Our first principles calculations of the non-equilibrium lithiation of SnS2 corroborate the energetic preference of the disordered rock-salt structure over known layered polymorphs. The in situ observations and calculations suggest a two-phase reaction nature for intercalation, disordering, and following conversion reactions. In addition, in situ de-lithiation observation confirms that the alloying reaction is reversible while the conversion reaction is not, which is consistent to the ex situ analysis. This work reveals the full lithiation characteristic of SnS2 and sheds light on the understanding of complex multistep reactions in two-dimensional materials.« less

  19. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  20. A dynamic integrated fault diagnosis method for power transformers.

    PubMed

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

  1. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    PubMed Central

    Gao, Wensheng; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  2. Designing a Likert-Type Scale to Predict Environmentally Responsible Behavior in Undergraduate Students: A Multistep Process.

    ERIC Educational Resources Information Center

    Smith-Sebasto, N. J.; D'Costa, Ayres

    1995-01-01

    Describes an attempt to develop a reliable and valid instrument to assess the relationship between locus of control of reinforcement and environmentally responsible behavior. Presents a six-step psychometric process used to develop the Environmental Action Internal Control Index (EAICI) for undergraduate students. Contains 54 references. (JRH)

  3. 75 FR 59226 - Fisheries of the South Atlantic, Gulf of Mexico, and Caribbean; Southeastern Data, Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... the Southeast Data, Assessment and Review (SEDAR) process, a multi-step method for determining the... the South Atlantic, Gulf of Mexico, and Caribbean; Southeastern Data, Assessment, and Review (SEDAR... Committee will meet to discuss the SEDAR assessment schedule, budget, and the SEDAR process. See...

  4. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  5. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.

    PubMed

    Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun

    2017-11-07

    For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.

  6. Process for Making Single-Domain Magnetite Crystals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.

    2004-01-01

    A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.

  7. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance.

    PubMed

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-02-12

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  8. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    PubMed Central

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-01-01

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization. PMID:29439514

  9. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  10. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOEpatents

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  11. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  12. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  13. Neurologic manifestations of electrolyte disturbances.

    PubMed

    Riggs, Jack E

    2002-02-01

    Electrolyte disturbances occur commonly and are associated with a variety of characteristic neurologic manifestations involving both the central and peripheral nervous systems. Electrolyte disturbances are essentially always secondary processes. Effective management requires identification and treatment of the underlying primary disorder. Since neurological symptoms of electrolyte disorders are generally functional rather than structural, the neurologic manifestations of electrolyte disturbances are typically reversible. The neurologic manifestations of serum sodium, potassium, calcium, and magnesium disturbances are reviewed.

  14. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, John P.; Johnson, Terry R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  15. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  16. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  17. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  18. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  19. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  20. Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator

    NASA Astrophysics Data System (ADS)

    Vasei, Maryam; Tajabadi, Fariba; Jabbari, Ali; Taghavinia, Nima

    2015-09-01

    A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation at 55 °C.

  1. Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution.

    PubMed

    See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A

    2017-10-18

    Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest to the Mg electrolyte community.

  2. Solid oxide fuel cells with bi-layered electrolyte structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Robertson, Mark; Decès-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm -2 at 650 °C and 0.85 W cm -2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R el) and electrode polarization resistance (R p,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O 2- x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R el value (0.32 Ω cm 2) at 650 °C, which is almost one order of magnitude higher than the calculated value.

  3. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  4. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  5. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  6. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  7. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge

    USDA-ARS?s Scientific Manuscript database

    Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought...

  8. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds.

    PubMed

    Bana, Péter; Örkényi, Róbert; Lövei, Klára; Lakó, Ágnes; Túrós, György István; Éles, János; Faigl, Ferenc; Greiner, István

    2017-12-01

    Recent advances in the field of continuous flow chemistry allow the multistep preparation of complex molecules such as APIs (Active Pharmaceutical Ingredients) in a telescoped manner. Numerous examples of laboratory-scale applications are described, which are pointing towards novel manufacturing processes of pharmaceutical compounds, in accordance with recent regulatory, economical and quality guidances. The chemical and technical knowledge gained during these studies is considerable; nevertheless, connecting several individual chemical transformations and the attached analytics and purification holds hidden traps. In this review, we summarize innovative solutions for these challenges, in order to benefit chemists aiming to exploit flow chemistry systems for the synthesis of biologically active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electrolytic trapping of iodine from process gas streams

    DOEpatents

    Horner, Donald E.; Mailen, James C.; Posey, Franz A.

    1977-01-25

    A method for removing molecular, inorganic, and organic forms of iodine from process gas streams comprises the electrolytic oxidation of iodine in the presence of cobalt-III ions. The gas stream is passed through the anode compartment of a partitioned electrolytic cell having a nitric acid anolyte containing a catalytic amount of cobalt to cause the oxidation of effluent iodine species to aqueous soluble species.

  10. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  11. Usage of neural network to predict aluminium oxide layer thickness.

    PubMed

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  12. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    PubMed

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  13. Multi-step splicing of sphingomyelin synthase linear and circular RNAs.

    PubMed

    Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V

    2018-05-15

    The SGMS1 gene encodes the enzyme sphingomyelin synthase 1 (SMS1), which is involved in the regulation of lipid metabolism, apoptosis, intracellular vesicular transport and other significant processes. The SGMS1 gene is located on chromosome 10 and has a size of 320 kb. Previously, we showed that dozens of alternative transcripts of the SGMS1 gene are present in various human tissues. In addition to mRNAs that provide synthesis of the SMS1 protein, this gene participates in the synthesis of non-coding transcripts, including circular RNAs (circRNAs), which include exons of the 5'-untranslated region (5'-UTR) and are highly represented in the brain. In this study, using the high-throughput technology RNA-CaptureSeq, many new SGMS1 transcripts were identified, including both intronic unspliced RNAs (premature RNAs) and RNAs formed via alternative splicing. Recursive exons (RS-exons) that can participate in the multi-step splicing of long introns of the gene were also identified. These exons participate in the formation of circRNAs. Thus, multi-step splicing may provide a variety of linear and circular RNAs of eukaryotic genes in tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  15. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  16. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  17. Lignocellulose hydrolysis by multienzyme complexes

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic biomass is the most abundant renewable resource on the planet. Converting this material into a usable fuel is a multi-step process, the rate-limiting step being enzymatic hydrolysis of organic polymers into monomeric sugars. While the substrate can be complex and require a multitud...

  18. GIST Clinic Application 2018 | Center for Cancer Research

    Cancer.gov

    Clinic date: June 20-22, 2018 This Application is the first step in a multi-step process for being considered for participation in our upcoming Pediatric and wild-type GIST clinic. Please review all 3 pages and complete all questions in full.

  19. Metallization pattern on solid electrolyte or porous support of sodium battery process

    DOEpatents

    Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.

    2016-05-31

    A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.

  20. Polymeric electrolytes based on hydrosilyation reactions

    DOEpatents

    Kerr, John Borland [Oakland, CA; Wang, Shanger [Fairfield, CA; Hou, Jun [Painted Post, NY; Sloop, Steven Edward [Berkeley, CA; Han, Yong Bong [Berkeley, CA; Liu, Gao [Oakland, CA

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  1. Li 2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGES

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; ...

    2016-01-22

    In a classic example of stability from instability, we show that Li 2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li 2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li 2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl systemmore » of crystalline solid electrolytes where Li 2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li 2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li 2OHCl solid electrolyte.« less

  2. Counting the peaks in the excitation function for precompound processes

    NASA Astrophysics Data System (ADS)

    Bonetti, R.; Hussein, M. S.; Mello, P. A.

    1983-08-01

    The "counting of maxima" method of Brink and Stephen, conventionally used for the extraction of the correlation width of statistical (compound nucleus) reactions, is generalized to include precompound processes as well. It is found that this method supplies an important independent check of the results obtained from autocorrelation studies. An application is made to the reaction 25Mg(3He,p). NUCLEAR REACTIONS Statistical multistep compound processes discussed.

  3. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    PubMed

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays.

  4. Process for electrochemically gasifying coal using electromagnetism

    DOEpatents

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  5. Setting the Scope of Concept Inventories for Introductory Computing Subjects

    ERIC Educational Resources Information Center

    Goldman, Ken; Gross, Paul; Heeren, Cinda; Herman, Geoffrey L.; Kaczmarczyk, Lisa; Loui, Michael C.; Zilles, Craig

    2010-01-01

    A concept inventory is a standardized assessment tool intended to evaluate a student's understanding of the core concepts of a topic. In order to create a concept inventory it is necessary to accurately identify these core concepts. A Delphi process is a structured multi-step process that uses a group of experts to achieve a consensus opinion. We…

  6. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    PubMed

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  8. A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.

    PubMed

    Ben Taieb, Souhaib; Atiya, Amir F

    2016-01-01

    Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.

  9. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  10. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  11. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube powders prepared by Process 1 and Process 2 have different crystal structure and specific surface area. - Highlights: • Titania nanotube (TNT) powder is prepared in low water organic electrolyte. • Characterization of TNT powders prepared from aqueous and organic electrolyte. • TNTs prepared by Process 1 are crystalline with higher specific surface area. • TNTs obtained by Process 2 have carbonaceous impurities in the structure.« less

  12. Electrolyte Loss Tendencies of Primary Silver-Zinc Cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Juvinall, Gordon L.

    1997-01-01

    Since silver zinc cells are not hermetically sealed, care must be taken to prevent the loss of electrolyte which can result in shorting paths within the battery box. Prelaunch battery processing is important in being able to minimize any problems with expelled electrolyte.

  13. Functionally Graded Bismuth Oxide/Zirconia Bilayer Electrolytes for High-Performance Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs).

    PubMed

    Joh, Dong Woo; Park, Jeong Hwa; Kim, Doyeub; Wachsman, Eric D; Lee, Kang Taek

    2017-03-15

    A functionally graded Bi 1.6 Er 0.4 O 3 (ESB)/Y 0.16 Zr 0.84 O 1.92 (YSZ) bilayer electrolyte is successfully developed via a cost-effective screen printing process using nanoscale ESB powders on the tape-cast NiO-YSZ anode support. Because of the highly enhanced oxygen incorporation process at the cathode/electrolyte interface, a novel bilayer solid oxide fuel cell (SOFC) yields extremely high power density of ∼2.1 W cm -2 at 700 °C, which is a 2.4 times increase compared to that of the YSZ single electrolyte SOFC.

  14. Solar thermochemical splitting of water to generate hydrogen

    PubMed Central

    Rao, C. N. R.; Dey, Sunita

    2017-01-01

    Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the high-temperature two-step process. It is noteworthy that the multistep process based on the Mn(II)/Mn(III) oxide system can be carried out at 700 °C or 750 °C. The two-step process has been achieved at 1,300 °C/900 °C by using yttrium-based rare earth manganites. It seems possible to render this high-temperature process as an isothermal process. Thermodynamics and kinetics of H2O splitting are largely controlled by the inherent redox properties of the materials. Interestingly, under the conditions of H2O splitting in the high-temperature process CO2 can also be decomposed to CO, providing a feasible method for generating the industrially important syngas (CO+H2). Although carbonate formation can be addressed as a hurdle during CO2 splitting, the problem can be avoided by a suitable choice of experimental conditions. The choice of the solar reactor holds the key for the commercialization of thermochemical fuel production. PMID:28522461

  15. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    NASA Astrophysics Data System (ADS)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  16. Stabilizing lithium metal using ionic liquids for long-lived batteries

    PubMed Central

    Basile, A.; Bhatt, A. I.; O'Mullane, A. P.

    2016-01-01

    Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652

  17. Fast formation cycling for lithium ion batteries

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Du, Zhijia; ...

    2017-01-09

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less

  18. Process for producing silicon

    DOEpatents

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  19. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  20. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  1. Effects of pretanning processes on bovine hide collagen structure

    USDA-ARS?s Scientific Manuscript database

    The US meat industry currently produces approximately 35 million cattle hides annually as its most valuable coproduct. These hides serve as raw material, first for the leather industry, and then for the gelatin, and biomaterials industries. The conversion of animal hides into leather is a multistep...

  2. Advanced electrolyte/additive for lithium-ion batteries with silicon anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuo; He, Meinan; Su, Chi-Cheung

    State-of-the-art lithium-ion batteries (LIBs) are based on a lithium transition metal oxide cathode, a graphite anode and a nonaqueous carbonate electrolyte. To further increase the energy and power density of LIBs, silicon anodes have been intensively explored due to their high theoretical capacity, low operation potential, and low cost. However, the main challenges for Si anode are the large volume change during lithiation/delithiation process and the instability of the solid-electrolyte-interphase associated with this process. Recently, significant progress has been achieved via advanced material fabrication technologies and rational electrolyte design in terms of improving the Coulombic efficiency and capacity retention. Inmore » this paper, new developments in advanced electrolyte and additive for LIBs with Si anode were systematically reviewed, and perspectives over future research were suggested.« less

  3. Stability with large step sizes for multistep discretizations of stiff ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Majda, George

    1986-01-01

    One-leg and multistep discretizations of variable-coefficient linear systems of ODEs having both slow and fast time scales are investigated analytically. The stability properties of these discretizations are obtained independent of ODE stiffness and compared. The results of numerical computations are presented in tables, and it is shown that for large step sizes the stability of one-leg methods is better than that of the corresponding linear multistep methods.

  4. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  5. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  6. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.

    PubMed

    Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens

    2014-07-07

    The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from mammalian cell homogenate.

  7. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J.; Folser, George R.; Pal, Uday B.; Singhal, Subhash C.

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  8. Effect of fabrication parameters on coating properties of tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating

    NASA Astrophysics Data System (ADS)

    Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul

    The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.

  9. Process for electrochemically gasifying coal

    DOEpatents

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  10. Studies of metals electroprocessing in molten salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1982-01-01

    Fluid flow patterns in molten salt electrolytes were observed in order to determine how mass transport affects the morphology of the metal deposit. Studies conducted on the same metal, both in aqueous electrolytes in which coherent solid electrodeposits are produced, as well as in transparent molten salt electrolytes are described. Process variables such as current density and composition of the electrolyte are adjusted to change the morphology of the electrodeposit and, thus, to permit the study of the nature of electrolyte flow in relation to the quality of the electrodeposit.

  11. Electrolyte chemistry control in electrodialysis processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Thomas D.; Severin, Blaine F.

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  12. Formation and evolution of anodic TiO2 nanotube embryos

    NASA Astrophysics Data System (ADS)

    Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei

    2017-06-01

    Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.

  13. Spectrophotometric studies and applications for the determination of Ni2+ in zinc-nickel alloy electrolyte

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    The absorption properties of zinc-nickel alloy electrolyte were studied by visible spectrophotometer. The results show that the relationship between the absorbance of the zinc-nickel alloy electrolyte and Ni2+ concentration in the electrolyte obeys Beer's law at 660 nm. In addition, other components except Ni2+ in the zinc-nickel alloy electrolyte such as zinc chloride, ammonium chloride, potassium chloride and boric acid have no obvious effect on the absorbance of zinc-nickel alloy electrolyte. Based on these properties, a new method is developed to determine Ni2+ concentration in zinc-nickel alloy electrolyte. Comparing with other methods, this method is simple, direct and accurate. Moreover, the whole testing process does not consume any reagent and dilution, and after testing, the electrolyte samples can be reused without any pollution to the environment.

  14. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.

  15. Developing a Mind-Body Exercise Programme for Stressed Children

    ERIC Educational Resources Information Center

    Wang, Claudia; Seo, Dong-Chul; Geib, Roy W

    2017-01-01

    Objective: To describe the process of developing a Health Qigong programme for stressed children using a formative evaluation approach. Methods: A multi-step formative evaluation method was utilised. These steps included (1) identifying programme content and drafting the curriculum, (2) synthesising effective and age-appropriate pedagogies, (3)…

  16. Analyzing multistep homogeneous nucleation in vapor-to-solid transitions using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Diemand, Jürg; Tanaka, Hidekazu; Angélil, Raymond

    2017-08-01

    In this paper, we present multistep homogeneous nucleations in vapor-to-solid transitions as revealed by molecular dynamics simulations on Lennard-Jones molecules, where liquidlike clusters are created and crystallized. During a long, direct N V E (constant volume, energy, and number of molecules) involving the integration of (1.9 -15 )× 106 molecules in up to 200 million steps (=4.3 μ s ), crystallization in many large, supercooled nanoclusters is observed once the liquid clusters grow to a certain size (˜800 molecules for the case of T ≃0.5 ɛ /k ). In the simulations, we discovered an interesting process associated with crystallization: the solid clusters lost 2-5 % of their mass during crystallization at low temperatures below their melting temperatures. Although the crystallized clusters were heated by latent heat, they were stabilized by cooling due to evaporation. The clusters crystallized quickly and completely except at surface layers. However, they did not have stable crystal structures, rather they had metastable structures such as icosahedral, decahedral, face-centered-cubic-rich (fcc-rich), and hexagonal-close-packed-rich (hcp-rich). Several kinds of cluster structures coexisted in the same size range of ˜1000 -5000 molecules. Our results imply that multistep nucleation is a common first stage of condensation from vapor to solid.

  17. Chemical modification of electrolytes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Vladimir N.; Grechin, Aleksandr G.

    2002-09-01

    Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.

  18. Use of Thermodynamic Modeling for Selection of Electrolyte for Electrorefining of Magnesium from Aluminum Alloy Melts

    NASA Astrophysics Data System (ADS)

    Gesing, Adam J.; Das, Subodh K.

    2017-02-01

    With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.

  19. Multistep fluorescence gated proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Weisskopf, Martin C.

    1990-01-01

    A proportional counter is introduced in which the levels of energy and spatial resolutions and background rejection permit the application of the device to X-ray astronomy. A multistep approach is employed in which photons cause a signal that triggers the system and measures the energy of the incident photon. The multistep approach permits good energy resolution from parallel geometry and from the imaging stage due to coupling of the imaging and amplification stages. The design also employs fluorescence gating to reduce background, a method that is compatible with the multistep technique. Use of the proportional counter is reported for NASA's supernova campaign, and the pair background is below 0.0001 counts/sq cm sec keV at the xenon k-edge. Potential improvements and applications are listed including the CASES, POF, and EXOSS mission programs.

  20. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    NASA Astrophysics Data System (ADS)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  1. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organicmore » separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.« less

  2. The MSFC large-area imaging multistep proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Weisskopf, M. C.; Joy, M. K.

    1989-01-01

    A large-area multistep imaging proportional counter that is being currently developed at the Marshall Space Flight Center is described. The device, known as a multistep fluorescence gated detector, consists of a multiwire proportional counter (MWPC) with a preamplification region. The MWCP features superior spatial resolution with a very high degree of background rejection. It is ideally suited for use in X-ray astronomy in 20-100 keV energy range. The paper includes the MWPC schematic and a list of instrument specifications.

  3. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  4. Structure-Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance.

    PubMed

    Kaiser, Mohammad Rejaul; Chou, Shulei; Liu, Hua-Kun; Dou, Shi-Xue; Wang, Chunsheng; Wang, Jiazhao

    2017-12-01

    Electrolytes, which are a key component in electrochemical devices, transport ions between the sulfur/carbon composite cathode and the lithium anode in lithium-sulfur batteries (LSBs). The performance of a LSB mostly depends on the electrolyte due to the dissolution of polysulfides into the electrolyte, along with the formation of a solid-electrolyte interphase. The selection of the electrolyte and its functionality during charging and discharging is intricate and involves multiple reactions and processes. The selection of the proper electrolyte, including solvents and salts, for LSBs strongly depends on its physical and chemical properties, which is heavily controlled by its molecular structure. In this review, the fundamental properties of organic electrolytes for LSBs are presented, and an attempt is made to determine the relationship between the molecular structure and the properties of common organic electrolytes, along with their effects on the LSB performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  6. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    PubMed

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  7. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  8. Microscopic dynamics research on the "mature" process of dye-sensitized solar cells after injection of highly concentrated electrolyte.

    PubMed

    Liang, Zhongguan; Liu, Weiqing; Chen, Jun; Hu, Linhua; Dai, Songyuan

    2015-01-21

    After injection of electrolyte, the internal three-dimensional solid-liquid penetration system of dye-sensitized solar cells (DSCs) can take a period of time to reach "mature" state. This paper studies the changes of microscopic processes of DSCs including TiO2 energy-level movement, localized state distribution, charge accumulation, electron transport, and recombination dynamics, from the beginning of electrolyte injection to the time of reached mature state. The results show that the microscopic dynamics process of DSCs exhibited a time-dependent behavior and achieved maturity ∼12 h after injecting the electrolyte into DSCs. Within 0-12 h, several results were observed: (1) the conduction band edge of TiO2 moved slightly toward negative potential direction; (2) the localized states in the band gap of TiO2 was reduced according to the same distribution law; (3) the transport resistance in TiO2 film increased, and electron transport time was prolonged as the time of maturity went on, which indicated that the electron transport process is impeded gradually; (4) the recombination resistance at the TiO2/electrolyte (EL) interface increases, and electron lifetime gradually extends, therefore, the recombination process is continuously suppressed. Furthermore, results suggest that the parameters of EL/Pt-transparent conductive oxide (TCO) interface including the interfacial capacitance, electron-transfer resistance, and transfer time constant would change with time of maturity, indicating that the EL/Pt-TCO interface is a potential factor affecting the mature process of DSCs.

  9. Electrochemistry of the Hall-Heroult Process for Aluminum Smelting.

    ERIC Educational Resources Information Center

    Haupin, W. E.

    1983-01-01

    Nearly all aluminum is produced by the electrolysis of alumina dissolved in a molten cryolite-based electrolyte, the Hall-Heroult Process. Various aspects of the procedure are discussed, focusing on electrolyte chemistry, dissolution of alumina, electrode reactions, current efficiency, and cell voltage. Suggestions for graduate study related to…

  10. Light emission from organic single crystals operated by electrolyte doping

    NASA Astrophysics Data System (ADS)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  11. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  12. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix

    USDA-ARS?s Scientific Manuscript database

    Metastatic dissemination is a multi-step process that depends on cancer cells’ ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it dec...

  13. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  14. Development of Active Learning with Simulations and Games

    ERIC Educational Resources Information Center

    Zapalska, Alina; Brozik, Dallas; Rudd, Denis

    2012-01-01

    Educational games and simulations are excellent active learning tools that offer students hands-on experience. Little research is available on developing games and simulations and how teachers can be assisted in making their own games and simulations. In this context, the paper presents a multi-step process of how to develop games and simulations…

  15. Chemical Research Writing: A Preparatory Course for Student Capstone Research

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Hughes, Laura A.

    2006-01-01

    A research writing course was developed to prepare chemistry majors to conduct and report on their capstone research projects. The course guides students through a multistep process of preparing a literature review and research proposal. Students learn how to identify and avoid plagiarism, critically read and summarize a scientific article,…

  16. Home Language Survey Data Quality Self-Assessment. REL 2017-198

    ERIC Educational Resources Information Center

    Henry, Susan F.; Mello, Dan; Avery, Maria-Paz; Parker, Caroline; Stafford, Erin

    2017-01-01

    Most state departments of education across the United States recommend or require that districts use a home language survey as the first step in a multistep process of identifying students who qualify for English learner student services. School districts typically administer the home language survey to parents and guardians during a student's…

  17. Scholastic Audits. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2009-01-01

    What is a scholastic audit? The purpose of the audit is to assist individual schools and districts improve. The focus is on gathering data and preparing recommendations that can be used to guide school improvement initiatives. Scholastic audits use a multi-step approach and include: (1) Preparing for the Audit; (2) Audit process; (3) Audit report;…

  18. 78 FR 36525 - Fisheries of the Atlantic and the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ...) Atlantic Sharpnose (Rhizoprionodon terraenovae) and Bonnethead (Sphyrna tiburo) sharks. SUMMARY: The SEDAR 34 assessment of HMS Atlantic Sharpnose and Bonnethead sharks will consist of an in-person workshop... for determining the status of fish stocks in the Southeast Region. SEDAR is a multi-step process...

  19. Numerical simulation of machining distortions on a forged aerospace component following a one and a multi-step approaches

    NASA Astrophysics Data System (ADS)

    Prete, Antonio Del; Franchi, Rodolfo; Antermite, Fabrizio; Donatiello, Iolanda

    2018-05-01

    Residual stresses appear in a component as a consequence of thermo-mechanical processes (e.g. ring rolling process) casting and heat treatments. When machining these kinds of components, distortions arise due to the redistribution of residual stresses due to the foregoing process history inside the material. If distortions are excessive, they can lead to a large number of scrap parts. Since dimensional accuracy can affect directly the engines efficiency, the dimensional control for aerospace components is a non-trivial issue. In this paper, the problem related to the distortions of large thin walled aeroengines components in nickel superalloys has been addressed. In order to estimate distortions on inner diameters after internal turning operations, a 3D Finite Element Method (FEM) analysis has been developed on a real industrial test case. All the process history, has been taken into account by developing FEM models of ring rolling process and heat treatments. Three different strategies of ring rolling process have been studied and the combination of related parameters which allows to obtain the best dimensional accuracy has been found. Furthermore, grain size evolution and recrystallization phenomena during manufacturing process has been numerically investigated using a semi empirical Johnson-Mehl-Avrami-Kohnogorov (JMAK) model. The volume subtractions have been simulated by boolean trimming: a one step and a multi step analysis have been performed. The multi-step procedure has allowed to choose the best material removal sequence in order to reduce machining distortions.

  20. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  1. Cross-cultural adaptation of instruments assessing breastfeeding determinants: a multi-step approach

    PubMed Central

    2014-01-01

    Background Cross-cultural adaptation is a necessary process to effectively use existing instruments in other cultural and language settings. The process of cross-culturally adapting, including translation, of existing instruments is considered a critical set to establishing a meaningful instrument for use in another setting. Using a multi-step approach is considered best practice in achieving cultural and semantic equivalence of the adapted version. We aimed to ensure the content validity of our instruments in the cultural context of KwaZulu-Natal, South Africa. Methods The Iowa Infant Feeding Attitudes Scale, Breastfeeding Self-Efficacy Scale-Short Form and additional items comprise our consolidated instrument, which was cross-culturally adapted utilizing a multi-step approach during August 2012. Cross-cultural adaptation was achieved through steps to maintain content validity and attain semantic equivalence in the target version. Specifically, Lynn’s recommendation to apply an item-level content validity index score was followed. The revised instrument was translated and back-translated. To ensure semantic equivalence, Brislin’s back-translation approach was utilized followed by the committee review to address any discrepancies that emerged from translation. Results Our consolidated instrument was adapted to be culturally relevant and translated to yield more reliable and valid results for use in our larger research study to measure infant feeding determinants effectively in our target cultural context. Conclusions Undertaking rigorous steps to effectively ensure cross-cultural adaptation increases our confidence that the conclusions we make based on our self-report instrument(s) will be stronger. In this way, our aim to achieve strong cross-cultural adaptation of our consolidated instruments was achieved while also providing a clear framework for other researchers choosing to utilize existing instruments for work in other cultural, geographic and population settings. PMID:25285151

  2. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Chen, Yan; Hood, Zachary D.

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  4. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films

    DOE PAGES

    Leng, X.; Bozovic, I.; Bollinger, A. T.

    2016-08-10

    Epitaxial indium tin oxide films have been grown on both LaAlO 3 and yttria-stabilized zirconia substrates using RF magnetron sputtering. Electrolyte gating causes a large change in the film resistance that occurs immediately after the gate voltage is applied, and shows no hysteresis during the charging/discharging processes. When two devices are patterned next to one another and the first one gated through an electrolyte, the second one shows no changes in conductance, in contrast to what happens in materials (like tungsten oxide) susceptible to ionic electromigration and intercalation. These findings indicate that electrolyte gating in indium tin oxide triggers amore » pure electronic process (electron depletion or accumulation, depending on the polarity of the gate voltage), with no electrochemical reactions involved. Electron accumulation occurs in a very thin layer near the film surface, which becomes highly conductive. These results contribute to our understanding of the electrolyte gating mechanism in complex oxides and may be relevant for applications of electric double layer transistor devices.« less

  5. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

    NASA Astrophysics Data System (ADS)

    de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano

    2018-04-01

    Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.

  6. InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.

    2013-08-01

    We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.

  7. Progress on BN and Doped-BN Coatings on Woven Fabrics

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Scott, John M.; Chayka, Paul V.

    2001-01-01

    A novel, multistep process for applying interface coatings to woven structures using a pulsed CVD process is being evaluated. Borazine (B3N3H6), a neat liquid, and several Si precursors are used in the process to produce BN and SiBN coatings on Hi- Nicalon fabrics and preforms. A three variable, two level, full factorial matrix is proposed to define the influence of processing parameters. Coating morphology, uniformity and chemistry are characterized by field emission scanning electron microscopy (FESEM), energy dispersive (EDS) and Auger spectroscopies.

  8. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    PubMed

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multi-step rhodopsin inactivation schemes can account for the size variability of single photon responses in Limulus ventral photoreceptors

    PubMed Central

    1994-01-01

    Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process. PMID:8057085

  10. ELECTROLYTIC SEPARATION PROCESS AND APPARATUS

    DOEpatents

    McLain, M.E. Jr.; Roberts, M.W.

    1962-03-01

    A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

  11. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  12. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  13. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  14. Electrolytic pretreatment unit gaseous effluent conditioning

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1976-01-01

    The electrolytic pretreatment of urine is an advanced process that eliminates the need for handling and storing the highly corrosive chemicals that are normally used in water reclamation systems. The electrolytic pretreatment process also converts the organic materials in urine to gases (N2 and O2) that can be used to replenish those lost to space by leakage, venting, and air lock operations. The electrolytic process is more than a pretreatment, since it decreases the urine solids content by approximately one third, thus reducing the load and eventual solids storage requirements of the urine processing system. The evolved gases from the pretreatment step cannot, however, be returned directly to the atmosphere of a spacecraft without first removing several impurities including hydrogen, chlorine, and certain organic compounds. A treatment concept was developed that would decrease the impurities in the gas stream that emanates from an electrolysis unit to levels sufficiently low to allow the conditioned gas stream to be safely discharged to a spacecraft atmosphere. Two methods were experimentally demonstrated that can accomplish the desired cleanup. The bases of the two methods are, repectively: (1) raw urine scrubbing and (2) silica gel sorption.

  15. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  16. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    DTIC Science & Technology

    2016-03-25

    electrochemical reaction rates of processes that drive corrosion, e.g. the oxygen reduction reaction (ORR). To this end, we have used reactive...elements on the kinetics of oxygen reduction reaction catalyzed on titanium oxide in order to develop new approaches for controlling galvanic corrosion... consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte

  17. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A multi-step approach for testing non-toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity.

    PubMed

    Zecher, Karsten; Aitha, Vishwa Prasad; Heuer, Kirsten; Ahlers, Herbert; Roland, Katrin; Fiedel, Michael; Philipp, Bodo

    2018-03-01

    Marine biofouling on artificial surfaces such as ship hulls or fish farming nets causes enormous economic damage. The time for the developmental process of antifouling coatings can be shortened by reliable laboratory assays. For designing such test systems, it is important that toxic effects can be excluded, that multiple parameters can be addressed simultaneously and that mechanistic aspects can be included. In this study, a multi-step approach for testing antifouling coatings was established employing photoautotrophic biofilm formation of marine microorganisms in micro- and mesoscoms. Degree and pattern of biofilm formation was determined by quantification of chlorophyll fluorescence. For the microcosms, co-cultures of diatoms and a heterotrophic bacterium were exposed to fouling-release coatings. For the mesocosms, a novel device was developed that permits parallel quantification of a multitude of coatings under defined conditions with varying degrees of shear stress. Additionally, the antifouling coatings were tested for leaching of potential compounds and finally tested in sea trials. This multistep-approach revealed that the individual steps led to consistent results regarding antifouling activity of the coatings. Furthermore, the novel mesocosm system can be employed for advanced antifouling analysis including metagenomic approaches for determination of microbial diversity attaching to different coatings under changing shear forces. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOEpatents

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  20. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation.

    PubMed

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-08-01

    Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to the research article "Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus" (van Hengel et al., 2017) [1].

  1. The Reality of Welfare-to-Work: Employment Opportunities for Women Affected by Welfare Time Limits in Texas.

    ERIC Educational Resources Information Center

    Lawson, Leslie O.; King, Christopher T.

    Researchers assembled a database of current and projected information on the following: welfare recipients; other female participants in the labor market; employment, occupational availability, and job openings; and occupational characteristics. The database was used in a multistep process to project the number of women forced to leave welfare…

  2. 76 FR 103 - Fisheries of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... have implemented the Southeast Data, Assessment and Review (SEDAR) process, a multi-step method for... Workshop Schedule February 14-17, 2011; SEDAR 22 Review Workshop February 14, 2010: 1 p.m.-8 p.m.; February... the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Public Meeting AGENCY: National...

  3. 77 FR 16812 - Fisheries of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...: Notice of SEDAR 29 assessment webinars for Highly Migratory Species (HMS) blacktip shark (Carcharhinus limbatus). SUMMARY: The SEDAR 29 assessment of HMS blacktip shark will consist of a workshop and series of... Review (SEDAR) process, a multi-step method for determining the status of fish stocks in the Southeast...

  4. 78 FR 34046 - Fisheries of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Bonnethead sharks. SUMMARY: The SEDAR assessment of the HMS stocks of Atlantic Sharpnose and Bonnethead sharks will consist of one workshop and a series of Webinars. See SUPPLEMENTARY INFORMATION. DATES: The... status of fish stocks in the Southeast Region. SEDAR is a multi-step process including: (1) Data...

  5. Research to Go: Taking an Information Literacy Credit Course Online

    ERIC Educational Resources Information Center

    Long, Jessica; Burke, John J.; Tumbleson, Beth

    2012-01-01

    Adapting an existing face-to-face information literacy course that teaches undergraduates how to successfully conduct research and creating an online or hybrid version is a multi-step process. It begins with a desire to reach more students and help them achieve academic success. The primary learning outcomes for any information literacy course are…

  6. Multistep process to produce fermentable sugars and lignosulfonates from softwood enzymolysis residues

    Treesearch

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2016-01-01

    The residual solids from enzymatic hydrolysis are usually burned to produce energy and have been explored as a feedstock for various products including activated carbon and lignin based polymers. These products require additional procedures unrelated to the existing biorefinery equipment. In the current study, we proposed successive sulfite treatments to utilize the...

  7. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Chen, Zhaohui; Lu, Gang

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings canmore » shed light on other transition metal nitride-based electrochemical energy storage systems.« less

  8. Description of bioremediation of soils using the model of a multistep system of microorganisms

    NASA Astrophysics Data System (ADS)

    Lubysheva, A. I.; Potashev, K. A.; Sofinskaya, O. A.

    2018-01-01

    The paper deals with the development of a mathematical model describing the interaction of a multi-step system of microorganisms in soil polluted with oil products. Each step in this system uses products of vital activity of the previous step to feed. Six different models of the multi-step system are considered. The equipping of the models with coefficients was carried out from the condition of minimizing the residual of the calculated and experimental data using an original algorithm based on the Levenberg-Marquardt method in combination with the Monte Carlo method for the initial approximation finding.

  9. Error behavior of multistep methods applied to unstable differential systems

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1977-01-01

    The problem of modeling a dynamic system described by a system of ordinary differential equations which has unstable components for limited periods of time is discussed. It is shown that the global error in a multistep numerical method is the solution to a difference equation initial value problem, and the approximate solution is given for several popular multistep integration formulas. Inspection of the solution leads to the formulation of four criteria for integrators appropriate to unstable problems. A sample problem is solved numerically using three popular formulas and two different stepsizes to illustrate the appropriateness of the criteria.

  10. Health effects of desalinated water: Role of electrolyte disturbance in cancer development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nriagu, Jerome, E-mail: jnriagu@umich.edu

    This review contends that “healthy” water in terms of electrolyte balance is as important as “pure” water in promoting public health. It considers the growing use of desalination (demineralization) technologies in drinking water treatment which often results in tap water with very low concentrations of sodium, potassium, magnesium and calcium. Ingestion of such water can lead to electrolyte abnormalities marked by hyponatremia, hypokalemia, hypomagnesemia and hypocalcemia which are among the most common and recognizable features in cancer patients. The causal relationships between exposure to demineralized water and malignancies are poorly understood. This review highlights some of the epidemiological and inmore » vivo evidence that link dysregulated electrolyte metabolism with carcinogenesis and the development of cancer hallmarks. It discusses how ingestion of demineralized water can have a procarcinogenic effect through mediating some of the critical pathways and processes in the cancer microenvironment such as angiogenesis, genomic instability, resistance to programmed cell death, sustained proliferative signaling, cell immortalization and tumorigenic inflammation. Evidence that hypoosmotic stress-response processes can upregulate a number of potential oncogenes is well supported by a number studies. In view of the rising production and consumption of demineralized water in most parts of the world, there is a strong need for further research on the biological importance and protean roles of electrolyte abnormalities in promoting, antagonizing or otherwise enabling the development of cancer. The countries of the Gulf Cooperative Council (GCC) where most people consume desalinated water would be a logical place to start this research. - Highlights: • Ingestion of low-mineral waters disrupts electrolyte homeostasis and cellular processes. • Electrolyte imbalance can affect the tumor microenvironment and many stages of tumorigenesis. • Electrolyte disturbance is frequently encountered in patients with malignancies. • Desalinated water consumption and cancer rates are rising in Persian Gulf countries “Balanced water” can be as important as balanced diet in safeguarding our health.« less

  11. Multistep estimators of the between-study variance: The relationship with the Paule-Mandel estimator.

    PubMed

    van Aert, Robbie C M; Jackson, Dan

    2018-04-26

    A wide variety of estimators of the between-study variance are available in random-effects meta-analysis. Many, but not all, of these estimators are based on the method of moments. The DerSimonian-Laird estimator is widely used in applications, but the Paule-Mandel estimator is an alternative that is now recommended. Recently, DerSimonian and Kacker have developed two-step moment-based estimators of the between-study variance. We extend these two-step estimators so that multiple (more than two) steps are used. We establish the surprising result that the multistep estimator tends towards the Paule-Mandel estimator as the number of steps becomes large. Hence, the iterative scheme underlying our new multistep estimator provides a hitherto unknown relationship between two-step estimators and Paule-Mandel estimator. Our analysis suggests that two-step estimators are not necessarily distinct estimators in their own right; instead, they are quantities that are closely related to the usual iterative scheme that is used to calculate the Paule-Mandel estimate. The relationship that we establish between the multistep and Paule-Mandel estimator is another justification for the use of the latter estimator. Two-step and multistep estimators are perhaps best conceptualized as approximate Paule-Mandel estimators. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  12. Multi-step routes of capuchin monkeys in a laser pointer traveling salesman task.

    PubMed

    Howard, Allison M; Fragaszy, Dorothy M

    2014-09-01

    Prior studies have claimed that nonhuman primates plan their routes multiple steps in advance. However, a recent reexamination of multi-step route planning in nonhuman primates indicated that there is no evidence for planning more than one step ahead. We tested multi-step route planning in capuchin monkeys using a pointing device to "travel" to distal targets while stationary. This device enabled us to determine whether capuchins distinguish the spatial relationship between goals and themselves and spatial relationships between goals and the laser dot, allocentrically. In Experiment 1, two subjects were presented with identical food items in Near-Far (one item nearer to subject) and Equidistant (both items equidistant from subject) conditions with a laser dot visible between the items. Subjects moved the laser dot to the items using a joystick. In the Near-Far condition, one subject demonstrated a bias for items closest to self but the other subject chose efficiently. In the second experiment, subjects retrieved three food items in similar Near-Far and Equidistant arrangements. Both subjects preferred food items nearest the laser dot and showed no evidence of multi-step route planning. We conclude that these capuchins do not make choices on the basis of multi-step look ahead strategies. © 2014 Wiley Periodicals, Inc.

  13. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    NASA Astrophysics Data System (ADS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-12-01

    A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000-12,000 K and 2 × 1022 m-3-1.4 × 1023 m-3. The atomic ionization degrees of iron, carbon and boron are 10-16-10-3, and 10-23-10-6, 10-19-10-4, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  14. Magsonic™ Carbothermal Technology Compared with the Electrolytic and Pidgeon Processes

    NASA Astrophysics Data System (ADS)

    Prentice, Leon H.; Haque, Nawshad

    A broad technology comparison of carbothermal magnesium production with present technologies has not been previously presented. In this paper a comparative analysis of CSIRO's MagSonic™ process is made with the electrolytic and Pidgeon processes. The comparison covers energy intensity (GJ/tonne Mg), labor intensity (person-hours/tonne Mg), capital intensity (USD/tonne annual Mg installed capacity), and Global Warming Potential (GWP, tonnes CO2-equivalent/tonne Mg). Carbothermal technology is advantageous on all measures except capital intensity (where it is roughly twice the capital cost of a similarly-sized Pidgeon plant). Carbothermal and electrolytic production can have comparatively low environmental impacts, with typical emissions one-sixth those of the Pidgeon process. Despite recent progress, the Pidgeon process depends upon abundant energy and labor combined with few environmental constraints. Pressure is expected to increase on environmental constraints and labor and energy costs over the coming decade. Carbothermal reduction technology appears to be competitive for future production.

  15. Study on electrochemically deposited Mg metal

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki

    An electrodeposition process of magnesium metal from Grignard reagent based electrolyte was studied by comparing with lithium. The electrodeposition of magnesium was performed at various current densities. The obtained magnesium deposits did not show dendritic morphologies while all the lithium deposits showed dendritic products. Two different crystal growth modes in the electrodeposition process of magnesium metal were confirmed by an observation using scanning electron micro scope (SEM) and a crystallographic analysis using X-ray diffraction (XRD). An electrochemical study of the deposition/dissolution process of the magnesium showed a remarkable dependency of the overpotential of magnesium deposition on the electrolyte concentration compared with lithium. This result suggests that the dependency of the overpotential on the electrolyte concentration prevent the locally concentrated current resulting to form very uniform deposits.

  16. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-05-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO4) solution (Process 1), and ethylene glycol (EG) mixture with HClO4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25-600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m2 g-1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes.

  17. Polymer Electrolyte Through Enzyme Catalysis for High Performance Lithium-Ion Batteries

    DTIC Science & Technology

    1998-10-16

    by block number) FIELD GROUP SUB-GROUP Polymer Electrolyte, Solid State, Enzyme Catalysis, Lithium - Ion Battery , Sol Gel, High Conductivity 19...excellent candidates for lithium - ion battery development. Furthermore, the processes used to achieve the final product yield very good mechanical properties...Objectives This research was initiated to investigate synthesis of improved polymer electrolytes for lithium - ion battery applications. The overall

  18. Solvent recyclability in a multistep direct liquefaction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetland, M.D.; Rindt, J.R.

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken tomore » produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.« less

  19. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  20. Bi-Sr-Ca-Cu-O and Pb-Bi-Sr-Ca-Cu-O superconductor films via an electrodeposition process

    NASA Astrophysics Data System (ADS)

    Maxfield, M.; Eckhardt, H.; Iqbal, Z.; Reidinger, F.; Baughman, R. H.

    1989-05-01

    A novel electrochemical process has been developed for the formation of superconducting films. Using this process, superconducting films of Bi2Sr2Ca1Cu2O8 and (Pb,Bi)2Sr2Ca1Cu2O8 have been formed. The process consists of simultaneously depositing the metallic constituents of the superconductor from a single electrolyte, and thermally oxidizing the resulting precursors film to form the superconducting phase. Application of -4 to -5 V vs Ag/Ag(+) to a conductive cathode substrate which is immersed in an electrolyte containing salts of all of the metals reduces the metal cations, causing then to deposit on the cathode as a metallic film precursor. Precursor films having desired stoichiometries were obtained by regulating the electrolyte bath composition.

  1. Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process

    NASA Astrophysics Data System (ADS)

    Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.

    A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.

  2. A transition from using multi-step procedures to a fully integrated system for performing extracorporeal photopheresis: A comparison of costs and efficiencies.

    PubMed

    Azar, Nabih; Leblond, Veronique; Ouzegdouh, Maya; Button, Paul

    2017-12-01

    The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos ® CELLEX ® fully integrated system in 2012. This report summarizes our single-center experience of transitioning from the use of multi-step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. The total number of ECP procedures performed 2011-2015 was derived from department records. The time taken to complete a single ECP treatment using a multi-step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time-driven activity-based costing methods were applied to provide a cost comparison. The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi-step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per-session cost of performing ECP using the multi-step procedure was greater than with the CELLEX ® system (€1,429.37 and €1,264.70 per treatment, respectively). For hospitals considering a transition from multi-step procedures to fully integrated methods for ECP where cost may be a barrier, time-driven activity-based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX ® allow for more patient treatments per year. © 2017 The Authors Journal of Clinical Apheresis Published by Wiley Periodicals, Inc.

  3. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    NASA Astrophysics Data System (ADS)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  4. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price. Advancements of this nonaqueous aluminum plating process have the potential to lead to a novel and competitive commercial aluminum deposition process. In this investigation aluminum electrodeposition from ionic liquid based electrolytes onto steel, copper and magnesium substrates without conversion coatings or strike layers was evaluated in six different ionic liquid based electrolytes in two technical setups. Three of which are commercially available aluminum plating electrolytes, three of which, discussed in literature were created on site by research personnel in the laboratory. The three commercially available electrolytes were: 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, 1-Ethyl-3-methylimidazolium chloride ([EMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, and BasionicsTM AL-02, an aluminum plating electrolyte containing [EMIm]Cl * 1.5 AlCl3 with additives from BASF. The three electrolytes created on site were based on the 1-ethyl-3-methylimidazolium chloride ionic liquid with added 1.5 AlCl3 and one with added sodium dodecyl sulfate. Small scale plating tests in a 25-mL plating cell were conducted to provide a comparative analysis of the six different electrolytes considered. From these investigations, two were chosen to be evaluated in a larger 1-liter plating cell; designed and constructed to provide a more realistic evaluation of plating parameters with selected electrolytes to better portray industrial electroplating conditions. The effect of current density (10-40 mA/cm 2), temperature (30-90° Celsius) and plating bath agitation on current efficiency, corrosion resistance by the ASTM B117 method, adhesion, microstructure, and chemical composition (evaluated with energy-dispersive x-ray spectroscopy) of the plated Al-layer was explored in both the 25-mL and 1-L plating cell investigations. In addition development of pre- and post-treatment processes for the metal substrates was attempted. While previous investigations focused on one or two of these topics, this research seeks to investigate all discussed phenomena and characteristics. Additionally, there is little research that reports on the adhesion performance of aluminum coatings from ionic liquids. Also, corrosion investigations are limited to all but a few publications. So too, the deposition of aluminum in a larger, more realistic plating cell has never been thoroughly investigated. This is key if a practical application of the technology is ever to be realized. In sum, correlations were drawn between electrolyte, current density, temperature and bath agitation with quality and characteristic of electrodeposited aluminum layers. The overriding goal to create an acceptably competitive aluminum coating process to replace cadmium and compete with other commercial aluminum deposition processes was not successful. Competitiveness was evaluated as per the discussed characteristics and so also, by a comparison to physical samples created in a more realistic plating cell to AlumiPlate aluminum coatings.

  5. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    PubMed

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  6. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes

    PubMed Central

    2018-01-01

    Electrodeposition is a widely practiced method for creating metal, colloidal, and polymer coatings on conductive substrates. In the Newtonian liquid electrolytes typically used, the process is fundamentally unstable. The underlying instabilities have been linked to failure of microcircuits, dendrite formation on battery electrodes, and overlimiting conductance in ion-selective membranes. We report that viscoelastic electrolytes composed of semidilute solutions of very high–molecular weight neutral polymers suppress these instabilities by multiple mechanisms. The voltage window ΔV in which a liquid electrolyte can operate free of electroconvective instabilities is shown to be markedly extended in viscoelastic electrolytes and is a power-law function, ΔV : η1/4, of electrolyte viscosity, η. This power-law relation is replicated in the resistance to ion transport at liquid/solid interfaces. We discuss consequences of our observations and show that viscoelastic electrolytes enable stable electrodeposition of many metals, with the most profound effects observed for reactive metals, such as sodium and lithium. This finding is of contemporary interest for high-energy electrochemical energy storage. PMID:29582017

  7. Electrolytic decontamination of conductive materials

    NASA Astrophysics Data System (ADS)

    Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.

    1994-10-01

    Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.

  8. Micellar Electrolytes in Organic Electrochemical Transistors

    NASA Astrophysics Data System (ADS)

    Cicoira, Fabio; Giuseppe, Tarabella; Nanda, Gaurav; Iannotta, Salvatore; Santato, Clara

    2012-02-01

    Organic electrochemical transistors (OECTs) are promising for applications in sensing and bioelectronics. OECTs consist of a conducting polymer film (transistor channel) in contact with an electrolyte. A gate electrode immersed in the electrolyte controls the doping/dedoping level of the conducting polymer. OECTs can be operated in aqueous electrolytes, making possible the implementation of organic electronic materials at the interface with biology. The inherent signal amplification of OECTs has the potential to yield sensors with low detection limits and high sensitivity. In this talk we will present recent studies on OECTs using ionic surfactants (such as hexadecyl-trimethyl-ammonium bromide) as electrolytes. As the conducting polymer we used PEDOT:PSS, i.e. (Poly,3-4 ethylenedioxythiopene) doped with Poly(styrene sulphonate). Interestingly, ionic surfactant electrolytes result in large transistor current modulation, especially beyond the critical micellar concentration (CMC). Since micelles play a primary role in biological processes and drug-delivery systems, the use for micellar electrolytes opens new exciting opportunities for the use of OECTs in bioelectronics.

  9. An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure

    DOE PAGES

    Wang, Hui; Chen, Yan; Hood, Zachary D.; ...

    2016-01-01

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  10. Steel refining with an electrochemical cell

    DOEpatents

    Blander, M.; Cook, G.M.

    1988-05-17

    Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.

  11. Steel refining with an electrochemical cell

    DOEpatents

    Blander, M.; Cook, G.M.

    1985-05-21

    Disclosed is an apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  12. Steel refining with an electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1988-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  13. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  14. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  15. Continuous track paths reveal additive evidence integration in multistep decision making.

    PubMed

    Buc Calderon, Cristian; Dewulf, Myrtille; Gevers, Wim; Verguts, Tom

    2017-10-03

    Multistep decision making pervades daily life, but its underlying mechanisms remain obscure. We distinguish four prominent models of multistep decision making, namely serial stage, hierarchical evidence integration, hierarchical leaky competing accumulation (HLCA), and probabilistic evidence integration (PEI). To empirically disentangle these models, we design a two-step reward-based decision paradigm and implement it in a reaching task experiment. In a first step, participants choose between two potential upcoming choices, each associated with two rewards. In a second step, participants choose between the two rewards selected in the first step. Strikingly, as predicted by the HLCA and PEI models, the first-step decision dynamics were initially biased toward the choice representing the highest sum/mean before being redirected toward the choice representing the maximal reward (i.e., initial dip). Only HLCA and PEI predicted this initial dip, suggesting that first-step decision dynamics depend on additive integration of competing second-step choices. Our data suggest that potential future outcomes are progressively unraveled during multistep decision making.

  16. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOEpatents

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  17. Mechanisms for naphthalene removal during electrolytic aeration.

    PubMed

    Goel, Ramesh K; Flora, Joseph R V; Ferry, John

    2003-02-01

    Batch tests were performed to investigate chemical and physical processes that may result during electrolytic aeration of a contaminated aquifer using naphthalene as a model contaminant. Naphthalene degradation of 58-66% took place electrolytically and occurred at the same rates at a pH of 4 and 7. 1,4-naphthoquinone was identified as a product of the electrolysis. Stripping due to gases produced at the electrodes did not result in any naphthalene loss. Hydrogen peroxide (which may be produced at the cathode) did not have any effect on naphthalene, but the addition of ferrous iron (which may be present in aquifers) resulted in 67-99% disappearance of naphthalene. Chlorine (which may be produced from the anodic oxidation of chloride) can effectively degrade naphthalene at pH of 4, but not at a pH of 7. Mono-, di- and poly chloronaphthalenes were identified as oxidation products. Ferric iron coagulation (due to the oxidation of ferrous iron) did not significantly contribute to naphthalene loss. Overall, electrolytic oxidation and chemical oxidation due to the electrolytic by-products formed are significant abiotic processes that could occur and should be accounted for if bioremediation of PAH-contaminated sites via electrolytic aeration is considered. Possible undesirable products such as chlorinated compounds may be formed when significant amounts of chlorides are present.

  18. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    PubMed

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  19. In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Zhang, Yanyan; Liu, Bingwen

    The in situ molecular characterization of reaction intermediates and products at electrode-electrolyte interfaces is central to mechanistic studies of complex electrochemical processes, yet a great challenge. The coupling of electrochemistry (EC) and mass spectrometry (MS) has seen rapid development and found broad applicability in tackling challenges in analytical and bioanalytical chemistry. However, few truly in situ and real-time EC-MS studies have been reported at electrode-electrolyte interfaces. An innovative EC-MS coupling method named in situ liquid secondary ion mass spectrometry (SIMS) was recently developed by combining SIMS with a vacuum compatible microfluidic electrochemical device. Using this novel capability we report themore » first in situ elucidation of the electro-oxidation mechanism of a biologically significant organic compound, ascorbic acid (AA), at the electrode-electrolyte interface. The short-lived radical intermediate was successfully captured, which had not been detected directly before. Moreover, we demonstrated the power of this new technique in real-time monitoring of the formation and dynamic evolution of electrical double layers at the electrode-electrolyte interface. This work suggests further promising applications of in situ liquid SIMS in studying more complex chemical and biological events at the electrode-electrolyte interface.« less

  20. Treatment of electrochemical cell components with lithium tetrachloroaluminate (LiAlCl.sub.4) to promote electrolyte wetting

    DOEpatents

    Eberhart, James G.; Battles, James E.

    1980-01-01

    Electrochemical cell components such as interelectrode separators, retaining screens and current collectors are contacted with lithium tetrachloroaluminate prior to contact with molten electrolytic salt to improve electrolyte wetting. The LiAlCl.sub.4 can be applied in powdered, molten or solution form but, since this material has a lower melting point than the electrolytic salt used in high-temperature cells, the powdered LiAlCl.sub.4 forms a molten flux prior to contact by the molten electrolyte when both materials are initially provided in solid form. Components of materials such as boron nitride and other materials which are difficult to wet with molten salts are advantageously treated by this process.

  1. Operating a redox flow battery with a negative electrolyte imbalance

    DOEpatents

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  2. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra

    NASA Astrophysics Data System (ADS)

    Rogov, A. B.; Shayapov, V. R.

    2017-02-01

    In this paper, the influence of cationic electrolytes composition on electrical and optical responses of plasma electrolytic oxidation process of A1050 aluminum alloy under alternating polarization is considered. The electrolytes consist of 0.1 M boric acid with addition of one of the following hydroxides: LiOH, NaOH, KOH, tetraethylammonium hydroxide, Ca(OH)2 up to pH value 9.2. Coatings microstructure, elemental and phase compositions were studied by SEM, EDS and XRD. It was shown that the hysteresis of anodic current-voltage curve (specific feature of "Soft sparking" PEO) was clear observed in the presence of sodium and potassium cations. It was found that composition of microdischarges plasma is also affected by the nature of the cations. It was shown that there are a number of reciprocal processes, which take place under anodic and cathodic polarization.

  3. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.

    PubMed

    Ohba, Tomonori

    2014-02-24

    An understanding of the structure and behavior of electrolyte solutions in nanoenvironements is crucial not only for a wide variety of applications, but also for the development of physical, chemical, and biological processes. We demonstrate the structure and stability of electrolyte in carbon nanotubes using hybrid reverse Monte Carlo simulations of X-ray diffraction patterns. Hydrogen bonds between water are adequately formed in carbon nanotubes, although some hydrogen bonds are restricted by the interfaces of carbon nanotubes. The hydrogen bonding network of water in electrolyte in the carbon nanotubes is further weakened. On the other hand, formation of the ion hydration shell is significantly enhanced in the electrolyte in the carbon nanotubes in comparison to ion hydration in bulk electrolyte. The significant hydrogen bond and hydration shell formation are a result of gaining stability in the hydrophobic nanoenvironment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI

    NASA Astrophysics Data System (ADS)

    Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano

    2017-06-01

    The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.

  5. Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.

    2018-01-01

    Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.

  6. The Use of Novel Camtasia Videos to Improve Performance of At-Risk Students in Undergraduate Physiology Courses

    ERIC Educational Resources Information Center

    Miller, Cynthia J.

    2014-01-01

    Students in undergraduate physiology courses often have difficulty understanding complex, multi-step processes, and these concepts consume a large portion of class time. For this pilot study, it was hypothesized that online multimedia resources may improve student performance in a high-risk population and reduce the in-class workload. A narrated…

  7. 77 FR 11066 - Fisheries of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ...: Notice of SEDAR Data/Assessment Workshop for Highly Migratory Species (HMS) blacktip sharks. SUMMARY: The SEDAR assessment of the HMS stocks of Gulf of Mexico blacktip sharks will consist of one workshop and a..., Assessment and Review (SEDAR) process, a multi-step method for determining the status of fish stocks in the...

  8. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection.

    PubMed

    Axt, Brant; Hsieh, Yi-Fan; Nalayanda, Divya; Wang, Tza-Huei

    2017-09-01

    Droplet microfluidics has found use in many biological assay applications as a means of high-throughput sample processing. One of the challenges of the technology, however, is the ability to control and merge droplets on-demand as they flow through the microdevices. It is in the interest of developing lab-on-chip devices to be able to combinatorically program additive mixing steps for more complex multistep and multiplex assays. Existing technologies to merge droplets are either passive in nature or require highly predictable droplet movement for feedforward control, making them vulnerable to errors during high throughput operation. In this paper, we describe and demonstrate a microfluidic valve-based device for the purpose of combinatorial droplet injection at any stage in a multistep assay. Microfluidic valves are used to robustly control fluid flow, droplet generation, and droplet mixing in the device on-demand, while on-chip impedance measurements taken in real time are used as feedback to accurately time the droplet injections. The presented system is contrasted to attempts without feedback, and is shown to be 100% reliable over long durations. Additionally, content detection and discretionary injections are explored and successfully executed.

  9. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  10. The Role of Evolutive Elastic Properties in the Performance of a Sheet Formed Spring Applied in Multimedia Car Industry

    NASA Astrophysics Data System (ADS)

    Faria, J.; Silva, J.; Bernardo, P.; Araújo, M.; Alves, J. L.

    2016-08-01

    The manufacturing process and the behaviour of a spring manufactured from an aluminium sheet is described and investigated in this work considering the specifications for the in-service conditions. The spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multistep forming process and in working conditions.

  11. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.

  12. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    PubMed

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  14. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  15. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  16. Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band.

    PubMed

    Wang, Xiu; Kulkarni, Sneha A; Ito, Bruno Ieiri; Batabyal, Sudip K; Nonomura, Kazuteru; Wong, Chee Cheong; Grätzel, Michael; Mhaisalkar, Subodh G; Uchida, Satoshi

    2013-01-23

    Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail. The electrochemical analysis reveals that the charge transport is solely based on physical diffusion at the ratio of [PMII]:[I(2)] = 10:1 (where PMII is 1-propyl-3-methylimidazolium iodide). The calculated physical diffusion coefficient shows that the diffusion of redox ions is not affected much by the viscosity of nanoclay gel. The addition of nitrate-hydrotalcite clay in the electrolyte has the effect of buffering the protonation process at the TiO(2)/electrolyte interface, resulting in an upward shift in the conduction band and a boost in open-circuit voltage (V(OC)). Higher V(OC) values with undiminished photocurrent is achieved with nitrate-hydrotalcite nanoclay gel electrolyte for organic as well as for inorganic dye (D35 and N719) systems. The efficiency for hydrotalcite clay gel electrolyte solar cells is increased by 10%, compared to that of the liquid electrolyte. The power conversion efficiency can reach 10.1% under 0.25 sun and 9.6% under full sun. This study demonstrates that nitrate-hydrotalcite nanoclay in the electrolyte not only solidifies the liquid electrolyte to prevent solvent leakage, but also facilitates the improvement in cell efficiency.

  17. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  18. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte,more » as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junhua Jiang; Ted Aulich

    An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly dependsmore » upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.« less

  20. Characterization of stainless steel surface processed using electrolytic oxidation and titanium complex ion solution

    NASA Astrophysics Data System (ADS)

    Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae

    2017-09-01

    This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.

  1. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  2. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  3. Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.

    PubMed

    Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg

    2017-03-15

    Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Highly Active Electrolytes for Rechargeable Mg Batteries Based on [Mg2(μ-Cl)2]2+ Cation Complex in Dimethoxyethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Stolley, Ryan M.; Han, Kee Sung

    2015-01-01

    Highly active electrolytes based on a novel [Mg2(μ-Cl)2]2+ cation complex for reversible Mg deposition were developed and analyzed in this work. These electrolytes were formulated in dimethoxyethane through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI= bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The cation complex was identified for the first time as [Mg2(μ-Cl)2(DME)4]2+ (DME=dimethoxyethane) and its molecular structure was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions,more » electrolytes with efficiency close to 100%, wide electrochemical window (up to 3.5V) and high ionic conductivity (> 6 mS/cm) were obtained. The electrolyte synthesis and understandings developed in this work could bring significant opportunities for rational formulation of electrolytes with the general formula [Mg2(μ-Cl)2(DME)4][anion]x for practical Mg batteries.« less

  5. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE PAGES

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...

    2018-04-24

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  6. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  7. Buried anode lithium thin film battery and process for forming the same

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  8. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  9. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    PubMed

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  10. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide.more » In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.« less

  11. Multistep integration formulas for the numerical integration of the satellite problem

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Tapley, B. D.

    1981-01-01

    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.

  12. Electrolytic lesions of the nucleus accumbens enhance locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Willmore, Ellen J

    2006-06-01

    Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output. Copyright 2006 APA, all rights reserved.

  13. Analysis of Time Filters in Multistep Methods

    NASA Astrophysics Data System (ADS)

    Hurl, Nicholas

    Geophysical ow simulations have evolved sophisticated implicit-explicit time stepping methods (based on fast-slow wave splittings) followed by time filters to control any unstable models that result. Time filters are modular and parallel. Their effect on stability of the overall process has been tested in numerous simulations, but never analyzed. Stability is proven herein for the Crank-Nicolson Leapfrog (CNLF) method with the Robert-Asselin (RA) time filter and for the Crank-Nicolson Leapfrog method with the Robert-Asselin-Williams (RAW) time filter for systems by energy methods. We derive an equivalent multistep method for CNLF+RA and CNLF+RAW and stability regions are obtained. The time step restriction for energy stability of CNLF+RA is smaller than CNLF and CNLF+RAW time step restriction is even smaller. Numerical tests find that RA and RAW add numerical dissipation. This thesis also shows that all modes of the Crank-Nicolson Leap Frog (CNLF) method are asymptotically stable under the standard timestep condition.

  14. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  15. Gex-Model Using Local Area Fraction for Binary Electrolyte Systems

    NASA Astrophysics Data System (ADS)

    Haghtalab, Ali; Joda, Marzieh

    2007-06-01

    The correlation and prediction of phase equilibria of electrolyte systems are essential in the design and operation of many industrial processes such as downstream processing in biotechnology, desalination, hydrometallurgy, etc. In this research, the local composition non-random two liquid-nonrandom factor (NRTL-NRF) model of Haghtalab and Vera was extended for uni-univalent aqueous electrolyte solutions. Based on the assumptions of the NRTL-NRF model, excess Gibbs free energy ( g E) functions were derived for binary electrolyte systems. In this work, the local area fraction was applied and the modified model of NRTL-NRF was developed with either an equal or unequal surface area of an anion to the surface area of a cation. The modified NRTL-NRF models consist of two contributions, one due to long-range forces represented by the Debye-Hückel theory, and the other due to short-range forces, represented by local area fractions of species through nonrandom factors. Each model contains only two adjustable parameters per electrolyte. In addition, the model with unequal surface area of ionic species gives better results in comparison with the second new model with equal surface area of ions. The results for the mean activity coefficients for aqueous solutions of uni-univalent electrolytes at 298.15 K showed that the present model is more accurate than the original NRTL-NRF model.

  16. Carboxymethylcellulose adsorption on molybdenite: the effect of electrolyte composition on adsorption, bubble-surface collisions, and flotation.

    PubMed

    Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A

    2014-10-14

    The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.

  17. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  18. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  19. 40 CFR 421.56 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Electrolytic Copper.... The mass of wastewater pollutants in primary electrolytic copper refining process wastewater... pounds) of copper cast Arsenic .692 .309 Copper .638 .304 Nickel .274 .184 (b) Subpart E—Anode and...

  20. 40 CFR 421.56 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Electrolytic Copper.... The mass of wastewater pollutants in primary electrolytic copper refining process wastewater... pounds) of copper cast Arsenic .692 .309 Copper .638 .304 Nickel .274 .184 (b) Subpart E—Anode and...

  1. Multistep Synthesis of a Terphenyl Derivative Showcasing the Diels-Alder Reaction

    ERIC Educational Resources Information Center

    Davie, Elizabeth A. Colby

    2015-01-01

    An adaptable multistep synthesis project designed for the culmination of a second-year organic chemistry laboratory course is described. The target compound is a terphenyl derivative that is an intermediate in the synthesis of compounds used in organic light-emitting devices. Students react a conjugated diene with dimethylacetylene dicarboxylate…

  2. Biocatalyzed Regioselective Synthesis in Undergraduate Organic Laboratories: Multistep Synthesis of 2-Arachidonoylglycerol

    ERIC Educational Resources Information Center

    Johnston, Meghan R.; Makriyannis, Alexandros; Whitten, Kyle M.; Drew, Olivia C.; Best, Fiona A.

    2016-01-01

    In order to introduce the concepts of biocatalysis and its utility in synthesis to organic chemistry students, a multistep synthesis of endogenous cannabinergic ligand 2-arachidonoylglycerol (2-AG) was tailored for use as a laboratory exercise. Over four weeks, students successfully produced 2-AG, purifying and characterizing products at each…

  3. Attention and Multistep Problem Solving in 24-Month-Old Children

    ERIC Educational Resources Information Center

    Carrico, Renee L.

    2013-01-01

    The current study examined the role of increased attentional load in 24 month-old children's multistep problem-solving behavior. Children solved an object-based nonspatial working-memory search task, to which a motor component of varying difficulty was added. Significant disruptions in search performance were observed with the introduction of the…

  4. A Multistep Synthesis Incorporating a Green Bromination of an Aromatic Ring

    ERIC Educational Resources Information Center

    Cardinal, Pascal; Greer, Brandon; Luong, Horace; Tyagunova, Yevgeniya

    2012-01-01

    Electrophilic aromatic substitution is a fundamental topic taught in the undergraduate organic chemistry curriculum. A multistep synthesis that includes a safer and greener method for the bromination of an aromatic ring than traditional bromination methods is described. This experiment is multifaceted and can be used to teach students about…

  5. A Multistep Synthesis Featuring Classic Carbonyl Chemistry for the Advanced Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Duff, David B.; Abbe, Tyler G.; Goess, Brian C.

    2012-01-01

    A multistep synthesis of 5-isopropyl-1,3-cyclohexanedione is carried out from three commodity chemicals. The sequence involves an aldol condensation, Dieckmann-type annulation, ester hydrolysis, and decarboxylation. No purification is required until after the final step, at which point gravity column chromatography provides the desired product in…

  6. Induction of Pectinase Hyper Production by Multistep Mutagenesis Using a Fungal Isolate--Aspergillus flavipes.

    PubMed

    Akbar, Sabika; Prasuna, R Gyana; Khanam, Rasheeda

    2014-04-01

    Aspergillus flavipes, a slow growing pectinase producing ascomycete, was isolated from soil identified and characterised in the previously done preliminary studies. Optimisation studies revealed that Citrus peel--groundnut oil cake [CG] production media is the best media for production of high levels of pectinase up to 39 U/ml using wild strain of A. flavipes. Strain improvement of this isolated strain for enhancement of pectinase production using multistep mutagenesis procedure is the endeavour of this project. For this, the wild strain of A. flavipes was treated with both physical (UV irradiation) and chemical [Colchicine, Ethidium bromide, H2O2] mutagens to obtain Ist generation mutants. The obtained mutants were assayed and differentiated basing on pectinase productivity. The better pectinase producing strains were further subjected to multistep mutagenesis to attain stability in mutants. The goal of this project was achieved by obtaining the best pectinase secreting mutant, UV80 of 45 U/ml compared to wild strain and sister mutants. This fact was confirmed by quantitatively analysing 3rd generation mutants obtained after multistep mutagenesis.

  7. Probabilistic soil erosion modeling using the Erosion Risk Management Tool (ERMIT) after wildfires

    Treesearch

    P. R. Robichaud; W. J. Elliot; J. W. Wagenbrenner

    2011-01-01

    The decision of whether or not to apply post-fire hillslope erosion mitigation treatments, and if so, where these treatments are most needed, is a multi-step process. Land managers must assess the risk of damaging runoff and sediment delivery events occurring on the unrecovered burned hillslope. We developed the Erosion Risk Management Tool (ERMiT) to address this need...

  8. Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.

    PubMed

    Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan

    2007-12-01

    Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.

  9. Enhancement of MCF Rubber Utilizing Electric and Magnetic Fields, and Clarification of Electrolytic Polymerization

    PubMed Central

    Shimada, Kunio

    2017-01-01

    Many sensors require mechanical durability to resist immense or impulsive pressure and large elasticity, so that they can be installed in or assimilated into the outer layer of artificial skin on robots. Given these demanding requirements, we adopted natural rubber (NR-latex) and developed a new method (NM) for curing NR-latex by the application of a magnetic field under electrolytic polymerization. The aim of the present work is to clarify the new manufacturing process for NR-latex embedded with magnetic compound fluid (MCF) as a conductive filler, and the contribution of the optimization of the new process for sensor. We first clarify the effect of the magnetic field on the enhancement of the NR-latex MCF rubber created by the alignment of magnetic clusters of MCF. Next, SEM, XRD, Raman spectroscopy, and XPS are used for morphological and microscopic observation of the electrolytically polymerized MCF rubber, and a chemical approach measuring pH and ORP of the MCF rubber liquid was used to investigate the process of electrolytic polymerization with a physical mode. We elucidate why the MCF rubber produced by the NM is enhanced with high sensitivity and long-term stability. This process of producing MCF rubber by the NM is closely related to the development of a highly sensitive sensor. PMID:28375182

  10. Localised anodic oxidation of aluminium material using a continuous electrolyte jet

    NASA Astrophysics Data System (ADS)

    Kuhn, D.; Martin, A.; Eckart, C.; Sieber, M.; Morgenstern, R.; Hackert-Oschätzchen, M.; Lampke, T.; Schubert, A.

    2017-03-01

    Anodic oxidation of aluminium and its alloys is often used as protection against material wearout and corrosion. Therefore, anodic oxidation of aluminium is applied to produce functional oxide layers. The structure and properties of the oxide layers can be influenced by various factors. These factors include for example the properties of the substrate material, like alloy elements and heat treatment or process parameters, like operating temperature, electric parameters or the type of the used electrolyte. In order to avoid damage to the work-piece surface caused by covering materials in masking applications, to minimize the use of resources and to modify the surface in a targeted manner, the anodic oxidation has to be localised to partial areas. Within this study a proper alternative without preparing the substrate by a mask is investigated for generating locally limited anodic oxidation by using a continuous electrolyte jet. Therefore aluminium material EN AW 7075 is machined by applying a continuous electrolyte jet of oxalic acid. Experiments were carried out by varying process parameters like voltage or processing time. The realised oxide spots on the aluminium surface were investigated by optical microscopy, SEM and EDX line scanning. Furthermore, the dependencies of the oxide layer properties from the process parameters are shown.

  11. Synchrotron x-ray study of a low roughness and high efficiency K 2 CsSb photocathode during film growth

    DOE PAGES

    Xie, Junqi; Demarteau, Marcel; Wagner, Robert; ...

    2017-04-24

    Reduction of roughness to the nm level is critical of achieving the ultimate performance from photocathodes used in high gradient fields. The thrust of this paper is to explore the evolution of roughness during sequential growth, and to show that deposition of multilayer structures consisting of very thin reacted layers results in an nm level smooth photocathode. Synchrotron x-ray methods were applied to study the multi-step growth process of a high efficiency K 2CsSb photocathode. We observed a transition point of the Sb film grown on Si at the film thickness of similar to 40 angstrom with the substrate temperaturemore » at 100 degrees C and the growth rate at 0.1 Å s -1. The final K 2CsSb photocathode exhibits a thickness of around five times that of the total deposited Sb film regardless of how the Sb film was grown. The film surface roughening process occurs first at the step when K diffuses into the crystalline Sb. Furthermore, the photocathode we obtained from the multi-step growth exhibits roughness in an order of magnitude lower than the normal sequential process. X-ray diffraction measurements show that the material goes through two structural changes of the crystalline phase during formation, from crystalline Sb to K 3Sb and finally to K 2CsSb.« less

  12. Synchrotron x-ray study of a low roughness and high efficiency K 2 CsSb photocathode during film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Junqi; Demarteau, Marcel; Wagner, Robert

    Reduction of roughness to the nm level is critical of achieving the ultimate performance from photocathodes used in high gradient fields. The thrust of this paper is to explore the evolution of roughness during sequential growth, and to show that deposition of multilayer structures consisting of very thin reacted layers results in an nm level smooth photocathode. Synchrotron x-ray methods were applied to study the multi-step growth process of a high efficiency K 2CsSb photocathode. We observed a transition point of the Sb film grown on Si at the film thickness of similar to 40 angstrom with the substrate temperaturemore » at 100 degrees C and the growth rate at 0.1 Å s -1. The final K 2CsSb photocathode exhibits a thickness of around five times that of the total deposited Sb film regardless of how the Sb film was grown. The film surface roughening process occurs first at the step when K diffuses into the crystalline Sb. Furthermore, the photocathode we obtained from the multi-step growth exhibits roughness in an order of magnitude lower than the normal sequential process. X-ray diffraction measurements show that the material goes through two structural changes of the crystalline phase during formation, from crystalline Sb to K 3Sb and finally to K 2CsSb.« less

  13. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  14. Method and apparatus for adding electrolyte to a fuel cell stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.V.; English, J.G.

    1986-06-24

    A process is described for adding electrolyte to a fuel cell stack, the stack comprising sheet-like elements defining a plurality of fuel cell units disposed one atop the other in abutting relationship, the units defining a substantially flat, vertically extending face, each unit including a cell comprising a pair of sheet-like spaced apart gas porous electrodes with a porous matrix layer sandwiched therebetween for retaining electrolyte during cell operation, each unit also including a sheet-like substantially non-porous separator, the separator being sandwiched between the cells of adjacent units. The improvement described here consists of: extending at least one of themore » sheet-like elements of each of a plurality of the fuel cell units outwardly from the stack face to define horizontal tabs disposed one above the other; depositing dilute electrolyte directly from electrolyte supply means upon substantially the full length, parallel to the stack face, of at least the uppermost tab, the tabs being constructed and arranged such that at least a portion of the deposited electrolyte cascades from tab to tab and down the face of the stack, the deposited electrolyte being absorbed by capillary action into the elements of the stack, the step of depositing continuing until all of the electrodes and matrix layers of the stack are fully saturated with the dilute electrolyte; and thereafter evaporating liquid from the saturated elements under controlled conditions of humidity and temperature until the stack has a desired electrolyte volume and electrolyte concentration therein.« less

  15. PVA:LiClO4: a robust, high Tg polymer electrolyte for adjustable ion gating of 2D materials

    NASA Astrophysics Data System (ADS)

    Kinder, Erich; Fullerton, Susan; CenterLow Energy Systems Technology Team

    2015-03-01

    Polymer electrolytes are an effective way to gate organic semiconductors and nanomaterials, such as nanotubes and 2D materials, by establishing an electrostatic double layer with large capacitance. Widely used solid electrolytes, such as those based on polyethylene oxide, have a glass transition temperature below room temperature. This permits relatively fast ion mobility at T = 23 °C, but requires a constant applied field to maintain a doping profile. Moreover, PEO-based electrolytes cannot withstand a variety of solvents, limiting its use. Here, we demonstrate a polymer electrolyte using polyvinyl alcohol (PVA) with Tg >23 °C, through which a doping profile can be defined by a potential applied when the polymer is heated above Tg, then ``locked-in'' by cooling the electrolyte to room temperature (

  16. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  17. Engineering rheology of electrolytes using agar for improving the performance of bioelectrochemical systems.

    PubMed

    Rathinam, Navanietha Krishnaraj; Tripathi, Abhilash K; Smirnova, Alevtina; Beyenal, Haluk; Sani, Rajesh K

    2018-04-24

    The present study is focused on enhancing the rheological properties of the electrolyte and eliminating sedimentation of microorganisms/flocs without affecting the electron transfer kinetics for improved bioelectricity generation. Agar derived from polysaccharide agarose (0.05-0.2%, w/v) was chosen as a rheology modifying agent. Electroanalytical investigations showed that electrolytes modified with 0.15% agar display a nine-fold increase in current density (1.2 mA/cm 2 ) by a thermophilic strain (Geobacillus sp. 44C, 60 °C) when compared with the control. Sodium phosphate buffer (0.1 M, pH 7) electrolyte with riboflavin (0.1 mM) was used as the control. Electrolytes modified with 0.15% agar significantly improved chemical oxygen demand removal rates. This developed electrolyte will aid in improving bioelectricity generation in Bioelectrochemical Systems (BES). The developed strategy avoids the use of peristaltic pumps and magnetic stirrers, thereby improving the energy efficiency of the process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    PubMed

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-07

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Method of preparing electrolyte for use in fuel cells

    DOEpatents

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  20. Understanding current steam sterilization recommendations and guidelines.

    PubMed

    Spry, Cynthia

    2008-10-01

    Processing surgical instruments in preparation for surgery is a complex multistep practice. It is impractical to culture each and every item to determine sterility; therefore, the best assurance of a sterile product is careful execution of every step in the process coupled with an ongoing quality control program. Perioperative staff nurses and managers responsible for instrument processing, whether for a single instrument or multiple sets, must be knowledgeable with regard to cleaning; packaging; cycle selection; and the use of physical, chemical, and biological monitors. Nurses also should be able to resolve issues related to loaner sets, flash sterilization, and extended cycles.

  1. VisAdapt: A Visualization Tool to Support Climate Change Adaptation.

    PubMed

    Johansson, Jimmy; Opach, Tomasz; Glaas, Erik; Neset, Tina-Simone; Navarra, Carlo; Linner, Bjorn-Ola; Rod, Jan Ketil

    2017-01-01

    The web-based visualization VisAdapt tool was developed to help laypeople in the Nordic countries assess how anticipated climate change will impact their homes. The tool guides users through a three-step visual process that helps them explore risks and identify adaptive actions specifically modified to their location and house type. This article walks through the tool's multistep, user-centered design process. Although VisAdapt's target end users are Nordic homeowners, the insights gained from the development process and the lessons learned from the project are applicable to a wide range of domains.

  2. Microscale Alloy Type Lithium Ion Battery Anodes

    DTIC Science & Technology

    2015-09-01

    hexamethyldisilazane Li lithium Ni nickel NMP n-methyl-2-pyrolidone RMS root mean square SEI solid electrolyte interphase SEM scanning electron microscopy...process also leads to an unstable solid electrolyte interphase (SEI) and further capacity loss. An extraordinary amount of work has been done in an...

  3. Improved fabrication of electrolytic capacitors

    NASA Technical Reports Server (NTRS)

    Gamari, F. J.; Moresi, J. L.

    1975-01-01

    After processing parts for assembly, insulative cup is fitted to bottom of can, then electrolytic solution consisting of white sulfuric acid gel is inserted into can. Pellet is put in can and is fitted tightly into cup. Finally, bead weld is formed between can and header plug.

  4. Discrepancy between mRNA and protein abundance: Insight from information retrieval process in computers

    PubMed Central

    Wang, Degeng

    2008-01-01

    Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers - multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks – biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird’s-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation. PMID:18757239

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytesmore » is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.« less

  6. Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi

    2012-07-01

    Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.

  7. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    PubMed

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  8. A wind-powered BDD electrochemical oxidation process for the removal of herbicides.

    PubMed

    Souza, F L; Lanza, M R V; Llanos, J; Sáez, C; Rodrigo, M A; Cañizares, P

    2015-08-01

    In the search for greener treatment technologies, this work studies the coupling of a wind turbine energy supply with an electrolytic cell (CWTEC device) for the remediation of wastewater polluted with pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The discontinuous and unforeseeable supply of energy is the main challenge inspiring this new proposal, which aims at reducing the environmental impact of electrolytic treatment by using a green energy supply. The results obtained using the coupled technologies are compared with those obtained by powering the electrolyser with a traditional power supply with a similar current intensity. The mineralisation of wastewater can be accomplished independently of how the electrolytic cell is powered, although differences in performance are clearly observed in the total organic carbon (TOC) and 2,4-D decays. These changes can be explained in terms of the changing profile of the current intensity, which influences the concentrations of the oxidants produced and thereby the mediated electrolytic process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Study of solid electrolyte layers in I{sub 2}(P2VP)-Li power sources by the galvanostatic pulse technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimon, E.S.; Shirokov, A.V.; Kovynev, N.P.

    1995-04-01

    Transport properties of solid-electrolyte layers (SEL) formed in lithium-iodine batteries were studied by the galvanostatic pulse technique. It was found that the rate of the anodic process at the lithium electrode is determined by the formation of an ionic space charge of lithium cations injected into solid-electrolyte layers. The mobility and concentration of mobile lithium cations in SELs at various depths of discharge of the power source were determined.

  10. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  11. Pt and Pd catalyzed oxidation of Li 2O 2 and DMSO during Li–O 2 battery charging

    DOE PAGES

    Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; ...

    2016-01-01

    Rechargeable Li-O 2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O 2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li 2O 2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.

  12. A novel approach for supercapacitors degradation characterization

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Gelman, Danny; Goren, Emanuelle; Shomrat, Neta; Baltianski, Sioma; Tsur, Yoed

    2017-07-01

    A novel approach to analyze electrochemical impedance spectroscopy (EIS), based on evolutionary programming, has been utilized to characterize supercapacitors operation mechanism and degradation processes. This approach poses the ability of achieving a comprehensive study of supercapacitors via solely AC measurements. Commercial supercapacitors were examined during accelerated degradation. The microstructure of the electrode-electrolyte interface changes upon degradation; electrolyte parasitic reactions yield the formation of precipitates on the porous surface, which limit the access of the electrolyte ions to the active area and thus reduces performance. EIS analysis using Impedance Spectroscopy Genetic Programming (ISGP) technique enables identifying how the changing microstructure is affecting the operation mechanism of supercapacitors, in terms of each process effective capacitance and time constant. The most affected process is the transport of electrolyte ions at the porous electrode. Their access to the whole active area is hindered, which is shown in our analysis by the decrease of the capacitance gained in the transport and the longer time it takes to penetrate the entire pores depth. Early failure detection is also demonstrated, in a way not readily possible via conventional indicators. ISGP advanced analysis method has been verified using conventional and proven techniques: cyclic voltammetry and post mortem measurements.

  13. Interphase Transformations at Metal (Copper, Iron)-Polymer Gel-Electrolyte Interfaces

    NASA Astrophysics Data System (ADS)

    Lyamina, G. V.; Dubinina, O. V.; Vaitulevich, E. A.; Mokrousov, G. M.

    2018-07-01

    The results from studies of the interface boundaries between metals (copper and iron) and gel electrolyte based on methacrylic copolymers are organized systematically. In contrast to processes in liquid electrolytes, a number of key features of the reactions that occur at such interfaces are revealed: a diffusion limiting stage; a lack of reverse reactions; and the formation of coordination compounds of metal ions with the functional groups of polymers, the stabilities of which are several orders of magnitude greater than that of coordination with their low-molecular weight counterparts. It is shown that processes which employ polymeric organogels can be used for the careful cleaning of the metal surfaces, and for the formation of a desired phase composition on the latter.

  14. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz

    2014-06-01

    Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.

  15. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  16. Factors associated with the use of cognitive aids in operating room crises: a cross-sectional study of US hospitals and ambulatory surgical centers.

    PubMed

    Alidina, Shehnaz; Goldhaber-Fiebert, Sara N; Hannenberg, Alexander A; Hepner, David L; Singer, Sara J; Neville, Bridget A; Sachetta, James R; Lipsitz, Stuart R; Berry, William R

    2018-03-26

    Operating room (OR) crises are high-acuity events requiring rapid, coordinated management. Medical judgment and decision-making can be compromised in stressful situations, and clinicians may not experience a crisis for many years. A cognitive aid (e.g., checklist) for the most common types of crises in the OR may improve management during unexpected and rare events. While implementation strategies for innovations such as cognitive aids for routine use are becoming better understood, cognitive aids that are rarely used are not yet well understood. We examined organizational context and implementation process factors influencing the use of cognitive aids for OR crises. We conducted a cross-sectional study using a Web-based survey of individuals who had downloaded OR cognitive aids from the websites of Ariadne Labs or Stanford University between January 2013 and January 2016. In this paper, we report on the experience of 368 respondents from US hospitals and ambulatory surgical centers. We analyzed the relationship of more successful implementation (measured as reported regular cognitive aid use during applicable clinical events) with organizational context and with participation in a multi-step implementation process. We used multivariable logistic regression to identify significant predictors of reported, regular OR cognitive aid use during OR crises. In the multivariable logistic regression, small facility size was associated with a fourfold increase in the odds of a facility reporting more successful implementation (p = 0.0092). Completing more implementation steps was also significantly associated with more successful implementation; each implementation step completed was associated with just over 50% higher odds of more successful implementation (p ≤ 0.0001). More successful implementation was associated with leadership support (p < 0.0001) and dedicated time to train staff (p = 0.0189). Less successful implementation was associated with resistance among clinical providers to using cognitive aids (p < 0.0001), absence of an implementation champion (p = 0.0126), and unsatisfactory content or design of the cognitive aid (p = 0.0112). Successful implementation of cognitive aids in ORs was associated with a supportive organizational context and following a multi-step implementation process. Building strong organizational support and following a well-planned multi-step implementation process will likely increase the use of OR cognitive aids during intraoperative crises, which may improve patient outcomes.

  17. Use of Chiral Oxazolidinones for a Multi-Step Synthetic Laboratory Module

    ERIC Educational Resources Information Center

    Betush, Matthew P.; Murphree, S. Shaun

    2009-01-01

    Chiral oxazolidinone chemistry is used as a framework for an advanced multi-step synthesis lab. The cost-effective and robust preparation of chiral starting materials is presented, as well as the use of chiral auxiliaries in a synthesis scheme that is appropriate for students currently in the second semester of the organic sequence. (Contains 1…

  18. Articulating Identities and Analyzing Belonging: A Multistep Intervention That Affirms and Informs a Diversity of Students

    ERIC Educational Resources Information Center

    Cook-Sather, Alison; Des-Ogugua, Crystal; Bahti, Melanie

    2018-01-01

    This article describes a multistep intervention developed for an undergraduate course called 'Advocating Diversity in Higher Education.' The goal of the intervention was to affirm diversity and foster a sense of inclusion among students within and beyond the course. We contextualize the intervention in student protests during 2015 and 2016…

  19. A Multistep Organocatalysis Experiment for the Undergraduate Organic Laboratory: An Enantioselective Aldol Reaction Catalyzed by Methyl Prolinamide

    ERIC Educational Resources Information Center

    Wade, Edmir O.; Walsh, Kenneth E.

    2011-01-01

    In recent years, there has been an explosion of research concerning the area of organocatalysis. A multistep capstone laboratory project that combines traditional reactions frequently found in organic laboratory curriculums with this new field of research is described. In this experiment, the students synthesize a prolinamide-based organocatalyst…

  20. Synthesis of Frontalin, the Aggregation Pheromone of the Southern Pine Beetle: A Multistep Organic Synthesis for Undergraduate Students.

    ERIC Educational Resources Information Center

    Bartlett, Paul A.; And Others

    1984-01-01

    Background information and experimental procedures are provided for the multistep synthesis of frontalin. The experiment exposes students to a range of practical laboratory problems and important synthetic reactions and provides experiences in working on a medium-size, as well as a relatively small-size scale. (JN)

  1. Synthesis of Two Local Anesthetics from Toluene: An Organic Multistep Synthesis in a Project-Oriented Laboratory Course

    ERIC Educational Resources Information Center

    Demare, Patricia; Regla, Ignacio

    2012-01-01

    This article describes one of the projects in the advanced undergraduate organic chemistry laboratory course concerning the synthesis of two local anesthetic drugs, prilocaine and benzocaine, with a common three-step sequence starting from toluene. Students undertake, in a several-week independent project, the multistep synthesis of a…

  2. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  3. Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.

    PubMed

    Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong

    2017-07-19

    We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.

  4. Using Molecular Dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

    DOE PAGES

    Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; ...

    2015-03-25

    Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show thatmore » the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.« less

  5. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less

  6. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process.

    PubMed

    Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan

    2018-05-02

    Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.

  7. Internal motion in high vacuum systems

    NASA Astrophysics Data System (ADS)

    Frank, J. M.

    Three transfer and positioning mechanisms have been developed for the non-air exposed, multistep processing of components in vacuum chambers. The functions to be performed in all of the systems include ultraviolet/ozone cleaning, vacuum baking, deposition of thin films, and thermocompression sealing of the enclosures. Precise positioning of the components is required during the evaporation and sealing processes. The three methods of transporting and positioning the components were developed to accommodate the design criteria and goals of each individual system. The design philosophy, goals, and operation of the three mechanisms are discussed.

  8. The application of electrolytic photoetching and photopolishing to AISI 304 stainless steel and the electrolytic photoetching of amorphous cobalt alloy

    NASA Astrophysics Data System (ADS)

    Thomaz, Marita Duarte Canhao da Silva Pereira Fernandes

    The results presented cover broad aspects of a quantitative investigation into the elecrolytic etching and polishing of metals and alloys through photographically produced dielectric stencils (Photoresists). A study of the potential field generated between a cathode and relatively smaller anode sites as those defined by a dielectric stencil was carried out. Numerical, analytical and graphical methods yielded answers to the factors determining lateral dissolution (undercut) at the anode/stencil interface. A quasi steady state numerical model simulating the transient behavior of the partially masked electrodes undergoing dissolution was obtained. AISI 304 stainless steel was electrolytically photoetched in 10% w/w HCl electrolyte. The optimised process parameters were utilised for quantifying the effects of galvanostatic etching of the anode as that defined by a relatively narrow adherent resist stencil. Stainless steel was also utilised in investigating electrolytic photopolishing. A polishing electrolyte (orthophosphoric acid-glycerol) was modified by the addition of a surfactant which yielded surface texture values of 70nm (Ra) and high levels of specular reflectance. These results were used in the production of features upon the metal surface through photographically produced precision stencils. The process was applied to the production of edge filters requiring high quality surface textures in precision recesses. Some of the new amorphous material exhibited high resistance to dissolution in commercially used spray etching formulations. One of these materials is a cobalt based alloy produced by chill block spinning. This material was also investigated and electro etched in 10% w/w HCl solution. Although passivity was not overcome, by selecting suitable operating parameters the successful electro photoetching of precision magnetic recording head laminations was achieved. Similarly, a polycrystalline nickel based alloy also exhibiting passivity in commercially used etchants was successfully etched in the above electrolyte.

  9. Numerical modelling of processes that occur in the selective waste disassembly installation

    NASA Astrophysics Data System (ADS)

    Cherecheş, T.; Lixandru, P.; Dragnea, D.; Cherecheş, D. M.

    2017-08-01

    This paper is the result of the attempts of quantitative approach of some of the processes that are occurring in the selective fragmentation with high voltage pulses installation. It has been formulated a methodology which customizes the general methods for the issue of transient electric field in mixed environments. The electromagnetic processes inside the fragmentation installation, the initiation and formation of the discharge channels, the thermodynamic and mechanical effects in the process vessel are complex, transient and very quick. One of the underlying principles of the fragmentation process consists in the differentiated reaction of materials in an electric field. Generally in the process vessel there can be found together three types of materials: dielectrics, metal, electrolytes. The conductivity of dielectric materials is virtually zero. Metallic materials conduct very well through electronic conductivity. Electrolytes have a more modest conductivity since they conduct through electrochemical processes. The electrical current, in this case, is the movement of ions having sizes and the masses different from the electrons. Here, the electric current includes displacements of ions and molecules, collisions and chemical reactions. Part of the electrical field’s energy is absorbed by the electrolyte in the form of mechanical and chemical energy.

  10. Visualization of electrolyte filling process and influence of vacuum during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the production process

    NASA Astrophysics Data System (ADS)

    Weydanz, W. J.; Reisenweber, H.; Gottschalk, A.; Schulz, M.; Knoche, T.; Reinhart, G.; Masuch, M.; Franke, J.; Gilles, R.

    2018-03-01

    The process of filling electrolyte into lithium ion cells is time consuming and critical to the overall battery quality. However, this process is not well understood. This is partially due to the fact, that it is hard to observe it in situ. A powerful tool for visualization of the process is neutron imaging. The filling and wetting process of the electrode stack can be clearly visualized in situ without destruction of the actual cell. The wetting of certain areas inside the electrode stack can clearly be seen when using this technique. Results showed that wetting of the electrode stack takes place in a mostly isotropic manner from the outside towards a center point of the cell at very similar speed. When the electrolyte reaches the center point, the wetting process can be considered complete. The electrode wetting is a slow but rather steady process for hard case prismatic cells. It starts with a certain speed, which is reduced over the progress of the wetting. Vacuum can assist the process and accelerate it by about a factor of two as was experimentally shown. This gives a considerable time and cost advantage for designing the production process for large-scale battery cell production.

  11. Chromospheric dust formation, stellar masers and mass loss

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1986-01-01

    A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.

  12. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization

    NASA Astrophysics Data System (ADS)

    Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi

    2018-03-01

    This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.

  13. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization.

    PubMed

    Huda, N; Raman, A A A; Bello, M M; Ramesh, S

    2017-12-15

    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  15. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis.

    PubMed

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen

    2017-11-01

    It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.

  16. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wu; Xiao, Jie; Zhang, Jian

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte hasmore » reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.« less

  18. Process for the production of low flammability electrolyte solvents

    DOEpatents

    Krumdick, Gregory K.; Pupek, Krzysztof; Dzwiniel, Trevor L.

    2016-02-16

    The invention provides a method for producing electrolyte solvent, the method comprising reacting a glycol with a disilazane in the presence of a catalyst for a time and at a temperature to silylate the glycol, separating the catalyst from the silylated glycol, removing unreacted silazane; and purifying the silylated glycol.

  19. 40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...

  20. 40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...

  1. 40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...

  2. 40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...

  3. 40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less

  5. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-05-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  6. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-04-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  7. Self-Regulated Strategy Development Instruction for Teaching Multi-Step Equations to Middle School Students Struggling in Math

    ERIC Educational Resources Information Center

    Cuenca-Carlino, Yojanna; Freeman-Green, Shaqwana; Stephenson, Grant W.; Hauth, Clara

    2016-01-01

    Six middle school students identified as having a specific learning disability or at risk for mathematical difficulties were taught how to solve multi-step equations by using the self-regulated strategy development (SRSD) model of instruction. A multiple-probe-across-pairs design was used to evaluate instructional effects. Instruction was provided…

  8. Multistep-Ahead Air Passengers Traffic Prediction with Hybrid ARIMA-SVMs Models

    PubMed Central

    Ming, Wei; Xiong, Tao

    2014-01-01

    The hybrid ARIMA-SVMs prediction models have been established recently, which take advantage of the unique strength of ARIMA and SVMs models in linear and nonlinear modeling, respectively. Built upon this hybrid ARIMA-SVMs models alike, this study goes further to extend them into the case of multistep-ahead prediction for air passengers traffic with the two most commonly used multistep-ahead prediction strategies, that is, iterated strategy and direct strategy. Additionally, the effectiveness of data preprocessing approaches, such as deseasonalization and detrending, is investigated and proofed along with the two strategies. Real data sets including four selected airlines' monthly series were collected to justify the effectiveness of the proposed approach. Empirical results demonstrate that the direct strategy performs better than iterative one in long term prediction case while iterative one performs better in the case of short term prediction. Furthermore, both deseasonalization and detrending can significantly improve the prediction accuracy for both strategies, indicating the necessity of data preprocessing. As such, this study contributes as a full reference to the planners from air transportation industries on how to tackle multistep-ahead prediction tasks in the implementation of either prediction strategy. PMID:24723814

  9. The Relationship Between Non-Symbolic Multiplication and Division in Childhood

    PubMed Central

    McCrink, Koleen; Shafto, Patrick; Barth, Hilary

    2016-01-01

    Children without formal education in addition and subtraction are able to perform multi-step operations over an approximate number of objects. Further, their performance improves when solving approximate (but not exact) addition and subtraction problems that allow for inversion as a shortcut (e.g., a + b − b = a). The current study examines children’s ability to perform multi-step operations, and the potential for an inversion benefit, for the operations of approximate, non-symbolic multiplication and division. Children were trained to compute a multiplication and division scaling factor (*2 or /2, *4 or /4), and then tested on problems that combined two of these factors in a way that either allowed for an inversion shortcut (e.g., 8 * 4 / 4) or did not (e.g., 8 * 4 / 2). Children’s performance was significantly better than chance for all scaling factors during training, and they successfully computed the outcomes of the multi-step testing problems. They did not exhibit a performance benefit for problems with the a * b / b structure, suggesting they did not draw upon inversion reasoning as a logical shortcut to help them solve the multi-step test problems. PMID:26880261

  10. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, P.R.

    1983-09-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  11. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  12. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  13. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  14. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, Mark W.; George, William A.

    1986-01-01

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

  15. Apparatus and method for the electrolysis of water

    DOEpatents

    Greenbaum, Elias

    2015-04-21

    An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.

  16. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  17. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  18. Shadowing effects on multi-step Langmuir probe array on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Ke, R.; Xu, M.; Nie, L.; Gao, Z.; Wu, Y.; Yuan, B.; Chen, J.; Song, X.; Yan, L.; Duan, X.

    2018-05-01

    Multi-step Langmuir probe arrays have been designed and installed on the HL-2A tokamak [1]–[2] to study the turbulent transport in the edge plasma, especially for the measurement of poloidal momentum flux, Reynolds stress Rs. However, except the probe tips on the top step, all other tips on lower steps are shadowed by graphite skeleton. It is necessary to estimate the shadowing effects on equilibrium and fluctuation measurement. In this paper, comparison of shadowed tips to unshadowed ones is presented. The results show that shadowing can strongly reduce the ion and electron effective collection area. However, its effect is negligible for the turbulence intensity and coherence measurement, confirming that the multi-step LP array is proper for the turbulent transport measurement.

  19. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO2-CaO-MgO-Al2O3 molten slag at 1723 K.

    PubMed

    Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z

    2017-06-21

    Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.

  20. Optimization of neural network for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO-LiPF 6-EC-CNT)

    NASA Astrophysics Data System (ADS)

    Johan, Mohd Rafie; Ibrahim, Suriani

    2012-01-01

    In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.

  1. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry

    NASA Astrophysics Data System (ADS)

    Sun, Lanxiang; Yu, Haibin; Cong, Zhibo; Lu, Hui; Cao, Bin; Zeng, Peng; Dong, Wei; Li, Yang

    2018-04-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and corrosive conditions. Monitoring the molten aluminum and electrolyte components is very important for controlling the chemical reaction process. Due to the lack of fast methods to monitor the components, controlling aluminum reduction cells is difficult. In this work, laser-induced breakdown spectroscopy (LIBS) was applied to aluminum electrolysis. A new method for calculating the molecular ratio, which is an important control parameter that represents the acidity of the electrolyte, was proposed. Experiments were first performed on solid electrolyte samples to test the performance of the proposed method. Using this method, the average relative standard deviation (RSD) of the molecular ratio measurement was 0.39%, and the average root mean square error (RMSE) was 0.0236. These results prove that LIBS can accurately measure the molecular ratio. Then, in situ measurements of the molten aluminum and electrolyte were performed in industrial aluminum induction cells using the developed LIBS equipment. The spectra of the molten electrolyte were successfully obtained and were consistent with the spectra of the solid electrolyte.

  2. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    PubMed

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  3. Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    He, Yongyi; Chen, Li; Yan, Zongcheng; Zhang, Yalei

    2015-09-01

    Plasma electrolytic oxidation (PEO) films on AZ31 magnesium alloys were prepared in alkaline silicate electrolytes (base electrolyte) with the addition of different volume concentrations of CH3OH, which was used to adjust the thickness of the vapor sheath. The compositions, morphologies, and thicknesses of ceramic layers formed with different CH3OH concentrations were determined via X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. PEO coatings mainly comprised Mg, MgO, and Mg2SiO4. The addition of CH3OH in base electrolytes affected the thickness, pores diameter, and Mg2SiO4 content in the films. The films formed in the electrolyte containing 12% CH3OH exhibited the highest thickness. The coatings formed in the electrolyte containing different concentrations of CH3OH exhibited similar corrosion resistance. The energy consumption of PEO markedly decreased upon the addition of CH3OH to the electrolytes. The result is helpful for energy saving in the PEO process. supported by National Natural Science Foundation of China (No. 21376088), the Project of Production, Education and Research, Guangdong Province and Ministry of Education (Nos. 2012B09100063, 2012A090300015), and Guangzhou Science and Technology Plan Projects of China (No. 2014Y2-00042)

  4. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sowa, Maciej; Woszczak, Maja; Kazek-Kęsik, Alicja; Dercz, Grzegorz; Korotin, Danila M.; Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Cholakh, Seif O.; Basiaga, Marcin; Simka, Wojciech

    2017-06-01

    This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm-2) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H2PO2)2 solution, which was then modified by the addition of 1.15 M Ca(HCOO)2 as well as 1.15 M and 1.5 M Mg(CH3COO)2. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO- and CH3COO- ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  5. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  6. Electrochemical Deburring

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1983-01-01

    Electrochemical deburring removes burrs from assembled injector tubes. Since process uses liquid anodic dissolution in liquid electrolyte to proide deburring action, smoothes surfaces and edges in otherwise inaccessible areas. Tool consists of sleeve that contains metallic ring cathode. Sleeve is placed over tube, and electrolytic solution is forced to flow between tube and sleeve. The workpiece serves an anode.

  7. Effect of cation amount in the electrolyte on characteristics of Ag/TiO2 based threshold switching devices.

    PubMed

    Yoo, Jongmyung; Song, Jeonghwan; Hwang, Hyunsang

    2018-06-18

    In this study, we investigate the effect of cation amount in electrolyte on Ag/TiO2 based threshold switching devices based on field-induced nucleation theory. For this purpose, normal Ag/TiO2, annealed Ag/TiO2, and Ag-Te/TiO2 based TS devices are prepared, which have different cation amounts in their electrolytes during the switching process. First, we find that all of the prepared TS devices follow the field-induced nucleation theory with different nucleation barrier energy (W0) by investigating the delay time dependency at various voltages and temperatures. Based on the investigation, we reveal that the amount of cations in the electrolyte during the switching process is the control parameter that affects the W0 values, which are found to be inversely proportional to the turn-off speed of the TS devices. This implies that the turn-off speed of the TS devices can be modulated by controlling the amount of cations in the matrix. © 2018 IOP Publishing Ltd.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.

    Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems.more » Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.« less

  9. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments

    PubMed Central

    Viñuales, Ana; Rodriguez, Javier; Tena-Zaera, Ramón

    2018-01-01

    Electrochromic devices (ECDs) have aroused great interest because of their potential applicability in displays and smart systems, including windows, rearview mirrors, and helmet visors. In the last decades, different device structures and materials have been proposed to meet the requirements of commercial applications to boost market entry. To this end, employing simple device architectures and achieving a competitive electrolyte are crucial to accomplish easily implementable, high-performance ECDs. The present review outlines devices comprising gel electrolytes as a single electroactive layer (“all-in-one”) ECD architecture, highlighting some advantages and opportunities they offer over other electrochromic systems. In this context, gel electrolytes not only overcome the drawbacks of liquid and solid electrolytes, such as liquid’s low chemical stability and risk of leaking and soil’s slow switching and lack of transparency, but also exhibit further strengths. These include easier processability, suitability for flexible substrates, and improved stabilization of the chemical species involved in redox processes, leading to better cyclability and opening wide possibilities to extend the electrochromic color palette, as discussed herein. Finally, conclusions and outlook are provided. PMID:29534466

  10. Luminescent Photoelectrochemical Cells. 2. Doped Cadmium Sulfide Photoelectrodes as Probes of Excited-State Processes Which Influence Optical to Electrical Energy Conversion.

    DTIC Science & Technology

    1980-08-12

    evidence for electrolyte oxidation processes, and the temporalL ._4 7 variation of photocurrent and emission. 1. Stoichiometrlc Data The stoichiometric...every 48 h. The electrodes, electrolyte compositions, and light sources are given in Table I. The HP 6214A power supply was connected in series with the... series 10 or 100 S resistor. At the end of the experiment, the crystal was demounted and re-weighed. Surface Effects The surfaces of several samples

  11. Online Analysis Enhances Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Leptoukh, Gregory

    2007-01-01

    Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

  12. Facilitating Students' Review of the Chemistry of Nitrogen-Containing Heterocyclic Compounds and Their Characterization through Multistep Synthesis of Thieno[2,3-"b"]Pyridine Derivatives

    ERIC Educational Resources Information Center

    Liu, Hanlin; Zaplishnyy, Vladimir; Mikhaylichenko, Lana

    2016-01-01

    A multistep synthesis of thieno[2,3-"b"]pyridine derivatives is described that is suitable for the upper-level undergraduate organic laboratory. This experiment exposes students to various hands-on experimental techniques as well as methods of product characterization such as IR and [superscript 1]H NMR spectroscopy, and…

  13. Coping Strategies Applied to Comprehend Multistep Arithmetic Word Problems by Students with Above-Average Numeracy Skills and Below-Average Reading Skills

    ERIC Educational Resources Information Center

    Nortvedt, Guri A.

    2011-01-01

    This article discusses how 13-year-old students with above-average numeracy skills and below-average reading skills cope with comprehending word problems. Compared to other students who are proficient in numeracy and are skilled readers, these students are more disadvantaged when solving single-step and multistep arithmetic word problems. The…

  14. Multistep Methods for Integrating the Solar System

    DTIC Science & Technology

    1988-07-01

    Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

  15. Continuous Video Modeling to Assist with Completion of Multi-Step Home Living Tasks by Young Adults with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Ayres, Kevin M.; Bryant, Kathryn J.; Foster, Ashley L.

    2014-01-01

    The current study evaluated a relatively new video-based procedure, continuous video modeling (CVM), to teach multi-step cleaning tasks to high school students with moderate intellectual disability. CVM in contrast to video modeling and video prompting allows repetition of the video model (looping) as many times as needed while the user completes…

  16. Electrolyte induced rheological modulation of graphene oxide suspensions and its applications in adsorption

    NASA Astrophysics Data System (ADS)

    Ojha, Abhijeet; Thareja, Prachi

    2018-03-01

    In this study, we report the microstructure, rheology and adsorption characteristics of aqueous suspensions of Graphene Oxide (GO) at a volume fraction (ϕGO) = 0.018, which can be transformed into gels by cation induced charge shielding and cross-linking between GO nanosheets. GO nanosheets of average thickness ∼1.5 nm and a lateral dimension of ∼750 nm are synthesized by Hummer's process. At ϕGO= 0.018, cations of varying size and valence are systematically introduced with electrolytes NH4Cl, LiCl, NaCl, KCl, MgCl2 and FeCl3 at concentrations ranging from 10-5-10-1 M to investigate their effect on the rheology of GO suspensions. Our results suggest that depending on the electrolyte concentration, size and the valence of the cation: low viscosity suspensions, fragile gels and solid-like GO-electrolyte gels are formed. The storage modulus (G') of all GO-electrolyte gels increases with the increase in electrolyte concentration and G' follows the order GO-FeCl3 > GO-MgCl2> GO-KCl > GO-NaCl > GO-LiCl > GO-NH4Cl. FESEM analysis shows that lyophilized GO-electrolyte gels with 10-1 M electrolytes have a porous morphology resulting from the aggregation of GO nanosheets. The GO-electrolyte gels are shown to adsorb high quantities of oils, with GO-FeCl3 gels showing a higher adsorption capacity. The GO-NaCl and GO-FeCl3 lyophilized gels are also shown to adsorb methylene blue dye and follow the pseudo-second-order kinetics of adsorption. Along with higher oil and dye adsorption efficiency, GO-electrolyte gels are easy to recollect after the adsorption, thus avoiding the potential toxicity for bio-organisms in water caused by GO nanosheets.

  17. Immediate use steam sterilization: moving beyond current policy.

    PubMed

    Seavey, Rose

    2013-05-01

    Immediate-use steam sterilization (IUSS) is steam sterilization intended for immediate use. IUSS may cause an increased risk of infection to patients because of stress and time constraints placed on staff. When IUSS is used, it is vital to properly carry out the complete multistep process according to the manufacturer's written validated instructions for use. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  18. 3D Microperfusion Model of ADPKD

    DTIC Science & Technology

    2015-10-01

    Stratasys 3D printer. PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...fabrication was accomplished using a custom multistep fabrication process. A negative mold of the bioreactor, designed in AutoCAD, was created using a...immortalized renal cortical epithelial cells (NKi-2). A range of doxycycline concentrations were dosed on the cells for 48 hours to test for induction of

  19. Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry.

    PubMed

    Takeda, Sahori; Morimura, Wataru; Liu, Yi-Hung; Sakai, Tetsuo; Saito, Yuria

    2016-08-15

    Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Development of the Fray-Farthing-Chen Cambridge Process: Towards the Sustainable Production of Titanium and Its Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Di; Dolganov, Aleksei; Ma, Mingchan; Bhattacharya, Biyash; Bishop, Matthew T.; Chen, George Z.

    2018-02-01

    The Kroll process has been employed for titanium extraction since the 1950s. It is a labour and energy intensive multi-step semi-batch process. The post-extraction processes for making the raw titanium into alloys and products are also excessive, including multiple remelting steps. Invented in the late 1990s, the Fray-Farthing-Chen (FFC) Cambridge process extracts titanium from solid oxides at lower energy consumption via electrochemical reduction in molten salts. Its ability to produce alloys and powders, while retaining the cathode shape also promises energy and material efficient manufacturing. Focusing on titanium and its alloys, this article reviews the recent development of the FFC-Cambridge process in two aspects, (1) resource and process sustainability and (2) advanced post-extraction processing.

  1. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    NASA Astrophysics Data System (ADS)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  2. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells.

    PubMed

    Thankamony, Sai P; Sackstein, Robert

    2011-02-08

    According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.

  3. Micro-chemical synthesis of molecular probes on an electronic microfluidic device

    PubMed Central

    Keng, Pei Yuin; Chen, Supin; Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J.; Dooraghi, Alex; Phelps, Michael E.; Satyamurthy, Nagichettiar; Chatziioannou, Arion F.; Kim, Chang-Jin “CJ”; van Dam, R. Michael

    2012-01-01

    We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of [18F]FDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of [18F]FTAG (88 ± 7%, n = 11) and quantitative hydrolysis to [18F]FDG (> 95%, n = 11). We furthermore show that batches of purified [18F]FDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH). We report statistical repeatability of the radiosynthesis rather than best-case results, demonstrating the robustness of the EWOD microfluidic platform. Exhibiting high compatibility with organic solvents and the ability to carry out sophisticated actuation and sensing of reaction droplets, EWOD is a unique platform for performing diverse microscale chemical syntheses in small volumes, including multistep processes with intermediate solvent-exchange steps. PMID:22210110

  4. Engineering fluidic delays in paper-based devices using laser direct-writing.

    PubMed

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2015-10-21

    We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

  5. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    PubMed

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  6. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.

    PubMed

    Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J

    2017-12-20

    One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.

  7. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  8. Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors.

    PubMed

    Batisse, Nicolas; Raymundo-Piñero, Encarnación

    2017-11-29

    A more detailed understanding of the electrode/electrolyte interface degradation during the charging cycle in supercapacitors is of great interest for exploring the voltage stability range and therefore the extractable energy. The evaluation of the gas evolution during the charging, discharging, and aging processes is a powerful tool toward determining the stability and energy capacity of supercapacitors. Here, we attempt to fit the gas analysis resolution to the time response of a low-gas-generation power device by adopting a modified pulsed electrochemical mass spectrometry (PEMS) method. The pertinence of the method is shown using a symmetric carbon/carbon supercapacitor operating in different aqueous electrolytes. The differences observed in the gas levels and compositions as a function of the cell voltage correlate to the evolution of the physicochemical characteristics of the carbon electrodes and to the electrochemical performance, giving a complete picture of the processes taking place at the electrode/electrolyte interface.

  9. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells

    PubMed Central

    Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit

    2016-01-01

    Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672

  10. Region-based multi-step optic disk and cup segmentation from color fundus image

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Lock, Jane; Manresa, Javier Moreno; Vignarajan, Janardhan; Tay-Kearney, Mei-Ling; Kanagasingam, Yogesan

    2013-02-01

    Retinal optic cup-disk-ratio (CDR) is a one of important indicators of glaucomatous neuropathy. In this paper, we propose a novel multi-step 4-quadrant thresholding method for optic disk segmentation and a multi-step temporal-nasal segmenting method for optic cup segmentation based on blood vessel inpainted HSL lightness images and green images. The performance of the proposed methods was evaluated on a group of color fundus images and compared with the manual outlining results from two experts. Dice scores of detected disk and cup regions between the auto and manual results were computed and compared. Vertical CDRs were also compared among the three results. The preliminary experiment has demonstrated the robustness of the method for automatic optic disk and cup segmentation and its potential value for clinical application.

  11. Model predictive control design for polytopic uncertain systems by synthesising multi-step prediction scenarios

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue

    2018-01-01

    A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.

  12. The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Boehnstedt, W.

    1980-09-01

    The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.

  13. High power density fuel cell comprising an array of microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopchak, David A; Morse, Jeffrey D; Upadhye, Ravindra S

    2014-05-06

    A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along somemore » of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.« less

  14. Electrolytic decontamination of conductive materials for hazardous waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-12-31

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodiummore » nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.« less

  15. Titanium surface modification by microarc oxidation in electrolyte based on wollastonite and hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Sedelnikova, M. B.; Komarova, E. G.; Khlusov, I. A.

    2015-11-01

    An investigation of titanium surface modification by microarc oxidation in the electrolyte based on wollastonite and hydroxyapatite was presented. The dependences of the coating properties on the microarc oxidation parameters were found. A variation of the process parameters allowed producing wollastonite-calcium phosphate coatings with aplate-like structure, thickness 25-30 µm, roughness 2.5-5.0 µm, and adhesion strength 57 MPa. The optimum microarc oxidation parameters such as the electrical voltage of 150 V, process duration of 5-10 min, and pulse duration of 100-300 µs were revealed. The wollastonite addition to the electrolyte based on the aqueous solution of phosphoric acid and hydroxyapatite allowed us to form wollastonite-calcium phosphate coatings on the titanium surface by the microarc oxidation method with enhanced strength properties and an increased ability to osseointegration.

  16. Rethinking behavioral health processes by using design for six sigma.

    PubMed

    Lucas, Anthony G; Primus, Kelly; Kovach, Jamison V; Fredendall, Lawrence D

    2015-02-01

    Clinical evidence-based practices are strongly encouraged and commonly utilized in the behavioral health community. However, evidence-based practices that are related to quality improvement processes, such as Design for Six Sigma, are often not used in behavioral health care. This column describes the unique partnership formed between a behavioral health care provider in the greater Pittsburgh area, a nonprofit oversight and monitoring agency for behavioral health services, and academic researchers. The authors detail how the partnership used the multistep process outlined in Design for Six Sigma to completely redesign the provider's intake process. Implementation of the redesigned process increased access to care, decreased bad debt and uncollected funds, and improved cash flow--while consumer satisfaction remained high.

  17. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  18. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-01-01

    A process for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H.sub.2 O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg.sub.2 Cl.sub.2. The method for doing this involves dissolving a precise amount of Hg.sub.2 Cl.sub.2 in an electrolyte solution comprised of concentrated HCl and H.sub.2 O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg.

  19. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis

    PubMed Central

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen

    2017-01-01

    Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612

  20. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.

    PubMed

    Fabbri, Emiliana; Bi, Lei; Pergolesi, Daniele; Traversa, Enrico

    2012-01-10

    The need for reducing the solid oxide fuel cell (SOFC) operating temperature below 600 °C is imposed by cost reduction, which is essential for widespread SOFC use, but might also disclose new applications. To this aim, high-temperature proton-conducting (HTPC) oxides have gained widespread interest as electrolyte materials alternative to oxygen-ion conductors. This Progress Report describes recent developments in electrolyte, anode, and cathode materials for protonic SOFCs, addressing the issue of chemical stability, processability, and good power performance below 600 °C. Different fabrication methods are reported for anode-supported SOFCs, obtained using state-of-the-art, chemically stable proton-conducting electrolyte films. Recent findings show significant improvements in the power density output of cells based on doped barium zirconate electrolytes, pointing out towards the feasibility of the next generation of protonic SOFCs, including a good potential for the development of miniaturized SOFCs as portable power supplies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lithium-ion battery electrolyte mobility at nano-confined graphene interfaces

    PubMed Central

    Moeremans, Boaz; Cheng, Hsiu-Wei; Hu, Qingyun; Garces, Hector F.; Padture, Nitin P.; Renner, Frank Uwe; Valtiner, Markus

    2016-01-01

    Interfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre-confined graphene, gold and mica surfaces by Li-ion battery electrolytes. Our results indicate preferential wetting of confined graphene in comparison with gold or mica surfaces because of specific interactions of the electrolyte with the graphene surface. In addition, wetting of a confined pore proceeds via a profoundly different mechanism compared with wetting of a macroscopic surface. We further reveal the existence of molecularly layered structures of the confined electrolyte. Nanoscopic confinement of less than 4–5 nm and the presence of water decrease the mobility of the electrolyte. These results suggest a lower limit for the pore diameter in nanostructured electrodes. PMID:27562148

  2. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  3. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    ERIC Educational Resources Information Center

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  4. Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers.

    PubMed

    Sun, Xiange; Li, Bowei; Tian, Chunyuan; Yu, Fabiao; Zhou, Na; Zhan, Yinghua; Chen, Lingxin

    2018-05-12

    This paper describes a novel rotational paper-based analytical device (RPAD) to implement multi-step electrochemiluminescence (ECL) immunoassays. The integrated paper-based rotational valves can be easily controlled by rotating paper discs manually and this advantage makes it user-friendly to untrained users to carry out the multi-step assays. In addition, the rotational valves are reusable and the response time can be shortened to several seconds, which promotes the rotational paper-based device to have great advantages in multi-step operations. Under the control of rotational valves, multi-step ECL immunoassays were conducted on the rotational device for the multiplexed detection of carcinoembryonic antigen (CEA) and prostate specific antigen (PSA). The rotational device exhibited excellent analytical performance for CEA and PSA, and they could be detected in the linear ranges of 0.1-100 ng mL -1 and 0.1-50 ng mL -1 with detection limits down to 0.07 ng mL -1 and 0.03 ng mL -1 , respectively, which were within the ranges of clinical concentrations. We hope this technique will open a new avenue for the fabrication of paper-based valves and provide potential application in clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electrolytic plating apparatus for discrete microsized particles

    DOEpatents

    Mayer, Anton

    1976-11-30

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

  6. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  7. Regulation of body fluid volume and electrolyte concentrations in spaceflight.

    PubMed

    Smith, S M; Krauhs, J M; Leach, C S

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.

  8. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.

  9. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Kimberly A.; Chapman, Karena W.; Zhu, Lingyang

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, 27Al and 35Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore themore » active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ–Cl)3·6THF]+ complex that is observed in the solid state structure. Additionally, conditioning creates free Cl– in the electrolyte solution, and we suggest the free Cl– adsorbs at the electrode surface to enhance Mg electrodeposition.« less

  10. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directlymore » involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.« less

  11. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    NASA Astrophysics Data System (ADS)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  12. Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander

    2016-08-01

    This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.

  13. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  14. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE PAGES

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...

    2017-04-10

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  15. Examining of the segmented electrode use from the viewpoint of the electrolyte volatilizing in molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sugiura, Kimihiko; Yamauchi, Makoto; Soga, Masatsugu; Tanimoto, Kazumi

    Molten carbonate fuel cells (MCFCs) have entered the pre-commercialization phase, and have been experimentally demonstrated in real world applications, including beer brewery, etc. However, though MCFCs have a high potential and an enough operating experience as an energy supply system, they are not explosively widespread. One of these reasons is cost of cell components. Because the thickness of both electrodes is 0.8 mm and both electrodes are made of porous plates of 1 m 2 of the electrode area, they are often broken by a thermal stress in the sintering process of an electrode and by a worker's carelessness at the cell assembly process. Generally, because these cracking electrodes can potentially cause electrolyte leakage and gas crossover, they are not used to a MCFC stack and are disposed of. Therefore, it made the cost of MCFC be raised. The performance of a cell that uses a mosaic electrode has been evaluated. However, the causal relation between the cracking of an electrode and an electrolyte-leakage has not been yet confirmed. If this causal relationship is elucidated, a cracking electrode or a mosaic electrode can be used to MCFC, such that the cost of MCFC systems would consequently decrease. Therefore, we studied the causal relation between the cracking of an electrode and electrolyte leakage and gas crossover using a visualization technique. In the case of an anode electrode where the centre section of a cell has crack of about 1 mm, the electrolyte leakage from this crack could not be observed by the visualization technique. Moreover, the gas crossover could not be also observed by the visualization technique, and nitrogen in the anode exhaust gas was not detected by a gas chromatography. However, the electrolyte leakage observed from the wet-seal section though the gap between the separator and the electrode was always 1 mm or less. Therefore, electrolyte leakage hardly occurs, even if a cracked anode electrode is installed into the centre section of the cell. On the other hand, although the volatile substance gushes from the wet seal section, the electrolyte leakage/volatilization phenomenon does not occur at the centre of the cell or at the gap between each segmented cathode. The volatile substance in the cathode gas-distributor-channel is composed of the electrolyte mist and the electrolyte volatile substance, and the rate of release is about 2.5 times that of anode side. Although the segmented electrode can be applied to the anode in a MCFC, it cannot be applied to a cathode from the viewpoint of the electrolyte leakage/volatilization.

  16. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  17. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    NASA Astrophysics Data System (ADS)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li-air battery. Towards this end, using either tetrabutylammonium hexafluorophosphate (TBAPF6) or lithium hexafluorophosphate (LiPF6) electrolyte solutions in four different solvents, namely, dimethyl sulfoxide (DMSO), acetonitrile (MeCN), dimethoxyethane (DME), and tetraethylene glycol dimethyl ether (TEGDME), possessing a range of properties, we have determined that the solvent and the supporting electrolyte cations in the solution act in concert to influence the nature of reduction products and their rechargeability. In solutions containing TBA +, O2 reduction is a highly reversible one-electron process involving the O2/O2- couple in all of the electrolytes examined with little effect on the nature of the solvent. On the other hand, in Li+-containing electrolytes relevant to the Li-air battery, O2 reduction proceeds in a stepwise fashion to form O2-, O22- and O2- as products. These reactions in presence of Li+ are irreversible or quasi-reversible electrochemical processes and the solvents have significant influence on the kinetics, and reversibility or lack thereof, of the different reduction products. Reversible reduction of O2 to long-lived superoxide in a Li+-conducting electrolyte in DMSO has been shown for the first time here. Chapter 5 is the culmination of the thesis where the practical application of the work is demonstrated. We designed electrolytes that facilitate Li-Air rechargeability, by applying the knowledge gained from chapters 2-4. A rechargeable Li-air cell utilizing an electrolyte composed of a solution of LiPF6 in tetraethylene glycol dimethyl ether, CH3O(CH2CH 2O)4CH3 was designed, built and its performance studied. It was shown that the cell yields high capacity and can be recharged in spite the absence of catalyst in the carbon cathode. The application of X-ray diffraction to identify these products formed in a porous carbon electrode is shown here for the first time. The rechargeability of the cell was investigated by repeated charge/discharge cycling of the cell, and the factors limiting the cycle life of the cell were studied using AC impedance spectra of the cells as a function of cycle number. In conclusion, the work carried out in this research has shown that the O2 electrochemistry in organic electrolytes is substantially different from that in aqueous electrolytes. Our work has uncovered the key roles the ion conducting salts and the organic solvents play in determining the nature of the reduction products and their reversibility. The results presented here for the first time provide a rational approach to the design and selection of organic electrolyte solutions for use in the rechargeable Li-air battery. (Abstract shortened by UMI.)

  18. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  19. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    PubMed

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  20. High-Capacitance Mechanism for Ti3C2Tx MXene by in Situ Electrochemical Raman Spectroscopy Investigation.

    PubMed

    Hu, Minmin; Li, Zhaojin; Hu, Tao; Zhu, Shihao; Zhang, Chao; Wang, Xiaohui

    2016-12-27

    MXenes represent an emerging family of conductive two-dimensional materials. Their representative, Ti 3 C 2 T x , has been recognized as an outstanding member in the field of electrochemical energy storage. However, an in-depth understanding of fundamental processes responsible for the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes is lacking. Here, to understand the mechanism of capacitance in Ti 3 C 2 T x MXene, we studied electrochemically the charge/discharge processes of Ti 3 C 2 T x electrodes in sulfate ion-containing aqueous electrolytes with three different cations, coupled with in situ Raman spectroscopy. It is demonstrated that hydronium in the H 2 SO 4 electrolyte bonds with the terminal O in the negative electrode upon discharging while debonding occurs upon charging. Correspondingly, the reversible bonding/debonding changes the valence state of Ti element in the MXene, giving rise to the pseudocapacitance in the acidic electrolyte. In stark contrast, only electric double layer capacitance is recognized in the other electrolytes of (NH 4 ) 2 SO 4 or MgSO 4 . The charge storage ways also differ: ion exchange dominates in H 2 SO 4 , while counterion adsorption in the rest. Hydronium that is characterized by smaller hydration radius and less charge is the most mobile among the three cations, facilitating it more kinetically accommodated on the deep adsorption sites between the MXene layers. The two key factors, i.e., surface functional group-involved bonding/debonding-induced pseudocapacitance, and ion exchange-featured charge storage, simultaneously contribute to the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes.

  1. Microstructural Control and Characterization of Bi2V0.9Cu0.1O5.35 (BICUVOX) Ceramics

    NASA Astrophysics Data System (ADS)

    Razmyar, Soheil

    2011-12-01

    The widespread commercialization of solid-oxide fuel cells (SOFCs) and solid-oxide electrolyte cells (SOECs) is primarily limited by material degradation issues related to the required high temperature operation (>800°C). Applications of stabilized zirconia based electrolytes, which are the most commonly used oxide ion conductors, have been limited to this high temperature regime due to its low oxygen ion conductivity below 800°C. Solid electrolytes made of the BIMEVOX compositional family of materials (Bi2MexV 1-xO5.5-delta where Me=Cu, Co, Mg, Ni, Fe...) exhibit high oxide ionic conductivity similar to YSZ at a low temperature (300--600°C). Among these materials copper-substituted bismuth vanadate (Bi2V0.9Cu0.1O5.35, BICUVOX), was reported to have the highest ionic conductivity at 400°C (0.02 S/cm). It's one of the most important drawbacks of using BICUVOX, as a SOFC electrolyte is the low mechanical strength, which makes it unusable for most electrolyte supported applications. This research aims at improving mechanical strength by careful control of synthesis processing and sintering processes, thus making BICUVOX a viable material option for intermediate temperature SOFC. A co-precipitation method was used to synthesize submicron BICUVOX powder. The powder was utilized to fabricate a thin (< 250 microm) BICUVOX electrolyte membrane, with 2.5 cm2 active area and high mechanical strength. The fabricated BICUVOX membranes were densified to 97% theoretical density at lower sintering temperature and shorter time (675°C/1 h), and shows fine grain size (<1.5microm) and high mechanical strength (159 MPa).

  2. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.

    PubMed

    Gómez Pueyo, Adrián; Marques, Miguel A L; Rubio, Angel; Castro, Alberto

    2018-05-09

    We examine various integration schemes for the time-dependent Kohn-Sham equations. Contrary to the time-dependent Schrödinger's equation, this set of equations is nonlinear, due to the dependence of the Hamiltonian on the electronic density. We discuss some of their exact properties, and in particular their symplectic structure. Four different families of propagators are considered, specifically the linear multistep, Runge-Kutta, exponential Runge-Kutta, and the commutator-free Magnus schemes. These have been chosen because they have been largely ignored in the past for time-dependent electronic structure calculations. The performance is analyzed in terms of cost-versus-accuracy. The clear winner, in terms of robustness, simplicity, and efficiency is a simplified version of a fourth-order commutator-free Magnus integrator. However, in some specific cases, other propagators, such as some implicit versions of the multistep methods, may be useful.

  3. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tumour genesis syndrome: severe hypophosphatemia and hypokalemia may be ominous presenting findings in childhood acute myeloid leukaemia.

    PubMed

    Chan, Winnie Ky; Chang, Kai On; Lau, Wing Hung

    2017-08-01

    We report a 16-year-old girl who was diagnosed with acute leukaemia and a marked leucocytosis >200 × 10 9 /L. She presented with marked hypophosphatemia, hypokalemia, acute renal failure and acute respiratory failure. These electrolytes disturbances may indicate rapid tumour genesis. These ominous findings required urgent treatment to halt the crises of rapid leukemic cell proliferation. Mark hypophosphatemia and hypokalemia may be presenting electrolyte abnormalities in a patient with acute leukaemia, and these may be indicators of aggressive tumour genesis. What is known: • Mild electrolyte disturbances are common in oncology patients • Tumour lysis syndrome is well recognized by paediatriaticians What is new: • Life-threatening hypophosphatemia is an uncommon presentation • These electrolytes disorders may indicate an aggressive tumour genesis process even at presentation and require urgent treatment.

  5. Semi-empirical equation of limiting current for cobalt electrodeposition in the presence of magnetic field and additive electrolyte

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aziz, N.

    2016-02-01

    One of the available methods to solve a roughening in cobalt electrodeposition is magneto electrodeposition (MED) in the presence of additive electrolyte. Semi-empirical equation of limiting current under a magnetic field for cobalt MED in the presence of boric acid as an additive electrolyte was successfully developed. This semi empirical equation shows the effects of the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of the electro active species (D), the kinematic viscosity of the electrolyte (v), magnetic strength (B) and the number of electrons involved in the redox process (n). The presence of boric acid led to decrease in the limiting current, but the acid was found useful as a buffer to avoid the local pH rise caused by parallel hydrogen evolution reaction (HER).

  6. Enhanced Lithium Oxygen Battery Using a Glyme Electrolyte and Carbon Nanotubes.

    PubMed

    Carbone, Lorenzo; Moro, Paolo Tomislav; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steven G; Hassoun, Jusef

    2018-05-16

    The lithium oxygen battery has a theoretical energy density potentially meeting the challenging requirements of electric vehicles. However, safety concerns and short lifespan hinder its application in practical systems. In this work, we show a cell configuration, including a multiwalled carbon nanotube electrode and a low flammability glyme electrolyte, capable of hundreds of cycles without signs of decay. Nuclear magnetic resonance and electrochemical tests confirm the suitability of the electrolyte in a practical battery, whereas morphological and structural aspects revealed by electron microscopy and X-ray diffraction demonstrate the reversible formation and dissolution of lithium peroxide during the electrochemical process. The enhanced cycle life of the cell and the high safety of the electrolyte suggest the lithium oxygen battery herein reported as a viable system for the next generation of high-energy applications.

  7. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  8. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methodsmore » using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.« less

  9. Electrochemical characterization of p(+)n and n(+)p diffused InP structures

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos

    1993-01-01

    The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.

  10. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  11. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.

    Lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, the low coulombic efficiency (CE) during repeated Li plating/stripping of these processes have limited practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on high concentration of LiNO3 in diglyme solvent is developed which enables high CE of Li metal plating/stripping and high stability of Li anode in the sulfur containing electrolyte. Tailoring of electrolyte properties formore » the Li negative electrode has proven to be a successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE for Li plating/stripping of greater than 99% for over 200 cycles. In contrast, Li metal cycles for only less than 35 cycles at high CE in the standard 1 M LiTFSI + 2wt% LiNO3 in DOL:DME electrolyte under the same conditions. The stable Li metal anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.« less

  12. A Lithium-Ion Battery with Enhanced Safety Prepared using an Environmentally Friendly Process.

    PubMed

    Mueller, Franziska; Loeffler, Nicholas; Kim, Guk-Tae; Diemant, Thomas; Behm, R Jürgen; Passerini, Stefano

    2016-06-08

    A new lithium-ion battery chemistry is presented based on a conversion-alloying anode material, a carbon-coated Fe-doped ZnO (TMO-C), and a LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. Both electrodes were fabricated using an environmentally friendly cellulose-based binding agent. The performance of the new lithium-ion battery was evaluated with a conventional, carbonate-based electrolyte (ethylene carbonate:diethyl carbonate-1 m lithium hexafluorophosphate, EC:DEC 1 m LiPF6 ) and an ionic liquid (IL)-based electrolyte (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide-0.2 m lithium bis(trifluoromethanesulfonyl)imide, Pyr14 TFSI 0.2 m LiTFSI), respectively. Galvanostatic charge/discharge tests revealed a reduced rate capability of the TMO-C/Pyr14 TFSI 0.2 m LiTFSI/NMC full-cell compared to the organic electrolyte, but the coulombic efficiency was significantly enhanced. Moreover, the IL-based electrolyte substantially improves the safety of the system due to a higher thermal stability of the formed anodic solid electrolyte interphase and the IL electrolyte itself. While the carbonate-based electrolyte shows sudden degradation reactions, the IL exhibits a slowly increasing heat flow, which does not constitute a serious safety risk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  14. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  15. Effects of Current Density on Microstructure and Corrosion Property of Coating on AZ31 Mg Alloy Processed via Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Lee, Kang Min; Einkhah, Feryar; Sani, Mohammad Ali Faghihi; Ko, Young Gun; Shin, Dong Hyuk

    The effects of the current density on the micro structure and the corrosion property of the coating on AZ31 Mg alloy processed by the plasma electrolytic oxidation (PEO) were investigated. The present coatings were produced in an acid electrolyte containing K2ZrF6 with three different current densities, i.e., 100, 150, and 200 mA/cm2. From the microstructural observations, as the applied current density was increased, the diameter of micro-pores formed by the plasma discharges with high temperature increased. The coatings on AZ31 Mg alloy were mainly composed of MgO, ZrO2, MgF2, and Mg2Zr5O12 phases. The results of potentiodynamic polarization clearly showed that the PEO-treated AZ31 Mg alloy applied at 100 mA/cm2 of current density exhibited better corrosion properties than the others.

  16. Electrochemical and mechanical polishing and shaping method and system

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Gubarev, Mikhail V. (Inventor); Jones, William David (Inventor); Ramsey, Brian D. (Inventor); Benson, Carl M. (Inventor)

    2011-01-01

    A method and system are provided for the shaping and polishing of the surface of a material selected from the group consisting of electrically semi-conductive materials and conductive materials. An electrically non-conductive polishing lap incorporates a conductive electrode such that, when the polishing lap is placed on the material's surface, the electrode is placed in spaced-apart juxtaposition with respect to the material's surface. A liquid electrolyte is disposed between the material's surface and the electrode. The electrolyte has an electrochemical stability constant such that cathodic material deposition on the electrode is not supported when a current flows through the electrode, the electrolyte and the material. As the polishing lap and the material surface experience relative movement, current flows through the electrode based on (i) adherence to Faraday's Law, and (ii) a pre-processing profile of the surface and a desired post-processing profile of the surface.

  17. Fluid and electrolyte control systems in the human body: A study report

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1973-01-01

    Research in the area of modeling of the fluid and electrolyte system is briefly reviewed and a model of this system, which is adequate for a basic description of the requisite physiological processes, is presented. The use of this model as an individual subsystem model and as a component of a more complete human model is discussed.

  18. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  19. Grid Scale Energy Storage (Symposium EE8)

    DTIC Science & Technology

    2016-06-01

    27709-2211 Grid-Scale Energy Storage, electrolytes, systems ntegration, Lithium - ion chemistry, Redox flow batteries REPORT DOCUMENTATION PAGE 11... Lithium - Ion Chemistry (4) Redox Flow Batteries Christopher J. Orendorff from Sandia National Laboratories kicked off the symposium on Tuesday...for redox flow batteries . SEI formation is a well-known process in standard lithium - ion battery operation; however, using aqueous electrolytes does

  20. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.

    PubMed

    Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-03-01

    Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (<0.7 nm, from 54.9% to 25.8%) and it is demonstrated that the micropore structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. CO2 decomposition using electrochemical process in molten salts

    NASA Astrophysics Data System (ADS)

    Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2012-08-01

    The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.

  2. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu

    2016-10-15

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less

  3. Generation of Antibunched Light by Excited Molecules in a Microcavity Trap

    NASA Technical Reports Server (NTRS)

    DeMartini, F.; DiGiuseppe, G.; Marrocco, M.

    1996-01-01

    The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.

  4. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  5. Investigating Electrochemical Processes in Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Cama, Christina A.

    For the past twenty-six years, the lithium-ion battery has been the most popular recharge- able battery for portable devices and electric vehicles. Despite its success, the energy storage capability of lithium-ion batteries (LIBs) is significantly limited by both the electrodes and electrolytes employed. Typical LIBs rely on intercalation-type electrodes, that are not capable of storing more than 1 Li+ per formula unit. The energy storage capability of LIBs can be improved through the application of conversion-type materials and beyond lithium chemistries. This research involves multiple projects which explore the electrochemistry of conversion electrodes, magnesium-ion chemistry, and lithium-sulfur chemistry. Application of conversion-electrodes like copper ferrite, CuFe2O4, and magnetite, Fe3O4, are capable of lithium storage over five times greater than that achieved by electrodes used in commercial LIBs. The drawback to utilizing the conversion mechanism is that significant energy storage capability is lost during charge. In this research, X- ray characterization methods, including X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) are used to elucidate the lithiation and delithiation mechanism for CuFe2O4 and to understand the source of the irreversibility. These experiments provide significant insight into the reduction processes and cation migration within the structure. During lithiation, CuFe2O4 undergoes a three-step reduction mechanism involving (1) lithiation of CuFe2O4, (2) extrusion of copper metal nanoparticles and formation of rock- salt LiFeO2, followed by the (3) formation of iron metal nanoparticles. Upon delithiation, XAS spectra clearly demonstrate the feasibility of Fe0 oxidation to a rock-salt iron oxide; however, Cu0 oxidation is not observed. Additional experiments explored the kinetic limitations of lithiating Fe3O4 nanoparticles, with different crystallite sizes. The experiments demonstrate that the kinetics of the lithiation mechanism are influenced by the electroactive material’s agglomerate and crystallite size. The rate of lithiation involving small crystallites is dependent on diffusion within the agglomerates; however, as the crystallite size increases, the lithiation rate is inhibited by diffusion within both the agglomerate and the crystallite. Battery chemistries beyond lithium can also lead to energy storage capabilities an order of magnitude higher than LIBs. Both magnesium-ion and lithium-sulfur battery chemistries are investigated in this dissertation. The properties of ionic liquid electrolytes are explored as safer alternatives to harmful Grignard-reagent electrolytes commonly used for magnesium chemistries. Electrochemical evaluation of the ionic liquid electrolytes found that although better conductivity can be achieved with unsaturated electrolytes like imidizolium based electrolytes, greater oxidative voltages are possible with saturated electrolytes like the piperidinium and pyridinium based electrolytes. The higher oxidative voltage is a promising attribute for high voltage applications. Cathode additives, including FeS2 and microporous carbon, are studied to inhibit polysulfide dissolution within the electrolyte of Li|S batteries. Although FeS2 exhibited promising electrochemistry as its own cathode, it was found to be an ineffective additive within sulfur cathodes. Instead, the properties of microporous carbons are explored to identify an appropriate carbon additive to both increase conductivity and impede polysulfide dissolution. A wood based carbon exhibited high capacity and long cycle life at low rate compared to conventional microporous carbons. As a whole, this research has provided valuable insight into the electrochemical processes taking place within a battery, as well as the factors which affect these processes. Electrochemical, spectroscopic, and various scattering methods are used to probe processes which span from the reactions occurring within the electrode to the redox reactions which define the voltage limitations of the electrolyte. These studies demonstrate the impact of each battery component on the overall electrochemical performance and provide fundamental insight into battery operation.

  6. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  7. Novel examination for evaluating medical student clinical reasoning: reliability and association with patients seen.

    PubMed

    Hemmer, Paul A; Dong, Ting; Durning, Steven J; Pangaro, Louis N

    2015-04-01

    Medical students learn clinical reasoning, in part, through patient care. Although the numbers of patients seen is associated with knowledge examination scores, studies have not demonstrated an association between patient problems and an assessment of clinical reasoning. To examine the reliability of a clinical reasoning examination and investigate whether there was association between internal medicine core clerkship students' performance on this examination and the number of patients they saw with matching problems during their internal medicine clerkship. Students on the core internal medicine clerkship at the Uniformed Services University students log 11 core patient problems based on the Clerkship Directors in Internal Medicine curriculum. On a final clerkship examination (Multistep), students watch a scripted video encounter between physician and patient actors that assesses three sequential steps in clinical reasoning: Step One focuses on history and physical examination; Step Two, students write a problem list after viewing additional clinical findings; Step Three, students complete a prioritized differential diagnosis and treatment plan. Each Multistep examination has three different cases. For graduating classes 2010-2012 (n = 497), we matched the number of patients seen with the problem most represented by the Multistep cases (epigastric pain, generalized edema, monoarticular arthritis, angina, syncope, pleuritic chest pain). We report two-way Pearson correlations between the number of patients students reported with similar problems and the student's percent score on: Step One, Step Two, Step Three, and Overall Test. Multistep reliability: Step 1, 0.6 to 0.8; Step 2, 0.41 to 0.65; Step 3, 0.53 to 0.78; Overall examination (3 cases): 0.74 to 0.83. For three problems, the number of patients seen had small to modest correlations with the Multistep Examination of Analytic Ability total score (r = 0.27 for pleuritic pain, p < 0.05, n = 81 patients; r = 0.14 for epigastric pain, p < 0.05, n = 324 patients; r = 0.19 for generalized edema, p < 0.05, n = 118 patients). DISCUSSION or Although a reliable assessment, student performance on a clinical reasoning examination was weakly associated with the numbers of patients seen with similar problems. This may be as a result of transfer of knowledge between clinical and examination settings, the complexity of clinical reasoning, or the limits of reliability with patient logs and the Multistep. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  8. Splitting algorithm for numerical simulation of Li-ion battery electrochemical processes

    NASA Astrophysics Data System (ADS)

    Iliev, Oleg; Nikiforova, Marina A.; Semenov, Yuri V.; Zakharov, Petr E.

    2017-11-01

    In this paper we present a splitting algorithm for a numerical simulation of Li-ion battery electrochemical processes. Liion battery consists of three domains: anode, cathode and electrolyte. Mathematical model of electrochemical processes is described on a microscopic scale, and contains nonlinear equations for concentration and potential in each domain. On the interface of electrodes and electrolyte there are the Lithium ions intercalation and deintercalation processes, which are described by Butler-Volmer nonlinear equation. To approximate in spatial coordinates we use finite element methods with discontinues Galerkin elements. To simplify numerical simulations we develop the splitting algorithm, which split the original problem into three independent subproblems. We investigate the numerical convergence of the algorithm on 2D model problem.

  9. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  10. The improvement of rechargeable lithium battery electrolyte performance with additives

    NASA Technical Reports Server (NTRS)

    Dominey, L. A.; Goldman, J. L.

    1990-01-01

    The deliberate introduction of additives like 2-methylfuran (2-MeF) is known to improve Li cycleability in cyclic ether electrolytes. The authors found that the proclivity of 2-MeF to polymerize in the bulk electrolyte or on a TiS2 cathode was inhibited by the addition of reduced oxygen species, such as O2- and OH-. Additionally, the polymerization of tetrahydrofuran and dioxolane and the destructive processes initiated by AsF6- decomposition to AsF5 and AsF3 were inhibited by the introduction of reduced oxygen species, particularly OH- at the 10-ppm to 100-ppm level.

  11. Superlattice photoelectrodes for photoelectrochemical cells

    DOEpatents

    Nozik, Arthur J.

    1987-01-01

    A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.

  12. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    PubMed

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  13. Reducing workpieces to their base geometry for multi-step incremental forming using manifold harmonics

    NASA Astrophysics Data System (ADS)

    Carette, Yannick; Vanhove, Hans; Duflou, Joost

    2018-05-01

    Single Point Incremental Forming is a flexible process that is well-suited for small batch production and rapid prototyping of complex sheet metal parts. The distributed nature of the deformation process and the unsupported sheet imply that controlling the final accuracy of the workpiece is challenging. To improve the process limits and the accuracy of SPIF, the use of multiple forming passes has been proposed and discussed by a number of authors. Most methods use multiple intermediate models, where the previous one is strictly smaller than the next one, while gradually increasing the workpieces' wall angles. Another method that can be used is the manufacture of a smoothed-out "base geometry" in the first pass, after which more detailed features can be added in subsequent passes. In both methods, the selection of these intermediate shapes is freely decided by the user. However, their practical implementation in the production of complex freeform parts is not straightforward. The original CAD model can be manually adjusted or completely new CAD models can be created. This paper discusses an automatic method that is able to extract the base geometry from a full STL-based CAD model in an analytical way. Harmonic decomposition is used to express the final geometry as the sum of individual surface harmonics. It is then possible to filter these harmonic contributions to obtain a new CAD model with a desired level of geometric detail. This paper explains the technique and its implementation, as well as its use in the automatic generation of multi-step geometries.

  14. Separation, Aspiration, and Fat Equalization: SAFE Liposuction Concepts for Comprehensive Body Contouring.

    PubMed

    Wall, Simeon H; Lee, Michael R

    2016-12-01

    Separation, aspiration, and fatty equilibration (SAFE) liposuction uses a process approach to body contouring and minimizes injury to surrounding structures. The multistep process allows for (1) fat separation, (2) lipoaspiration, and (3) fat equalization. The purpose of this study was to review both outcomes and complications of primary SAFE liposuction. Retrospective chart review was completed of patients undergoing SAFE liposuction from January of 2006 to January of 2011. Patient selection was limited to those undergoing liposuction alone with no adjuvant excisional procedures. Data were collected regarding demographics, body mass index, operative details, and outcomes. Seven hundred thirty-four patients were identified as having undergone SAFE liposuction. One hundred twenty-nine patients were found to have been treated with liposuction alone. Patient age ranged from 18 to 42 years and body mass index ranged from 18 to 42 kg/m (mean, 26.3 kg/m). Seven patients (5.4 percent) underwent treatment of the face and neck, six patients (4.7 percent) underwent treatment of upper extremities, 13 patients (10.1 percent) underwent treatment of the chest, 20 patients (15.5 percent) underwent treatment of lower extremities, 32 patients (24.8 percent) underwent treatment of the circumferential trunk, and 51 patients (39.5 percent) underwent treatment of circumferential trunk and additional area(s). No major complications occurred. Five of the 129 patients (3.87 percent) developed the minor complication of seroma formation. SAFE liposuction is a multistep process approach to body contouring consisting of (1) fat separation, (2) lipoaspiration, and (3) fat equalization. The results of this study show such technique to be safe and effective. Therapeutic, IV.

  15. Single- and multistep resistance selection studies on the activity of retapamulin compared to other agents against Staphylococcus aureus and Streptococcus pyogenes.

    PubMed

    Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bogdanovich, Tatiana; Appelbaum, Peter C

    2006-02-01

    Retapamulin had the lowest rate of spontaneous mutations by single-step passaging and the lowest parent and selected mutant MICs by multistep passaging among all drugs tested for all Staphylococcus aureus strains and three Streptococcus pyogenes strains which yielded resistant clones. Retapamulin has a low potential for resistance selection in S. pyogenes, with a slow and gradual propensity for resistance development in S. aureus.

  16. Single- and Multistep Resistance Selection Studies on the Activity of Retapamulin Compared to Other Agents against Staphylococcus aureus and Streptococcus pyogenes

    PubMed Central

    Kosowska-Shick, Klaudia; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bogdanovich, Tatiana; Appelbaum, Peter C.

    2006-01-01

    Retapamulin had the lowest rate of spontaneous mutations by single-step passaging and the lowest parent and selected mutant MICs by multistep passaging among all drugs tested for all Staphylococcus aureus strains and three Streptococcus pyogenes strains which yielded resistant clones. Retapamulin has a low potential for resistance selection in S. pyogenes, with a slow and gradual propensity for resistance development in S. aureus. PMID:16436741

  17. Applying flow chemistry: methods, materials, and multistep synthesis.

    PubMed

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  18. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  19. Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis

    PubMed Central

    Peltola, Tomi; Marttinen, Pekka; Vehtari, Aki

    2012-01-01

    High-dimensional datasets with large amounts of redundant information are nowadays available for hypothesis-free exploration of scientific questions. A particular case is genome-wide association analysis, where variations in the genome are searched for effects on disease or other traits. Bayesian variable selection has been demonstrated as a possible analysis approach, which can account for the multifactorial nature of the genetic effects in a linear regression model. Yet, the computation presents a challenge and application to large-scale data is not routine. Here, we study aspects of the computation using the Metropolis-Hastings algorithm for the variable selection: finite adaptation of the proposal distributions, multistep moves for changing the inclusion state of multiple variables in a single proposal and multistep move size adaptation. We also experiment with a delayed rejection step for the multistep moves. Results on simulated and real data show increase in the sampling efficiency. We also demonstrate that with application specific proposals, the approach can overcome a specific mixing problem in real data with 3822 individuals and 1,051,811 single nucleotide polymorphisms and uncover a variant pair with synergistic effect on the studied trait. Moreover, we illustrate multimodality in the real dataset related to a restrictive prior distribution on the genetic effect sizes and advocate a more flexible alternative. PMID:23166669

  20. Discovery of novel mGluR1 antagonists: a multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor.

    PubMed

    Li, Guo-Bo; Yang, Ling-Ling; Feng, Shan; Zhou, Jian-Ping; Huang, Qi; Xie, Huan-Zhang; Li, Lin-Li; Yang, Sheng-Yong

    2011-03-15

    Development of glutamate non-competitive antagonists of mGluR1 (Metabotropic glutamate receptor subtype 1) has increasingly attracted much attention in recent years due to their potential therapeutic application for various nervous disorders. Since there is no crystal structure reported for mGluR1, ligand-based virtual screening (VS) methods, typically pharmacophore-based VS (PB-VS), are often used for the discovery of mGluR1 antagonists. Nevertheless, PB-VS usually suffers a lower hit rate and enrichment factor. In this investigation, we established a multistep ligand-based VS approach that is based on a support vector machine (SVM) classification model and a pharmacophore model. Performance evaluation of these methods in virtual screening against a large independent test set, M-MDDR, show that the multistep VS approach significantly increases the hit rate and enrichment factor compared with the individual SB-VS and PB-VS methods. The multistep VS approach was then used to screen several large chemical libraries including PubChem, Specs, and Enamine. Finally a total of 20 compounds were selected from the top ranking compounds, and shifted to the subsequent in vitro and in vivo studies, which results will be reported in the near future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Anodic Dissolution of Al Current Collectors in Unconventional Solvents for High Voltage Electrochemical Double-Layer Capacitors.

    PubMed

    Krummacher, Jakob; Heß, Lars-Henning; Balducci, Andrea

    2017-09-04

    This study investigated the anodic dissolution of Al current collectors in unconventional electrolytes for high voltage electrochemical double-layer capacitors (EDLCs) containing adiponitrile (ADN), 3-cyanopropionic acid methyl ester (CPAME), 2-methyl-glutaronitrile (2-MGN) as solvent, and tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bis(trifluoromethanesulfonyl)imide (Et 4 NTFSI) as conductive salts. To have a comparison with the state-of-the-art electrolytes, the same salts were also used in combination with acetonitrile (ACN). The chemical-physical properties of the electrolytes were investigated. Furthermore, their impact on the anodic dissolution of Al was analyzed in detail as well as the influence of this process on the performance of high voltage EDLCs. The results of this study indicated that in the case of Et 4 NBF 4 -based electrolytes, the use of an alternative solvent is very beneficial for the realization of stable devices. When Et 4 NTFSI is used, the reduced solubility of the complex Al(TFSI) 3 appears to be the key for the realization of advanced electrolytes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even atmore » a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.« less

  3. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  4. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors.

    PubMed

    Rusi; Majid, S R

    2015-11-05

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.

  5. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Rusi; Majid, S. R.

    2015-11-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg-1 and 68 kWkg-1 at current density of 20 Ag-1 in mixed KOH/K3Fe(CN)6 electrolyte.

  6. Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambient-Temperature Sodium-Ion Secondary Batteries.

    PubMed

    Bella, Federico; Colò, Francesca; Nair, Jijeesh R; Gerbaldi, Claudio

    2015-11-01

    The first example of a photopolymerized electrolyte for a sodium-ion battery is proposed herein. By means of a preparation process free of solvents, catalysts, purification steps, and separation steps, it is possible to obtain a three-dimensional polymeric network capable of efficient sodium-ion transport. The thermal properties of the resulting solid electrolyte separator, characterized by means of thermogravimetric and calorimetric techniques, are excellent for use in sustainable energy systems conceived for safe large-scale grid storage. The photopolymerized electrolyte shows a wide electrochemical stability window up to 4.8 V versus Na/Na(+) along with the highest ionic conductivity (5.1 mS cm(-1) at 20 °C) obtained in the field of Na-ion polymer batteries so far and stable long-term constant-current charge/discharge cycling. Moreover, the polymeric networks are also demonstrated for the in situ fabrication of electrode/electrolyte composites with excellent interfacial properties, which are ideal for all-solid-state, safe, and easily upscalable device assembly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    PubMed Central

    Rusi; Majid, S. R.

    2015-01-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg−1 and 68 kWkg−1 at current density of 20 Ag−1 in mixed KOH/K3Fe(CN)6 electrolyte. PMID:26537363

  8. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    PubMed

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  9. Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone

    NASA Technical Reports Server (NTRS)

    Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.

    1996-01-01

    We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.

  10. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  11. Towards Prognostics of Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Biswas, Gautam; Goegel, Kai

    2011-01-01

    A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management research. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. In particular, experimental results of an accelerated aging test under electrical stresses are presented. The capacitors used in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors.

  12. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    NASA Astrophysics Data System (ADS)

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-02-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material.

  13. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    PubMed Central

    Navarra, Maria Assunta; Dal Bosco, Chiara; Serra Moreno, Judith; Vitucci, Francesco Maria; Paolone, Annalisa; Panero, Stefania

    2015-01-01

    Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity. PMID:26633528

  14. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  16. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premalatha, M.; Materials Research Center, Coimbatore-641 045; Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasingmore » temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.« less

  17. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  18. Method of fabrication of electrodes and electrolytes

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2004-01-06

    Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.

  19. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  20. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  1. Novel Slurry Electrolyte Containing Lithium Metasilicate for High Electrochemical Performance of a 5 V Cathode.

    PubMed

    Ren, Yonghuan; Mu, Daobin; Wu, Feng; Wu, Borong

    2015-10-21

    We report a novel slurry electrolyte with ultrahigh concentration of insoluble inorganic lithium metasilicate (Li2SiO3) that is exploited for lithium ion batteries to combine the merits of solid and liquid electrolytes. The safety, conductivity, and anodic and storage stabilities of the eletrolyte are examined, which are all enhanced compared to a base carbonate electrolyte. The compatibility of the elecrolyte with a LiNi0.5Mn1.5O4 cathode is evaluated under high voltage. A discharge capacity of 173.8 mAh g(-1) is still maintained after 120 cycles, whereas it is only 74.9 mAh g(-1) in the base electrolyte. Additionally, the rate capability of the LiNi0.5Mn1.5O4 cathode is also improved with reduced electrode polarization. TEM measurements indicate that the electrode interface is modified by Li2SiO3 with a thinner solid electrolyte interphase film. Density functional theory computations demonstrate that LiPF6 is stabilized against its decomposition by Li2SiO3. A possible path for the reaction between PF5 and Li2SiO3 is also proposed by deducing the transition states involved in the process using the DFT method.

  2. Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Chen, Junzheng; Cao, Ruiguo

    The electrolyte is a crucial component of lithium-sulfur (Li-S) batteries, as it controls polysulfide dissolution, charge shuttling processes, and solid-electrolyte interphase (SEI) layer formation. Experimentally, the overall performance of Li-S batteries varies with choice of solvent system and Li-salt used in the electrolyte, and a lack of predictive understanding about the effects of individual electrolyte components inhibits the rational design of electrolytes for Li-S batteries. Here we analyze the role of the counter anions of common Li salts (such as TfO-, FSI-, TFSI-, and TDI-) when dissolved in DOL/DME (1:1 vol.) for use in Li-S batteries. The evolution of ion-ionmore » and ion-solvent interactions due to vari-ous anions was analyzed using 17O NMR and pulsed-field gradient (PFG) NMR and then correlated with electrochemi-cal performance in Li-S cells. These data reveal that the for-mation of the passivation layer on the anode and the loss of active materials from the cathode (evidenced by polysulfide dissolution) are related to anion mobility and affinity with lithium polysulfide, respectively. For future electrolyte de-sign, anions with lower mobility and weaker interactions with lithium polysulfides may be superior candidates for increasing the long-term stability of Li-S batteries.« less

  3. Deducing the Kinetics of Protein Synthesis In Vivo from the Transition Rates Measured In Vitro

    PubMed Central

    Rudorf, Sophia; Thommen, Michael; Rodnina, Marina V.; Lipowsky, Reinhard

    2014-01-01

    The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics. PMID:25358034

  4. Microprocessor dynamics shows co- and post-transcriptional processing of pri-miRNAs.

    PubMed

    Louloupi, Annita; Ntini, Evgenia; Liz, Julia; Ørom, Ulf Andersson

    2017-06-01

    miRNAs are small regulatory RNAs involved in the regulation of translation of target transcripts. miRNA biogenesis is a multistep process starting with the cleavage of the primary miRNA transcript in the nucleus by the Microprocessor complex. Endogenous processing of pri-miRNAs is challenging to study and the in vivo kinetics of this process is not known. Here, we present a method for determining the processing kinetics of pri-miRNAs within intact cells over time, using a pulse-chase approach to label transcribed RNA during 15 min, and follow the processing within a 1-hour window after labeling with bromouridine. We show that pri-miRNAs exhibit different processing kinetics ranging from fast over intermediate to slow processing, and we provide evidence that pri-miRNA processing can occur both cotranscriptionally and post-transcriptionally. © 2017 Louloupi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. A Simple Method to Simultaneously Detect and Identify Spikes from Raw Extracellular Recordings.

    PubMed

    Petrantonakis, Panagiotis C; Poirazi, Panayiota

    2015-01-01

    The ability to track when and which neurons fire in the vicinity of an electrode, in an efficient and reliable manner can revolutionize the neuroscience field. The current bottleneck lies in spike sorting algorithms; existing methods for detecting and discriminating the activity of multiple neurons rely on inefficient, multi-step processing of extracellular recordings. In this work, we show that a single-step processing of raw (unfiltered) extracellular signals is sufficient for both the detection and identification of active neurons, thus greatly simplifying and optimizing the spike sorting approach. The efficiency and reliability of our method is demonstrated in both real and simulated data.

  6. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    PubMed

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.

  7. Multistep modeling (MSM) of biomolecular structure application to the A-G mispair in the B-DNA environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Raghunathan, G.; Shibata, M.; Rein, R.

    1986-01-01

    A multistep modeling procedure has been evolved to study the structural changes introduced by lesions in DNA. We report here the change in the structure of regular B-DNA geometry due to the incorporation of Ganti-Aanti mispair in place of a regular G-C pair, preserving the helix continuity. The energetics of the structure so obtained is compared with the Ganti-Asyn configuration under similar constrained conditions. We present the methodology adopted and discuss the results.

  8. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and MSFC, and Ohio State University and MIT. Progress in measuring cell efficiency for oxygen production, development of non reacting electrodes, and cell feeding and withdrawal will be discussed.

  9. Densification of LSGM electrolytes using activated microwave sintering

    NASA Astrophysics Data System (ADS)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  10. PURIFICATION OF URANIUM FUELS

    DOEpatents

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less

  12. Fuel cells with doped lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  13. Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy

    NASA Astrophysics Data System (ADS)

    Apachitei, I.; Leoni, A.; Riemslag, A. C.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2011-05-01

    Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.

  14. Electrochemical cell and separator plate thereof

    DOEpatents

    Baker, Bernard S.; Dharia, Dilip J.

    1979-10-02

    A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.

  15. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    DOEpatents

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  16. New electrolytes for aluminum production: Ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  17. Conductometry of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Safonova, Lyubov P.; Kolker, Arkadii M.

    1992-09-01

    A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.

  18. The influence of current collector corrosion on the performance of electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Jarosław; Kolanowski, Łukasz; Bund, Andreas; Lota, Grzegorz

    2017-11-01

    This paper discusses the effect of current collector (stainless steel 316L) corrosion on the performance of electrochemical capacitors operated in aqueous electrolytes. This topic seems to be often neglected in scientific research. The studied electrolytes were 1 M H2SO4, 1 M KI, 1 M Na2SO4, 1 M KOH and 6 M KOH. The corrosion process was investigated by means of selected direct and alternating current techniques. The surface of the current collectors as well as the corrosion products were characterised using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and atomic force microscopy. Stainless steel 316L in alkaline solutions is characterised by the lowest values of corrosion potentials whereas the potentials in acidic media become the most noble. Our studies show that corrosion potentials increase with decreasing pH value. This phenomenon can be explained with the formation of passive oxide films on the stainless steel current collectors. The passive oxide films are usually thicker and more porous in alkaline solutions than that in the other electrolytes. The processes occurring at the electrode/electrolyte interfaces strongly influence the working parameters of electrochemical capacitors such as voltage, working potentials of single electrodes, self-discharge as well as the internal resistance and cycling stability.

  19. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  20. A temperature-controlled photoelectrochemical cell for quantitative product analysis.

    PubMed

    Corson, Elizabeth R; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Kostecki, Robert; McCloskey, Bryan D

    2018-05-01

    In this study, we describe the design and operation of a temperature-controlled photoelectrochemical cell for analysis of gaseous and liquid products formed at an illuminated working electrode. This cell is specifically designed to quantitatively analyze photoelectrochemical processes that yield multiple gas and liquid products at low current densities and exhibit limiting reactant concentrations that prevent these processes from being studied in traditional single chamber electrolytic cells. The geometry of the cell presented in this paper enables front-illumination of the photoelectrode and maximizes the electrode surface area to electrolyte volume ratio to increase liquid product concentration and hence enhances ex situ spectroscopic sensitivity toward them. Gas is bubbled through the electrolyte in the working electrode chamber during operation to maintain a saturated reactant concentration and to continuously mix the electrolyte. Gaseous products are detected by an in-line gas chromatograph, and liquid products are analyzed ex situ by nuclear magnetic resonance. Cell performance was validated by examining carbon dioxide reduction on a silver foil electrode, showing comparable results both to those reported in the literature and identical experiments performed in a standard parallel-electrode electrochemical cell. To demonstrate a photoelectrochemical application of the cell, CO 2 reduction experiments were carried out on a plasmonic nanostructured silver photocathode and showed different product distributions under dark and illuminated conditions.

Top