Sample records for multitype branching processes

  1. Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Ju, Wenyun; Sun, Kai

    In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less

  2. Branching processes in disease epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet

    Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a

  3. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.

    2014-03-01

    Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.

  4. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing.

    PubMed

    Xu, Jason; Minin, Vladimir N

    2015-07-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.

  5. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing

    PubMed Central

    Xu, Jason; Minin, Vladimir N.

    2016-01-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377

  6. The Multitype Library Network.

    ERIC Educational Resources Information Center

    Dejohn, William, Ed.; Lamont, Bridget L., Ed.

    1975-01-01

    "Illinois Libraries" for June, 1975, is devoted to interlibrary cooperation and the multitype library network as exemplified by the Illinois Library and Information Network (ILLINET). The history, geographical coverage, member and affiliate libraries, and the workings of the network at various levels are described. A second section…

  7. Quasi- and pseudo-maximum likelihood estimators for discretely observed continuous-time Markov branching processes

    PubMed Central

    Chen, Rui; Hyrien, Ollivier

    2011-01-01

    This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356

  8. Special Libraries and Multitype Networks.

    ERIC Educational Resources Information Center

    Segal, JoAn S.

    1989-01-01

    Describes the history of multitype library networks; examines the reasons why special libraries and other network participants have resisted the inclusion of special libraries in these networks; and discusses the benefits to both special libraries and to other libraries in the network that would result from special library participation. (17…

  9. Geometric representation methods for multi-type self-defining remote sensing data sets

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1980-01-01

    Efficient and convenient representation of remote sensing data is highly important for an effective utilization. The task of merging different data types is currently dealt with by treating each case as an individual problem. A description is provided of work which is carried out to standardize the multidata merging process. The basic concept of the new approach is that of the self-defining data set (SDDS). The creation of a standard is proposed. This standard would be such that data which may be of interest in a large number of earth resources remote sensing applications would be in a format which allows convenient and automatic merging. Attention is given to details regarding the multidata merging problem, a geometric description of multitype data sets, image reconstruction from track-type data, a data set generation system, and an example multitype data set.

  10. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  11. Groupies in multitype random graphs.

    PubMed

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  12. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

    PubMed

    Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N

    2015-12-01

    Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.

  13. Differential Correlates of Multi-Type Maltreatment among Urban Youth

    ERIC Educational Resources Information Center

    Arata, Catalina M.; Langhinrichsen-Rohling, Jennifer; Bowers, David; O'Brien, Natalie

    2007-01-01

    Objective: The aim of this study was to examine the differential effects of multi-types of maltreatment in an adolescent sample. Different combinations of maltreatment (emotional, sexual, physical, neglect) were examined in relation to both negative affect and externalizing symptoms in male and female youth. Method: One thousand four hundred…

  14. Limit of a nonpreferential attachment multitype network model

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2017-02-01

    Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.

  15. Health information multitype library reference referral networking: panacea for the '90s.

    PubMed

    Teplitskaia, H

    1998-07-01

    Librarians are exploring new approaches to information sharing to cope with a rapidly changing environment dominated by budget cuts, information explosion, and globalization of the economy, science, and culture. In 1990, the University of Illinois at Chicago Library of the Health Sciences (UIC LHS) initiated a pilot project aimed at establishing an effective balance between state-of-the-art information technology and traditional library methods and promoting cooperation among health information professionals by establishing the Health Information Referral Network (HIRN) in the state of Illinois. HIRN's background and development, Internet home page, and networking techniques reviewed in this paper are applicable to multitype libraries and information centers interested in improving information use and the referral process.

  16. Health information multitype library reference referral networking: panacea for the '90s.

    PubMed Central

    Teplitskaia, H

    1998-01-01

    Librarians are exploring new approaches to information sharing to cope with a rapidly changing environment dominated by budget cuts, information explosion, and globalization of the economy, science, and culture. In 1990, the University of Illinois at Chicago Library of the Health Sciences (UIC LHS) initiated a pilot project aimed at establishing an effective balance between state-of-the-art information technology and traditional library methods and promoting cooperation among health information professionals by establishing the Health Information Referral Network (HIRN) in the state of Illinois. HIRN's background and development, Internet home page, and networking techniques reviewed in this paper are applicable to multitype libraries and information centers interested in improving information use and the referral process. PMID:9681171

  17. Strategic Planning for Library Multitype Cooperatives: Samples & Examples. ASCLA Changing Horizons Series #1.

    ERIC Educational Resources Information Center

    Baughman, Steven A., Ed.; Curry, Elizabeth A., Ed.

    As interlibrary cooperation has proliferated in the last several decades, multitype library organizations and systems have emerged as important forces in librarianship. The need for thoughtful and organized strategic planning is an important cornerstone for the success of organizations of all sizes. Part of a project by the Interlibrary…

  18. Multi-type Childhood Abuse, Strategies of Coping, and Psychological Adaptations in Young Adults

    PubMed Central

    Sesar, Kristina; Šimić, Nataša; Barišić, Marijana

    2010-01-01

    Aim To retrospectively analyze the rate of multi-type abuse in childhood and the effects of childhood abuse and type of coping strategies on the psychological adaptation of young adults in a sample form the student population of the University of Mostar. Methods The study was conducted on a convenience sample of 233 students from the University of Mostar (196 female and 37 male), with a median age of 20 (interquartile range, 2). Exposure to abuse was determined using the Child Maltreatment Scales for Adults, which assesses emotional, physical, and sexual abuse, neglect, and witnessing family violence. Psychological adaptation was explored by the Trauma Symptom Checklist, which assesses anxiety/depression, sexual problems, trauma symptoms, and somatic symptoms. Strategies of coping with stress were explored by the Coping Inventory for Stressful Situations. Results Multi-type abuse in childhood was experienced by 172 participants (74%) and all types of abuse by 11 (5%) participants. Emotional and physical maltreatment were the most frequent types of abuse and mostly occurred together with other types of abuse. Significant association was found between all types of abuse (r = 0.436-0.778, P < 0.050). Exposure to sexual abuse in childhood and coping strategies were significant predictors of anxiety/depression (R2 = 0.3553), traumatic symptoms (R2 = 0.2299), somatic symptoms (R2 = 0.2173), and sexual problems (R2 = 0.1550, P < 0.001). Conclusion Exposure to multi-type abuse in childhood is a traumatic experience with long-term negative effects. Problem-oriented coping strategies ensure a better psychosocial adaptation than emotion-oriented strategies. PMID:20960590

  19. [The organization of system of quality management in large multitype hospital].

    PubMed

    Taĭts, B M; Krichmar, G N; Stvolinskiĭ, I Iu; Grandilevskaia, O L

    2013-01-01

    The article presents the characteristics and assessment of functioning of model of quality management in large multitype hospital. The results of work of the municipal hospital of Saint Venerable martyr Elizabeth of St Petersburg concerning the implementation of system of quality management in 2001-2011 of the foundation of principles of total quality management of medical service and principles of quality management according international standards ISO and their Russian analogues.

  20. Epidemiological modeling in a branching population. Particular case of a general SIS model with two age classes.

    PubMed

    Jacob, C; Viet, A F

    2003-03-01

    This paper covers the elaboration of a general class of multitype branching processes for modeling in a branching population, the evolution of a disease with horizontal and vertical transmissions. When the size of the population may tend to infinity, normalization must be carried out. As the initial size tends to infinity, the normalized model converges a.s. to a dynamical system the solution of which is the probability law of the state of health for an individual ancestors line. The focal point of this study concerns the transient and asymptotical behaviors of a SIS model with two age classes in a branching population. We will compare the asymptotical probability of extinction on the scale of a finite population and on the scale of an individual in an infinite population: when the rates of transmission are small compared to the rate of renewing the population of susceptibles, the two models lead to a.s. extinction, giving consistent results, which no longer applies to the opposite situation of important transmissions. In that case the size of the population plays a crucial role in the spreading of the disease.

  1. Generalized Low-Temperature Fabrication of Scalable Multi-Type Two-Dimensional Nanosheets with a Green Soft Template.

    PubMed

    Wang, Lanfang; Song, Chuang; Shi, Yi; Dang, Liyun; Jin, Ying; Jiang, Hong; Lu, Qingyi; Gao, Feng

    2016-04-11

    Two-dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost-effective synthesis process for multi-type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low-temperature fabrication of scalable multi-type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition-metal hydroxides (Ni-Co LDH, Ni-Fe LDH, Co-Fe LDH, and Ni-Co-Fe layered ternary hydroxides) through the rational employment of a green soft-template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni-Co LDH nanosheets exhibit a high specific capacitance of 1087 F g(-1) at a current density of 1 A g(-1), and excellent stability, with 103% retention after 500 cycles. This strategy is facile and scalable for the production of high-quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Wang, Jun

    2017-09-01

    In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

  3. Optimal multi-type sensor placement for response and excitation reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, C. D.; Xu, Y. L.

    2016-01-01

    The need to perform dynamic response reconstruction always arises as the measurement of structural response is often limited to a few locations, especially for a large civil structure. Besides, it is usually very difficult, if not impossible, to measure external excitations under the operation condition of a structure. This study presents an algorithm for optimal placement of multi-type sensors, including strain gauges, displacement transducers and accelerometers, for the best reconstruction of responses of key structural components where there are no sensors installed and the best estimation of external excitations acting on the structure at the same time. The algorithm is developed in the framework of Kalman filter with unknown excitation, in which minimum-variance unbiased estimates of the generalized state of the structure and the external excitations are obtained by virtue of limited sensor measurements. The structural responses of key locations without sensors can then be reconstructed with the estimated generalized state and excitation. The asymptotic stability feature of the filter is utilized for optimal sensor placement. The number and spatial location of the multi-type sensors are determined by adding the optimal sensor which gains the maximal reduction of the estimation error of reconstructed responses. For the given mode number in response reconstruction and the given locations of external excitations, the optimal multi-sensor placement achieved by the proposed method is independent of the type and time evolution of external excitation. A simply-supported overhanging steel beam under multiple types of excitation is numerically studied to demonstrate the feasibility and superiority of the proposed method, and the experimental work is then carried out to testify the effectiveness of the proposed method.

  4. Finite-size scaling of survival probability in branching processes

    NASA Astrophysics Data System (ADS)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro

    2015-04-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G (y ) =2 y ey /(ey-1 ) , with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  5. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  6. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  7. Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons

    PubMed Central

    Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William

    2010-01-01

    Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636

  8. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  9. Multi-type sensor placement and response reconstruction for building structures: Experimental investigations

    NASA Astrophysics Data System (ADS)

    Hu, Rong-Pan; Xu, You-Lin; Zhan, Sheng

    2018-01-01

    Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.

  10. Communication, Collaboration and Cooperation: An Evaluation of Nova Scotia's Borrow Anywhere, Return Anywhere (BARA) Multi-Type Library Initiative

    ERIC Educational Resources Information Center

    van den Hoogen, Suzanne; Parrott, Denise

    2012-01-01

    Partnerships and collaborations among libraries are proven to enhance collective resources. The collaboration of multi-type libraries offers a unique opportunity to explore the potential of different libraries working together to provide the best possible service to their community members. This article provides a detailed report of a multi-type…

  11. A bivariate model for analyzing recurrent multi-type automobile failures

    NASA Astrophysics Data System (ADS)

    Sunethra, A. A.; Sooriyarachchi, M. R.

    2017-09-01

    The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by

  12. Neuro-classification of multi-type Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.

    1991-01-01

    Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.

  13. Simple model of inhibition of chain-branching combustion processes

    NASA Astrophysics Data System (ADS)

    Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.

    2017-11-01

    A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.

  14. Cooperative Collection Development in Multitype Library Networks: A Beginning--Goals and Methods. Proceedings of the Annual Conference of the Missouri Library Association (1980).

    ERIC Educational Resources Information Center

    Tompkins, Philip, Ed.

    This document presents the proceedings of a conference organized to review the cooperative collection development features of the Missouri State Network Plan and to outline specific goals, methods, and materials for facilitating cooperative collection development projects in the state's multitype library networks. An introduction provides…

  15. Superlinear scaling of offspring at criticality in branching processes

    NASA Astrophysics Data System (ADS)

    Saichev, A.; Sornette, D.

    2014-01-01

    For any branching process, we demonstrate that the typical total number rmp(ντ) of events triggered over all generations within any sufficiently large time window τ exhibits, at criticality, a superlinear dependence rmp(ντ)˜(ντ)γ (with γ >1) on the total number ντ of the immigrants arriving at the Poisson rate ν. In branching processes in which immigrants (or sources) are characterized by fertilities distributed according to an asymptotic power-law tail with tail exponent 1<γ ⩽2, the exponent of the superlinear law for rmp(ντ) is identical to the exponent γ of the distribution of fertilities. For γ >2 and for standard branching processes without power-law distribution of fertilities, rmp(ντ)˜(ντ)2. This scaling law replaces and tames the divergence ντ /(1-n) of the mean total number R¯t(τ) of events, as the branching ratio (defined as the average number of triggered events of first generation per source) tends to 1. The derivation uses the formalism of generating probability functions. The corresponding prediction is confirmed by numerical calculations, and an heuristic derivation enlightens its underlying mechanism. We also show that R¯t(τ) is always linear in ντ even at criticality (n =1). Our results thus illustrate the fundamental difference between the mean total number, which is controlled by a few extremely rare realizations, and the typical behavior represented by rmp(ντ).

  16. Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.

    PubMed

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang

    2016-11-01

    Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.

  17. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    PubMed Central

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  18. Branching Search

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-12-01

    Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.

  19. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    USDA-ARS?s Scientific Manuscript database

    Despite the enormous relevance of zoonotic infections to world-wide public health, and despite much effort in modeling individual zoonoses, a fundamental understanding of the disease dynamics and the nature of outbreaks emanating from such a complex system is still lacking. We introduce a simple sto...

  20. The Specific Features of design and process engineering in branch of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Sosedko, V. V.; Yanishevskaya, A. G.

    2017-06-01

    Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.

  1. [On the extinction of populations with several types in a random environment].

    PubMed

    Bacaër, Nicolas

    2018-03-01

    This study focuses on the extinction rate of a population that follows a continuous-time multi-type branching process in a random environment. Numerical computations in a particular example inspired by an epidemic model suggest an explicit formula for this extinction rate, but only for certain parameter values. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  2. Combining DCQGMP-Based Sparse Decomposition and MPDR Beamformer for Multi-Type Interferences Mitigation for GNSS Receivers.

    PubMed

    Guo, Qiang; Qi, Liangang

    2017-04-10

    In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal.

  3. Combining DCQGMP-Based Sparse Decomposition and MPDR Beamformer for Multi-Type Interferences Mitigation for GNSS Receivers

    PubMed Central

    Guo, Qiang; Qi, Liangang

    2017-01-01

    In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal. PMID:28394290

  4. Mathematical modeling in biological populations through branching processes. Application to salmonid populations.

    PubMed

    Molina, Manuel; Mota, Manuel; Ramos, Alfonso

    2015-01-01

    This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations.

  5. A succinct method to generate multi-type HCV beams with a spatial spiral varying retardation-plate

    NASA Astrophysics Data System (ADS)

    Qi, Junli; Zhang, Hui; Pan, Baoguo; Deng, Haifei; Yang, Jinhong; Shi, Bo; Wang, Hui; Du, Ang; Wang, Weihua; Li, Xiujian

    2018-03-01

    A simple novel and practical scheme is presented to generate high-power cylindrical vector (HCV) beams with a 36-segment spiral varying retardation-plate sandwiched between two quarter-wave plates (QWPs). Four kinds of HCV beams, such as radially polarized beam and azimuthally polarized beam, are formed by simply rotating two QWPs. A segmented spiral varying phase-plate with isotropy is used to modulate spatial phase distribution to generate in-phase HCV beams. The intensity distributions and polarizing properties of HCV beams are investigated and analyzed in detail. It is demonstrated experimentally that the system can effectively generate multi-type HCV beams with high purity up to 99%, and it can be manufactured as cylindrical vector beam converter commercially.

  6. Branching-ratio approximation for the self-exciting Hawkes process

    NASA Astrophysics Data System (ADS)

    Hardiman, Stephen J.; Bouchaud, Jean-Philippe

    2014-12-01

    We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximization. We employ our method to support recent theoretical and experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in fact critical (now and in the recent past) in light of the long memory of financial market activity.

  7. The control of branching morphogenesis

    PubMed Central

    Iber, Dagmar; Menshykau, Denis

    2013-01-01

    Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663

  8. An analytical and numerical study of Galton-Watson branching processes relevant to population dynamics

    NASA Astrophysics Data System (ADS)

    Jang, Sa-Han

    Galton-Watson branching processes of relevance to human population dynamics are the subject of this thesis. We begin with an historical survey of the invention of the invention of this model in the middle of the 19th century, for the purpose of modelling the extinction of unusual surnames in France and Britain. We then review the principal developments and refinements of this model, and their applications to a wide variety of problems in biology and physics. Next, we discuss in detail the case where the probability generating function for a Galton-Watson branching process is a geometric series, which can be summed in closed form to yield a fractional linear generating function that can be iterated indefinitely in closed form. We then describe the matrix method of Keyfitz and Tyree, and use it to determine how large a matrix must be chosen to model accurately a Galton-Watson branching process for a very large number of generations, of the order of hundreds or even thousands. Finally, we show that any attempt to explain the recent evidence for the existence thousands of generations ago of a 'mitochondrial Eve' and a 'Y-chromosomal Adam' in terms of a the standard Galton-Watson branching process, or indeed any statistical model that assumes equality of probabilities of passing one's genes to one's descendents in later generations, is unlikely to be successful. We explain that such models take no account of the advantages that the descendents of the most successful individuals in earlier generations enjoy over their contemporaries, which must play a key role in human evolution.

  9. SDF1 regulates leading process branching and speed of migrating interneurons

    PubMed Central

    Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.

    2011-01-01

    Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183

  10. Genotype-Specific Measles Transmissibility: A Branching Process Analysis.

    PubMed

    Ackley, Sarah F; Hacker, Jill K; Enanoria, Wayne T A; Worden, Lee; Blumberg, Seth; Porco, Travis C; Zipprich, Jennifer

    2018-04-03

    Substantial heterogeneity in measles outbreak sizes may be due to genotype-specific transmissibility. Using a branching process analysis, we characterize differences in measles transmission by estimating the association between genotype and the reproduction number R among postelimination California measles cases during 2000-2015 (400 cases, 165 outbreaks). Assuming a negative binomial secondary case distribution, we fit a branching process model to the distribution of outbreak sizes using maximum likelihood and estimated the reproduction number R for a multigenotype model. Genotype B3 is found to be significantly more transmissible than other genotypes (P = .01) with an R of 0.64 (95% confidence interval [CI], .48-.71), while the R for all other genotypes combined is 0.43 (95% CI, .28-.54). This result is robust to excluding the 2014-2015 outbreak linked to Disneyland theme parks (referred to as "outbreak A" for conciseness and clarity) (P = .04) and modeling genotype as a random effect (P = .004 including outbreak A and P = .02 excluding outbreak A). This result was not accounted for by season of introduction, age of index case, or vaccination of the index case. The R for outbreaks with a school-aged index case is 0.69 (95% CI, .52-.78), while the R for outbreaks with a non-school-aged index case is 0.28 (95% CI, .19-.35), but this cannot account for differences between genotypes. Variability in measles transmissibility may have important implications for measles control; the vaccination threshold required for elimination may not be the same for all genotypes or age groups.

  11. Provenance analysis and thermo-dynamic studies of multi-type Holocene duricrusts (1700 BC) in the Sua Salt Pan, NE Botswana

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.; Dohrmann, R.; Kaufhold, S.; Techmer, A.

    2014-08-01

    Multi-type duricrusts, composed of silcretes, calcretes, halcretes and sulcretes developed during the Holocene at the northern rim of the Sua Salt Pan, NE Botswana. They were investigated for their light (quartz/chalcedony, feldspar, analcime, clinoptilolite, calcite, kaolinite/halloysite, illite-smectite mixed-layers, halite) and heavy minerals (baryte, clinozoisite-epidote s.s.s., amphibole, corundum, tourmaline, ilmenite, rutile, sphene, kyanite, andalusite, staurolite, garnet, zircon, apatite, monazite, cassiterite, garnet, biotite) using petrographic microscopy, X-ray fluorescence and diffraction analyses, radio-carbon dating, scanning electron microscopy equipped with an EDX-system, cation exchange capacity and infrared spectroscopy. Detrital minerals predominantly derived from the erosion of rocks belonging to the Archaean Basement Complex, the Stormberg Volcanites and the Kalahari sediments. Of particular interest to exploration geologists, geikielite-enriched ilmenite fragments are a hint to kimberlitic pipes. Biodetritus was derived from invertebrates and from vertebrates (fish bones?). A man-made impact on the heavy mineral suite has to be invoked from small fragments of cassiterite fragments that derived from processing of sulfidic and pegmatitic Sn-bearing ore. In the salt-pan-derived duricrusts mainly the aeolian and to a lesser degree fluvial inputs were responsible for the concentration of clasts in these multi-type duricrusts. Moreover, their variegated mineralogy enables us to constrain the physical-chemical regime, prevalently as to the pH and the chemical composition of the major constituents. All duricrusts developed in a self-sufficient chemically closed system where quartz and feldspar provided the elements Si, Na, K, Ca, and Ba to produce the encrustations. The spatial and temporal trend in the Sua Salt Pan rim encrustations may be described as follows: (1) sulcrete-silcretes, (2) silcretes with kaolinite-group minerals towards more recent

  12. Process for the conversion of lower alcohols to higher branched oxygenates

    DOEpatents

    Barger, Paul T.

    1996-01-01

    A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  13. Process for the conversion of lower alcohols to higher branched oxygenates

    DOEpatents

    Barger, P.T.

    1996-09-24

    A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  14. Statistical distributions of earthquake numbers: consequence of branching process

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2010-03-01

    We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.

  15. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  16. Modified parton branching model for multi-particle production in hadronic collisions: Application to SUSY particle branching

    NASA Astrophysics Data System (ADS)

    Yuanyuan, Zhang

    The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.

  17. Synthesis of porous carbon nanofiber with bamboo-like carbon nanofiber branches by one-step carbonization process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho

    2017-04-01

    Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.

  18. Child multi-type maltreatment and associated depression and PTSD symptoms: The role of social support and stress

    PubMed Central

    Vranceanu, Ana-Maria; Hobfoll, Stevan E.; Johnson, Robert J.

    2007-01-01

    Objective This retrospective, cross-sectional study explored the hypothesis that multiple forms of child abuse and neglect (child multi-type maltreatment; CMM) would be associated with women’s lower social support and higher stress in adulthood, and that this, in turn, would amplify their vulnerability to symptoms of depression and posttraumatic stress disorder (PTSD). Method Participants were 100 women recruited from an inner-city gynecological treatment center for low-income women. Data were analyzed via structural equation modeling (SEM) with Lisrel 8.0. Results CMM was directly predictive of decreased social support and increased stress in adulthood. CMM was also directly predictive of PTSD symptoms, but not depression symptoms in adulthood. Social support partially mediated the relationship between CMM and adult PTSD symptoms, and stress fully mediated the relationship between CMM and adult symptoms of depression. Conclusions Findings support both direct and mediational effects of social resources on adult depression and PTSD symptoms in women with histories of CMM, suggesting that resources are key factors in psychological adjustment of CMM victims. PMID:17215039

  19. Partial branch and bound algorithm for improved data association in multiframe processing

    NASA Astrophysics Data System (ADS)

    Poore, Aubrey B.; Yan, Xin

    1999-07-01

    A central problem in multitarget, multisensor, and multiplatform tracking remains that of data association. Lagrangian relaxation methods have shown themselves to yield near optimal answers in real-time. The necessary improvement in the quality of these solutions warrants a continuing interest in these methods. These problems are NP-hard; the only known methods for solving them optimally are enumerative in nature with branch-and-bound being most efficient. Thus, the development of methods less than a full branch-and-bound are needed for improving the quality. Such methods as K-best, local search, and randomized search have been proposed to improve the quality of the relaxation solution. Here, a partial branch-and-bound technique along with adequate branching and ordering rules are developed. Lagrangian relaxation is used as a branching method and as a method to calculate the lower bound for subproblems. The result shows that the branch-and-bound framework greatly improves the resolution quality of the Lagrangian relaxation algorithm and yields better multiple solutions in less time than relaxation alone.

  20. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  1. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  2. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  3. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    PubMed

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  4. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    PubMed Central

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  5. Branch classification: A new mechanism for improving branch predictor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, P.Y.; Hao, E.; Patt, Y.

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less

  6. Spatial mapping and quantification of developmental branching morphogenesis.

    PubMed

    Short, Kieran; Hodson, Mark; Smyth, Ian

    2013-01-15

    Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.

  7. Disassortativity of random critical branching trees

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Kahng, B.; Kim, D.

    2009-06-01

    Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.

  8. Cash efficiency for bank branches.

    PubMed

    Cabello, Julia García

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.

  9. On extreme events for non-spatial and spatial branching Brownian motions

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Grosjean, Nicolas; Huillet, Thierry

    2015-04-01

    We study the impact of having a non-spatial branching mechanism with infinite variance on some parameters (height, width and first hitting time) of an underlying Bienaymé-Galton-Watson branching process. Aiming at providing a comparative study of the spread of an epidemics whose dynamics is given by the modulus of a branching Brownian motion (BBM) we then consider spatial branching processes in dimension d, not necessarily integer. The underlying branching mechanism is either a binary branching model or one presenting infinite variance. In particular we evaluate the chance p(x) of being hit if the epidemics started away at distance x. We compute the large x tail probabilities of this event, both when the branching mechanism is regular and when it exhibits very large fluctuations.

  10. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  11. Vere-Jones' self-similar branching model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saichev, A.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095; Sornette, D.

    2005-11-01

    Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m{sup '} of daughters of first-generation of a mother of magnitude m has two branches m{sup '}m with exponent {beta}+d, where {beta} and d are two positive parameters. We investigate the condition and nature of the subcritical, critical, and supercritical regime in this and in an extended version interpolating smoothly between several models. We predict that the distribution of magnitudes of events triggered by a mother of magnitude m over all generations has also two branches m{sup '}m with exponent {beta}+h, with h=d{radical}(1-s), where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. For a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources with a single branch and is blind to the exponents {beta},d of the distribution of triggered events. Since the distribution of earthquake magnitudes is usually obtained with catalogs including many sequences, we conclude that the two branches of the distribution of aftershocks are not directly observable and the model is compatible with real seismic catalogs. In summary, the exactly self-similar Vere-Jones model provides an

  12. The coalescent of a sample from a binary branching process.

    PubMed

    Lambert, Amaury

    2018-04-25

    At time 0, start a time-continuous binary branching process, where particles give birth to a single particle independently (at a possibly time-dependent rate) and die independently (at a possibly time-dependent and age-dependent rate). A particular case is the classical birth-death process. Stop this process at time T>0. It is known that the tree spanned by the N tips alive at time T of the tree thus obtained (called a reduced tree or coalescent tree) is a coalescent point process (CPP), which basically means that the depths of interior nodes are independent and identically distributed (iid). Now select each of the N tips independently with probability y (Bernoulli sample). It is known that the tree generated by the selected tips, which we will call the Bernoulli sampled CPP, is again a CPP. Now instead, select exactly k tips uniformly at random among the N tips (a k-sample). We show that the tree generated by the selected tips is a mixture of Bernoulli sampled CPPs with the same parent CPP, over some explicit distribution of the sampling probability y. An immediate consequence is that the genealogy of a k-sample can be obtained by the realization of k random variables, first the random sampling probability Y and then the k-1 node depths which are iid conditional on Y=y. Copyright © 2018. Published by Elsevier Inc.

  13. s-Process Branch Point (n,γ) Measurements using NIF^*

    NASA Astrophysics Data System (ADS)

    Bernstein, Lee; Bleuel, D. L.; Cerjan, C.; Greife, U.; Hoffman, R. D.; Phair, L.; McEvoy, A.; Moody, K. J.; Schneider, D. H. G.; Shaughnessy, D.; Stoyer, M. A.

    2008-10-01

    The National Ignition Facility (NIF) at LLNL is a laser-driven inertial confinement fusion laboratory designed to compress pellets containing small (<10^20 atoms) samples of material to densities in excess of 100 g/cm^3 and temperatures up to kBT 10 keV. Early NIF shots will feature a proton-tritium (HT) fuel mix that creates a neutron spectrum similar to that found in AGB main sequence stars. In this talk I will discuss nuclear physics experiments using NIF and present a plan to measure the ^171Tm(n,γ) s-process branch point cross section in a NIF plasma environment which will include the plasma-induced population of the first excited state at Ex=5.0 keV. *This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and under Contract DE-AC52-07NA27344. For LBNL this work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  14. Existing branches correlatively inhibit further branching in Trifolium repens: possible mechanisms

    PubMed Central

    Thomas, R. G.; Hay, M. J. M.

    2011-01-01

    In Trifolium repens removal of any number of existing branches distal to a nodal root stimulates development of axillary buds further along the stem such that the complement of branches distal to a nodal root remains constant. This study aimed to assess possible mechanisms by which existing branches correlatively inhibit the outgrowth of axillary buds distal to them. Treatments were applied to basal branches to evaluate the roles of three postulated inhibitory mechanisms: (I) the transport of a phloem-mobile inhibitory feedback signal from branches into the main stem; (II) the polar flow of auxin from branches into the main stem acting to limit further branch development; or (III) the basal branches functioning as sinks for a net root-derived stimulatory signal (NRS). Results showed that transport of auxin, or of a non-auxin phloem-mobile signal, from basal branches did not influence regulation of correlative inhibition and were consistent with the possibility that the intra-plant distribution of NRS could be involved in the correlative inhibition of distal buds by basal branches. This study supports existing evidence that regulation of branching in T. repens is dominated by a root-derived stimulatory signal, initially distributed via the xylem, the characterization of which will progress the generic understanding of branching regulation. PMID:21071681

  15. Assessing local population vulnerability to wind energy development with branching process models: an application to wind energy development

    USGS Publications Warehouse

    Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.

    2015-01-01

    Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of

  16. Turing mechanism underlying a branching model for lung morphogenesis.

    PubMed

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  17. Fixation probability of a nonmutator in a large population of asexual mutators.

    PubMed

    Jain, Kavita; James, Ananthu

    2017-11-21

    In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  19. Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85

    NASA Astrophysics Data System (ADS)

    Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.

    2013-09-01

    We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.

  20. Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.

    PubMed

    Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N

    2013-09-13

    We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86  MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

  1. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Branch Processes of Vortex Filaments and Hopf Invariant Constraint on Scroll Wave

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan

    2009-12-01

    In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.

  2. Branches of the Facial Artery.

    PubMed

    Hwang, Kun; Lee, Geun In; Park, Hye Jin

    2015-06-01

    The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.

  3. Developmental Programming of Branching Morphogenesis in the Kidney

    PubMed Central

    Schneider, Laura; Al-Awqati, Qais

    2015-01-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110

  4. Sustainable Engineering and Improved Recycling of PET for High-Value Applications: Transforming Linear PET to Lightly Branched PET with a Novel, Scalable Process

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Torkelson, John

    2009-03-01

    A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).

  5. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    PubMed Central

    Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2014-01-01

    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286

  6. Absolute measurement of hadronic branching fractions of the Ds+ meson.

    PubMed

    Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-04-25

    The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.

  7. Absolute Measurement of Hadronic Branching Fractions of the Ds+ Meson

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.

    2008-04-01

    The branching fractions of Ds± meson decays serve to normalize many measurements of processes involving charm quarks. Using 298pb-1 of e+e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight Ds± decays with a double tag technique. In particular we determine the branching fraction B(Ds+→K-K+π+)=(5.50±0.23±0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K-K+π+ decay mode.

  8. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.

  9. Developmental Programming of Branching Morphogenesis in the Kidney.

    PubMed

    Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais

    2015-10-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.

  10. Phenomenological picture of fluctuations in branching random walks

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Munier, S.

    2014-10-01

    We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.

  11. Interactive Design and Visualization of Branched Covering Spaces.

    PubMed

    Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene

    2018-01-01

    Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.

  12. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  13. Entanglement branching operator

    NASA Astrophysics Data System (ADS)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  14. Observing Holliday junction branch migration one step at a time

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2004-03-01

    During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.

  15. Anatomical analysis of medial branches of dorsal rami of cervical nerves for radiofrequency thermocoagulation.

    PubMed

    Kweon, Tae Dong; Kim, Ji Young; Lee, Hye Yeon; Kim, Myung Hwa; Lee, Youn-Woo

    2014-01-01

    Cervical medial branch blocks are used to treat patients with chronic neck pain. The aim of this study was to clarify the anatomical aspects of the cervical medial branches to improve the accuracy and safety of radiofrequency denervation. Twenty cervical specimens were harvested from 20 adult cadavers. The anatomical parameters of the C4-C7 cervical medial branches were measured. The 3-dimensional computed tomography reconstruction images of the bone were also analyzed. Based on cadaveric analysis, most of the cervical dorsal rami gave off 1 medial branch; however, the cervical dorsal rami gave off 2 medial branches in 27%, 15%, 2%, and 0% at the vertebral level C4, C5, C6, and C7, respectively. The diameters of the medial branches varied from 1.0 to 1.2 mm, and the average distance from the notch of inferior articular process to the medial branches was about 2 mm. Most of the bifurcation sites were located at the medial side of the posterior tubercle of the transverse process. On the analysis of 3-dimensional computed tomography reconstruction images, cervical medial branches (C4 to C6) passed through the upper 49% to 53% of a line between the tips of 2 consecutive superior articular processes (anterior line). Also, cervical medial branches passed through the upper 28% to 35% of a line between the midpoints of 2 consecutive facet joints (midline). The present anatomical study may help improve accuracy and safety during radiofrequency denervation of the cervical medial branches.

  16. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  17. Cadaveric Study of the Articular Branches of the Shoulder Joint.

    PubMed

    Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S

    This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.

  18. Arginine-glycine-aspartic acid functional branched semi-interpenetrating hydrogels.

    PubMed

    Plenderleith, Richard A; Pateman, Christopher J; Rodenburg, Cornelia; Haycock, John W; Claeyssens, Frederik; Sammon, Chris; Rimmer, Stephen

    2015-10-14

    For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.

  19. Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis.

    PubMed

    Poza-Carrión, César; Aguilar-Martínez, José Antonio; Cubas, Pilar

    2007-11-01

    Branching patterns are major determinants of plant architecture. They depend both on leaf phillotaxy (branch primordia are formed in the axils of leaves) and on the decision of buds to grow out to give a branch or to remain dormant. In Arabidopsis, several genes involved in the long-distance signalling of the control of branch outgrowth have been identified. However, the genes acting inside the buds to cause growth arrest remained unknown until now. In the February issue of Plant Cell we have described the function of BRANCHED1 (BRC1), an Arabidopsis gene coding for a plant-specific transcription factor of the TCP family that is expressed in the buds and prevents their development. Loss of BRC1 function leads to accelerated AM initiation, precocious progression of bud development and excess of shoot branching. BRC1 transcription is affected by endogenous and environmental signals controlling branching and we have shown that BRC1 function mediates the response to these stimuli. Therefore we have proposed that BRC1 function represents the point at which signals controlling branching are integrated within axillary buds.

  20. Bundle Branch Block

    MedlinePlus

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  1. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  2. Branching dynamics of viral information spreading.

    PubMed

    Iribarren, José Luis; Moro, Esteban

    2011-10-01

    Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping point" and can be used for prediction and management of viral information spreading processes.

  3. Branching dynamics of viral information spreading

    NASA Astrophysics Data System (ADS)

    Iribarren, José Luis; Moro, Esteban

    2011-10-01

    Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the “tipping point” and can be used for prediction and management of viral information spreading processes.

  4. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  5. NCO Production Management Branch

    Science.gov Websites

    Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library Management Branch Production Management Branch About the Production Management Branch NCO REQUEST FOR CHANGE (RFC) DATABASE ACCESS NCO Request For Change (RFC) Archive [For INTERNAL Use Only] NCO Request For

  6. Anatomical medial surfaces with efficient resolution of branches singularities.

    PubMed

    Gil, Debora; Vera, Sergio; Borràs, Agnés; Andaluz, Albert; González Ballester, Miguel A

    2017-01-01

    Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility of existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a confident application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an efficient GPU-CPU implementation using standard image processing tools. We show the method computational efficiency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Role of epistasis on the fixation probability of a non-mutator in an adapted asexual population.

    PubMed

    James, Ananthu

    2016-10-21

    The mutation rate of a well adapted population is prone to reduction so as to have a lower mutational load. We aim to understand the role of epistatic interactions between the fitness affecting mutations in this process. Using a multitype branching process, the fixation probability of a single non-mutator emerging in a large asexual mutator population is analytically calculated here. The mutator population undergoes deleterious mutations at constant, but at a much higher rate than that of the non-mutator. We find that antagonistic epistasis lowers the chances of mutation rate reduction, while synergistic epistasis enhances it. Below a critical value of epistasis, the fixation probability behaves non-monotonically with variation in the mutation rate of the background population. Moreover, the variation of this critical value of the epistasis parameter with the strength of the mutator is discussed in the appendix. For synergistic epistasis, when selection is varied, the fixation probability reduces overall, with damped oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Transverse radioulnar branch of the dorsal ulnar nerve: anatomic description and arthroscopic implications from 45 cadaveric dissections].

    PubMed

    Ehlinger, M; Rapp, E; Cognet, J-M; Clavert, P; Bonnomet, F; Kahn, J-L; Kempf, J-F

    2005-05-01

    We conducted an anatomic study of the transverse branch of the dorsal ulnar nerve to describe its morphology and position in relation to arthroscopic exploration portals. Forty-five non-side-matched anatomic specimens of unknown age and gender were preserved in formol. The dorsal branch of the ulnar nerve was identified and dissected proximally to distally in order to reveal the different terminal branches. The morphometric analysis included measurement of the length and diameter of the transverse branch and measurement of wrist width. We also measured the smallest distance between the transverse branch and the ulnar styloid process, and between the branch and usual arthroscopic portals (4-5, 6R, 6U) in the axis of the forearm. The transverse branch was inconstant. It was found in 12 of the 45 dissection specimens (27%). In two-thirds of the specimens, the branch ran over less than 50% of the wrist width, tangentially to the radiocarpal joint. Mean nerve diameter was 1 mm. It was found 5-6 mm from the ulnar styloid process and was distal to it in 83% of the specimens. The dissections demonstrated two anatomic variants. Type A corresponded to a branch running distally to the ulnar styloid process, parallel to the joint line (10/12 specimens). Type B exhibited a trajectory proximal to the ulnar styloid process, crossing the ulnar head (2/12 specimens). The relations with the arthroscopic portals (4-5, 6R, 6U) showed that the mean distance from the branch to the portal was 3.75 mm for the 4-5 portal (distally in 11/12 specimens), 3.68 mm for the 6R portal (distally in 10/12 specimens), and 4.83 mm for the 6U portal (distally in 7 specimens and proximally in 5). To our knowledge, there has been only one report specifically devoted to this transverse branch. Two other reports simply mention its existence. According to the literature, the transverse branch of the dorsal ulnar nerve occurs in 60-80% of the cases. We found two anatomic variations different than those

  9. Combining living anionic polymerization with branching reactions in an iterative fashion to design branched polymers.

    PubMed

    Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira

    2010-06-16

    This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Origin of Broad Visible Emission from Branched Polysilane and Polygermane Chains

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira; Sato, Takaaki; Matsuda, Minoru

    2001-11-01

    The emission properties of branched polysilane and polygermane are studied using time-resolved emission spectroscopy. As branched polymers, the organosilicon cluster (OSI) and organogermanium cluster (OGE) are investigated, which are prepared from tetrachlorosilane and tetrachlorogermane, respectively, and have a hyperbranched structure. The broad visible emissions of OSI and OGE are explained by the energy diagram based on a configuration coordinate model, and the excited states are attributed to a localized state around the branching point. The molecular orbital (MO) calculation suggested the formation of a localized state by the distortion around the branching point in the excited state. The potential barrier for the nonradiative relaxation process was determined from the temperature dependence of the emission lifetime.

  11. Hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch, Columbia, Tennessee

    USGS Publications Warehouse

    Outlaw, George S.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the City of Columbia, Tennessee, conducted hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch in the Little Bigby Creek watershed, Columbia, Tennessee, from 1990 through 1991. Results of the analyses can be used by city planners in the development of plans to replace several deteriorating and inadequate drainage structures. Akin Branch and Cayce Valley Branch drain small watersheds of 1.69 and 1.04 square miles, respectively. Flood discharges for 5-, lo-, and 25-year recurrence-interval storm events were calculated at the stream mouths using flood-frequency relations developed for use at small urban streams in Tennessee. For each stream, flood discharges at locations upstream from the mouth were calculated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Flood profiles for the selected recurrence-interval flood discharges were simulated for Akin Branch and Cayce Valley Branch for existing conditions and conditions that might exist if drainage improvements such as larger culverts and bridges and channel improvements are constructed. The results of the simulations were used to predict changes in flood elevations that might result from such drainage improvements. Analyses indicate that reductions in existing flood elevations of as much as 2.1 feet for the 5-year flood at some sites on Akin Branch and as much as 3.8 feet for the 5-year flood at some sites on Cayce Valley Branch might be expected with the drainage improvements.

  12. Fine-Branched Ridges

    NASA Image and Video Library

    2015-10-14

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows numerous branching ridges with various degrees of sinuosity. These branching forms resemble tributaries funneling and draining into larger channel trunks towards the upper portion of the scene. The raised relief of these branching ridges suggests that these are ancient channels are inverted due to lithification and cementation of the riverbed sediment, which made it more resistant to erosion than the surrounding material. Wind-blown bedforms are abundant and resemble small ridges that are aligned in an approximately north-south direction. http://photojournal.jpl.nasa.gov/catalog/PIA20006

  13. An Anatomical Assessment of Branch Abscission and Branch-base Hydraulic Architecture in the Endangered Wollemia nobilis

    PubMed Central

    Burrows, G. E.; Meagher, P. F.; Heady, R. D.

    2007-01-01

    Background and Aims The branch-base xylem structure of the endangered Wollemia nobilis was anatomically investigated. Wollemia nobilis is probably the only extant tree species that produces only first-order branches and where all branches are cleanly abscised. An investigation was carried out to see if these unusual features might influence branch-base xylem structure and water supply to the foliage. Methods The xylem was sectioned at various distances along the branch bases of 6-year-old saplings. Huber values and relative theoretical hydraulic conductivities were calculated for various regions of the branch base. Key Results The most proximal branch base featured a pronounced xylem constriction. The constriction had only 14–31 % (average 21 %) of the cross-sectional area and 20–42 % (average 28 %) of the theoretical hydraulic conductivity of the more distal branch xylem. Wollemia nobilis had extremely low Huber values for a conifer. Conclusions The branch-base xylem constriction would appear to facilitate branch abscission, while the associated Huber values show that W. nobilis supplies a relatively large leaf area through a relatively small diameter ‘pipe’. It is tempting to suggest that the pronounced decline of W. nobilis in the Tertiary is related to its unusual branch-base structure but physiological studies of whole plant conductance are still needed. PMID:17272303

  14. Self-catalytic branch growth of SnO 2 nanowire junctions

    NASA Astrophysics Data System (ADS)

    Chen, Y. X.; Campbell, L. J.; Zhou, W. L.

    2004-10-01

    Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and [ 1 1 bar 0 ] . A self-catalytic vapor-liquid-solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.

  15. Analysis of interface crack branching

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Mukai, D. J.; Miller, G. R.

    1989-01-01

    A solution is presented for the problem of a finite length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.

  16. Branching pattern in natural drainage network

    NASA Astrophysics Data System (ADS)

    Hooshyar, M.; Singh, A.; Wang, D.

    2017-12-01

    The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to movement of water. The branching structure of drainage network is an important feature related to the network topology and contain valuable information about the forming mechanisms of the landscape. We studied the branching patterns in natural drainage networks, extracted from 1 m Digital Elevation Models (DEMs) of 120 catchments with minimal human impacts across the United States. We showed that the junction angles have two distinct modes an the observed modes are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphological signature of hydrological processes on drainage networks and develop more refined landscape evolution models.

  17. CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.

    PubMed

    Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey

    2017-01-01

    The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.

  18. Ecological effects of contaminants in McCoy Branch, 1991--1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryon, M.G.

    1996-09-01

    The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Following guidelines under RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation (RI) was required of the Y-12 Plant for their filled coal ash pond (FCAP) and associated areas on McCoy Branch. The RI process was initiated and assessments were presented. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps weremore » implemented between 1986 and 1994 for McCoy Branch to address disposal problems. The required ecological risk assessments of McCoy Branch watershed included provisions for biological monitoring of the watershed. The objectives of the biological monitoring were to (1) document changes in biological quality of McCoy Branch after completion of a pipeline bypassing upper McCoy Branch and further, after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program may also determine whether the goals of protection of human health and the environment of McCoy Branch are being accomplished.« less

  19. [Croatian Medical Association--Branch Zagreb].

    PubMed

    Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko

    2014-01-01

    The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is

  20. Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.

    PubMed

    Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L

    2010-09-22

    The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those

  1. Randomized branch sampling

    Treesearch

    Harry T. Valentine

    2002-01-01

    Randomized branch sampling (RBS) is a special application of multistage probability sampling (see Sampling, environmental), which was developed originally by Jessen [3] to estimate fruit counts on individual orchard trees. In general, the method can be used to obtain estimates of many different attributes of trees or other branched plants. The usual objective of RBS is...

  2. Evaluation of popliteal artery branching patterns and a new subclassification of the 'usual' branching pattern.

    PubMed

    Celtikci, Pinar; Ergun, Onur; Durmaz, Hasan Ali; Conkbayir, Isik; Hekimoglu, Baki

    2017-09-01

    To determine the frequency of popliteal artery branching variations in a wide study cohort and to investigate the relationship between these variations and infrapopliteal peripheral arterial disease (PAD). A subclassification was proposed for the most encountered type I-A, utilizing tibio-fibular trunk (TFT) length. A total number of 1184 lower extremity digital subtraction angiography (DSA) studies of 669 patients were evaluated. Following exclusion, 863 lower extremity DSA studies (431 right, 432 left) of 545 patients were enrolled. Popliteal artery branching type, patency of anterior tibial artery (ATA), fibular artery (FA) and posterior tibial artery (PTA) in each extremity and TFT length for type I-A extremities were recorded. Percentages of branching patterns, mean length and cut-off value of TFT and incidence of PAD in different types of branching were calculated. Type I-A was the most common type of branching (81.3%). Frequency of branching pattern variation was 18.7%, the most common variation category was category III (12.2%) and the most common variation type was type III-A (5.6%). ATA and PTA had higher percentages of PAD in extremities with variant branching types. Cut-off value of 3 cm for TFT length was proposed in order to subclassify type I-A. Our study cohort presents a higher incidence of popliteal artery branching variations. Some branching variations might have effect on the involvement pattern of the infrapopliteal arteries by PAD. We propose a subclassification for type I-A; type I-A-S (TFT < 3 cm) and type I-A-L (TFT ≥ 3 cm) which might have impact on interventional procedures.

  3. Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction

    NASA Astrophysics Data System (ADS)

    Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae

    2015-04-01

    Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and

  4. Modern prospects of development of branch of solar power

    NASA Astrophysics Data System (ADS)

    Luchkina, Veronika

    2017-10-01

    Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.

  5. The role of branch architecture in assimilate production and partitioning: the example of apple (Malus domestica)

    PubMed Central

    Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard

    2014-01-01

    Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813

  6. Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?

    PubMed Central

    Newberry, Mitchell G.; Savage, Van M.

    2016-01-01

    Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. PMID:27902691

  7. Model-based branching point detection in single-cell data by K-branches clustering

    PubMed Central

    Chlis, Nikolaos K.; Wolf, F. Alexander; Theis, Fabian J.

    2017-01-01

    Abstract Motivation The identification of heterogeneities in cell populations by utilizing single-cell technologies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees. Several methods have been proposed for such inference from high-dimensional single-cell data. They typically assign each cell to a branch in a differentiation trajectory. However, they commonly assume specific geometries such as tree-like developmental hierarchies and lack statistically sound methods to decide on the number of branching events. Results We present K-Branches, a solution to the above problem by locally fitting half-lines to single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies for branches in the differentiation trajectory of cells. We propose a modified version of the GAP statistic for model selection, in order to decide on the number of lines that best describe the data locally. In this manner, we identify the location and number of subgroups of cells that are associated with branching events and full differentiation, respectively. We evaluate the performance of our method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during hematopoiesis, single-cell qPCR data of mouse blastocyst development, single-cell qPCR data of human myeloid monocytic leukemia and artificial data. Availability and implementation An R implementation of K-Branches is freely available at https://github.com/theislab/kbranches. Contact fabian.theis@helmholtz-muenchen.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28582478

  8. Proteomic analysis of etiolated juvenile tetraploid Robinia pseudoacacia branches during different cutting periods.

    PubMed

    Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun

    2014-04-21

    The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.

  9. Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.

    PubMed

    Kozera, Katarzyna; Ciszek, Bogdan

    2016-01-01

    The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.

  10. Research on pyrolysis behavior of Camellia sinensis branches via the Discrete Distributed Activation Energy Model.

    PubMed

    Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng

    2017-10-01

    This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud

    PubMed Central

    Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank

    2013-01-01

    Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650

  12. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  13. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  14. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    PubMed Central

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  15. Controls on stream network branching angles, tested using landscape evolution models

    NASA Astrophysics Data System (ADS)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  16. A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fung, Richard Y. K.

    2018-02-01

    This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.

  17. Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices

    PubMed Central

    Chao, Jerry; Ward, E. Sally; Ober, Raimund J.

    2012-01-01

    The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166

  18. Fort Collins Science Center Ecosystem Dynamics Branch

    USGS Publications Warehouse

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  19. Branching morphogenesis in the fetal mouse submandibular gland is codependent on growth factors and extracellular matrix.

    PubMed

    Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori

    2009-01-01

    Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).

  20. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  1. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  2. Research program of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor); Boccucci, B. S. (Editor)

    1986-01-01

    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.

  3. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  4. [Branches of the National Institute of Hygiene].

    PubMed

    Gromulska, Marta

    2008-01-01

    National Epidemiological Institute (National Institute of Hygiene, from 7th September 1923) was established in 1918 in Warsaw and acted at national level. Its actions in the field of diseases combat were supported by bacteriological stations and vaccine production in voivodeship cities, which were taken charge of by the state, and names "National Epidemiological Institutes". According to the ministers resolution from 6th July 1921,Epidemiological Institutes were merged to National Central Epidemiological Institutes (PZH), the epidemiological institutes outside Warsaw were named branches, which were to be located in every voivodeship city, according to the initial organizational resolutions. There were country branches of NCEI in: Cracow, Lwów, Lódź, Toruń, Lublin, and Wilno in the period 1919-1923. New branches in Poznań (1925), Gdynia(1934), Katowice (Voivodeship Institute of Hygiene (1936), Luck (1937), Stanisławów (1937), Kielce(1938), and Brześć/Bug (Municipal Station acting as branch of National Central Epidemiological Institute. Branches were subordinated to NCEI-PZH) in Warsaw where action plans and unified research and diagnostic method were established and annual meeting of the country branches managers took place. All branches cooperated with hospitals, national health services, district general practitioners and administration structure in control of infectious diseases. In 1938, the post of branch inspector was established, the first of whom was Feliks Przesmycki PhD. Branches cooperated also with University of Cracow, University of Lwów and University of Wilno. In 1935, National Institutes of Food Research was incorporated in PZH, Water Department was established, and these areas of activity began to develop in the branches accordingly. In 1938 there were 13 branches of PZH, and each had three divisions: bacteriological, food research and water research. Three branches in Cracow, Kielce and Lublin worked during World War II under German

  5. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403...

  6. 17 CFR 166.4 - Branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Branch offices. 166.4 Section 166.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION CUSTOMER PROTECTION RULES § 166.4 Branch offices. Each branch office of each Commission registrant must use the name of the...

  7. Branch Input Resistance and Steady Attenuation for Input to One Branch of a Dendritic Neuron Model

    PubMed Central

    Rall, Wilfrid; Rinzel, John

    1973-01-01

    Mathematical solutions and numerical illustrations are presented for the steady-state distribution of membrane potential in an extensively branched neuron model, when steady electric current is injected into only one dendritic branch. Explicit expressions are obtained for input resistance at the branch input site and for voltage attenuation from the input site to the soma; expressions for AC steady-state input impedance and attenuation are also presented. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. Numerical examples illustrate how branch input resistance and steady attenuation depend upon the following: the number of dendritic trees, the orders of dendritic branching, the electrotonic length of the dendritic trees, the location of the dendritic input site, and the input resistance at the soma. The application to cat spinal motoneurons, and to other neuron types, is discussed. The effect of a large dendritic input resistance upon the amount of local membrane depolarization at the synaptic site, and upon the amount of depolarization reaching the soma, is illustrated and discussed; simple proportionality with input resistance does not hold, in general. Also, branch input resistance is shown to exceed the input resistance at the soma by an amount that is always less than the sum of core resistances along the path from the input site to the soma. PMID:4715583

  8. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2012-07-01 2012-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  9. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2013-07-01 2013-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  10. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2014-07-01 2014-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  11. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2011-07-01 2011-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  12. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2010-07-01 2010-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  13. Are the interarytenoid muscles supplied by branches of both the recurrent and superior laryngeal nerves?

    PubMed

    Pascual-Font, Arán; Cubillos, Luis; Vázquez, Teresa; McHanwell, Steve; Sañudo, José R; Maranillo, Eva

    2016-05-01

    It has been generally accepted that the branches of the internal branch of the superior laryngeal nerve to the interarytenoid muscle are exclusively sensory. However, some experimental studies have suggested that these branches may contain motor axons, and therefore that the interarytenoid muscle is supplied by both the superior and recurrent laryngeal nerves. The aim of this work was to determine whether motor axons to the interarytenoid muscles are present in both laryngeal nerves. Basic research. Twelve human internal branches of the superior laryngeal nerve were dissected, and its branches to the interarytenoid muscle were removed and processed for choline-acetyltransferase immunohistochemistry, a method not used previously in studying the nerve fiber composition of the laryngeal nerves. The internal branch of the superior laryngeal nerve divided into two to five branches to the interarytenoid muscle. All branches contained motor axons, with the proportion of motor axons varying from 6% to 31%. The present study confirms that the internal branch of the superior laryngeal nerve provides a motor innervation to the interarytenoid muscles. N/A. Laryngoscope, 126:1117-1122, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  14. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  15. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  16. 12 CFR 545.92 - Branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Branch offices. 545.92 Section 545.92 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 545.92 Branch offices. (a) Definition. A branch office of a Federal savings association (“you”) is any...

  17. Joint Inversion of Multi-type and Time-lapse Airborne Electromagnetic Data Sets for Tempo-spatial Variation of Groundwater Salinity

    NASA Astrophysics Data System (ADS)

    Yang, D.; Oldenburg, D.

    2016-12-01

    The salinization of the floodplains of Lower Murray River in South Australia has caused negative consequences to the local ecosystem. As part of the Living Murray Initiative, the Clark's Floodplain at Bookpurnong was chosen to examine the effectiveness of different intervention methods from 2005 to 2008. Because of the link between groundwater salinity and electric conductivity, electromagnetic (EM) methods have been an integrated part of the project to test it as a cost-effective tool for monitoring. In this paper, we analyze two airborne EM surveys that assess the salinization at the regional scale: the SkyTEM in 2006 and the RESOLVE in 2008. Conventional interpretation often inverts those data sets separately using the 1D layered earth modeling, which often produces inconsistent images if different surveys are carried out at different times. Here we propose a new approach that considers the coherence in time and across systems. We allow each data set to iteratively construct its own model with guidance from a common reference model that is updated in a democratic voting procedure after every iteration. There are two possible outcomes. If the data sets are intrinsically compatible, the individual models will converge to essentially the same model, like in the regular unimodal joint inversion. If there are survey-specific errors or a change of ground truth, the inversion can still fit the data but leaves discrepancy in the models. By applying this approach to the two data sets at Bookpurnong, we identify an area of increased conductivity at the midstream section of the river that can only be explained by a temporal variation of salinity, a plausible evidence of escalated saline water intrusion due to irrigation on the nearby riverbank. This study illustrates that multi-type time-lapse EM, in conjunction with advanced inversion techniques, can achieve superior temporal resolution for the purpose of groundwater evaluation and management.

  18. Directed branch growth in aligned nanowire arrays.

    PubMed

    Beaudry, Allan L; LaForge, Joshua M; Tucker, Ryan T; Sorge, Jason B; Adamski, Nicholas L; Li, Peng; Taschuk, Michael T; Brett, Michael J

    2014-01-01

    Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.

  19. A tool for simulating parallel branch-and-bound methods

    NASA Astrophysics Data System (ADS)

    Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail

    2016-01-01

    The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.

  20. A branching process model for the analysis of abortive colony size distributions in carbon ion-irradiated normal human fibroblasts.

    PubMed

    Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki

    2014-05-01

    A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.

  1. The Quantification of Consistent Subjective Logic Tree Branch Weights for PSHA

    NASA Astrophysics Data System (ADS)

    Runge, A. K.; Scherbaum, F.

    2012-04-01

    The development of quantitative models for the rate of exceedance of seismically generated ground motion parameters is the target of probabilistic seismic hazard analysis (PSHA). In regions of low to moderate seismicity, the selection and evaluation of source- and/or ground-motion models is often a major challenge to hazard analysts and affected by large epistemic uncertainties. In PSHA this type of uncertainties is commonly treated within a logic tree framework in which the branch weights express the degree-of-belief values of an expert in the corresponding set of models. For the calculation of the distribution of hazard curves, these branch weights are subsequently used as subjective probabilities. However the quality of the results depends strongly on the "quality" of the expert knowledge. A major challenge for experts in this context is to provide weight estimates which are logically consistent (in the sense of Kolmogorov's axioms) and to be aware of and to deal with the multitude of heuristics and biases which affect human judgment under uncertainty. For example, people tend to give smaller weights to each branch of a logic tree the more branches it has, starting with equal weights for all branches and then adjusting this uniform distribution based on his/her beliefs about how the branches differ. This effect is known as pruning bias.¹ A similar unwanted effect, which may even wrongly suggest robustness of the corresponding hazard estimates, will appear in cases where all models are first judged according to some numerical quality measure approach and the resulting weights are subsequently normalized to sum up to one.2 To address these problems, we have developed interactive graphical tools for the determination of logic tree branch weights in form of logically consistent subjective probabilities, based on the concepts suggested in Curtis and Wood (2004).3 Instead of determining the set of weights for all the models in a single step, the computer driven

  2. Guide to the Seattle Archives Branch.

    ERIC Educational Resources Information Center

    Hobbs, Richard, Comp.

    The guide presents an overview of the textual and microfilmed records located at the Seattle Branch of the National Archives of the United States. Established in 1969, the Seattle Archives Branch is one of 11 branches which preserve and make available for research those U.S. Government records of permanent value created and maintained by Federal…

  3. The Effects of a Branch Campus

    ERIC Educational Resources Information Center

    Lien, Donald; Wang, Yaqin

    2012-01-01

    We examine the effects of a branch campus on the social welfare of the host country and the foreign university. Overall, we find that a branch campus increases both the domestic social welfare (measured by the aggregate student utility) and the tuition revenue of the foreign university. The effect of a branch campus on the brain drain is…

  4. Dynamic Crack Branching - A Photoelastic Evaluation,

    DTIC Science & Technology

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  5. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks.

    PubMed

    Schwartz, Rachel S; Mueller, Rachel L

    2010-01-11

    Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of

  6. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  7. New branched DNA constructs.

    PubMed

    Chandra, Madhavaiah; Keller, Sascha; Gloeckner, Christian; Bornemann, Benjamin; Marx, Andreas

    2007-01-01

    The Watson-Crick base pairing of DNA is an advantageous phenomenon that can be exploited when using DNA as a scaffold for directed self-organization of nanometer-sized objects. Several reports have appeared in the literature that describe the generation of branched DNA (bDNA) with variable numbers of arms that self-assembles into predesigned architectures. These bDNA units are generated by using cleverly designed rigid crossover DNA molecules. Alternatively, bDNA can be generated by using synthetic branch points derived from either nucleoside or non-nucleoside building blocks. Branched DNA has scarcely been explored for use in nanotechnology or from self-assembling perspectives. Herein, we wish to report our results for the synthesis, characterization, and assembling properties of asymmetrical bDNA molecules that are able to generate linear and circular bDNA constructs. Our strategy for the generation of bDNA is based on a branching point that makes use of a novel protecting-group strategy. The bDNA units were generated by means of automated DNA synthesis methods and were used to generate novel objects by employing chemical and biological techniques. The entities generated might be useful building blocks for DNA-based nanobiotechnology.

  8. The sensory but not muscular pelvic nerve branch is necessary for parturition in the rat.

    PubMed

    Martínez-Gómez, M; Cruz, Y; Pacheco, P; Aguilar-Roblero, R; Hudson, R

    1998-03-01

    In the rat the pelvic nerve consists of a viscerocutaneous (sensory) branch which receives information from pelvic viscera and the midline perineal region, and a somatomotor (muscular) branch which innervates the ilio- and pubococcygeous muscles. To investigate the contribution of these branches to the parturition process, the length of gestation and course of delivery were closely monitored in 43 pregnant, Wistar-strain rats randomly assigned to five groups: untreated control animals, animals in which the somatomotor branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals in which the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals treated similarly to the previous group but with young delivered by C-section at term, and sham-operated controls. Sectioning the viscerocutaneous branch seriously disrupted parturition and resulted in major dystocia and a high percentage of stillbirths in all females. In contrast, sectioning the somatomotor branch had no apparent effect on parturition and no significant differences were found between females of this group and sham or control dams on any of the measures recorded. It is concluded that the viscerocutaneous branch of the pelvic nerve is vital for the normal course of parturition in the rat but that the somatomotor branch plays little role, if any.

  9. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  10. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  11. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    DOE PAGES

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8H 14O 4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C 8H 16O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8H 16O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8H 14O 4 species are proposed to result from subsequent reactions of C 8H 16O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less

  12. Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2012-03-02

    Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the

  13. Branch Width and Height Influence the Incorporation of Branches into Foraging Trails and Travel Speed in Leafcutter Ants Atta cephalotes (L.) (Hymenoptera: Formicidae).

    PubMed

    Freeman, B M; Chaves-Campos, J

    2016-06-01

    Fallen branches are often incorporated into Atta cephalotes (L.) foraging trails to optimize leaf tissue transport rates and economize trail maintenance. Recent studies in lowlands show laden A. cephalotes travel faster across fallen branches than on ground, but more slowly ascending or descending a branch. The latter is likely because (1) it is difficult to travel up or downhill and (2) bottlenecks occur when branches are narrower than preceding trail. Hence, both branch height and width should determine whether branches decrease net travel times, but no study has evaluated it yet. Laden A. cephalotes were timed in relation to branch width and height across segments preceding, accessing, across, and departing a fallen branch in the highlands of Costa Rica. Ants traveled faster on branches than on cleared segments of trunk-trail, but accelerated when ascending or descending the branch-likely because of the absence of bottlenecks during the day in the highlands. Branch size did not affect ant speed in observed branches; the majority of which (22/24) varied from 11 to 120 mm in both height and width (average 66 mm in both cases). To determine whether ants exclude branches outside this range, ants were offered the choice between branches within this range and branches that were taller/wider than 120 mm. Ants strongly preferred the former. Our results indicate that A. cephalotes can adjust their speed to compensate for the difficulty of traveling on branch slopes. More generally, branch size should be considered when studying ant foraging efficiency.

  14. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    PubMed

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  15. Nervous branch passing through an accessory canal in the sphenozygomatic suture: the temporal branch of the zygomatic nerve.

    PubMed

    Akita, K; Shimokawa, T; Tsunoda, A; Sato, T

    2002-05-01

    A nervous branch which passes through a small canal in the sphenozygomatic suture is sometimes observed during dissection. To examine the origin, course and distribution of this nervous branch, 42 head halves of 21 Japanese cadavers (11 males, 10 females) and 142 head halves of 71 human dry skulls were used. The branch was observed in seven sides (16.7%); it originated from the communication between the lacrimal nerve and the zygomaticotemporal branch of the zygomatic nerve or from the trunk of the zygomatic nerve. In two head halves (4.8%), the branch pierced the anterior part of the temporalis muscle during its course to the skin of the anterior part of the temple. The small canal in the suture was observed in 31 head halves (21.8%) of the dry skulls. Although this nervous branch is inconstantly observed, it should be called the temporal branch of the zygomatic nerve according to the constant positional relationship to the sphenoid and zygomatic bones. According to its origin, course and distribution, this nervous branch may be considered to be influential in zygomatic and retro-orbital pain due to entrapment and tension from the temporalis muscle and/or the narrow bony canal. The French version of this article is available in the form of electronic supplementary material and can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00276-002-0027-4.

  16. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855

  17. Decibel: The Relational Dataset Branching System

    PubMed Central

    Maddox, Michael; Goehring, David; Elmore, Aaron J.; Madden, Samuel; Parameswaran, Aditya; Deshpande, Amol

    2017-01-01

    As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. In this paper, we introduce the Relational Dataset Branching System, Decibel, a new relational storage system with built-in version control designed to address these shortcomings. We present our initial design for Decibel and provide a thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead. We also develop an exhaustive benchmark to enable the rigorous testing of these and future versioned storage engine designs. PMID:28149668

  18. A Branch Meeting in Avon

    ERIC Educational Resources Information Center

    Vaughan, Kathryn; Coles, Alf

    2011-01-01

    The Association of Teachers of Mathematics (ATM) exists for, and is run by, its members. Branch meetings are so much more than the "grass roots" of the association--it can be a powerhouse of inspiration and creativity. In this article, the authors provide commentaries on a recent branch meeting.

  19. Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement

    PubMed Central

    2014-01-01

    Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes. PMID:25246872

  20. Synthesis and macrophage activation of lentinan-mimic branched amino polysaccharides: curdlans having N-Acetyl-d-glucosamine branches.

    PubMed

    Kurita, Keisuke; Matsumura, Yuriko; Takahara, Hiroki; Hatta, Kiyoshige; Shimojoh, Manabu

    2011-06-13

    N-Acetyl-d-glucosamine branches were incorporated at the C-6 position of curdlan, a linear β-1,3-d-glucan, and the resulting nonnatural branched polysaccharides were evaluated in terms of the immunomodulation activities in comparison with lentinan, a β-1,3-d-glucan having d-glucose branches at C-6. To incorporate the amino sugar branches, we conducted a series of regioselective protection-deprotections of curdlan involving triphenylmethylation at C-6, phenylcarbamoylation at C-2 and C-4, and detriphenylmethylation. Subsequent glycosylation with a d-glucosamine-derived oxazoline, followed by deprotection gave rise to the branched curdlans with various substitution degrees. The products exhibited remarkable solubility in both organic solvents and water. Their immunomodulation activities were determined using mouse macrophagelike cells, and the secretions of both the tumor necrosis factor and nitric oxide proved to be significantly higher than those with lentinan. These results conclude that the amino sugar/curdlan hybrid materials are promising as a new type of polysaccharide immunoadjuvants useful for cancer chemotherapy.

  1. Wind-Induced Reconfigurations in Flexible Branched Trees

    NASA Astrophysics Data System (ADS)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  2. Suspended-sediment yields and stream-channel processes on Judy's Branch watershed in the St. Louis Metro East region in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Johnson, Gary P.; Roseboom, Donald P.; Sierra, Carlos R.

    2006-01-01

    Judy's Branch watershed, a small basin (8.64 square miles) in the St. Louis Metro East region in Illinois, was selected as a pilot site to determine suspended-sediment yields and stream-channel processes in the bluffs and American Bottoms (expansive low-lying valley floor in the region). Suspended-sediment and stream-chan-nel data collected and analyzed for Judy's Branch watershed are presented in this report to establish a baseline of data for water-resource managers to evaluate future stream rehabilitation and manage-ment alternatives. The sediment yield analysis determines the amount of sediment being delivered from the watershed and two subwatersheds: an urban tributary and an undeveloped headwater (pri-marily agricultural). The analysis of the subwater-sheds is used to compare the effects of urbanization on sediment yield to the river. The stream-channel contribution to sediment yield was determined by evaluation of the stream-channel processes operat-ing on the streambed and banks of Judy's Branch watershed. Bank stability was related to hydrologic events, bank stratigraphy, and channel geometry through model development and simulation. The average suspended-sediment yield from two upland subwatersheds (drainage areas of 0.23 and 0.40 sq.mi. was 1,163 tons per square mile per year (tons/sq.mi.-year) between July 2000 and June 2004. The suspended-sediment yield at the Route 157 station was 2,523 tons/sq.mi.-year, near the outlet of Judy's Branch watershed (drainage area = 8.33 sq.mi.). This is approximately 1,360 tons/sq.mi.-year greater than the average at the upland stations for the same time period. This result is unexpected in that, generally, the suspended-sediment yield decreases as the watershed area increases because of sediment stored in the channel and flood plain. The difference indicates a possible increase in yield from a source, such as bank retreat, and supports the concept that land-use changes increase stream-flows that may in turn result in

  3. Strategy of Irrigation Branch in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  4. A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Tamai, Tetsuo

    2009-01-01

    Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.

  5. Thermoelectric effects in disordered branched nanowires

    NASA Astrophysics Data System (ADS)

    Roslyak, Oleksiy; Piriatinskiy, Andrei

    2013-03-01

    We shall develop formalism of thermal and electrical transport in Si1 - x Gex and BiTe nanowires. The key feature of those nanowires is the possibility of dendrimer type branching. The branching tree can be of size comparable to the short wavelength of phonons and by far smaller than the long wavelength of conducting electrons. Hence it is expected that the branching may suppress thermal and let alone electrical conductance. We demonstrate that the morphology of branches strongly affects the electronic conductance. The effect is important to the class of materials known as thermoelectrics. The small size of the branching region makes large temperature and electrical gradients. On the other hand the smallness of the region would allow the electrical transport being ballistic. As usual for the mesoscopic systems we have to solve macroscopic (temperature) and microscopic ((electric potential, current)) equations self-consistently. Electronic conductance is studied via NEGF formalism on the irreducible electron transfer graph. We also investigate the figure of merit ZT as a measure of the suppressed electron conductance.

  6. 46 CFR 169.690 - Lighting branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Lighting branch circuits. 169.690 Section 169.690... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.690 Lighting branch circuits. Each lighting branch circuit must meet the requirements of § 111.75-5 of this chapter...

  7. Branched Hamiltonians and supersymmetry

    DOE PAGES

    Curtright, Thomas L.; Zachos, Cosmas K.

    2014-03-21

    Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.

  8. Branching, Superdiffusion and Stress Relaxation in Surfactant Micelles

    NASA Astrophysics Data System (ADS)

    Sureshkumar, R.; Dhakal, S.; Syracuse University Team

    2016-11-01

    We investigate the mechanism of branch formation and its effects on the dynamics and rheology of a model cationic micellar fluid using molecular dynamics (MD) simulations. Branched structures are formed upon increasing counter ion density. A sharp decrease in the solution viscosity with increasing salinity has long been attributed to the sliding motion of micellar branches along the main chain. Simulations not only provide firm evidence of branch sliding in real time, but also show enhanced diffusion of surfactants by virtue of such motion. Insights into the mechanism of stress relaxation associated with branch sliding will be discussed. Specifically, an externally imposed stress damps out more quickly in a branched system compared to that in an unbranched one. NSF Grants 1049489, 1049454.

  9. Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky

    USGS Publications Warehouse

    Lyons, Erwin J.

    1957-01-01

    Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.

  10. Fuzzy branching temporal logic.

    PubMed

    Moon, Seong-ick; Lee, Kwang H; Lee, Doheon

    2004-04-01

    Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.

  11. Quantitative Analysis Of Three-dimensional Branching Systems From X-ray Computed Microtomography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Adriana L.; Varga, Tamas

    Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less

  12. A case of recurrence of congenital ocular toxoplasmosis with frosted branch angiitis (ocular toxoplasmosis with frosted branch angiitis).

    PubMed

    Suzuki, Takahiro; Onouchi, Hiromi; Nakagawa, Yoshihiro; Oohashi, Hideki; Kaiken, Han; Kawai, Kenji

    2010-12-20

    To describe a case of recurrence of congenital ocular toxoplasmosis with frosted branch angiitis. A 24-year-old woman presented with hyperemia in her right eye. Medical history included epilepsy at age 14 and mild mental retardation. Iridocyclitis and vitreous opacity were observed in the right eye, and furthermore widespread retinal vessel sheathing due to frosted branch angiitis was seen. Acyclovir was initiated for acute retinal necrosis with frosted branch angiitis. One week later, serologic tests showed elevated toxoplasma antibody level and toxoplasma antibody IgG level, and a white retinal exudative lesion with unclear margins was noted. Therefore, acetylspiramycin and prednisolone were initiated for a recurrence of congenital ocular toxoplasmosis. After treatment, inflammation subsided, the exudative lesion shrank, and the frosted branch angiitis improved. We encountered a case of ocular toxoplasmosis due to recurrence of congenital toxoplasmosis with frosted branch angiitis. The clinical symptoms of ocular toxoplasmosis can be varied and the diagnosis should be kept in mind.

  13. Coulomb branches with complex singularities

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  14. Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species

    PubMed Central

    Pagès, Loïc

    2014-01-01

    Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886

  15. Branching ratio to the 803 keV level in 210Poα decay

    NASA Astrophysics Data System (ADS)

    Shor, A.; Weissman, L.; Aviv, O.; Eisen, Y.; Brandis, M.; Paul, M.; Plompen, A.; Tessler, M.; Vaintraub, S.

    2018-03-01

    Precise knowledge of the branching ratio in the α decay of 210Po is important for accurate measurement of the 209Bi(n ,γ )Big210 cross section, the reaction involved in the termination of the astrophysical s process. The branching ratio was determined from independent measurements of α and γ spectra of bismuth samples simultaneously irradiated by neutrons near the core of the Soreq research reactor (IRR1). The branching ratio was found to be (1.15 ±0.09 ) ×10-5 , consistent with the results of several measurements performed six decades ago. As a by-product value the 209Bi(n ,γ )Big210 thermal cross section was measured to be 21.6 ±1.1 mb.

  16. BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE

    PubMed Central

    Bray, D.

    1973-01-01

    The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915

  17. Synthesis of branched polymers under continuous-flow microprocess: an improvement of the control of macromolecular architectures.

    PubMed

    Bally, Florence; Serra, Christophe A; Brochon, Cyril; Hadziioannou, Georges

    2011-11-15

    Polymerization reactions can benefit from continuous-flow microprocess in terms of kinetics control, reactants mixing or simply efficiency when high-throughput screening experiments are carried out. In this work, we perform for the first time the synthesis of branched macromolecular architecture through a controlled/'living' polymerization technique, in tubular microreactor. Just by tuning process parameters, such as flow rates of the reactants, we manage to generate a library of polymers with various macromolecular characteristics. Compared to conventional batch process, polymerization kinetics shows a faster initiation step and more interestingly an improved branching efficiency. Due to reduced diffusion pathway, a characteristic of microsystems, it is thus possible to reach branched polymers exhibiting a denser architecture, and potentially a higher functionality for later applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging

    PubMed Central

    Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff

    2013-01-01

    Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935

  19. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  20. Pacific Coastal Ecology Branch: Research Overview

    EPA Science Inventory

    The Pacific Coastal Ecology Branch, Newport, Oregon is part of the Western Ecology Division of the National Health and Environmental Effects Research Laboratory of the U.S. EPA. The Branch conducts research and provides scientific technical support to Headquarters and Regional O...

  1. Crack branching in cross-ply composites

    NASA Astrophysics Data System (ADS)

    La Saponara, Valeria

    2001-10-01

    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  2. Spontaneous Age-Related Neurite Branching in C. elegans

    PubMed Central

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  3. Mechanical Components Branch Test Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2004-01-01

    The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.

  4. 12 CFR 28.21 - Service of process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Service of process. 28.21 Section 28.21 Banks... Federal Branches and Agencies of Foreign Banks § 28.21 Service of process. A foreign bank operating at any Federal branch or agency is subject to service of process at the location of the Federal branch or agency. ...

  5. Assessment of Socialization and Sports-Socialization Processes of University Students Studying in Different Sports Branches

    ERIC Educational Resources Information Center

    Albayrak, Ahmet Yilmaz; Bayrakdaroglu, Yesim

    2018-01-01

    The purpose of this research is to assess the sports and socialization of the students studying in different sports branches in Gumushane University. "Socialization-Sports and Socialization Scale" developed by Sahan was used in this research. A total of 742 students composed of 316 females and 426 males studying in Gumushane University…

  6. Branching habit and the allocation of reproductive resources in conifers.

    PubMed

    Leslie, Andrew B

    2012-09-01

    Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit.

  7. Branching habit and the allocation of reproductive resources in conifers

    PubMed Central

    Leslie, Andrew B.

    2012-01-01

    Background and Aims Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Methods Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. Key Results The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conclusions Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit. PMID:22782240

  8. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  9. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  10. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    PubMed

    Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J

    2013-01-01

    Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  11. 30 CFR 57.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403...

  12. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  13. Building Virtual Spaces for Children in the Digital Branch

    ERIC Educational Resources Information Center

    DuBroy, Michelle

    2010-01-01

    Purpose: A digital branch is just like a physical branch except that content is delivered digitally via the web. A digital branch has staff, a collection, a community, and a building. The purpose of this paper is to explore the concept of building individual spaces for different user groups, specifically children, within a digital branch.…

  14. 12 CFR 208.6 - Establishment and maintenance of branches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Board's Regulation K (12 CFR part 211). (3) Public notice of branch applications. (i) Location of... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Establishment and maintenance of branches. 208... maintenance of national bank branches (12 U.S.C. 36 and 1831u), except that approval of such branches shall be...

  15. Neutron Capture Cross Sections of the s-Process Branching Points 147Pm, 171Tm, and 204Tl

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlos; Domingo-Pardo, Cesar; Lerendegui-Marco, Jorge; Casanovas, Adria; Cortes-Giraldo, Miguel A.; Dressler, Rugard; Halfon, Shlomi; Heinitz, Stephan; Kivel, Niko; Köster, Ulli; Paul, Michael; Quesada-Molina, Jose Manuel; Schumann, Dorothea; Tarifeño-Saldivia, Ariel; Tessler, Moshe; Weissman, Leo

    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm, 171Tm, and 204Tl have been produced by irradiation of stable isotopes (146Nd, 170Er, and 203Tl) at the Institut Laue-Langevin (ILL) high flux reactor. After breeding in the reactor and a certain cooling period, the resulting mixed 204Tl/203Tl sample was used directly while 147Pm and 171Tm were radiochemically separated in non-carrier-added quality at the Paul Scherrer Institut (PSI), then prepared as targets. A set of theses samples has been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines, during 2014 and 2015. The capture cascades were detected with a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross sections of 147Pm, 171Tm, and 204Tl. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity quasi-Maxwellian flux of neutrons have been performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The experimental setups are here described together with the first, preliminary results of the n_TOF measurement.

  16. The sensory-motor bridge neurorraphy: an anatomic study of feasibility between sensory branch of the musculocutaneous nerve and deep branch of the radial nerve.

    PubMed

    Goubier, Jean-Noel; Teboul, Frédéric

    2011-05-01

    Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.

  17. Branch breakage under snow and ice loads.

    PubMed

    Cannell, M G; Morgan, J

    1989-09-01

    Measurements were made on branches and trunks of Picea sitchensis (Bong.) Carr. to determine the relationship between (i) the bending moment at the bases of branches that cause breakage, and (ii) midpoint diameter cubed. The theory for cantilever beams was then used to calculate the basal bending moments and midpoint diameters of branches with different numbers of laterals and endpoint deflections, given previously measured values of Young's modulus, taper and weights of foliage and wood. Snow and ice loads (equal to 2 and 4 g cm(-1) of shoot, respectively) were then included in the calculation to determine whether the basal bending moments exceeded the breakage values. The likelihood of breakage increased with an increase in (i) number of laterals, and (ii) endpoint deflection under self weight (without snow or ice)-features that had previously been shown to lessen the amount of branch wood required to support a unit of foliage. However, branches which deflected moderately (> 10% of their length) under their own weight deflected greatly under snow or ice loads and might shed powdery snow before breakage occurs.

  18. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum.

    PubMed

    Yang, Zhilai; Chen, Na; Ge, Rongjing; Qian, Hao; Wang, Jin-Hui

    2017-09-22

    A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.

  19. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum

    PubMed Central

    Qian, Hao; Wang, Jin-Hui

    2017-01-01

    A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits. PMID:29069799

  20. The Drosophila homologue of SRF acts as a boosting mechanism to sustain FGF-induced terminal branching in the tracheal system.

    PubMed

    Gervais, Louis; Casanova, Jordi

    2011-04-01

    Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.

  1. Three-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter.

    PubMed

    Arfi, Anis Ben; Elsayed, Fahmi; Aflaki, Pouya M; Morris, Brad; Ghannouchi, Fadhel M

    2018-02-20

    In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode back-to-back power amplifiers working at peak power. A signal processing technique known as quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR). After amplification, the two branches are combined using a non-isolated combiner, preserving the efficiency of the transmitter. A comprehensive study on the operation of this topology and signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was established. Moreover, this work proposes a highly efficient design of the amplification block based on a back-to-back power topology performing a dynamic load modulation exploiting the non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation, the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™ platform followed by the back-to-back Class-E switch-mode power amplification block. The full transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.

  2. Spatial Arrangement of Branches in Relation to Slope and Neighbourhood Competition

    PubMed Central

    SUMIDA, AKIHIRO; TERAZAWA, IKUE; TOGASHI, ASAKO; KOMIYAMA, AKIRA

    2002-01-01

    To gain a better understanding of the effects of spatial structure on patterns of neighbourhood competition among hardwood trees, the three‐dimensional extension of primary branches was surveyed for ten community‐grown Castanea crenata (Fagaceae) trees with respect to the positioning of neighbouring branches and the slope of the forest floor. There were significantly more branches extending towards the lower side of the slope than towards the upper side, but structural properties such as branch length and vertical angle were not affected by slope. When horizontal extension of a branch towards its neighbour was compared for a C. crenata branch and a neighbouring heterospecific, the former was significantly narrower than the latter when the inter‐branch distance (horizontal distance between the base positions of two neighbouring branches) was short (< approx. 5 m). Castanea crenata branches tended to extend in a direction avoiding neighbouring branches of heterospecifics when the inter‐branch distance was short. Furthermore, for an inter‐branch distance <3 m, the horizontal extension of a C. crenata branch was less when it was neighbouring a heterospecific branch than when neighbouring a conspecific branch. These results suggest that horizontal extension of C. crenata branches is more prone to spatial invasion by nearby neighbouring branches of heterospecifics, and that the invasion can be lessened when C. crenata trees are spatially aggregated. The reason why such an arrangement occurs is discussed in relation to the later leaf‐flush of C. crenata compared with that of other species in the forest. PMID:12096742

  3. 26 CFR 1.884-1 - Branch profits tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 9 2013-04-01 2013-04-01 false Branch profits tax. 1.884-1 Section 1.884-1...) INCOME TAXES (CONTINUED) Foreign Corporations § 1.884-1 Branch profits tax. (a) General rule. A foreign corporation shall be liable for a branch profits tax in an amount equal to 30 percent of the foreign...

  4. 26 CFR 1.884-1 - Branch profits tax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 9 2014-04-01 2014-04-01 false Branch profits tax. 1.884-1 Section 1.884-1...) INCOME TAXES (CONTINUED) Foreign Corporations § 1.884-1 Branch profits tax. (a) General rule. A foreign corporation shall be liable for a branch profits tax in an amount equal to 30 percent of the foreign...

  5. 26 CFR 1.884-1 - Branch profits tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Branch profits tax. 1.884-1 Section 1.884-1...) INCOME TAXES (CONTINUED) Foreign Corporations § 1.884-1 Branch profits tax. (a) General rule. A foreign corporation shall be liable for a branch profits tax in an amount equal to 30 percent of the foreign...

  6. Epicormic Branches and Lumber Grade of Bottomland Oak

    Treesearch

    James S. Meadows

    1995-01-01

    Epicormic branches can be a serious problem in management of hardwood forests for high-quality sawtimber production. In one study in central Alabama, defects caused by epicormic branches that developed following a partial cutting resulted in a 13 percent reduction in the value of willow oak lumber. Production of epicormic branches along the boles of hardwood trees is...

  7. Characterisation of branched gluco-oligosaccharides to study the mode-of-action of a glucoamylase from Hypocrea jecorina.

    PubMed

    Jonathan, M C; van Brussel, M; Scheffers, M S; Kabel, M A

    2015-11-05

    In the conversion of starch to fermentable glucose for bioethanol production, hydrolysis of amylopectin by α-amylases and glucoamylases is the slowest step. In this process, α-1,6-branched gluco-oligosaccharides accumulate and are slowly degraded. Glucoamylases that are able to degrade such branched oligosaccharides faster are economically beneficial. This research aimed at the isolation and characterisation of branched gluco-oligosaccharides produced from amylopectin digestion by α-amylase, to be used as substrates for comparing their degradation by glucoamylases. Branched gluco-oligosaccharides with a DP between five and twelve were purified using size exclusion chromatography. These structures were characterised after labelling with 2-aminobenzamide using UHPLC-MS(n) analysis. Further, the purified oligosaccharides were used to evaluate the mode-of-action of a glucoamylase from Hypocrea jecorina. The enzyme cleaves the α-1,4-linkage adjacent to the α-1,6-linkage at a lower rate than that of α-1,4-linkages in linear oligosaccharides. Hence, the branched gluco-oligosaccharides are a suitable substrate to evaluate glucoamylase activity on branched structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Multi-branched Cu2O nanowires for photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Yu, Chunxin; Shu, Yun; Zhou, Xiaowei; Ren, Yang; Liu, Zhu

    2018-03-01

    Multi-branched cuprous oxide nanowires (Cu2O NWs) were prepared by one-step hydrothermal method of a facile process. The architecture of these Cu2O NWs was examined by scanning electron microscopy, and the resulting crystal nanowire consists of the trunk growing along [100] plane and the branch growing along [110] plane. Photocatalytic degradation of methyl orange (MO) in the experiment indicates that pure Cu2O NWs prepared at 150 °C have a higher photocatalytic activity (90% MO were degraded within 20 min without the presence of H2O2) compared with the samples obtained at other temperatures. In the photoelectrochemical test, pure Cu2O NWs had outstanding photoelectric response, which corresponds to the catalytic performance. The superior photocatalytic performance can be attributed to the absence of grain boundaries between the small branches and the nanowire trunk, which is conducive to the transport of photo-generated carriers, and the reduction of Cu impurities to reduce the number of recombination centers.

  9. Finding the optimal lengths for three branches at a junction.

    PubMed

    Woldenberg, M J; Horsfield, K

    1983-09-21

    This paper presents an exact analytical solution to the problem of locating the junction point between three branches so that the sum of the total costs of the branches is minimized. When the cost per unit length of each branch is known the angles between each pair of branches can be deduced following reasoning first introduced to biology by Murray. Assuming the outer ends of each branch are fixed, the location of the junction and the length of each branch are then deduced using plane geometry and trigonometry. The model has applications in determining the optimal cost of a branch or branches at a junction. Comparing the optimal to the actual cost of a junction is a new way to compare cost models for goodness of fit to actual junction geometry. It is an unambiguous measure and is superior to comparing observed and optimal angles between each daughter and the parent branch. We present data for 199 junctions in the pulmonary arteries of two human lungs. For the branches at each junction we calculated the best fitting value of x from the relationship that flow alpha (radius)x. We found that the value of x determined whether a junction was best fitted by a surface, volume, drag or power minimization model. While economy of explanation casts doubt that four models operate simultaneously, we found that optimality may still operate, since the angle to the major daughter is less than the angle to the minor daughter. Perhaps optimality combined with a space filling branching pattern governs the branching geometry of the pulmonary artery.

  10. Bird exclosures for branches and whole trees.

    Treesearch

    Robert W. Campbell; Torolf R. Torgersen; Steven C. Forrest; Lorna C. Youngs

    1981-01-01

    Two types of lightweight, portable bird exclosures are described. One is for individual branches or branch tips; the other is for whole trees up to 9 m tall. Several alternative configurations and uses of these exclosures are discussed.

  11. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  12. A stepped leader model for lightning including charge distribution in branched channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Zhang, Li; Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statisticsmore » of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.« less

  13. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sonoanatomy of sensory branches of the ulnar nerve below the elbow in healthy subjects.

    PubMed

    Kim, Ki Hoon; Lee, Seok Jun; Park, Byung Kyu; Kim, Dong Hwee

    2018-04-01

    We identify sensory branches of the ulnar nerve-palmar ulnar cutaneous nerve (PUCN), dorsal ulnar cutaneous nerve (DUCN), and superficial sensory branch-using ultrasonography. In 60 forearms of 30 healthy adult volunteers, the origin and size of the PUCN, DUCN, and superficial sensory branch were measured by ultrasonography. The relative pathway of the DUCN to the ulnar styloid process was also investigated. The PUCN was observed in 47 forearms (78%), and the DUCN was observed in all forearms. Average distances from the pisiform to the origin of the PUCN and DUCN were 11.9 ± 1.4 and 7.0 ± 1.0 cm, respectively. Superficial and deep divisions split 0.9 ± 0.3 cm distal to the pisiform. Cross-sectional areas of the PUCN, DUCN, and superficial sensory branch were 0.3 ± 0.1, 1.5 ± 0.5, and 3.9 ± 1.0 mm 2 , respectively. Sensory branches of the ulnar nerve can be visualized by ultrasonography, helping to differentiate ulnar nerve injury originating at either wrist or elbow. Muscle Nerve 57: 569-573, 2018. © 2017 Wiley Periodicals, Inc.

  15. Computational models of airway branching morphogenesis.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize.

    PubMed

    Bai, Fang; Reinheimer, Renata; Durantini, Diego; Kellogg, Elizabeth A; Schmidt, Robert J

    2012-07-24

    In grass inflorescences, a structure called the "pulvinus" is found between the inflorescence main stem and lateral branches. The size of the pulvinus affects the angle of the lateral branches that emerge from the main axis and therefore has a large impact on inflorescence architecture. Through EMS mutagenesis we have identified three complementation groups of recessive mutants in maize having defects in pulvinus formation. All mutants showed extremely acute tassel branch angles accompanied by a significant reduction in the size of the pulvinus compared with normal plants. Two of the complementation groups correspond to mutations in the previously identified genes, RAMOSA2 (RA2) and LIGULELESS1 (LG1). Mutants corresponding to a third group were cloned using mapped-based approaches and found to encode a new member of the plant-specific TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR) family of DNA-binding proteins, BRANCH ANGLE DEFECTIVE 1 (BAD1). BAD1 is expressed in the developing pulvinus as well as in other developing tissues, including the tassels and juvenile leaves. Both molecular and genetics studies show that RA2 is upstream of BAD1, whereas LG1 may function in a separate pathway. Our findings demonstrate that BAD1 is a TCP class II gene that functions to promote cell proliferation in a lateral organ, the pulvinus, and influences inflorescence architecture by impacting the angle of lateral branch emergence.

  17. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  18. Three ancient hormonal cues co-ordinate shoot branching in a moss.

    PubMed

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-03-25

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.

  19. Three ancient hormonal cues co-ordinate shoot branching in a moss

    PubMed Central

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-01-01

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI: http://dx.doi.org/10.7554/eLife.06808.001 PMID:25806686

  20. [Anatomy study on micro transverse flap pedicled with superfical palmar branch of radial artery from palmar wrist].

    PubMed

    Zhao, Min; Tian, Dehu; Shao, Xinzhong; Li, Dacun; Li, Jianfeng; Liu, Jingda; Zhao, Liang; Li, Hailei; Wang, Xiaolei; Zhang, Wentong; Wu, Jinying; Yuan, Zuoxiong

    2013-07-01

    To study the anatomical basis of micro transverse flap pedicled with the superfical palmar branch of radial artery from the palmar wrist for using this free flap to repair soft tissue defect of the finger. Thirty-eight fresh upper limb specimens (22 males and 16 females; aged 26-72 years with an average of 36 years; at left and right sides in 19 limbs respectively) were dissected and observed under operating microscope. Two specimens were made into casting mould of artery with bones, and 2 specimens were injected with red emulsion in radial artery. Thirty-four specimens were injected with 1% gentian violet solution in the superfical palmar branch of the radial artery. A transverse oval flap in the palmar wrist was designed, the axis of the flap was the distal palmar crease. The origin, distribution, and anastomosis of the superfical palmar branch of the radial artery were observed. The superficial palmar branch of the radial artery was constantly existed, it usually arises from the main trunk of the radial artery, 1.09-3.60 cm to proximal styloid process of radius. There were about 2-5 branches between the origin and the tubercle of scaphoid bone. The origin diameter was 1.00-3.00 mm, and the distal diameter at the styloid process of radius was 1.00-2.90 mm. The venous return of flap passed through 2 routes, and the innervations of the flap mainly from the palmar cutaneous branch of the median nerve. The area of the flap was 4 cm x 2 cm-6 cm x 2 cm. The origin and courses of the superficial palmar branch of the radial artery is constant, and its diameter is similar to that of the digital artery. A transverse oval flap pedicled with the superfical palmar branch of radial artery in the palmar wrist can be designed to repair defects of the finger.

  1. Automated branching pattern report generation for laparoscopic surgery assistance

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Matsuzaki, Tetsuro; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2015-05-01

    This paper presents a method for generating branching pattern reports of abdominal blood vessels for laparoscopic gastrectomy. In gastrectomy, it is very important to understand branching structure of abdominal arteries and veins, which feed and drain specific abdominal organs including the stomach, the liver and the pancreas. In the real clinical stage, a surgeon creates a diagnostic report of the patient anatomy. This report summarizes the branching patterns of the blood vessels related to the stomach. The surgeon decides actual operative procedure. This paper shows an automated method to generate a branching pattern report for abdominal blood vessels based on automated anatomical labeling. The report contains 3D rendering showing important blood vessels and descriptions of branching patterns of each vessel. We have applied this method for fifty cases of 3D abdominal CT scans and confirmed the proposed method can automatically generate branching pattern reports of abdominal arteries.

  2. Probability of fixation under weak selection: a branching process unifying approach.

    PubMed

    Lambert, Amaury

    2006-06-01

    We link two-allele population models by Haldane and Fisher with Kimura's diffusion approximations of the Wright-Fisher model, by considering continuous-state branching (CB) processes which are either independent (model I) or conditioned to have constant sum (model II). Recent works by the author allow us to further include logistic density-dependence (model III), which is ubiquitous in ecology. In all models, each allele (mutant or resident) is then characterized by a triple demographic trait: intrinsic growth rate r, reproduction variance sigma and competition sensitivity c. Generally, the fixation probability u of the mutant depends on its initial proportion p, the total initial population size z, and the six demographic traits. Under weak selection, we can linearize u in all models thanks to the same master formula u = p + p(1 - p)[g(r)s(r) + g(sigma)s(sigma) + g(c)s(c)] + o(s(r),s(sigma),s(c), where s(r) = r' - r, s(sigma) = sigma-sigma' and s(c) = c - c' are selection coefficients, and g(r), g(sigma), g(c) are invasibility coefficients (' refers to the mutant traits), which are positive and do not depend on p. In particular, increased reproduction variance is always deleterious. We prove that in all three models g(sigma) = 1/sigma and g(r) = z/sigma for small initial population sizes z. In model II, g(r) = z/sigma for all z, and we display invasion isoclines of the 'mean vs variance' type. A slight departure from the isocline is shown to be more beneficial to alleles with low sigma than with high r. In model III, g(c) increases with z like ln(z)/c, and g(r)(z) converges to a finite limit L > K/sigma, where K = r/c is the carrying capacity. For r > 0 the growth invasibility is above z/sigma when z < K, and below z/sigma when z > K, showing that classical models I and II underestimate the fixation probabilities in growing populations, and overestimate them in declining populations.

  3. Technological parameters of welding of branch saddles to polyethylene pipes at low temperatures

    NASA Astrophysics Data System (ADS)

    Starostin, N. P.; Vasilieva, M. A.

    2017-12-01

    The present paper outlines a procedure for determination of dynamics of the temperature field during the welding of the branch saddle to the polyethylene gas pipeline at ambient temperatures below the normative. The analysis is accomplished by the finite element method with the heat of the phase transition taken into account. Methods of the visualization of data sets reveal the possibility of controlling the thermal process by preheating and thermal insulation during welding of the branch saddle to the pipe at low temperatures and the possibility of obtaining the dynamics of the temperature field at which a high-quality welded joint is formed.

  4. Molecular basis of branched peptides resistance to enzyme proteolysis.

    PubMed

    Falciani, Chiara; Lozzi, Luisa; Pini, Alessandro; Corti, Federico; Fabbrini, Monica; Bernini, Andrea; Lelli, Barbara; Niccolai, Neri; Bracci, Luisa

    2007-03-01

    We found that synthetic peptides in the form of dendrimers become resistant to proteolysis. To determine the molecular basis of this resistance, different bioactive peptides were synthesized in monomeric, two-branched and tetra-branched form and incubated with human plasma and serum. Proteolytic resistance of branched multimeric sequences was compared to that of the same peptides synthesized as multimeric linear molecules. Unmodified peptides and cleaved sequences were detected by high pressure liquid chromatography and mass spectrometry. An increase in peptide copies did not increase peptide resistance in linear multimeric sequences, whereas multimericity progressively enhanced proteolytic stability of branched multimeric peptides. A structure-based hypothesis of branched peptide resistance to proteolysis by metallopeptidases is presented.

  5. 47 CFR 32.6341 - Large private branch exchange expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Large private branch exchange expense. 32.6341... Large private branch exchange expense. This account shall include expenses associated with large private branch exchanges. Expenses associated with company internal use communication equipment shall be recorded...

  6. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    NASA Astrophysics Data System (ADS)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  7. Enantioseparation and optical rotation of flavor-relevant 4-alkyl-branched fatty acids.

    PubMed

    Eibler, Dorothee; Vetter, Walter

    2017-07-07

    Short chain 4-alkyl-branched fatty acids are character impact compounds of the flavor of sheep and goat milk and meat. Due to their methyl or ethyl branches these volatile fatty acids are chiral, and both enantiomers are characterized by different aroma intensities. Recently, it was found that 4-methyloctanoic acid (4-Me-8:0), 4-ethyloctanoic acid (4-Et-8:0), and 4-methylnonanoic acid (4-Me-9:0) are enantiopure in goat and sheep samples, if present. Here we generated enantiopure or enantioenriched standards from racemates by means of (R)-selective esterification with lipase B and verified that 4-Me-8:0, 4-Et-8:0 and 4-Me-9:0 were (R)-enantiopure in these tissues. Determination of the optical rotation and [α] D value was carried out to show that (R)-4-Et-8:0 is dextrorotary and to verify the literature values of (R)-4-methyl-branched fatty acids. The elution order of free acids and the methyl and ethyl esters of 4-Me-8:0, 4-Et-8:0, 4-Me-9:0 and 4-methylhexanoic acid (4-Me-6:0) enantiomers was investigated on different chiral columns as well as the (-)-menthyl ester by indirect enantiomer separation on an ionic liquid phase. Different chiral recognition processes were suggested for free acid and esters of 4-Me-8:0 and 4-Me-9:0 on the one hand (decisive: 4-alkyl branch) compared to 4-Me-6:0 on the other hand (decisive: branch on antepenultimate carbon). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural Dynamics Branch research and accomplishments for FY 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Presented here is a collection of FY 1990 research highlights from the Structural Dynamics Branch at the NASA Lewis Research Center. Highlights are from the branch's major work areas: aeroelasticity, vibration control, dynamic systems, and computational structural methods. A listing is given of FY 1990 branch publications.

  9. Modeling Of Spontaneous Multiscale Roughening And Branching of Ruptures Propagating On A Slip-Weakening Frictional Fault

    NASA Astrophysics Data System (ADS)

    Elbanna, A. E.

    2013-12-01

    Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that

  10. The normal variants in the left bundle branch system.

    PubMed

    Elizari, M V

    This article reviewed the main anatomic and physiopathological aspects of the left bundle branch from its origin in the His bundle and its intraventricular distribution on the left endocardial surface. The results are based on the relevant literature and on personal observations executed on 206 hearts distributed as follows: 67 dogs, 60 humans, 45 sheep, 22 pigs, 10 cows, 2 monkeys, 1 guanaco, and 1 sea lion. The main anatomical features of the His-Purkinje conducting system may be summarized as follows: The bundle of His is composed by two segments: the penetrating and branching portions. LBB originates in the branching portion located underneath the membranous septum. There is no true bifurcation of the bundle of His in a human heart. Short after its origin the LBB gives rise to its two main fascicles, anterior and posterior, both heading the anterior and posterior papillary muscles, respectively. The anterior division is thinner and longer than the posterior one. The RBB and the most anterior fibers of the LBB arise at the end of the branching portion. In some cases a well-defined left septal fascicle can be identified, usually arising from the posterior division. Each division gives off small fibers and false tendons crossing the left ventricular cavity connecting the papillary between them or the papillary muscles with the septal surface. From each division of the LBB, their corresponding Purkinje networks emerge covering the subendocardium of the septum and the free wall of the left ventricles. There are critical relationships of the proximal segments of the His-Purkinje system with the surrounding cardiac structures whose pathologic processes may damage the conducting tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A lognormal distribution of the lengths of terminal twigs on self-similar branches of elm trees.

    PubMed

    Koyama, Kohei; Yamamoto, Ken; Ushio, Masayuki

    2017-01-11

    Lognormal distributions and self-similarity are characteristics associated with a wide range of biological systems. The sequential breakage model has established a link between lognormal distributions and self-similarity and has been used to explain species abundance distributions. To date, however, there has been no similar evidence in studies of multicellular organismal forms. We tested the hypotheses that the distribution of the lengths of terminal stems of Japanese elm trees (Ulmus davidiana), the end products of a self-similar branching process, approaches a lognormal distribution. We measured the length of the stem segments of three elm branches and obtained the following results: (i) each occurrence of branching caused variations or errors in the lengths of the child stems relative to their parent stems; (ii) the branches showed statistical self-similarity; the observed error distributions were similar at all scales within each branch and (iii) the multiplicative effect of these errors generated variations of the lengths of terminal twigs that were well approximated by a lognormal distribution, although some statistically significant deviations from strict lognormality were observed for one branch. Our results provide the first empirical evidence that statistical self-similarity of an organismal form generates a lognormal distribution of organ sizes. © 2017 The Author(s).

  12. Fluoropolymer Dynamics: Effects of Perfluoromethyl Branches

    NASA Astrophysics Data System (ADS)

    Eby, R. K.; Holt, D. B.; Farmer, B. L.; Adams, D. D.

    1997-03-01

    Previous simulations of polytetrafluoroethylene (PTFE) in the solid state showed that the interaction and movement of helix reversals plays an important role in the dynamic behavior of this important polymer. Copolymers of TFE and hexafluoropropylene (HFP), which can be viewed as PTFE with perfluoromethyl (PFM) group branch defects, is also widely used. Molecular mechanics and dynamics calculations have been performed with PTFE chain clusters containing PFM branches to investigate the effect of these defects on the local crystalline environment (and vice versa) and on the motions and interactions of helix reversals. Initial results indicate that helix reversals are attracted to sites of PFM branches in a chain. Such an interaction will impede the motions of helix reversals and have an impact on macroscopic mechanical properties such as resistance to plastic deformation under shear.

  13. AmeriFlux US-WBW Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, Tilden

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WBW Walker Branch Watershed. Site Description - The stand is over 50 years old, having regenerated from agricultural land.This site is located near Oak Ridge, Tennessee near the Walker Branch Watershed.

  14. Universal poroelastic mechanism for hydraulic signals in biomimetic and natural branches

    PubMed Central

    Louf, J.-F.; Guéna, G.; Badel, E.; Forterre, Y.

    2017-01-01

    Plants constantly undergo external mechanical loads such as wind or touch and respond to these stimuli by acclimating their growth processes. A fascinating feature of this mechanical-induced growth response is that it can occur rapidly and at long distance from the initial site of stimulation, suggesting the existence of a fast signal that propagates across the whole plant. The nature and origin of the signal is still not understood, but it has been recently suggested that it could be purely mechanical and originate from the coupling between the local deformation of the tissues (bending) and the water pressure in the plant vascular system. Here, we address the physical origin of this hydromechanical coupling using a biomimetic strategy. We designed soft artificial branches perforated with longitudinal liquid-filled channels that mimic the basic features of natural stems and branches. In response to bending, a strong overpressure is generated in the channels that varies quadratically with the bending curvature. A model based on a mechanism analogous to the ovalization of hollow tubes enables us to predict quantitatively this nonlinear poroelastic response and identify the key physical parameters that control the generation of the pressure pulse. Further experiments conducted on natural tree branches reveal the same phenomenology. Once rescaled by the model prediction, both the biomimetic and natural branches fall on the same master curve, enlightening the universality of our poroelastic mechanism for the generation of hydraulic signals in plants. PMID:28973910

  15. Radioiodinated branched carbohydrates

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  16. 20 CFR 422.5 - District offices and branch offices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... office is the manager. The principal officer in each branch office is the officer-in-charge. Each... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false District offices and branch offices. 422.5... and Functions of the Social Security Administration § 422.5 District offices and branch offices. There...

  17. 20 CFR 422.5 - District offices and branch offices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... office is the manager. The principal officer in each branch office is the officer-in-charge. Each... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false District offices and branch offices. 422.5... and Functions of the Social Security Administration § 422.5 District offices and branch offices. There...

  18. 20 CFR 422.5 - District offices and branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false District offices and branch offices. 422.5... and Functions of the Social Security Administration § 422.5 District offices and branch offices. There are over 700 social security district offices and branch offices located in the principal cities and...

  19. Mass loss during the RR Lyrae phase of the horizontal branch: Mass dispersion on the horizontal branch and RR Lyrae period changes

    NASA Technical Reports Server (NTRS)

    Koopmann, Rebecca A.; Lee, Young-Wook; Demarque, Pierre; Howard, Jamie M.

    1994-01-01

    Mass loss on the horizontal branch has been invoked in the literature to explain such phenomena as the color (mass) dispersion of the horizontal branch and the observed distribution of period changes in RR Lyrae stars. To test these claims, the Yale stellar evolution code was used to evolve horizontal branch models of masses 0.64, 0.66, 0.68, 0.70, and 0.72 solar mass with Z of 0.001, core mass of 0.4893, main-sequence helium abundance of 0.23, and constant mass loss rates of 0, 10(exp -10), 5 x 10(exp -10), and 10(exp -9) solar mass/yr. Mass loss was assumed to occur only in the instability strip, where a mechanism is most likely to exist. Synthetic horizontal branches, constructed from the models, show that mass loss on the horizontal branch cannot produce the observed color dispersion even for the highest mass-loss rate of 10(exp -9) solar mass/yr. Mass loss is unlikely to occur at a higher rate without significant effects on the horizontal branch morphology, which would destroy the good agreement between standard synthetic models without mass loss and observed horizontal branches. Periods and period changes were calculated for all models. The period changes are not significantly larger for models with mass loss. The effect of mass loss in clusters of other metallicities is discussed.

  20. Structural dynamics branch research and accomplishments to FY 1992

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1992-01-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  1. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-08-01

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.

  2. Environmental control of branching in petunia.

    PubMed

    Drummond, Revel S M; Janssen, Bart J; Luo, Zhiwei; Oplaat, Carla; Ledger, Susan E; Wohlers, Mark W; Snowden, Kimberley C

    2015-06-01

    Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Crack stability and branching at interfaces

    NASA Astrophysics Data System (ADS)

    Thomson, Robb

    1995-11-01

    The various events that occur at a crack on an interface are explored, and described in terms of a simple graphical construction called the crack stability diagram. For simple Griffith cleavage in a homogeneous material, the stability diagram is a sector of a circle in the space of stress intensity factors, KI/KII. The Griffith circle is limited in both positive and negative KII directions by nonblunting dislocation emission on the cleavage plane. For a branching plane inclined at an angle to the original cleavage plane, both cleavage and emission (which blunts the crack) can be described as a balance between an elastic driving force and a lattice resistance for the event. We use an analytic expression obtained by Cotterell and Rice for cleavage, and show that it is an excellent approximation, but show that the lattice resistance includes a cornering resistance, in addition to the standard surface energy in the final cleavage criterion. Our discussion of the lattaice resistance is derived from simulations in two-dimensional hexagonal lattices with UBER force laws with a variety of shapes. Both branching cleavage and blunting emission can be described in terms of a stability diagram in the space of the remote stress intensity factors, and the competition between events on the initial cleavage plane and those on the branching plane can be described by overlays of the two appropriate stability diagrams. The popular criterion that kII=0 on the branching plane is explored for lattices and found to fail significantly, because the lattice stabilizes cleavage by the anisotropy of the surface energy. Also, in the lattice, dislocation emission must must always be considered as an alternative competing event to branching.

  4. BPP: a sequence-based algorithm for branch point prediction.

    PubMed

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade.

    PubMed

    Dumoulin, Alexandre; Ter-Avetisyan, Gohar; Schmidt, Hannes; Rathjen, Fritz G

    2018-04-24

    Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  6. Measurement of prominent eta-decay branching fractions.

    PubMed

    Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V

    2007-09-21

    The decay psi(2S) --> etaJ/psi is used to measure, for the first time, all prominent eta-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for eta decays to gamma gamma, pi(+)pi(-)pi(0), 3pi(0), pi(+)pi(-)gamma and e(+)e(-)gamma, accounting for 99.9% of all eta decays. The precision of several of the branching fractions and their ratios is improved. Two channels, pi(+)pi(-)gamma and e(+)e(-)gamma, show results that differ at the level of three standard deviations from those previously determined.

  7. Measurement of Prominent η-Decay Branching Fractions

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.

    2007-09-01

    The decay ψ(2S)→ηJ/ψ is used to measure, for the first time, all prominent η-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for η decays to γγ, π+π-π0, 3π0, π+π-γ and e+e-γ, accounting for 99.9% of all η decays. The precision of several of the branching fractions and their ratios is improved. Two channels, π+π-γ and e+e-γ, show results that differ at the level of three standard deviations from those previously determined.

  8. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  9. Uncertainty and probability for branching selves

    NASA Astrophysics Data System (ADS)

    Lewis, Peter J.

    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. One popular strategy involves arguing that branching selves introduce a new kind of subjective uncertainty. I argue here that the variants of this strategy in the literature all fail, either because the uncertainty is spurious, or because it is in the wrong place to yield probabilistic predictions. I conclude that uncertainty cannot be the ground for probability in Everettian quantum mechanics.

  10. Dendrimers and methods of preparing same through proportionate branching

    DOEpatents

    Yu, Yihua; Yue, Xuyi

    2015-09-15

    The present invention provides for monodispersed dendrimers having a core, branches and periphery ends, wherein the number of branches increases exponentially from the core to the periphery end and the length of the branches increases exponentially from the periphery end to the core, thereby providing for attachment of chemical species at the periphery ends without exhibiting steric hindrance.

  11. Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.

    PubMed

    Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J

    1994-06-01

    The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  13. Avoiding Steric Congestion in Dendrimer Growth through Proportionate Branching. A Twist on da Vinci's Rule of Tree Branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Xuyi; Taraban, Marc B.; Hyland, Laura L.

    2012-10-05

    In making defect-free macromolecules, the challenge occurs during chemical synthesis. This challenge is especially pronounced in dendrimer synthesis where exponential growth quickly leads to steric congestion. To overcome this difficulty, proportionate branching in dendrimer growth is proposed. In proportionate branching, both the number and the length of branches increase exponentially but in opposite directions to mimic tree growth. The effectiveness of this strategy is demonstrated through the synthesis of a fluorocarbon dendron containing 243 chemically identical fluorine atoms with a MW of 9082 Da. Monodispersity is confirmed by nuclear magnetic resonance spectroscopy, mass spectrometry, and small-angle X-ray scattering. Moreover, growingmore » different parts proportionately, as nature does, could be a general strategy to achieve defect-free synthesis of macromolecules.« less

  14. Half-lives and branchings for {beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosmer, P.; Estrade, A.; Montes, F.

    The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes frommore » this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.« less

  15. Trajectory and chirality of vortex domain walls in ferromagnetic nanowires with an asymmetric Y-branch

    NASA Astrophysics Data System (ADS)

    Brandão, J.; Mello, A.; Garcia, F.; Sampaio, L. C.

    2017-03-01

    The motion and trajectory of vortex domain walls (VDWs) driven by magnetic field were investigated in Fe80Ni20 nanowires with an asymmetric Y-shape branch. By using the focused magneto-optical Kerr effect, we have probed the injection, pinning, and propagation of VDWs in the branch and in the wire beyond the branch entrance. Hysteresis cycles measured at these points show 3 and 4 jumps in the magnetization reversal, respectively. Micromagnetic simulations were carried out to obtain the number of jumps in the hysteresis cycles, and the magnetization process involved in each jump. Based on simulations and from the size of the jumps in the measured hysteresis cycles, one obtains the histogram of the domain wall type probability. While in the branch domain walls of different types are equiprobable, in the nanowire vortex domain walls with counter clockwise and clockwise chiralities and transverse-down domain walls are measured with probabilities of 65%, 25%, and 10%, respectively. These results provide an additional route to select the trajectory and chirality of VDWs in magnetic nanostructures.

  16. Branch and foliage morphological plasticity in old-growth Thuja plicata.

    PubMed

    Edelstein, Zoe R; Ford, E David

    2003-07-01

    At the Wind River Canopy Crane Facility in southeastern Washington State, USA, we examined phenotypic variation between upper- and lower-canopy branches of old-growth Thuja plicata J. Donn ex D. Don (western red cedar). Lower-canopy branches were longer, sprouted fewer daughter branches per unit stem length and were more horizontal than upper-canopy branches. Thuja plicata holds its foliage in fronds, and these had less projected area per unit mass, measured by specific frond area, and less overlap, measured by silhouette to projected area ratio (SPARmax), in the lower canopy than in the upper canopy. The value of SPARmax, used as an indicator of sun and shade foliage in needle-bearing species, did not differ greatly between upper- and lower-canopy branches. We suggest that branching patterns, as well as frond structure, are important components of morphological plasticity in T. plicata. Our results imply that branches of old-growth T. plicata trees have a guerilla growth pattern, responding to changes in solar irradiance in a localized manner.

  17. Directing the Branching Growth of Cuprous Oxide by OH- Ions

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng

    The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.

  18. ["Habitual" left branch block alternating with 2 "disguised" bracnch block].

    PubMed

    Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R

    1976-10-01

    Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".

  19. Characterization of branch complexity by fractal analyses

    USGS Publications Warehouse

    Alados, C.L.; Escos, J.; Emlen, J.M.; Freeman, D.C.

    1999-01-01

    The comparison between complexity in the sense of space occupancy (box-counting fractal dimension D(c) and information dimension D1) and heterogeneity in the sense of space distribution (average evenness index f and evenness variation coefficient J(cv)) were investigated in mathematical fractal objects and natural branch structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.

  20. Structural development of redwood branches and its effects on wood growth.

    PubMed

    Kramer, Russell D; Sillett, Stephen C; Carroll, Allyson L

    2014-03-01

    Redwood branches provide all the carbohydrates for the most carbon-heavy forests on Earth, and recent whole-tree measurements have quantified trunk growth rates associated with complete branch inventories. Providing all of a tree's photosynthetic capacity, branches represent an increasing proportion of total aboveground wood production as trees enlarge. To examine branch development and its effects on wood volume growth, we dissected 31 branches from eight Sequoia sempervirens (D. Don) Endl. and seven Sequoiadendron giganteum Lindl. trees. The cambium-area-to-leaf-area ratio was maintained with size and age but increased with light availability, whereas the heartwood-deposition-area-to-leaf-area ratio increased with size and age but was insensitive to light availability. The proportion of foliage mass arrayed in <1-cm-diameter epicormic shoots increased with decreasing light and was higher in Sequoia (20-60%) than in Sequoiadendron (3-16%). Well-illuminated branches concentrated leaves higher and distally, while shaded branches distributed leaves lower and proximally. In similar light environments, older branches distributed leaves lower and more proximally than younger branches. Branch size, light, species, heartwood area, a heartwood-area-species interaction, and ovulate cone mass predicted 87.5% of the variability in wood volume growth of branches. After accounting for the positive effects of size and light, wood volume growth declined with heartwood area and age. The effect of age was trivial compared to the effect of heartwood area, suggesting that heartwood expansion caused the age-related decline in wood volume growth. Additionally, Sequoiadendron branches of similar size and light environment with more ovulate cones produced less wood, even though these cones were long-lived and photosynthetic, reflecting the energetic cost of seed production. These results contributed to a conceptual model of branch development in which light availability, injury

  1. Tillering and panicle branching genes in rice.

    PubMed

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. SLAC-standard CAMAC branch terminator (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-04

    The drawings listed on the drawing list provide the data and specifications for constructing a Branch Terminator for the SLAC standard CAMAC units. This is a device for matching the cables and other branch lines in the system. This unit is designed for a certain group of SLAC CAMAC units which are referred to as SLAC-Standard CAMAC Units.

  3. Branching out Has So Much to Offer

    ERIC Educational Resources Information Center

    Murray, Joe

    2012-01-01

    In 1989 there were thirty ATM branches nationally. In January 2012 there were just twelve ATM branches with another three "proposed". How can that happen? How did it happen? Maybe the most pertinent question is: Why did it happen? There is no single answer to the last question, but perhaps it was something to do with the changes that…

  4. RIAD visual imaging branch assessment

    NASA Technical Reports Server (NTRS)

    Beam, Sherilee F.

    1993-01-01

    Every year the demand to visualize research efforts increases. The visualization provides the means to effectively analyze data and present the results. The technology support for visualization is constantly changing, improving, and being made available to users everywhere. As such, many researchers are entering into the practice of doing their own visualization in house - sometimes successfully, sometimes not. In an effort to keep pace with the visualization needs of researchers, the Visual Imaging Branch of the Research, Information, and Applications Division at NASA Langley Research Center has conducted an investigation into the current status of imaging technology and imaging production throughout the various research branches at the center. This investigation will allow the branch to evaluate its current resources and personnel in an effort to identify future directions for meeting the needs of the researchers at the center. The investigation team, which consisted of the ASEE fellow, the head of the video section, and the head of the photo section, developed an interview format that could be accomplished during a short interview period with researchers, and yet still provide adequate statistics about items such as in-house equipment and usage.

  5. An unusual branch of celiac trunk feeding suprarenal gland - a case report.

    PubMed

    Sarkar, Munmun; Mukherjee, Pranab; Roy, Hironmoy; Sengupta, Sandip Kumar; Sarkar, Amarendra Nath

    2014-04-01

    During routine dissection, variation in branching pattern of coeliac trunk has been observed in adult 54-year-old male cadaver. Instead of normal three branches an additional branch i.e., Left inferior phrenic artery originated from it as fourth branch. Then it divided into two branches, one directly supplied the diaphragm and other branch divided into three sub-branches. First and second branch entered into the left suprarenal gland at its upper and middle pole and third one finally terminated by supplying to the diaphragm. There is no separate middle suprarenal artery on the left side, but inferior suprarenal artery was as usual. No variations have been found on right side in the lateral branches of abdominal aorta. Such a quadrifurcation of celiac trunk to supply suprarenal gland is quiet unique so far searched in literature.

  6. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. "Dangerous" anatomic varieties of recurrent motor branch of median nerve.

    PubMed

    Elsaftawy, Ahmed; Gworys, Bohdan; Jabłecki, Jerzy; Szajerka, Tobiasz

    2013-08-01

    Carpal tunnel release became one of the most common operations in the field of hand surgery. Many controversies has been made about frequency of the so-called dangerous variations of motor branch of the median nerve. Knowledge of all the anatomical variations motor branches is the duty of every surgeon dealing with the subject. The aim of the study was to present the incidence of dangerous variants of median nerve motor branch in the carpal tunnel based on both clinical experience and anatomical studies performed on 20 cadaver wrists. Between 2006-2012 during minimally open carpal tunnel release we made photographic documentation of all visible dangerous varieties of recurrent motor branches of the median nerve. We also studied 20 cadaver wrists in the Department of Anatomy Medical University in Wrocław. Dangerous varieties of the motor branch of median nerve was found in three clinical cases and in one cadaver wrist. Also In one wrist we found one regular branche, which, however, has atypical two separate branches supplying the thenar muscles. Dangerous varieties of the motor branch of median nerve occur very rare in the population, but does not release from the fact that in each case special attention must be given.We also conclude that, at the minimally open carpal tunnel release procedure, the transverse carpal ligament should be released rather from the line of radial border of the 4th finger to minimize the risk of injury to the recurrent motor branch of median nerve.

  8. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  9. Gravity-dependent regulation of red light induced moss protonemata branching and gametophore bud formation

    NASA Astrophysics Data System (ADS)

    Ripetskyj, R. T.; Kit, N. A.

    Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of

  10. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.

    PubMed

    Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin

    2016-07-05

    The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.

  11. Secondary motion in three-dimensional branching networks

    PubMed Central

    Guha, Abhijit; Pradhan, Kaustav

    2017-01-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P,

  12. Secondary motion in three-dimensional branching networks

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Pradhan, Kaustav

    2017-06-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters

  13. On an Integral with Two Branch Points

    ERIC Educational Resources Information Center

    de Oliveira, E. Capelas; Chiacchio, Ary O.

    2006-01-01

    The paper considers a class of real integrals performed by using a convenient integral in the complex plane. A complex integral containing a multi-valued function with two branch points is transformed into another integral containing a pole and a unique branch point. As a by-product we obtain a new class of integrals which can be calculated in a…

  14. Branch length mediates flower production and inflorescence architecture of Fouquieria splendens (ocotillo)

    USGS Publications Warehouse

    Bowers, Janice E.

    2006-01-01

    The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.

  15. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  16. Legitimacy in Cross-Border Higher Education: Identifying Stakeholders of International Branch Campuses

    ERIC Educational Resources Information Center

    Farrugia, Christine A.; Lane, Jason E.

    2013-01-01

    When colleges and universities set up outposts such as international branch campuses (IBCs) in foreign countries, the literature suggests that the success of that outpost can be tied to its ability to build its own legitimacy. This article investigates the process of legitimacy building by IBCs through identifying who IBCs view as their salient…

  17. Some posterior branches of extralaryngeal recurrent laryngeal nerves have motor fibers.

    PubMed

    Cho, Ilyoung; Jo, Min-Gyu; Choi, Sung-Won; Jang, Jeon Yeob; Wang, Soo-Geun; Cha, Wonjae

    2017-11-01

    Anatomical variations of the recurrent laryngeal nerve (RLN), such as extralaryngeal branching, are a well-known risk factor for RLN injury during thyroid surgery. This study aimed to analyze the surgical anatomy and to investigate the existence of posterior branch motor fibers of extralaryngeal RLNs. Prospective consecutive observational study. This was a prospective cohort study of 366 patients between January 2014 and February 2016. Operative data included the type of operation, incidence of nerve bifurcation, the distances among anatomical landmarks. The motor fibers were evaluated using neurostimulation with laryngeal palpation. A total of 667 RLNs at risk were analyzed in this study, and of these 103 (14.5%) nerves were bifurcated or trifurcated before the laryngeal entry point (LEP). More extralaryngeal branched RLNs were observed on the right side than on the left (17.5% vs. 13.3%, P = .294). The mean distance of the LEP point of division was longer on the left side (16.2 ± 6.7 mm) than on the right (14.7 ± 5.9 mm, P = .132). All branched RLNs had a palpable laryngeal twitch when stimulating anterior branches. When stimulating posterior branches, 28.2%(29/103) of branched RLNs showed palpable laryngeal twitch. Overall incidence of posterior motor branch in total RLNs was 4.3% (29/667). The motor fibers of the RLN are all located in the anterior branch, whereas some posterior branches have motor function. Identification of all of the branches of the RLN may be mandatory to decrease the risk of postoperative nerve injury. 4. Laryngoscope, 127:2678-2685, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Branched terthiophenes in organic electronics: from small molecules to polymers.

    PubMed

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Light Signaling in Bud Outgrowth and Branching in Plants

    PubMed Central

    Leduc, Nathalie; Roman, Hanaé; Barbier, François; Péron, Thomas; Huché-Thélier, Lydie; Lothier, Jérémy; Demotes-Mainard, Sabine; Sakr, Soulaiman

    2014-01-01

    Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future. PMID:27135502

  20. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks

    PubMed Central

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A.; Mullins, R. Dyche

    2016-01-01

    Branched actin networks–created by the Arp2/3 complex, capping protein, and a nucleation promoting factor– generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry, but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  1. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  2. Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.

    PubMed

    Lee, Christine S; Mui, Timothy P; Silverman, Scott K

    2011-01-01

    A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to identify improved deoxyribozymes for synthesis of branched DNA and RNA. Each of the new deoxyribozymes requires Mn²(+) as a cofactor, rather than Mg²(+) as used by our previous branch-forming deoxyribozymes, and each has an initially random region of 40 rather than 22 or fewer combined nucleotides. The deoxyribozymes all function by forming a three-helix-junction (3HJ) complex with their two oligonucleotide substrates. For synthesis of branched DNA, the best new deoxyribozyme, 8LV13, has k(obs) on the order of 0.1 min⁻¹, which is about two orders of magnitude faster than our previously identified 15HA9 deoxyribozyme. 8LV13 also functions at closer-to-neutral pH than does 15HA9 (pH 7.5 versus 9.0) and has useful tolerance for many DNA substrate sequences. For synthesis of branched RNA, two new deoxyribozymes, 8LX1 and 8LX6, were identified with broad sequence tolerances and substantial activity at pH 7.5, versus pH 9.0 for many of our previous deoxyribozymes that form branched RNA. These experiments provide new, and in key aspects improved, practical catalysts for preparation of synthetic branched DNA and RNA.

  3. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  4. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  5. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  6. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  7. Critical spreading dynamics of parity conserving annihilating random walks with power-law branching

    NASA Astrophysics Data System (ADS)

    Laise, T.; dos Anjos, F. C.; Argolo, C.; Lyra, M. L.

    2018-09-01

    We investigate the critical spreading of the parity conserving annihilating random walks model with Lévy-like branching. The random walks are considered to perform normal diffusion with probability p on the sites of a one-dimensional lattice, annihilating in pairs by contact. With probability 1 - p, each particle can also produce two offspring which are placed at a distance r from the original site following a power-law Lévy-like distribution P(r) ∝ 1 /rα. We perform numerical simulations starting from a single particle. A finite-time scaling analysis is employed to locate the critical diffusion probability pc below which a finite density of particles is developed in the long-time limit. Further, we estimate the spreading dynamical exponents related to the increase of the average number of particles at the critical point and its respective fluctuations. The critical exponents deviate from those of the counterpart model with short-range branching for small values of α. The numerical data suggest that continuously varying spreading exponents sets up while the branching process still results in a diffusive-like spreading.

  8. [The role of branched-chain amino acids metabolism in development of cardiovascular diseases and its risk factors].

    PubMed

    Lyzohub, V H; Zaval's'ka, T V; Savchenko, O V; Tyravs'ka, Iu V

    2013-01-01

    Branched-chain amino acids play the key role in many metabolism processes in organism generally and in cardiovascular protection. It was discovered its importance in mitochondrial biogenesis, antioxidant and antiaging processes, its antihypertension and antiarrhythmic effects, its role in obesity and diabetes mellitus.

  9. Quantifying the effect of side branches in endothelial shear stress estimates

    PubMed Central

    Giannopoulos, Andreas A.; Chatzizisis, Yiannis S.; Maurovich-Horvat, Pal; Antoniadis, Antonios P.; Hoffmann, Udo; Steigner, Michael L.; Rybicki, Frank J.; Mitsouras, Dimitrios

    2016-01-01

    Background and aims Low and high endothelial shear stress (ESS) is associated with coronary atherosclerosis progression and high-risk plaque features. Coronary ESS is currently assessed via computational fluid dynamic (CFD) simulation in the lumen geometry determined from invasive imaging such as intravascular ultrasound and optical coherence tomography. This process typically omits side branches of the target vessel in the CFD model as invasive imaging of those vessels is not clinically-indicated. The purpose of this study was to determine the extent to which this simplification affects the determination of those regions of the coronary endothelium subjected to pathologic ESS. Methods We determined the diagnostic accuracy of ESS profiling without side branches to detect pathologic ESS in the major coronary arteries of 5 hearts imaged ex vivo with CT angiography. ESS of the three major coronary arteries was calculated both without (test model), and with (reference model) inclusion of all side branches >1.5 mm in diameter, using previously-validated CFD approaches. Diagnostic test characteristics (accuracy, sensitivity, specificity and negative and positive predictive value [NPV/PPV]) with respect to the reference model were assessed for both the entire length as well as only the proximal portion of each major coronary artery, where the majority of high-risk plaques occur. Results Using the model without side branches overall accuracy, sensitivity, specificity, NPV and PPV were 83.4%, 54.0%, 96%, 95.9% and 55.1%, respectively to detect low ESS, and 87.0%, 67.7%, 90.7%, 93.7% and 57.5%, respectively to detect high ESS. When considering only the proximal arteries, test characteristics differed for low and high ESS, with low sensitivity (67.7%) and high specificity (90.7%) to detect low ESS, and low sensitivity (44.7%) and high specificity (95.5%) to detect high ESS. Conclusions The exclusion of side branches in ESS vascular profiling studies greatly reduces the

  10. Branching instability in expanding bacterial colonies.

    PubMed

    Giverso, Chiara; Verani, Marco; Ciarletta, Pasquale

    2015-03-06

    Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Impact of high-performance work systems on individual- and branch-level performance: test of a multilevel model of intermediate linkages.

    PubMed

    Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E

    2012-03-01

    We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.

  12. Methods and Technologies Branch (MTB)

    Cancer.gov

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  13. Ecological effects of contaminants in McCoy Branch, 1989-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryon, M.G.

    1992-01-01

    The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Such a RCRA Facility Investigation (RFI) was required of the Y-12 Plant for their Filled Coal Ash Pond on McCoy Branch. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps were implemented or planned for McCoy Branch to address disposal problems. The McCoy Branch RFI plan included provisions for biological monitoring of the McCoy Branch watershed.more » The objectives of the biological monitoring were to: (1) document changes in biological quality of McCoy Branch after completion of a pipeline and after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program will also determine if the classified uses, as identified by the State of Tennessee, of McCoy Branch are being protected and maintained. This report discusses results from toxicity monitoring of snails fish community assessment, and a Benthic macroinvertebrate community assessment.« less

  14. Phototropic growth in a reef flat acroporid branching coral species.

    PubMed

    Kaniewska, Paulina; Campbell, Paul R; Fine, Maoz; Hoegh-Guldberg, Ove

    2009-03-01

    Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development--the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 micromol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.

  15. Expectation-maximization algorithm for determining natural selection of Y-linked genes through two-sex branching processes.

    PubMed

    González, M; Gutiérrez, C; Martínez, R

    2012-09-01

    A two-dimensional bisexual branching process has recently been presented for the analysis of the generation-to-generation evolution of the number of carriers of a Y-linked gene. In this model, preference of females for males with a specific genetic characteristic is assumed to be determined by an allele of the gene. It has been shown that the behavior of this kind of Y-linked gene is strongly related to the reproduction law of each genotype. In practice, the corresponding offspring distributions are usually unknown, and it is necessary to develop their estimation theory in order to determine the natural selection of the gene. Here we deal with the estimation problem for the offspring distribution of each genotype of a Y-linked gene when the only observable data are each generation's total numbers of males of each genotype and of females. We set out the problem in a non parametric framework and obtain the maximum likelihood estimators of the offspring distributions using an expectation-maximization algorithm. From these estimators, we also derive the estimators for the reproduction mean of each genotype and forecast the distribution of the future population sizes. Finally, we check the accuracy of the algorithm by means of a simulation study.

  16. [Croatian Medical Association--Branch Slavonski Brod].

    PubMed

    Mahovne, Zvonimir

    2014-01-01

    The branch of the Croatian Medical Association in Slav. Brod was founded in 1953. The economic and social progress in subsequent years led to the increased number of health institutions, health professionals and owing to their activity to better health care. The branch survived very difficult war years from 1991 to 1995. Our members treated thousands of wounded and ill and gave the best of their skill and humanity. In the last decade our members took part in educational and scientific activities of School of Medicine, J. J. Strossmayer University in Osijek.

  17. Geodynamics branch data base for main magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  18. Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives.

    PubMed

    Bi, Huiping; Bai, Yanfen; Cai, Tao; Zhuang, Yibin; Liang, Xiaomei; Zhang, Xueli; Liu, Tao; Ma, Yanhe

    2013-12-01

    Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96 ± 0.06 mg/L chloramphenicol-3-isobutyrate and 3.94 ± 0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77 ± 3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.

  19. Modeling the within-host dynamics of cholera: bacterial-viral interaction.

    PubMed

    Wang, Xueying; Wang, Jin

    2017-08-01

    Novel deterministic and stochastic models are proposed in this paper for the within-host dynamics of cholera, with a focus on the bacterial-viral interaction. The deterministic model is a system of differential equations describing the interaction among the two types of vibrios and the viruses. The stochastic model is a system of Markov jump processes that is derived based on the dynamics of the deterministic model. The multitype branching process approximation is applied to estimate the extinction probability of bacteria and viruses within a human host during the early stage of the bacterial-viral infection. Accordingly, a closed-form expression is derived for the disease extinction probability, and analytic estimates are validated with numerical simulations. The local and global dynamics of the bacterial-viral interaction are analysed using the deterministic model, and the result indicates that there is a sharp disease threshold characterized by the basic reproduction number [Formula: see text]: if [Formula: see text], vibrios ingested from the environment into human body will not cause cholera infection; if [Formula: see text], vibrios will grow with increased toxicity and persist within the host, leading to human cholera. In contrast, the stochastic model indicates, more realistically, that there is always a positive probability of disease extinction within the human host.

  20. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    PubMed

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  1. Electromagnetic Nucleus - Nucleus Cross Sections Using Energy Dependent Branching Ratios

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anne; Norbury, John

    2009-11-01

    Energy dependent branching ratios, derived from Weisskopf-Ewing theory, are presented and compared to an energy independent formalism, developed by Norbury, Townsend, and Westfall. The energy dependent branching ratio formalism is more versatile since it allows for not only neutron and proton emission, but also alpha particle, deuteron, helion, and triton emission. A new theoretical method for calculating electromagnetic dissociation (EMD) nucleus - nucleus cross sections, with energy dependent branching ratios, is introduced. Comparisons of photonuclear and nucleus - nucleus cross sections, using energy dependent and independent branching ratios, to experiment are presented. Experimental efforts, by various groups, have focused on measuring cross sections for proton and neutron emission, because proton and neutron emission is generally more probable than heavier particle emission. Consequently, comparisons of energy dependent and independent branching ratios to experiment are made for photoneutron and photoproton cross sections. EMD cross sections for single neutron, proton, and alpha particle removal are calculated and compared to experimental data for a variety of projectile, target, and energy combinations. Results indicate that using energy dependent branching ratios yields better estimates.

  2. 46 CFR 111.75-5 - Lighting branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lighting branch circuits. 111.75-5 Section 111.75-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Lighting Circuits and Protection § 111.75-5 Lighting branch circuits. (a) Loads. A...

  3. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

    PubMed Central

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-01-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873

  4. Branched nanostructures and method of synthesizing the same

    NASA Technical Reports Server (NTRS)

    Fonseca, Luis F. (Inventor); Sola, Francisco (Inventor); Resto, Oscar (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  5. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  6. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  7. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  8. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  9. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  10. Universal scaling in the branching of the tree of life.

    PubMed

    Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M

    2008-07-23

    Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

  11. Global solution branches for a nonlocal Allen-Cahn equation

    NASA Astrophysics Data System (ADS)

    Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji

    2018-05-01

    We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.

  12. Groundwater availability in the Crouch Branch and McQueen Branch aquifers, Chesterfield County, South Carolina, 1900-2012

    USGS Publications Warehouse

    Campbell, Bruce G.; Landmeyer, James E.

    2014-01-01

    , totaled about 1,117 square miles. Major types of data used as input to the model included groundwater levels, groundwater-use data, and hydrostratigraphic data, along with estimates and measurements of stream base flows made specifically for this study. The groundwater-flow model was calibrated to groundwater-level and stream base-flow conditions from 1900 to 2012 using 39 stress periods. The model was calibrated with an automated parameter-estimation approach using the computer program PEST, and the model used regularized inversion and pilot points. The groundwater-flow model was calibrated using field data that included groundwater levels that had been collected between 1940 and 2012 from 239 wells and base-flow measurements from 44 locations distributed within the study area. To better understand recharge and inter-aquifer interactions, seven wells were equipped with continuous groundwater-level recording equipment during the course of the study, between 2008 and 2012. These water levels were included in the model calibration process. The observed groundwater levels were compared to the simulated ones, and acceptable calibration fits were achieved. Root mean square error for the simulated groundwater levels compared to all observed groundwater levels was 9.3 feet for the Crouch Branch aquifer and 8.6 feet for the McQueen Branch aquifer. The calibrated groundwater-flow model was then used to calculate groundwater budgets for the entire study area and for two sub-areas. The sub-areas are the Alligator Rural Water and Sewer Company well field near McBee, South Carolina, and the Carolina Sandhills National Wildlife Refuge acquisition boundary area. For the overall model area, recharge rates vary from 56 to 1,679 million gallons per day (Mgal/d) with a mean of 737 Mgal/d over the simulation period (1900–2012). The simulated water budget for the streams and rivers varies from 653 to 1,127 Mgal/d with a mean of 944 Mgal/d. The simulated “storage-in term” ranges from 0

  13. Critical branching neural networks.

    PubMed

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  14. Foliage motion under wind, from leaf flutter to branch buffeting.

    PubMed

    Tadrist, Loïc; Saudreau, Marc; Hémon, Pascal; Amandolese, Xavier; Marquier, André; Leclercq, Tristan; de Langre, Emmanuel

    2018-05-01

    The wind-induced motion of the foliage in a tree is an important phenomenon both for biological issues (photosynthesis, pathogens development or herbivory) and for more subtle effects such as on wi-fi transmission or animal communication. Such foliage motion results from a combination of the motion of the branches that support the leaves, and of the motion of the leaves relative to the branches. Individual leaf dynamics relative to the branch, and branch dynamics have usually been studied separately. Here, in an experimental study on a whole tree in a large-scale wind tunnel, we present the first empirical evidence that foliage motion is actually dominated by individual leaf flutter at low wind velocities, and by branch turbulence buffeting responses at higher velocities. The transition between the two regimes is related to a weak dependence of leaf flutter on wind velocity, while branch turbulent buffeting is strongly dependent on it. Quantitative comparisons with existing engineering-based models of leaf and branch motion confirm the prevalence of these two mechanisms. Simultaneous measurements of the wind-induced drag on the tree and of the light interception by the foliage show the role of an additional mechanism, reconfiguration, whereby leaves bend and overlap, limiting individual leaf flutter. We then discuss the consequences of these findings on the role of wind-mediated phenomena. © 2018 The Author(s).

  15. A Branch-and-Bound Approach for Tautomer Enumeration.

    PubMed

    Thalheim, Torsten; Wagner, Barbara; Kühne, Ralph; Middendorf, Martin; Schüürmann, Gerrit

    2015-05-01

    Knowledge about tautomer forms of a structure is important since, e.g., a property prediction for a molecule can yield to different results which depend on the individual tautomer. Tautomers are isomers that can be transformed to each other through chemical equilibrium reactions. In this paper the first exact Branch-and-Bound (B&B) algorithm to calculate tautomer structures is proposed. The algorithm is complete in the sense of tautomerism and generates all possible tautomers of a structure according to the tautomer definition, it is initialized with. To be efficient, the algorithm takes advantage of symmetric and formation properties. Some restrictions are used to enable an early pruning of some branches of the B&B tree. This is important, since a simple enumeration strategy would lead to number of candidate tautomers that is exponentially increasing with the number of hydrogen atoms and their attachment sites. The proposed implementation of the B&B algorithm covers the majority of the prototropic tautomer cases, but can be adapted to other kinds of tautomerism too. Furthermore, a computer processable definition of tautomerism is given in the form of the moving hydrogen atom problem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Food Design Thinking: A Branch of Design Thinking Specific to Food Design

    ERIC Educational Resources Information Center

    Zampollo, Francesca; Peacock, Matthew

    2016-01-01

    Is there a need for a set of methods within Design Thinking tailored specifically for the Food Design process? Is there a need for a branch of Design Thinking dedicated to Food Design alone? Chefs are not generally trained in Design or Design Thinking, and we are only just beginning to understand how they ideate and what recourses are available to…

  17. Gender, race, and electrophysiologic characteristics of the branched recurrent laryngeal nerve.

    PubMed

    Fontenot, Tatyana E; Randolph, Gregory W; Friedlander, Paul L; Masoodi, Hammad; Yola, Ibrahim M; Kandil, Emad

    2014-10-01

    The extralaryngeal branching of recurrent laryngeal nerves (RLN) conveys an increased risk of nerve injury during thyroid surgery. We hypothesized that racial and gender variations in prevalence of branched RLN exist. A retrospective review of all patients who underwent thyroid surgery in a 4-year period in a single surgeon practice. The RLN was routinely identified during thyroid surgery. Presence of RLN branching, its distance from the laryngeal nerve entry point (NEP), and functionality of the branches were ascertained. Patient demographics, rates of neural branching, and distance of bifurcation from the NEP were evaluated using statistical analysis. We identified 719 RLNs at risk in 491 patients who underwent central neck surgery. Four hundred and five (82.5%) patients were female and 86 (17.5%) patients were male. There were 218 (44.4%) African American patients and 251 (51.1 %) Caucasian patients. In African American patients, 42.1% RLNs bifurcated compared to 33.2% RLNs in Caucasian (P = 0.017) patients. The RLNs of African American and Caucasian patients bifurcated at comparable distances (P = 0.30). In male patients, 39.1% RLNs bifurcated; whereas in female patients 36.2% RLNs bifurcated (P = 0.53). On average, RLN bifurcation in female patients was at a longer distance from NEP compared to that of male patients (P = 0.012). Electrophysiologic testing found motor fibers in all anterior branches and three posterior extralaryngeal RLN branches. African American patients have a higher rate of RLN bifurcation compared to Caucasian patients but no statistically significant difference in distance from NEP. Female patients tend to have longer branching variants of bifid RLNs. RLN motor fibers reside primarily in the anterior branch but may occur in the posterior branch. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes.

    PubMed

    Henke, Helena; Posch, Sandra; Brüggemann, Oliver; Teasdale, Ian

    2016-05-01

    A new synthetic procedure is described for the preparation of poly(organo)phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2-1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo)phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Computer simulations of melts of randomly branching polymers

    NASA Astrophysics Data System (ADS)

    Rosa, Angelo; Everaers, Ralf

    2016-10-01

    Randomly branching polymers with annealed connectivity are model systems for ring polymers and chromosomes. In this context, the branched structure represents transient folding induced by topological constraints. Here we present computer simulations of melts of annealed randomly branching polymers of 3 ≤ N ≤ 1800 segments in d = 2 and d = 3 dimensions. In all cases, we perform a detailed analysis of the observed tree connectivities and spatial conformations. Our results are in excellent agreement with an asymptotic scaling of the average tree size of R ˜ N1/d, suggesting that the trees behave as compact, territorial fractals. The observed swelling relative to the size of ideal trees, R ˜ N1/4, demonstrates that excluded volume interactions are only partially screened in melts of annealed trees. Overall, our results are in good qualitative agreement with the predictions of Flory theory. In particular, we find that the trees swell by the combination of modified branching and path stretching. However, the former effect is subdominant and difficult to detect in d = 3 dimensions.

  20. The Ignition of Two Phase Detonation by a Branching Detonation Tube

    NASA Astrophysics Data System (ADS)

    Xiong, Cha; Qiu, Hua; Lu, Qinwei

    2017-11-01

    A branching tube is available to deliver sufficient energy to directly initiate a detonation wave. But sustaining the detonation wave through a branching tube is a challenge. In this study, a preliminary exploration about a branching pulsed detonation engine with a gas-liquid mixture was carried out to evaluate filling conditions on detonation initiation. Two detonation tubes were connected by three different schemes, such as Tail-Tail, Tail-Mid, and Tail-Head. Experimental results showed only end-head connected tubes can be ignited by the branching tube, which is quite different from the results using gas fuels or pre-evaporated liquid fuel. Liquid fuel distribution is crucial for successful detonation traveling through the branching tube.

  1. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas

    PubMed Central

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-01-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. PMID:26076970

  2. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  3. The Coulomb Branch of 3d N= 4 Theories

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  4. Epicormic branching on hardwood trees bordering forest openings

    Treesearch

    G.R., Jr. Trimble; Donald W. Seegrist; Donald W. Seegrist

    1973-01-01

    Epicormic branching in hardwoods can degrade logs and reduce the dollar returns from growing trees. A study made around clearcut openings of various sizes showed that the following variables were related to the degree of epicormic branching on trees bordering the openings: size of opening, species, tree dominance class, exposure of tree bole, and position on tree bole...

  5. Modeling Radioactive Decay Chains with Branching Fraction Uncertainties

    DTIC Science & Technology

    2013-03-01

    moments methods with transmutation matrices. Uncertainty from both half-lives and branching fractions is carried through these calculations by Monte...moment methods, method for sampling from normal distributions for half- life uncertainty, and use of transmutation matrices were leveraged. This...distributions for half-life and branching fraction uncertainties, building decay chains and generating the transmutation matrix (T-matrix

  6. 24 CFR 3280.804 - Disconnecting means and branch-circuit protective equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Disconnecting means and branch... SAFETY STANDARDS Electrical Systems § 3280.804 Disconnecting means and branch-circuit protective equipment. (a) The branch-circuit equipment is permitted to be combined with the disconnecting means as a...

  7. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland

    PubMed Central

    Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten

    2017-01-01

    Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192

  8. Study of the branching ratio of {psi}(3770){yields}DD in e{sup +}e{sup -{yields}}DD scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Haibo; Qin Xiaoshuai; Yang Maozhi

    2010-01-01

    Based on the data of BES and Belle, the production of DD in the e{sup +}e{sup -{yields}}DD scattering process is studied in this paper. We analyze the continuum and resonant contributions in the energy region from 3.7 to 4.4 GeV. In the {chi}{sup 2} fit to data, we obtain the resonance parameters of {psi}(3770), the branching ratio of {psi}(3770){yields}DD decay by confronting the data to the theoretical formula where both the contributions of the resonances, continuum and interference effects are included. We obtain the branching ratio of {psi}(3770){yields}DD decay is 97.2%{+-}8.9%, as well as the branching ratio of {psi}(4040), {psi}(4160){yields}DDmore » decays.« less

  9. Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.

    PubMed

    Planqué, R; Powell, S; Franks, N R; van den Berg, J B

    2016-11-01

    Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  10. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum).

    PubMed

    Dixon, Laura E; Greenwood, Julian R; Bencivenga, Stefano; Zhang, Peng; Cockram, James; Mellers, Gregory; Ramm, Kerrie; Cavanagh, Colin; Swain, Steve M; Boden, Scott A

    2018-03-01

    The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 ( TB1 ) regulates inflorescence architecture in bread wheat ( Triticum aestivum ) by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. © 2018 American Society of Plant Biologists. All rights reserved.

  11. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex.

    PubMed

    Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S

    2013-06-25

    Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.

  12. Command and Data Handling Branch Internship

    NASA Technical Reports Server (NTRS)

    Billings, Rachel Mae

    2016-01-01

    Modular Integrated Stackable Layers (MISL) is a computer system designed for simple, fast, and cost effective flexible reconfiguration in space environments such as the ISS and Orion projects for various uses. Existing applications include wireless and wired communications, data acquisition and instrumentation, and camera systems, and potential applications include bus protocol converters and subsystem control. MISL is based on Texas Instruments (TI)' MSP430 16-bit ultra-low-power microcontroller device. The purpose of my project was to integrate the MISL system with a liquid crystal display (LCD) touchscreen. The LCD, manufactured by Crystalfontz and part number CFAF320240F-035T-TS, is a 320 by 240 RGB resistive color screen including an optional carrier board. The vast majority of the project was done with Altium Designer, a tool for printed circuit board (PCB) schematic capture, 3D design, and FPGA (Field Programmable Gate Array) development. The new PCB was to allow the LCD to directly stack to the rest of MISL. Research was done with datasheets for the TI microcontroller and touchscreen display in order to meet desired hardware specifications. Documentation on prior MISL projects was also utilized. The initial step was to create a schematic for the LCD, power bus, and data bus connections between components. A layout was then designed with the required physical dimensions, routed traces and vias, power and ground planes, layer stacks, and other specified design rules such as plane clearance and hole size. Multiple consultation sessions were held with Hester Yim, the technical discipline lead for the Command and Data Handling Branch, and Christy Herring, the lead PCB layout designer in the Electronic Design and Manufacturing Branch in order to ensure proper configuration. At the moment, the PCB is awaiting revision by the latter-mentioned branch. Afterwards, the board will begin to undergo the manufacturing and testing process. Throughout the internship at

  13. Title Sheet, National Home for Disabled Volunteer Soldiers, Northwestern Branch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Title Sheet, National Home for Disabled Volunteer Soldiers, Northwestern Branch - National Home for Disabled Volunteer Soldiers, Northwestern Branch, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  14. Atomic temporal interval relations in branching time: calculation and application

    NASA Astrophysics Data System (ADS)

    Anger, Frank D.; Ladkin, Peter B.; Rodriguez, Rita V.

    1991-03-01

    A practical method of reasoning about intervals in a branching-time model which is dense, unbounded, future-branching, without rejoining branches is presented. The discussion is based on heuristic constraint- propagation techniques using the relation algebra of binary temporal relations among the intervals over the branching-time model. This technique has been applied with success to models of intervals over linear time by Allen and others, and is of cubic-time complexity. To extend it to branding-time models, it is necessary to calculate compositions of the relations; thus, the table of compositions for the 'atomic' relations is computed, enabling the rapid determination of the composition of arbitrary relations, expressed as disjunctions or unions of the atomic relations.

  15. Sleep promotes branch-specific formation of dendritic spines after learning

    PubMed Central

    Yang, Guang; Lai, Cora Sau Wan; Cichon, Joseph; Ma, Lei; Li, Wei; Gan, Wen-Biao

    2015-01-01

    How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage. PMID:24904169

  16. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season

    NASA Astrophysics Data System (ADS)

    Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di

    2017-10-01

    We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes

  17. 12 CFR 211.3 - Foreign branches of U.S. banking organizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... country where the banking organization operates one or more branches. (5) Branching by nonbanking... affiliates. (2) A banking organization is considered to be operating a branch in a foreign country if it has... office (other than a representative office) in that country. (3) For purposes of this subpart, a foreign...

  18. 12 CFR 211.3 - Foreign branches of U.S. banking organizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... country where the banking organization operates one or more branches. (5) Branching by nonbanking... affiliates. (2) A banking organization is considered to be operating a branch in a foreign country if it has... office (other than a representative office) in that country. (3) For purposes of this subpart, a foreign...

  19. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas.

    PubMed

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-08-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  20. Mechanical Systems Technology Branch research summary, 1985 - 1992

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L. (Editor)

    1993-01-01

    A collection of significant accomplishments from the research of the Mechanical Systems Technology Branch at the NASA Lewis Research Center completed during the years 1985-1992 is included. The publication highlights and accomplishments made in bearing and gearing technology through in-house research, university grants, and industry contracted projects. The publication also includes a complete listing of branch publications for these years.

  1. Quantifying the effect of side branches in endothelial shear stress estimates.

    PubMed

    Giannopoulos, Andreas A; Chatzizisis, Yiannis S; Maurovich-Horvat, Pal; Antoniadis, Antonios P; Hoffmann, Udo; Steigner, Michael L; Rybicki, Frank J; Mitsouras, Dimitrios

    2016-08-01

    Low and high endothelial shear stress (ESS) is associated with coronary atherosclerosis progression and high-risk plaque features. Coronary ESS is currently assessed via computational fluid dynamic (CFD) simulation of coronary blood flow in the lumen geometry determined from invasive imaging such as intravascular ultrasound and optical coherence tomography. This process typically omits side branches of the target vessel in the CFD model as invasive imaging of those vessels is not usually clinically-indicated. The purpose of this study was to determine the extent to which this simplification affects the determination of those regions of the coronary endothelium subjected to pathologic ESS. We determined the diagnostic accuracy of ESS profiling without side branches to detect pathologic ESS in the major coronary arteries of 5 hearts imaged ex vivo with computed tomography angiography (CTA). ESS of the three major coronary arteries was calculated both without (test model), and with (reference model) inclusion of all side branches >1.5 mm in diameter, using previously-validated CFD approaches. Diagnostic test characteristics (accuracy, sensitivity, specificity and negative and positive predictive value [NPV/PPV]) with respect to the reference model were assessed for both the entire length as well as only the proximal portion of each major coronary artery, where the majority of high-risk plaques occur. Using the model without side branches overall accuracy, sensitivity, specificity, NPV and PPV were 83.4%, 54.0%, 96%, 95.9% and 55.1%, respectively to detect low ESS, and 87.0%, 67.7%, 90.7%, 93.7% and 57.5%, respectively to detect high ESS. When considering only the proximal arteries, test characteristics differed for low and high ESS, with low sensitivity (67.7%) and high specificity (90.7%) to detect low ESS, and low sensitivity (44.7%) and high specificity (95.5%) to detect high ESS. The exclusion of side branches in ESS vascular profiling studies greatly reduces

  2. Oral branched-chain amino acids decrease whole-body proteolysis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  3. Microsurgical Anatomy of the Hypoglossal and C1 Nerves: Description of a Previously Undescribed Branch to the Atlanto-Occipital Joint.

    PubMed

    Iwanaga, Joe; Fisahn, Christian; Alonso, Fernando; DiLorenzo, Daniel; Grunert, Peter; Kline, Matthew T; Watanabe, Koichi; Oskouian, Rod J; Spinner, Robert J; Tubbs, R Shane

    2017-04-01

    Distal branches of the C1 nerve that travel with the hypoglossal nerve have been well investigated but relationships of C1 and the hypoglossal nerve near the skull base have not been described in detail. Therefore, the aim of this study was to investigate these small branches of the hypoglossal and first cervical nerves by anatomic dissection. Twelve sides from 6 cadaveric specimens were used in this study. To elucidate the relationship among the hypoglossal, vagus, and first and cervical nerve, the mandible was removed and these nerves were dissected under the surgical microscope. A small branch was found to always arise from the dorsal aspect of the hypoglossal nerve at the level of the transverse process of the atlas and joined small branches from the first and second cervical nerves. The hypoglossal and C1 nerves formed a nerve plexus, which gave rise to branches to the rectus capitis anterior and rectus capitis lateralis muscles and the atlanto-occipital joint. Improved knowledge of such articular branches might aid in the diagnosis and treatment of patients with pain derived from the atlanto-occipital joint. We believe this to be the first description of a branch of the hypoglossal nerve being involved in the innervation of this joint. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Thermal Energy Conversion Branch

    NASA Technical Reports Server (NTRS)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  5. 6-O-Branched Oligo-β-glucan-Based Antifungal Glycoconjugate Vaccines.

    PubMed

    Liao, Guochao; Zhou, Zhifang; Liao, Jun; Zu, Luning; Wu, Qiuye; Guo, Zhongwu

    2016-02-12

    With the rapid growth in fungal infections and drug-resistant fungal strains, antifungal vaccines have become an especially attractive strategy to tackle this important health problem. β-Glucans, a class of extracellular carbohydrate antigens abundantly and consistently expressed on fungal cell surfaces, are intriguing epitopes for antifungal vaccine development. β-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. To study the immunologic properties of branched β-glucans and develop β-glucan-based antifungal vaccines, three branched β-glucan oligosaccharides with 6-O-linked β-1,6-tetraglucose, β-1,3-diglucose, and β-1,3-tetraglucose branches on a β-1,3-nonaglucan backbone, which mimic the structural epitopes of natural β-glucans, were synthesized and coupled with keyhole limpet hemocyanin (KLH) to form novel synthetic conjugate vaccines. These glycoconjugates were proved to elicit strong IgG antibody responses in mice. It was also discovered that the number, size, and structure of branches linked to the β-glucan backbone had a significant impact on the immunologic property. Moreover, antibodies induced by the synthetic oligosaccharide-KLH conjugates were able to recognize and bind to natural β-glucans and fungal cells. Most importantly, these conjugates elicited effective protection against systemic Candida albicans infection in mice. Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.

  6. Statistical γ -decay properties of 64Ni and deduced (n ,γ ) cross section of the s -process branch-point nucleus 63Ni

    NASA Astrophysics Data System (ADS)

    Crespo Campo, L.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Klintefjord, M.; Larsen, A. C.; Renstrøm, T.; Sahin, E.; Siem, S.; Springer, A.; Tornyi, T. G.; Tveten, G. M.

    2016-10-01

    Particle-γ coincidence data have been analyzed to obtain the nuclear level density and the γ -strength function of 64Ni by means of the Oslo method. The level density found in this work is in very good agreement with known energy levels at low excitation energies as well as with data deduced from particle-evaporation measurements at excitation energies above Ex≈5.5 MeV. The experimental γ -strength function presents an enhancement at γ energies below Eγ≈3 MeV and possibly a resonancelike structure centered at Eγ≈9.2 MeV. The obtained nuclear level density and γ -strength function have been used to estimate the (n ,γ ) cross section for the s -process branch-point nucleus 63Ni, of particular interest for astrophysical calculations of elemental abundances.

  7. Universal features of dendrites through centripetal branch ordering

    PubMed Central

    Effenberger, Felix; Muellerleile, Julia

    2017-01-01

    Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites. PMID:28671947

  8. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Murdoch, Jennifer N.; Bogani, Debora; Formstone, Caroline J.; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A.; Dean, Charlotte H.

    2010-01-01

    The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1Crsh and Vangl2Lp mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754

  9. Leonardo's branching rule in trees: How self-similar structures resist wind

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe

    2011-11-01

    In his notebooks, Leonardo da Vinci observed that ``all the branches of a tree at every stage of its height when put together are equal in thickness to the trunk,'' which means that the total cross-sectional area of branches is conserved across branching nodes. The usual explanation for this rule involves vascular transport of sap, but this argument is questionable because the portion of wood devoted to transport varies across species and can be as low as 5%. It is proposed here that Leonardo's rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads. To address this problem, a continuous model is first considered by neglecting the geometrical details of branching and wind incident angles. The robustness of this analytical model is then assessed with numerical simulations on tree skeletons generated with a simple branching rule producing self-similar structures. This study was supported by the European Union through the fellowship PIOF-GA-2009-252542.

  10. Programmable growth of branched silicon nanowires using a focused ion beam.

    PubMed

    Jun, Kimin; Jacobson, Joseph M

    2010-08-11

    Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.

  11. Countability of Planck Boxes in Quantum Branching Models

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2002-04-01

    Two popular paradigms of cosmological quantum branching are Many World (MW) model of parallel universes (Everett, Deutsch) and inflationary quantum foam (IQF) model (Guth, Linde). Taking Planck L,T units as physically smallest, our Big Bang miniverse with size 10E28 cm and duration 10E18 sec has some 10E244 (N) elementary 4D Planck Boxes (PB) in its entire spacetime history. Using combinatorics, N! (about 10E10E247) is upper estimate for number of all possible 4D states, i.e. scale of "eternal return" (ER; Nietzsche, Eliade) for such miniverses. To count all states in full Megaverse (all up and down branches of infinite tree of all MW and/or IQF miniverses) we recall that all countable infinities have same (aleph-naught) cardinality (Cantor). Using Godel-type numbering, count PB in our miniverse by primes. This uses first N primes. Both MW and IQF models presume splitting of miniverses as springing (potentially) from each PB, making each PB infinitely rich, inexhaustible and unique. Next branching level is counted by integers p1Ep2, third level by p1Ep2Ep3 integers, etc, ad infinitum. To count in up and down directions from "our" miniverse, different branching subsets of powers of primes can be used at all levels of tower exponentiation. Thus, all PB in all infinitude of MW and/or IQF branches can be uniquely counted by never repeating integers (tower exponents of primes), offering escape from grim ER scenarios.

  12. Branch Campus Leadership: Like Running a Three-Ring Circus?

    ERIC Educational Resources Information Center

    Gillie Gossom, J.; Deckert Pelton, M.

    2011-01-01

    Members of National Association of Branch Campus Administrators (NABCA) have spent three years crafting a survey instrument for assessing the leadership abilities and skills of branch administrators. In pursuit of the goal to investigate four leadership dimensions: diagnosing, implementing, visioning, and entrepreneurial, a pilot survey was…

  13. Critical Branches and Lucky Loads in Control-Independence Architectures

    ERIC Educational Resources Information Center

    Malik, Kshitiz

    2009-01-01

    Branch mispredicts have a first-order impact on the performance of integer applications. Control Independence (CI) architectures aim to overlap the penalties of mispredicted branches with useful execution by spawning control-independent work as separate threads. Although control independent, such threads may consume register and memory values…

  14. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    PubMed Central

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-01-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429

  15. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-09-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.

  16. Kodiak: An Implementation Framework for Branch and Bound Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Andrew P.; Munoz, Cesar A.; Narkawicz, Anthony J.; Markevicius, Mantas

    2015-01-01

    Recursive branch and bound algorithms are often used to refine and isolate solutions to several classes of global optimization problems. A rigorous computation framework for the solution of systems of equations and inequalities involving nonlinear real arithmetic over hyper-rectangular variable and parameter domains is presented. It is derived from a generic branch and bound algorithm that has been formally verified, and utilizes self-validating enclosure methods, namely interval arithmetic and, for polynomials and rational functions, Bernstein expansion. Since bounds computed by these enclosure methods are sound, this approach may be used reliably in software verification tools. Advantage is taken of the partial derivatives of the constraint functions involved in the system, firstly to reduce the branching factor by the use of bisection heuristics and secondly to permit the computation of bifurcation sets for systems of ordinary differential equations. The associated software development, Kodiak, is presented, along with examples of three different branch and bound problem types it implements.

  17. Branching fractions for psi(2S)-to-J/psi transitions.

    PubMed

    Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2005-06-17

    We describe new measurements of the inclusive and exclusive branching fractions for psi(2S) transitions to J/psi using e(+)e(-) collision data collected with the CLEO detector operating at CESR. All branching fractions and ratios of branching fractions reported here represent either the most precise measurements to date or the first direct measurements. Indirectly and in combination with other CLEO measurements, we determine B(chi(cJ) --> gamma(J/psi)) and B[psi(2S) --> light hadrons].

  18. Clinical and Translational Epidemiology Branch (CTEB)

    Cancer.gov

    The Clinical and Translational Epidemiology Branch focuses on factors that influence cancer progression, recurrence, survival, and other treatment outcomes, and factors associated with cancer development.

  19. Fault Branching and Long-Term Earthquake Rupture Scenario for Strike-Slip Earthquake

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; CHOI, J. H.; Vallage, A.

    2017-12-01

    Careful examination of surface rupture for large continental strike-slip earthquakes reveals that for the majority of earthquakes, at least one major branch is involved in the rupture pattern. Often, branching might be either related to the location of the epicenter or located toward the end of the rupture, and possibly related to the stopping of the rupture. In this work, we examine large continental earthquakes that show significant branches at different scales and for which ground surface rupture has been mapped in great details. In each case, rupture conditions are described, including dynamic parameters, past earthquakes history, and regional stress orientation, to see if the dynamic stress field would a priori favor branching. In one case we show that rupture propagation and branching are directly impacted by preexisting geological structures. These structures serve as pathways for the rupture attempting to propagate out of its shear plane. At larger scale, we show that in some cases, rupturing a branch might be systematic, hampering possibilities for the development of a larger seismic rupture. Long-term geomorphology hints at the existence of a strong asperity in the zone where the rupture branched off the main fault. There, no evidence of throughgoing rupture could be seen along the main fault, while the branch is well connected to the main fault. This set of observations suggests that for specific configurations, some rupture scenarios involving systematic branching are more likely than others.

  20. Aggregation Dynamics Using Phase Wave Signals and Branching Patterns

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Kusagaki, Takuma

    2016-09-01

    The aggregation dynamics of slime mold is studied using coupled equations of phase ϕ and cell concentration n. Phase waves work as tactic signals for aggregation. Branching structures appear during the aggregation. A stationary branching pattern appears like a river network, if cells are uniformly supplied into the system.

  1. Parotid Branches of the Auriculotemporal Nerve: An Anatomical Study With Implications for Frey Syndrome.

    PubMed

    Iwanaga, Joe; Fisahn, Christian; Watanabe, Koichi; Bobek, Samuel L; Ogata, Kinuko; Tanoue, Ryuichiro; Kusukawa, Jingo; Oskouian, Rod J; Tubbs, R Shane

    2017-01-01

    The auriculotemporal nerve is one of the many branches of the mandibular division of the trigeminal nerve. Of these, its superficial temporal branch has been most described. Although the parotid branches, secretomotor fibers to the parotid gland, are well known as the cause of Frey syndrome, there have been almost no descriptions of their anatomy. In this study, the authors dissected the parotid branches of the auriculotemporal nerve to elucidate their anatomy. A total of 10 sides from 7 adult and embalmed cadaver heads were used in this study. The specimens were derived from 3 males and 4 females, the age of cadavers at death ranged from 65 to 92 years old. Measurements included their diameter and the distance of their branching point from the main trunk of the auriculotemporal nerve from the middle of the tragus. Three of 10 sides had 2 parotid branches and 7 sides were found to have 1 parotid branch. The vertical distance between middle of the tragus to branching point of the parotid branch ranged from 1.79 to 16.17 mm. The horizontal distance between middle of the tragus to branching point of the parotid branch ranged from 3.03 to 12.62 mm. The diameter of the parotid branch ranged from 0.31 to 0.49 mm. An improved knowledge of the parotid branch of the auriculotemporal nerve might decrease injury to these structures with the potential for postoperative.

  2. Press releases, preliminary maps, and preliminary reports released by the Geologic Branch and Alaskan Branch between January 1, 1938 and January 1, 1945

    USGS Publications Warehouse

    Kent, Lois S.; Keroher, R.P.

    1945-01-01

    This pamphlet contains a complete list of all maps and reports issued by the Geologic Branch and Alaskan Branch of the Geological Survey whose release was announced by press notice during the period between January 1, 1938 and January 1, 1945. The Geologic Branch material was compiled by Lois S. Kent, and the Alaskan Branch material by R. P. Kerocher. It is expected that similar lists will be published annually hereafter. These reports and maps are the results of work carried out by Survey geologists on mineral deposits in the United States, Alaska, and Cuba during the war and the years immediately preceding the war. They were released in preliminary form as rapidly as possible in this period to avoid the delays necessarily attendant upon formal publication and to make the information contained in them promptly available to property owners and mine operators concerned with the production of strategic and critical mineral commodities.

  3. Dielectric response of branched copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.

    2017-09-01

    The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.

  4. Anatomic suitability of aortoiliac aneurysms for next generation branched systems.

    PubMed

    Pearce, Benjamin J; Varu, Vinit N; Glocker, Roan; Novak, Zdenek; Jordan, William D; Lee, Jason T

    2015-01-01

    Preservation of internal iliac flow is an important consideration to prevent ischemic complications during endovascular aneurysm repair. We sought to determine the suitability of aortoiliac aneurysms for off-the-shelf iliac branched systems currently in clinical trial. Patients undergoing abdominal aortic aneurysm repair from 2004 to 2013 at 2 institutions were reviewed. Centerline diameters and lengths of aortoiliac morphology were measured using three-dimensional workstations and compared with inclusion/exclusion criteria for both Cook and Gore iliac branch devices. Of the nearly 2,400 aneurysm repairs performed during the study period, 99 patients had common iliac aneurysms suitable for imaging review. Eighteen of the 99 (18.2%) patients and 25/99 (25.3%) patients fit the inclusion criteria and would have been able to be treated using the Cook and Gore iliac branch devices, respectively. The most common reason for exclusion from Cook was internal iliac diameter of <6 or >9 mm (68/99, 68.7%). The most common reason for exclusion from Gore was proximal common iliac diameter of <17 mm (39/99, 39.4%) and inadequate internal iliac artery diameter of <6.5 or >13.5 mm (37/99, 37.3%). Comparing the included patients across both devices, a total of 35/99 (35.4%) of patients would be eligible for the treatment of aortoiliac aneurysms based on anatomic criteria. Only 35% of the aneurysm repairs involving common iliac arteries would have been candidates for the 2 iliac branch devices currently in trial based on anatomic criteria. The major common reason for exclusion is the internal iliac landing zone for both devices. Design modifications for future generation iliac branch technology should focus on diameter accommodations for the hypogastric branch stent and proximal and distal sizes of the iliac branch components. Familiarity with alternate branch preserving techniques is still needed in the majority of cases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Business Systems Branch Abilities, Capabilities, and Services Web Page

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, Aida Yoguely

    2009-01-01

    During the INSPIRE summer internship I acted as the Business Systems Branch Capability Owner for the Kennedy Web-based Initiative for Communicating Capabilities System (KWICC), with the responsibility of creating a portal that describes the services provided by this Branch. This project will help others achieve a clear view ofthe services that the Business System Branch provides to NASA and the Kennedy Space Center. After collecting the data through the interviews with subject matter experts and the literature in Business World and other web sites I identified discrepancies, made the necessary corrections to the sites and placed the information from the report into the KWICC web page.

  6. Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes.

    PubMed

    Egea, Gregorio; González-Real, María M; Martin-Gorriz, Bernardo; Baille, Alain

    2014-06-01

    Branch/tree-level measurements of carbon (C)-acquisition provide an integration of the physical and biological processes driving the C gain of all individual leaves. Most research dealing with the interacting effects of high-irradiance environments and soil-induced water stress on the C-gain of fruit tree species has focused on leaf-level measurements. The C-gain of both sun-exposed leaves and branches of adult almond trees growing in a semi-arid climate was investigated to determine the respective costs of structural and biochemical/physiological protective mechanisms involved in the behaviour at branch scale. Measurements were performed on well-watered (fully irrigated, FI) and drought-stressed (deficit irrigated, DI) trees. Leaf-to-branch scaling for net CO2 assimilation was quantified by a global scaling factor (fg), defined as the product of two specific scaling factors: (i) a structural scaling factor (fs), determined under well-watered conditions, mainly involving leaf mutual shading; and (ii) a water stress scaling factor (fws,b) involving the limitations in C-acquisition due to soil water deficit. The contribution of structural mechanisms to limiting branch net C-gain was high (mean fs ∼0.33) and close to the projected-to-total leaf area ratio of almond branches (ε = 0.31), while the contribution of water stress mechanisms was moderate (mean fws,b ∼0.85), thus supplying an fg ranging between 0.25 and 0.33 with slightly higher values for FI trees with respect to DI trees. These results suggest that the almond tree (a drought-tolerant species) has acquired mechanisms of defensive strategy (survival) mainly based on a specific branch architectural design. This strategy allows the potential for C-gain to be preserved at branch scale under a large range of soil water deficits. In other words, almond tree branches exhibit an architecture that is suboptimal for C-acquisition under well-watered conditions, but remarkably efficient to counteract the impact

  7. Branch morphology in young poplar clones on floodplain sites in Missouri

    Treesearch

    Stephen G. Pallardy; Daniel E. Gibbins

    2003-01-01

    Four Populus clones were grown in central Missouri for 2 years at 1 x 1 m spacing to study total biomass production on floodplain sites previously in forage grasses. Branch morphology (living, first-order proleptic, and sylleptic shoots) was assessed for 2-year-old plants. All 2-year-old plants had lateral branches, and clones varied significantly in certain branch...

  8. 40 CFR 721.10217 - Branched and linear alcohols (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched and linear alcohols (generic... Specific Chemical Substances § 721.10217 Branched and linear alcohols (generic). (a) Chemical substance and... linear alcohols (PMN P-09-426) is subject to reporting under this section for the significant new uses...

  9. Seeing believes: Watching entangled sculpted branched DNA in real time

    NASA Astrophysics Data System (ADS)

    Jee, Ah-Young; Guan, Juan; Chen, Kejia; Granick, Steve

    2015-03-01

    The importance of branching in polymer physics is universally accepted but the details are disputed. We have sculpted DNA to various degrees of branching and used single-molecule tracking to image its diffusion in real time when entangled. By ligating three identical or varying length DNA segments, we construct symmetric and asymmetric ?Y? branches from elements of lambda-DNA with 16 um contour length, allowing for single-molecule visualization of equilibrium dynamics. Using home-written software, a full statistical distribution based on at least hundreds of trajectories is quantified with focus on discriminating arm-retraction from branch point motion. Some part of our observations is consistent with the anticipated ?relaxation through arm retraction? mechanism but other observations do not appear to be anticipated theoretically. Currently working as a researcher in Institute for Basic Science.

  10. Branch-pipe-routing approach for ships using improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  11. Predicting the cover-up of dead branches using a simple single regressor equation

    Treesearch

    Christopher M. Oswalt; Wayne K. Clatterbuck; E.C. Burkhardt

    2007-01-01

    Information on the effects of branch diameter on branch occlusion is necessary for building models capable of forecasting the effect of management decisions on tree or log grade. We investigated the relationship between branch size and subsequent branch occlusion through diameter growth with special attention toward the development of a simple single regressor equation...

  12. Risk Factor Assessment Branch (RFAB)

    Cancer.gov

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  13. The Branching Pattern of the Brachiocephalic Trunk in the Donkey (Equus asinus).

    PubMed

    Akbari, G; Asadiahranjani, B; Goodarzi, N; Shokrollahi, S

    2017-08-01

    Donkeys are a member of the horse family (Equidae) and share a common ancestor. However, in morphological terms, donkeys and horses are regarded as two separate subgenus. Given variations in the branching pattern of the brachiocephalic trunk (BCT) in different species of animals and the use of donkeys in anatomy courses at colleges of veterinary medicine, we conducted this study in order to investigate the branching patterns of BCT and to describe detailed morphological information regarding donkeys. Seventeen mature donkeys were examined following euthanasia by exsanguination from the common carotid artery under general anaesthesia. Thirteen donkeys were embalmed and injected with coloured latex from BCT origin for better visualization of vessels. Four other donkeys were freshly studied without the embalming procedure. In all cases, the BCT was the only branch of the aortic arch and branched into the left subclavian (LSb) artery, the right costocervical trunk, the right subclavian (RSb) artery and the bicarotid trunk. The main branching pattern of the RSb was the costocervical trunk, the vertebral artery, the internal thoracic artery and the superficial cervical artery. The deep cervical artery branched from the costocervical trunk. The major branching pattern of the LSb was the vertebral artery, the internal thoracic artery and the superficial cervical artery. In donkeys, the external thoracic artery branches from the internal thoracic artery. Results obtained from this study indicate that BCT branching in donkeys has some similarities and differences as compared to that in horses and in the Caspian miniature horse. © 2017 Blackwell Verlag GmbH.

  14. A branching morphogenesis program governs embryonic growth of the thyroid gland

    PubMed Central

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik

    2018-01-01

    ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553

  15. A branching morphogenesis program governs embryonic growth of the thyroid gland.

    PubMed

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael

    2018-01-25

    The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.

  16. Control over the branched structures of platinum nanocrystals for electrocatalytic applications.

    PubMed

    Ma, Liang; Wang, Chengming; Gong, Ming; Liao, Lingwen; Long, Ran; Wang, Jinguo; Wu, Di; Zhong, Wei; Kim, Moon J; Chen, Yanxia; Xie, Yi; Xiong, Yujie

    2012-11-27

    Structural control of branched nanocrystals allows tuning two parameters that are critical to their catalytic activity--the surface-to-volume ratio, and the number of atomic steps, ledges, and kinks on surface. In this work, we have developed a simple synthetic system that allows tailoring the numbers of branches in Pt nanocrystals by tuning the concentration of additional HCl. In the synthesis, HCl plays triple functions in tuning branched structures via oxidative etching: (i) the crystallinity of seeds and nanocrystals; (ii) the number of {111} or {100} faces provided for growth sites; (iii) the supply kinetics of freshly formed Pt atoms in solution. As a result, tunable Pt branched structures--tripods, tetrapods, hexapods, and octopods with identical chemical environment--can be rationally synthesized in a single system by simply altering the etching strength. The controllability in branched structures enables to reveal that their electrocatalytic performance can be optimized by constructing complex structures. Among various branched structures, Pt octopods exhibit particularly high activity in formic acid oxidation as compared with their counterparts and commercial Pt/C catalysts. It is anticipated that this work will open a door to design more complex nanostructures and to achieve specific functions for various applications.

  17. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    PubMed Central

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  18. Environmental Control of Branching in Petunia1[OPEN

    PubMed Central

    Oplaat, Carla; Wohlers, Mark W.

    2015-01-01

    Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal. PMID:25911529

  19. Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion.

    PubMed

    Hayano, Yasufumi; Sasaki, Kensuke; Ohmura, Nami; Takemoto, Makoto; Maeda, Yurie; Yamashita, Toshihide; Hata, Yoshio; Kitada, Kazuhiro; Yamamoto, Nobuhiko

    2014-10-21

    Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.

  20. 26 CFR 1.884-4 - Branch-level interest tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Branch-level interest tax. 1.884-4 Section 1.884-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Foreign Corporations § 1.884-4 Branch-level interest tax. (a) General rule—(1) Tax...

  1. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  2. Controlled growth of novel hyper-branched nanostructures in nanoporous alumina membrane.

    PubMed

    Zhang, Junping; Day, Cynthia S; Carroll, David L

    2009-12-07

    This paper proposes a novel approach to fabricate hyper-branched anodic aluminium oxide (AAO) nanostructures with different branches on the vertically-aligned trunk and at the trunk terminal. Silver nanowires with different dimensional and multifunctional complexity have been prepared from this hyper-branched AAO template by varying the electrodeposition time. These kinds of novel nanostructure may be used to build blocks for nanoelectronic and nanophotonic devices.

  3. West Branch Pennsylvania Canal, Lock No. 34 Lock Keeper's House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West Branch Pennsylvania Canal, Lock No. 34 Lock Keeper's House, South of State Route 664 along North bank of West Branch of Susquehanna River, 2,000 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  4. Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.

    PubMed

    Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S

    2015-07-13

    Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.

  5. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum)[OPEN

    PubMed Central

    Greenwood, Julian R.; Bencivenga, Stefano; Cockram, James; Cavanagh, Colin; Swain, Steve M.

    2018-01-01

    The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 (TB1) regulates inflorescence architecture in bread wheat (Triticum aestivum) by investigating lines that display a form of inflorescence branching known as “paired spikelets.” We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. PMID:29444813

  6. 78 FR 66265 - Drawbridge Operation Regulation; Elizabeth River, Eastern Branch, Norfolk, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Operation Regulation; Elizabeth River, Eastern Branch, Norfolk, VA AGENCY: Coast Guard, DHS. ACTION: Notice... Elizabeth River Eastern Branch, mile 1.1, at Norfolk, VA. This deviation is necessary to facilitate... maintenance. The Norfolk Southern 5 railroad Bridge, at mile 1.1, across the Elizabeth River (Eastern Branch...

  7. Generalized and synthetic regression estimators for randomized branch sampling

    Treesearch

    David L. R. Affleck; Timothy G. Gregoire

    2015-01-01

    In felled-tree studies, ratio and regression estimators are commonly used to convert more readily measured branch characteristics to dry crown mass estimates. In some cases, data from multiple trees are pooled to form these estimates. This research evaluates the utility of both tactics in the estimation of crown biomass following randomized branch sampling (...

  8. 12 CFR 208.6 - Establishment and maintenance of branches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... member bank wishing to establish a branch in the United States or its territories must file an... possessions of those nations and of the United States, and in the Commonwealth of Puerto Rico, are subject to... publication. A State member bank wishing to establish a branch in the United States or its territories must...

  9. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  10. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  11. Branched-Chain Amino Acids.

    PubMed

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  12. Branched nanostructured anodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Alayashi, Wissal

    The high relative efficiency demonstrated in dye-sensitized solar cells (DSSCs) arises from a combination of light scattering within, and photo-generated electron transport through, the porous structure of a TiO2 anodes. However, the convoluted conduction path for extracting photo-generated electrons through the sponge-like structure of conventional DSSC anodes has limited further improvement. This thesis is an investigation of thin film deposited TiO2 anodes with branched tree-like structures that mimic the highly-efficient natural flow structures of trees, rivers, and the human vascular system, which can providing uninterrupted paths for photo-generated electron transport through the hierarchical branches. The main goal has been the development of a robust fabrication process for the study of DSSCs with anodes deposited with glancing angle deposition (GLAD) as it is a new area of research and the first DSSCs produced in our lab. The anodes are deposited as thin films using electron-beam evaporation with two different source of material: metallic Ti and TiO2. Ti films are shown to exhibit highly branched characteristics, with distinct branches when deposited at rate of 15 A/s versus 5 A/s (i.e. rate dependence). A thermal oxidation study for these films is performed using H2/ O2 at 450°C-520°C. For TiO2 films, post deposition annealing is performed in O2 at 450°C. Two methods are explored to create defined active areas of the films: dilute hydrofluoric acid (HF) wet etching, and lift-off lithography. DSSCs are constructed using standard components (N719 dye, I-/I3- electrolyte, and Pt cathode) paired with the photoanodes. The films are characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The properties of DSSCs are investigated with current density-voltage measurements (J-V). Annealed TiO2 films with thickness ranging from 1 microm-3.3 microm exhibit power conversion efficiency of DSSC of 0.5% -3.7%, respectively, which are high

  13. A novel side branch protection technique in coronary stent implantation: Jailed Corsair technique.

    PubMed

    Numasawa, Yohei; Sakakura, Kenichi; Yamamoto, Kei; Yamamoto, Shingo; Taniguchi, Yousuke; Fujita, Hideo; Momomura, Shin-Ichi

    2017-06-01

    Side branch occlusion, which was one of the common complications in percutaneous coronary interventions, was closely associated with cardiac death and myocardial infarction. Clinical guidelines also support the importance of preservation of physiologic blood flow in SB during PCI to bifurcation lesions. In order to avoid side branch occlusion during stent implantation, we often performed the jailed wire technique, in which a conventional guide wire was inserted to the side branch before stent implantation to the main vessel. However, the jailed wire technique could not always prevent side branch occlusion. In this case report, we described a case of 72-year-old male suffering from angina pectoris. Coronary angiography revealed the diffuse calcified stenosis in the proximal and middle of left anterior descending coronary artery, and the large diagonal branch originated from the middle of the stenosis. To prevent side branch occlusion, we performed a novel side branch protection technique by using the Corsair microcatheter (Asahi Intecc, Nagoya, Japan). In this case report, we illustrated this "Jailed Corsair technique", and discussed the advantage compared to other side branch protection techniques such as the jailed balloon technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Branched Crystalline Patterns of Poly(ε-caprolactone) and Poly(4-hydroxystyrene) Blends Thin Films.

    PubMed

    Hou, Chunyue; Yang, Tianbo; Sun, Xiaoli; Ren, Zhongjie; Li, Huihui; Yan, Shouke

    2016-01-14

    The chain organization of poly(ε-caprolactone) (PCL) in its blend with poly(4-hydroxystyrene) (PVPh) in thin films (130 ± 10 nm) has been revealed by grazing incident infrared (GIIR) spectroscopy. It can be found that PCL chains orient preferentially in the surface-normal direction and crystallization occurs simultaneously. The morphology of the PCL/PVPh blends films can be identified by optical microscopy (OM). When crystallized at 35 °C, the blends film shows a seaweed-like structure and becomes more open with increasing PVPh content. In contrast, when crystallized at higher temperatures, i.e., 40 and 45 °C, dendrites with apparent crystallographically favored branches can be observed. This characteristic morphology indicates that the diffusion-limited aggregation (DLA) process controls the crystal growth in the blends films. The detailed lamellar structure can be revealed by the height images of atomic force microscopy (AFM), i.e., the crystalline branches are composed of overlayered flat-on lamellae. The branch width has been found to be dependent on the supercooling and PVPh content. This result differs greatly from pure PCL, in which case the crystal patterns controlled by DLA process developed in ultrathin film or monolayers of several nanometers. In the PCL/PVPh blends case, the strong intermolecular interactions and the dilution effect of PVPh should contribute to these results. That is to say, the mobility of PCL chains can be retarded and diffusion of them to the crystal growth front slows down greatly, even though the film thickness is far more than the lamellar thickness of PCL.

  15. Variations in the branching pattern of posterior division of mandibular nerve: a case report.

    PubMed

    Muraleedharan, Aparna; Veeramani, Raveendranath; Chand, Parkash

    2014-11-01

    Abnormal communications among the branches of mandibular nerve especially the posterior division are significant due to various procedures undertaken in this region. These variations are worth reporting as they pose serious implications in several interventions in this region, and may even lead to false diagnosis. During routine dissection, the mandibular nerve and its branches were dissected in the infratemporal fossa. The branches from the posterior division of the mandibular nerve namely the inferior alveolar and auriculotemporal nerves were carefully dissected, and their abnormal branching pattern was noted. There was a communicating branch between left inferior alveolar and auriculotemporal nerve. There was also a variant recurrent branch from the left inferior alveolar nerve that supplied the lateral pterygoid muscle. Such variant branches and communications between the branches of mandibular nerve as seen in this case have an embryological basis and are clinically important in this region especially for dental surgeries and anesthesia.

  16. Excessive exposure stimulates epicormic branching in young northern hardwoods

    Treesearch

    Barton M. Blum

    1963-01-01

    Sudden and excessive exposure of northern hardwood trees often causes growth responses that degrade tree quality, injuries that lead to tree deterioration, or both. The most sensitive and visible tree reaction to increased exposure is the formation of epicormic branches. Such branches may arise along the tree bole from either dormant or adventitious buds in response to...

  17. NCI: DCTD: Biometric Research Branch

    Cancer.gov

    The Biometric Research Branch (BRP) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.

  18. Legislative Branch Appropriations Act, 2010

    THOMAS, 111th Congress

    Rep. Wasserman Schultz, Debbie [D-FL-20

    2009-06-17

    10/01/2009 Became Public Law No: 111-68. (TXT | PDF) (All Actions) Notes: Division A is the Legislative Branch Appropriations Act, 2010. Division B is the Continuing Appropriations Resolution, 2010. Tracker: This bill has the status Became LawHere are the steps for Status of Legislation:

  19. NCI: DCTD: Biometric Research Branch

    Cancer.gov

    The Biometric Research Branch (BRB) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.

  20. Intramuscular communicating branches in the flexor digitorum profundus: dissection and Sihler's staining.

    PubMed

    Won, Sung-Yoon; Choi, Da-Yae; Lee, Jae-Gi; Yoon, Kwan-Hyun; Kwak, Hyun-Ho; Hu, Kyung-Seok; Kim, Hee-Jin

    2010-03-01

    This study was designed to clarify the anatomy of the intramuscular communicating branch (ICb) between the median and ulnar nerves in the flexor digitorum profundus (FDP), and morphologically demonstrate the location of connection. Twenty Korean cadavers were dissected and a further 8 were subjected to modified Sihler's staining to investigate the pattern of innervation of the ICb and the location of its communicating points in muscle. The median and ulnar nerves divided into small branches before entering FDP muscle. Of these small branches, one or two met inside the muscle. This communicating pattern could be classified into three types: type I, communicating branches in both the proximal and distal regions; type II, at least one communicating branch in the proximal region; type III, at least one communicating branch in the distal region. Of 20 dissected specimens, no case of type I was observed, but 3 cases of type II and 15 cases of type III were found. No ICbs at all were found in two of the dissected specimens. In eight stained specimens, one was classified as type I, two as type II, and five as type III. The proximal communicating branches were located at 34.1% from the interepicondylar line, inside the third muscle bundle. The distal communicating branches were located at 66.0% from the interepicondylar line, between third and fourth muscle bundles. These findings could provide critical anatomical information regarding the nerve distribution of FDP focused on the ICbs.

  1. Combustion Branch Website Development

    NASA Technical Reports Server (NTRS)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  2. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  3. Grain size associations of branched tetraether lipids in soils and riverbank sediments: influence of hydrodynamic sorting processes

    NASA Astrophysics Data System (ADS)

    Peterse, Francien; Eglinton, Timothy I.

    2017-06-01

    We analyzed the abundance and distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in grain size fractions of 7 globally distributed river flank sediments and catchment soils in order to determine if and how the initial soil-brGDGT signature is influenced by hydrodynamic sorting upon entering a river and during subsequent transport from land to sea. BrGDGTs are hypothesized to form associations with high-surface-area fine-grained minerals in soils. Such associations, if maintained during transport, may impart resistance to degradation and promote downstream transport, reducing potential interferences by aquatic brGDGTs. We find that brGDGTs are indeed primarily associated with organic carbon (OC) bound to the clay-silt fraction (<63μm) in both soils and river sediments, and that these associations appear to be maintained during river transport. However, the relative distribution of individual brGDGTs among size fractions is relatively uniform, suggesting that brGDGTs are well mixed in river sediments and that OC-mineral associations are continuously renewed. Consequently, the brGDGT signature finally stored in continental margin sediments appears insensitive to differential particle transport processes. Nevertheless, the lower (upstream) temperature signal generally reflected by brGDGTs in river sediments may also be explained by a contribution of in situ produced brGDGTs leading to an underestimation of reconstructed air temperatures.

  4. Branching fraction measurement of J /ψ →KSKL and search for J /ψ →KSKS

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chen, Z. X.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, S. H.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, B. Q.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, X. H.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-12-01

    Using a sample of 1.31 ×109 J /ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J /ψ →KSKL and KSKS . The branching fraction of J /ψ →KSKL is determined to be B (J /ψ →KSKL)=(1.93 ±0.01 (stat )±0.05 (syst ))×10-4 , which significantly improves on previous measurements. No clear signal is observed for the J /ψ →KSKS process, and the upper limit at the 95% confidence level for its branching fraction is determined to be B (J /ψ →KSKS)<1.4 ×10-8 , which improves on the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.

  5. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  6. Branch regeneration induced by sever damage in the brown alga Dictyota dichotoma (dictyotales, phaeophyceae).

    PubMed

    Tanaka, Atsuko; Hoshino, Yoichiro; Nagasato, Chikako; Motomura, Taizo

    2017-05-01

    Tissue wounds are mainly caused by herbivory, which is a serious threat for macro-algae, and brown algae are known to regenerate branches or buds in response to wounding. In the present paper, we describe a branch regeneration system, induced by sever damage, in the brown alga Dictyota dichotoma. Segmentations of juvenile thalli induced branch regenerations unless explants possessed apical cells. Apical excisions in distinct positions elucidated that disruption of an apical cell or disconnection of tissue with an apical cell triggered the branch regeneration. Furthermore, spatial positions of regenerated branches seemed to be regulated by the apical region, which was assumed to generate inhibitory effects for lateral branch regeneration. Mechanical incision, which disrupted tissue continuity with the apical region, induced branch regeneration preferentially below the incision. Although we were unable to identify the candidate inhibitory substance, our results suggested that the apical region may have an inhibitory effect on lateral branch regeneration. Additionally, observations of branch regeneration showed that all epidermal cells in D. dichotoma possess the ability to differentiate into apical cells, directly. This may be the first report of algal transdifferentiation during the wound-stress response.

  7. The singularity structure of scale-invariant rank-2 Coulomb branches

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Long, Cody; Martone, Mario

    2018-05-01

    We compute the spectrum of scaling dimensions of Coulomb branch operators in 4d rank-2 N=2 superconformal field theories. Only a finite rational set of scaling dimensions is allowed. It is determined by using information about the global topology of the locus of metric singularities on the Coulomb branch, the special Kähler geometry near those singularities, and electric-magnetic duality monodromies along orbits of the U(1) R symmetry. A set of novel topological and geometric results are developed which promise to be useful for the study and classification of Coulomb branch geometries at all ranks.

  8. Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation.

    PubMed

    Sone, Kosei; Noguchi, Ko; Terashima, Ichiro

    2005-01-01

    Many biomechanical and theoretical studies have been based on the pipe-model theory, according to which a tree is regarded as an assemblage of pipes, each having the same amount of leaf area or leaf mass. However, the physiological mechanisms underlying the theory have not been extensively examined, particularly at the branch level. We analyzed how branches and trunks thickened in nine young Acer mono Maxim. var. marmoratum (Nichols) Hara f. dissectum (Wesmael) Rehder. and A. rufinerve (Siebold & Zucc.) trees. In particular, we examined the roles of light, allocation of photosynthates and shoot heterogeneity. The cross-sectional area (A) of a branch was proportional to cumulative leaf mass or leaf area of the branch, and cumulative cross-sectional area of the daughter branches (SigmaA) above a branching point was equal to the A of the mother branch. These results indicate the validity of the pipe-model theory. However, the theory was invalid for current-year growth of branch cross-sectional area (DeltaA). The DeltaA/SigmaDeltaA for a branching point was greatest (nearly equal to 1) at the crown surface, decreased with crown depth, and tended to increase again at the trunk base, and DeltaA strongly depended on light interception and the yearly increment of leaves on the branch. We examined factors that influenced DeltaA with multiple regression analysis. The ratio of DeltaA of a branch to branch leaf area depended on both relative irradiance and mean current-year shoot length of the branch, suggesting that diameter growth of a branch is determined by the balance between supply of photosynthates, which depends on light interception by the branch, and demand for photosynthates, which is created by the high cambial activity associated with vigorous shoot elongation.

  9. Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching.

    PubMed

    Nambeesan, Savithri U; Mandel, Jennifer R; Bowers, John E; Marek, Laura F; Ebert, Daniel; Corbi, Jonathan; Rieseberg, Loren H; Knapp, Steven J; Burke, John M

    2015-03-11

    Shoot branching is an important determinant of plant architecture and influences various aspects of growth and development. Selection on branching has also played an important role in the domestication of crop plants, including sunflower (Helianthus annuus L.). Here, we describe an investigation of the genetic basis of variation in branching in sunflower via association mapping in a diverse collection of cultivated sunflower lines. Detailed phenotypic analyses revealed extensive variation in the extent and type of branching within the focal population. After correcting for population structure and kinship, association analyses were performed using a genome-wide collection of SNPs to identify genomic regions that influence a variety of branching-related traits. This work resulted in the identification of multiple previously unidentified genomic regions that contribute to variation in branching. Genomic regions that were associated with apical and mid-apical branching were generally distinct from those associated with basal and mid-basal branching. Homologs of known branching genes from other study systems (i.e., Arabidopsis, rice, pea, and petunia) were also identified from the draft assembly of the sunflower genome and their map positions were compared to those of associations identified herein. Numerous candidate branching genes were found to map in close proximity to significant branching associations. In sunflower, variation in branching is genetically complex and overall branching patterns (i.e., apical vs. basal) were found to be influenced by distinct genomic regions. Moreover, numerous candidate branching genes mapped in close proximity to significant branching associations. Although the sunflower genome exhibits localized islands of elevated linkage disequilibrium (LD), these non-random associations are known to decay rapidly elsewhere. The subset of candidate genes that co-localized with significant associations in regions of low LD represents the most

  10. Fragrance release from the surface of branched poly (amide)s.

    PubMed

    Aulenta, Francesca; Drew, Michael G B; Foster, Alison; Hayes, Wayne; Rannard, Steven; Thornthwaite, David W; Youngs, Tristan G A

    2005-01-31

    Enzymes are powerful tools in organic synthesis that are able to catalyse a wide variety of selective chemical transformations under mild and environmentally friendly conditions. Enzymes such as the lipases have also found applications in the synthesis and degradation of polymeric materials. However, the use of these natural catalysts in the synthesis and the post-synthetic modification of dendrimers and hyperbranched molecules is an application of chemistry yet to be explored extensively. In this study the use of two hydrolytic enzymes, a lipase from Candida cylindracea and a cutinase from Fusarium solani pisii, were investigated in the selective cleavage of ester groups situated on the peripheral layer of two families of branched polyamides. These branched polyamides were conjugated to simple fragrances citronellol and L-menthol via ester linkages. Hydrolysis of the ester linkage between the fragrances and the branched polyamide support was carried out in aqueous buffered systems at slightly basic pH values under the optimum operative conditions for the enzymes used. These preliminary qualitative investigations revealed that partial cleavage of the ester functionalities from the branched polyamide support had occurred. However, the ability of the enzymes to interact with the substrates decreased considerably as the branching density, the rigidity of the structure and the bulkiness of the polyamide-fragrance conjugates increased.

  11. A Rogues’ Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Weisz, Daniel R.; Albers, Saundra M.; Bernard, Edouard; Collins, Michelle L. M.; Dolphin, Andrew E.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Laevens, Benjamin; Lewis, Geraint F.; Mackey, A. Dougal; McConnachie, Alan; Rich, R. Michael; Skillman, Evan D.

    2017-11-01

    We present homogeneous, sub-horizontal branch photometry of 20 dwarf spheroidal satellite galaxies of M31 observed with the Hubble Space Telescope. Combining our new data for 16 systems with archival data in the same filters for another four, we show that Andromeda dwarf spheroidal galaxies favor strikingly red horizontal branches or red clumps down to ˜104.2 L ⊙ (M V ˜ -5.8). The age-sensitivity of horizontal branch stars implies that a large fraction of the M31 dwarf galaxies have extended star formation histories (SFHs), and appear inconsistent with early star formation episodes that were rapidly shutdown. Systems fainter than ˜105.5 L ⊙ show the widest range in the ratios and morphologies of red and blue horizontal branches, indicative of both complex SFHs and a diversity in quenching timescales and/or mechanisms, which is qualitatively different from what is currently known for faint Milky Way (MW) satellites of comparable luminosities. Our findings bolster similar conclusions from recent deeper data for a handful of M31 dwarf galaxies. We discuss several sources for diversity of our data such as varying halo masses, patchy reionization, mergers/accretion, and the environmental influence of M31 and the Milky Way on the early evolution of their satellite populations. A detailed comparison between the histories of M31 and MW satellites would shed signifiant insight into the processes that drive the evolution of low-mass galaxies. Such a study will require imaging that reaches the oldest main-sequence turnoffs for a significant number of M31 companions.

  12. Asymmetric Branching in Biological Resource Distribution Networks

    NASA Astrophysics Data System (ADS)

    Brummer, Alexander Byers

    There is a remarkable relationship between an organism's metabolic rate (resting power consumption) and the organism's mass. It may be a universal law of nature that an organism's resting metabolic rate is proportional to its mass to the power of 3/4. This relationship, known as Kleiber's Law, appears to be valid for both plants and animals. This law is important because it implies that larger organisms are more efficient than smaller organisms, and knowledge regarding metabolic rates are essential to a multitude of other fields in ecology and biology. This includes modeling the interactions of many species across multiple trophic levels, distributions of species abundances across large spatial landscapes, and even medical diagnostics for respiratory and cardiovascular pathologies. Previous models of vascular networks that seek to identify the origin of metabolic scaling have all been based on the unrealistic assumption of perfectly symmetric branching. In this dissertation I will present a theory of asymmetric branching in self-similar vascular networks (published by Brummer et al. in [9]). The theory shows that there can exist a suite of vascular forms that result in the often observed 3/4 metabolic scaling exponent of Kleiber's Law. Furthermore, the theory makes predictions regarding major morphological features related to vascular branching patterns and their relationships to metabolic scaling. These predictions are suggestive of evolutionary convergence in vascular branching. To test these predictions, I will present an analysis of real mammalian and plant vascular data that shows: (i) broad patterns in vascular networks across entire animal kingdoms and (ii) within these patterns, plant and mammalian vascular networks can be uniquely distinguished from one another (publication in preparation by Brummer et al.). I will also present results from a computational study in support of point (i). Namely, that asymmetric branching may be the optimal strategy to

  13. Right bundle branch block and anterior wall ST elevation myocardial infarction.

    PubMed

    Trofin, Monica; Israel, Carsten W; Barold, S Serge

    2017-09-01

    We report the case of an acute anterior wall ST elevation myocardial infarction with new left anterior fascicular block and pre-existing right bundle branch block. Due to a wide right bundle branch block, no ST segment elevation was visible in lead V1. The left anterior fascicular block was caused by proximal occlusion of the left artery descending and disappeared after acute revascularization. However, also the R' of the right bundle branch block became significantly shorter after revascularization, dismanteling a minor ST segment elevation. The ST elevation in lead V1 in anterior wall infarction and right bundle branch block may merge with the R' and cause a further QRS widening as an "equivalent" to the ST elevation.

  14. Measurement of the muonic branching fractions of the narrow upsilon resonances.

    PubMed

    Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Arms, K; Gan, K K; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J

    2005-01-14

    The decay branching fractions of the three narrow Upsilon resonances to mu(+)mu(-) have been measured by analyzing about 4.3 fb(-1) e(+)e(-) data collected with the CLEO III detector. The branching fraction B(Upsilon(1S)-->mu(+)mu(-))=(2.49+/-0.02+/-0.07)% is consistent with the current world average, but B(Upsilon(2S)-->mu(+)mu(-))=(2.03+/-0.03+/-0.08)% and B(Upsilon(3S)-->mu(+)mu(-))=(2.39+/-0.07+/-0.10)% are significantly larger than prior results. These new muonic branching fractions imply a narrower total decay width for the Upsilon(2S) and Upsilon(3S) resonances and lower other branching fractions that rely on these decays in their determination.

  15. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  16. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    PubMed

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice

    2016-07-01

    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan. © 2015 John Wiley & Sons Ltd.

  17. Biotechnological Production of Methyl-Branched Aldehydes.

    PubMed

    Fraatz, Marco Alexander; Goldmann, Michael; Geissler, Torsten; Gross, Egon; Backes, Michael; Hilmer, Jens-Michael; Ley, Jakob; Rost, Johanna; Francke, Alexander; Zorn, Holger

    2018-03-14

    A number of methyl-branched aldehydes impart interesting flavor impressions, and especially 12-methyltridecanal is a highly sought after flavoring compound for savory foods. Its smell is reminiscent of cooked meat and tallow. For the biotechnological production of 12-methyltridecanal, the literature was screened for fungi forming iso-fatty acids. Suitable organisms were identified and successfully grown in submerged cultures. The culture medium was optimized to increase the yields of branched fatty acids. A recombinant carboxylic acid reductase was used to reduce 12-methyltridecanoic acid to 12-methyltridecanal. The efficiency of whole-cell catalysis was compared to that of the purified enzyme preparation. After lipase-catalyzed hydrolysis of the fungal lipid extracts, the released fatty acids were converted to the corresponding aldehydes, including 12-methyltridecanal and 12-methyltetradecanal.

  18. 76 FR 13272 - Branch Offices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Branch Offices AGENCY: Office of Thrift... required by the Paperwork Reduction Act of 1995, 44 U.S.C. 3507. The Office of Thrift Supervision within... below to the Office of Management and Budget (OMB) for review, as required by the Paperwork Reduction...

  19. Enhancement of computer system for applications software branch

    NASA Technical Reports Server (NTRS)

    Bykat, Alex

    1987-01-01

    Presented is a compilation of the history of a two-month project concerned with a survey, evaluation, and specification of a new computer system for the Applications Software Branch of the Software and Data Management Division of Information and Electronic Systems Laboratory of Marshall Space Flight Center, NASA. Information gathering consisted of discussions and surveys of branch activities, evaluation of computer manufacturer literature, and presentations by vendors. Information gathering was followed by evaluation of their systems. The criteria of the latter were: the (tentative) architecture selected for the new system, type of network architecture supported, software tools, and to some extent the price. The information received from the vendors, as well as additional research, lead to detailed design of a suitable system. This design included considerations of hardware and software environments as well as personnel issues such as training. Design of the system culminated in a recommendation for a new computing system for the Branch.

  20. Precision Branching Ratio Measurement for the Superallowed &+circ; Emitter ^62Ga

    NASA Astrophysics Data System (ADS)

    Finlay, Paul; Svensson, C. E.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leslie, J. R.; Mattoon, C.; Morton, A. C.; Pearson, C. J.; Ressler, J. J.; Sarazin, F.; Savajols, H.

    2007-10-01

    A high-precision branching ratio measurement for the superallowed &+circ; emitter ^62Ga has been made using the 8π γ-ray spectrometer in conjunction with the SCintillating Electron-Positron Tagging ARray (SCEPTAR) as part of an ongoing experimental program in superallowed Fermi beta decay studies at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada, which delivered a high-purity beam of ˜10^4 ^62Ga/s in December 2005. The present work represents the highest statistics measurement of the ^62Ga superallowed branching ratio to date. 25 γ rays emitted following non-superallowed decay branches of ^62Ga have been identified and their intensities determined. These data yield a superallowed branching ratio with 10-4 precision, and our observed branch to the first nonanalogue 0^+ state sets a new upper limit on the isospin-mixing correction δC1^1. By comparing our ft value with the world average Ft, we make stringent tests of the different calculations for the isospin-symmetry-breaking correction δC, which is predicted to be large for ^62Ga.

  1. A generalized optimization principle for asymmetric branching in fluidic networks

    PubMed Central

    Stephenson, David

    2016-01-01

    When applied to a branching network, Murray’s law states that the optimal branching of vascular networks is achieved when the cube of the parent channel radius is equal to the sum of the cubes of the daughter channel radii. It is considered integral to understanding biological networks and for the biomimetic design of artificial fluidic systems. However, despite its ubiquity, we demonstrate that Murray’s law is only optimal (i.e. maximizes flow conductance per unit volume) for symmetric branching, where the local optimization of each individual channel corresponds to the global optimum of the network as a whole. In this paper, we present a generalized law that is valid for asymmetric branching, for any cross-sectional shape, and for a range of fluidic models. We verify our analytical solutions with the numerical optimization of a bifurcating fluidic network for the examples of laminar, turbulent and non-Newtonian fluid flows. PMID:27493583

  2. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  3. Branched flow and caustics in random media with magnetic fields

    NASA Astrophysics Data System (ADS)

    Metzger, Jakob; Fleischmann, Ragnar; Geisel, Theo

    2009-03-01

    Classical particles as well as quantum mechanical waves exhibit complex behaviour when propagating through random media. One of the dominant features of the dynamics in correlated, weak disorder potentials is the branching of the flow. This can be observed in several physical systems, most notably in the electron flow in two-dimensional electron gases [1], and has also been used to describe the formation of freak waves [2]. We present advances in the theoretical understanding and numerical simulation of classical branched flows in magnetic fields. In particular, we study branching statistics and branch density profiles. Our results have direct consequences for experiments which measure transport properties in electronic systems [3].[1] e.g. M. A. Topinka et al., Nature 410, 183 (2001), M. P. Jura et al., Nature Physics 3, 841 (2007)[2] E. J. Heller, L. Kaplan and A. Dahlen, J. Geophys. Res., 113, C09023 (2008)[3] J. J. Metzger, R. Fleischmann and T. Geisel, in preparation

  4. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  5. Enhancements to the Branched Lagrangian Transport Modeling System

    USGS Publications Warehouse

    Jobson, Harvey E.

    1997-01-01

    The Branched Lagrangian Transport Model (BLTM) has received wide use within the U.S. Geological Survey over the past 10 years. This report documents the enhancements and modifications that have been made to this modeling system since it was first introduced. The programs in the modeling system are arranged into five levels?programs to generate time-series of meteorological data (EQULTMP, SOLAR), programs to process time-series data (INTRP, MRG), programs to build input files for transport model (BBLTM, BQUAL2E), the model with defined reaction kinetics (BLTM, QUAL2E), and post processor plotting programs (CTPLT, CXPLT). An example application is presented to illustrate how the modeling system can be used to simulate 10 water-quality constituents in the Chattahoochee River below Atlanta, Georgia.

  6. The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery

    PubMed Central

    Zhou, Dezhong; Cutlar, Lara; Gao, Yongsheng; Wang, Wei; O’Keeffe-Ahern, Jonathan; McMahon, Sean; Duarte, Blanca; Larcher, Fernando; Rodriguez, Brian J.; Greiser, Udo; Wang, Wenxin

    2016-01-01

    Nonviral gene therapy holds great promise but has not delivered treatments for clinical application to date. Lack of safe and efficient gene delivery vectors is the major hurdle. Among nonviral gene delivery vectors, poly(β-amino ester)s are one of the most versatile candidates because of their wide monomer availability, high polymer flexibility, and superior gene transfection performance both in vitro and in vivo. However, to date, all research has been focused on vectors with a linear structure. A well-accepted view is that dendritic or branched polymers have greater potential as gene delivery vectors because of their three-dimensional structure and multiple terminal groups. Nevertheless, to date, the synthesis of dendritic or branched polymers has been proven to be a well-known challenge. We report the design and synthesis of highly branched poly(β-amino ester)s (HPAEs) via a one-pot “A2 + B3 + C2”–type Michael addition approach and evaluate their potential as gene delivery vectors. We find that the branched structure can significantly enhance the transfection efficiency of poly(β-amino ester)s: Up to an 8521-fold enhancement in transfection efficiency was observed across 12 cell types ranging from cell lines, primary cells, to stem cells, over their corresponding linear poly(β-amino ester)s (LPAEs) and the commercial transfection reagents polyethyleneimine, SuperFect, and Lipofectamine 2000. Moreover, we further demonstrate that HPAEs can correct genetic defects in vivo using a recessive dystrophic epidermolysis bullosa graft mouse model. Our findings prove that the A2 + B3 + C2 approach is highly generalizable and flexible for the design and synthesis of HPAEs, which cannot be achieved by the conventional polymerization approach; HPAEs are more efficient vectors in gene transfection than the corresponding LPAEs. This provides valuable insight into the development and applications of nonviral gene delivery and demonstrates great prospect for their

  7. Why Students Choose the Branch Campus of a Large University

    ERIC Educational Resources Information Center

    Hoyt, Jeff; Howell, Scott

    2012-01-01

    Fonseca and Bird (2007) ask an intriguing question that relates to university branch campuses: "What happened to all the people who thought online learning would drive traditional education out of the market? Just when "click" is supposed to be replacing "brick," branch campuses are proliferating around the country."…

  8. 12 CFR 347.208 - Assessment base deductions by insured branch.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Assessment base deductions by insured branch... STATEMENTS OF GENERAL POLICY INTERNATIONAL BANKING Foreign Banks § 347.208 Assessment base deductions by..., branches, agencies, or wholly owned subsidiaries may be deducted from the assessment base of the insured...

  9. 12 CFR 347.208 - Assessment base deductions by insured branch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Assessment base deductions by insured branch... STATEMENTS OF GENERAL POLICY INTERNATIONAL BANKING Foreign Banks § 347.208 Assessment base deductions by..., branches, agencies, or wholly owned subsidiaries may be deducted from the assessment base of the insured...

  10. 12 CFR 347.208 - Assessment base deductions by insured branch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Assessment base deductions by insured branch... STATEMENTS OF GENERAL POLICY INTERNATIONAL BANKING Foreign Banks § 347.208 Assessment base deductions by..., branches, agencies, or wholly owned subsidiaries may be deducted from the assessment base of the insured...

  11. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  12. Off-the-shelf branched endograft for emergent aneurysm repair.

    PubMed

    Barillà, David; Guillou, Matthieu; Maurel, Blandine; Sobocinski, Jonathan; Midulla, Marco; Tyrrell, Mark; Haulon, Stéphan

    2013-10-01

    A 65-year-old man with a tender, 98-mm-diameter, pararenal aortic aneurysm was referred to our center. This patient was unfit for open repair and could not wait 8 weeks for a custom-made endograft to be manufactured. We describe the endovascular treatment of his aneurysm with a 4-branch endograft that had been constructed for another patient. He had an uneventful recovery. Postoperative CT scan confirmed patency of all visceral branches and exclusion of the aneurysm. Various branched and fenestrated endografts are or will soon be available "off-the-shelf" to treat ruptured or symptomatic pararenal and thoracoabdominal aneurysms. We assess the pros and cons of this new generation of endografts designed to adapt to most aortic anatomies. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. 29 CFR 14.20 - Dissemination to individuals and firms outside the executive branch.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... executive branch. 14.20 Section 14.20 Labor Office of the Secretary of Labor SECURITY REGULATIONS Transmission of Classified Information § 14.20 Dissemination to individuals and firms outside the executive branch. Request for classified information received from sources outside the executive branch of the...

  14. The estimation of branching curves in the presence of subject-specific random effects.

    PubMed

    Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng

    2014-12-20

    Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.

  15. Fibrillatory conduction in branching atrial tissue--Insight from volumetric and monolayer computer models.

    PubMed

    Wieser, L; Fischer, G; Nowak, C N; Tilg, B

    2007-05-01

    Increased local load in branching atrial tissue (muscle fibers and bundle insertions) influences wave propagation during atrial fibrillation (AF). This computer model study reveals two principal phenomena: if the branching is distant from the driving rotor (>19 mm), the load causes local slowing of conduction or wavebreaks. If the driving rotor is close to the branching, the increased load causes first a slow drift of the rotor towards the branching. Finally, the rotor anchors, and a stable, repeatable pattern of activation can be observed. Variation of the bundle geometry from a cylindrical, volumetric structure to a flat strip of a comparable load in a monolayer model changed the local activation sequence in the proximity of the bundle. However, the global behavior and the basic effects are similar in all models. Wavebreaks in branching tissue contribute to the chaotic nature of AF (fibrillatory conduction). The stabilization (anchoring) of driving rotors by branching tissue might contribute to maintain sustained AF.

  16. Hyper-branched CdTe nanostructures based on the self-assembling of quantum dots and their optical properties.

    PubMed

    Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen

    2013-02-01

    As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.

  17. Post-fire Tree Mortality: Heating Increases Vulnerability to Cavitation in Longleaf Pine Branches

    NASA Astrophysics Data System (ADS)

    Lodge, A.; Kavanagh, K.; Dickinson, M. B.

    2016-12-01

    Tree mortality following wild and prescribed fires is of interest to both researchers and land managers. While some models exist that can predict mortality following fires, process-based models that incorporate physiological mechanisms of mortality are still being developed and improved. Delayed post-fire tree mortality has recently received increased attention, in part due to an increased use of prescribed fire as a restoration and management tool. One hypothesized mechanism of delayed mortality in trees is disruption of water transport in xylem due to exposure to the heat plume of a fire. This heat plume rapidly increases the vapor pressure deficit in the tree canopy, quickly increasing the tension on the water held in the xylem and leaves, potentially leading to cavitation. Cavitated xylem conduits can no longer transport water, eventually leading to tree death. We conducted a laboratory experiment examining whether heating stems increases their vulnerability to cavitation. We placed longleaf pine (Pinus palustris) branches in a water bath at sub-lethal temperatures (<60°C) and applied pressure in a cavitation chamber to simulate a range of xylem tension levels that may occur during fire. Percent loss of conductivity was measured following cavitation induced by various levels of applied pressure. When we compared the resulting vulnerability curves of heated branches to those of branches pressurized at room temperature, we observed increased vulnerability to cavitation in the heated samples especially at lower pressures. P50, or the pressure at which 50% of conductivity has been lost, decreased by 18% on branches heated to approximately 54°C. This suggests that stems heated during fires may be more vulnerable to cavitation, and provides some support for hydraulic disruption as a mechanism for post-fire tree mortality. Continued advancement in understanding of the mechanisms leading to delayed mortality will improve models predicting tree mortality.

  18. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna

    2017-02-01

    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.

  19. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis1[OPEN

    PubMed Central

    Ghareeb, Hassan; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan

    2015-01-01

    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. PMID:26511912

  20. Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-08-01

    The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.

  1. Applied Aeroscience and CFD Branch Overview

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.; Kirk, Benjamin S.

    2014-01-01

    The principal mission of NASA Johnson Space Center is Human Spaceflight. In support of the mission the Applied Aeroscience and CFD Branch has several technical competencies that include aerodynamic characterization, aerothermodynamic heating, rarefied gas dynamics, and decelerator (parachute) systems.

  2. Survival of Near-Critical Branching Brownian Motion

    NASA Astrophysics Data System (ADS)

    Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason

    2011-06-01

    Consider a system of particles performing branching Brownian motion with negative drift μ= sqrt{2 - \\varepsilon} and killed upon hitting zero. Initially there is one particle at x>0. Kesten (Stoch. Process. Appl. 7:9-47, 1978) showed that the process survives with positive probability if and only if ɛ>0. Here we are interested in the asymptotics as ɛ→0 of the survival probability Q μ ( x). It is proved that if L=π/sqrt{\\varepsilon} then for all x∈ℝ, lim ɛ→0 Q μ ( L+ x)= θ( x)∈(0,1) exists and is a traveling wave solution of the Fisher-KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when x< L and L- x→∞. The proofs rely on probabilistic methods developed by the authors in (Berestycki et al. in arXiv: 1001.2337, 2010). This completes earlier work by Harris, Harris and Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat. 42:125-145, 2006) and confirms predictions made by Derrida and Simon (Europhys. Lett. 78:60006, 2007), which were obtained using nonrigorous PDE methods.

  3. Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting.

    PubMed Central

    Napoli, C.

    1996-01-01

    The recessive dad1-1 allele conditions a highly branched growth habit resulting from a proliferation of first- and second-order branches. Unlike the wild-type parent, which has lateral branching delayed until the third or fourth leaf node distal to the cotyledons, dad1-1 initiates lateral branching from each cotyledon axil. In addition to initiating lateral branching sooner than the wild type, dad1-1 sustains branching through more nodes on the main shoot axis than the wild type. In keeping with a propensity for branching at basal nodes, dad1-1 produces second-order branches at the proximal-most nodes on first-order branches and small shoots from accessory buds at basal nodes on the main shoot axis. Additional traits associated with the mutation are late flowering, adventitious root formation, shortened internodes, and mild leaf chlorosis. Graft studies show that a dad1-1 scion, when grafted onto wild-type stock, is converted to a phenotype resembling the wild type. Furthermore, a small wild-type interstock fragment inserted between a mutant root stock and a mutant scion is sufficient to convert the dad1-1 scion from mutant to a near wild-type appearance. The recessive dad1-1 phenotype combines traits associated with cytokinin overexpression, auxin overexpression, and gibberellin limitation, which suggests a complex interaction of hormones in establishing the mutant phenotype. PMID:12226274

  4. Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Brigham, CJ; Lu, JN

    Branched-chain alcohols are considered promising green energy sources due to their compatibility with existing infrastructure and their high energy density. We utilized a strain of Ralstonia eutropha capable of producing branched-chain alcohols and examined its production in flask cultures. In order to increase isobutanol and 3-methyl-1-butanol (isoamyl alcohol) productivity in the engineered strain, batch, fed-batch, and two-stage fed-batch cultures were carried out in this work. The effects of nitrogen source concentration on branched-chain alcohol production were investigated under four different initial concentrations in fermenters. A maximum 380 g m(-3) of branched-chain alcohol production was observed with 2 kg m(-3) initialmore » NH4Cl concentration in batch cultures. A pH-stat control strategy was utilized to investigate the optimum carbon source amount fed during fed-batch cultures for higher cell density. In cultures of R. eutropha strains that did not produce polyhydroxyalkanoate or branched-chain alcohols, a maximum cell dry weight of 36 kg m(-3) was observed using a fed-batch strategy, when 10 kg m(-3) carbon source was fed into culture medium. Finally, a total branched-chain alcohol titer of 790 g m(-3), the highest branched-chain alcohol yield of 0.03 g g(-1), and the maximum branched-chain alcohol productivity of 8.23 g m(-3) h(-1) were obtained from the engineered strain Re2410/pJL26 in a two-stage fed-batch culture system with pH-stat control. Isobutanol made up over 95% (mass fraction) of the total branched-chain alcohols titer produced in this study. (C) 2013 Published by Elsevier Ltd.« less

  5. The morphology of blends of linear and branched polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-31

    The state of mixing in blends of high density (HD), low density (LD) and linear low density (LLD) polyethylenes (PE) in the melt and solid states has been examined by small-angle x-ray and neutron scattering (SAXS and SANS). In the melt, SANS results indicate that HDPE/LDPE mixtures (with 1-2 branches/100 C) form a single phase. HDPE/LLDPE blends are also homogeneous when the branch content is low, but phase separate as the branching increases. In the solid state, after slow-cooling from the melt, the HDPE/LDPE system segregates into domains {approximately}10{sup 2} in size. For high concentrations of linear polymer ({phi} {ge}more » 0.5), there are separate stacks of HDPE and LDPE lamellae, and the measured SANS cross section agrees closely with the theoretical calculation based on the assumption of complete phase separation of the components. For predominantly branched blends ({phi} < 0.5), the phase segregation is less complete, and the components are separated within the same lamellar stack. Moreover, the phases no longer consist of the pure components, and the HDPE lamellae contain up to 15% LDPE. The segregation of components in the solid state is a consequence of crystallization mechanisms and the blend morphology is a strong function of the cooling rate. Rapid quenching to -78{degrees}C produces only one lamellar stack and these blends show extensive cocrystallization. Samples quenched less rapidly (e.g., into water at 23{degrees}C) show a similar structure to slowly cooled samples. The solid state morphology also depends on the type of branching and differences between HDPE/LDPE and HDPE/LLDPE blends will be reviewed.« less

  6. Extralaryngeal branching of the recurrent laryngeal nerve: a meta-analysis of 28,387 nerves.

    PubMed

    Henry, Brandon Michael; Vikse, Jens; Graves, Matthew J; Sanna, Silvia; Sanna, Beatrice; Tomaszewska, Iwona M; Tubbs, R Shane; Tomaszewski, Krzysztof A

    2016-11-01

    The recurrent laryngeal nerves (RLN) are branches of the vagus nerve that go on to innervate most of the intrinsic muscles of the larynx. Historically, the RLN has been considered to branch after it enters the larynx, but numerous studies have demonstrated that it often branches before. The wide variability of this extralaryngeal branching (ELB) has significant implications for the risk of iatrogenic injury. We aimed to assess the anatomical characteristics of ELB comprehensively. Articles on the ELB of the RLN were identified by a comprehensive database search. Relevant data were extracted and pooled into a meta-analysis of the prevalence of branching, branching pattern, distance of ELB point from the larynx, and presence of positive motor signals in anterior and posterior ELB branches. A total of 69 articles (n = 28,387 nerves) from both intraoperative and cadaveric modalities were included in the meta-analysis. The overall pooled prevalence of ELB was 60.0 % (95 % CI 52.0-67.7). Cadaveric and intraoperative subgroups differed with prevalence rates of 73.3 % (95 % CI 61.0-84.0) and 39.2 % (95 % CI 29.0-49.9), respectively. Cadavers most often presented with a ELB pattern of bifurcation, with a prevalence of 61.1 %, followed by no branching at 23.4 %. Branching of the RLN occurred most often at a distance of 1-2 cm (74.8 % of cases) prior to entering the larynx. A positive motor signal was most often noted in anterior RLN branches (99.9 %) but only in 1.5 % of posterior branches. The anatomy of the RLN is highly variable, and ELB is likely to have been underreported in intraoperative studies. Because of its high likelihood, the possibility of ELB needs to be assessed in patients to prevent iatrogenic injury and long-term postoperative complications.

  7. Tribology and Mechanical Components Branch Overview

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2010-01-01

    An overview of NASA Glenn Research Center's Tribology & Mechanical Components Branch is provided. Work in space mechanisms, seals, oil-free turbomachinery, and mechanical components is presented. An overview of current research for these technology areas is contained in this overview.

  8. Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus

    PubMed Central

    Jorgensen, Julianne; Frydman, Galit H.; Jones, Caroline N.

    2017-01-01

    Invasive aspergillosis (IA), primarily caused by Aspergillus fumigatus, is an opportunistic fungal infection predominantly affecting immunocompromised and neutropenic patients that is difficult to treat and results in high mortality. Investigations of neutrophil-hypha interaction in vitro and in animal models of IA are limited by lack of temporal and spatial control over interactions. This study presents a new approach for studying neutrophil-hypha interaction at single cell resolution over time, which revealed an evasive fungal behavior triggered by interaction with neutrophils: Interacting hyphae performed de novo tip formation to generate new hyphal branches, allowing the fungi to avoid the interaction point and continue invasive growth. Induction of this mechanism was independent of neutrophil NADPH oxidase activity and neutrophil extracellular trap (NET) formation, but could be phenocopied by iron chelation and mechanical or physiological stalling of hyphal tip extension. The consequence of branch induction upon interaction outcome depends on the number and activity of neutrophils available: In the presence of sufficient neutrophils branching makes hyphae more vulnerable to destruction, while in the presence of limited neutrophils the interaction increases the number of hyphal tips, potentially making the infection more aggressive. This has direct implications for infections in neutrophil-deficient patients and opens new avenues for treatments targeting fungal branching. PMID:28076396

  9. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum)

    PubMed Central

    Liang, Jianli; Zhao, Liangjun; Challis, Richard; Leyser, Ottoline

    2010-01-01

    Previous studies of highly branched mutants in pea (rms1–rms5), Arabidopsis thaliana (max1–max4), petunia (dad1–dad3), and rice (d3, d10, htd1/d17, d14, d27) identified strigolactones or their derivates (SLs), as shoot branching inhibitors. This recent discovery offers the possibility of using SLs to regulate branching commercially, for example, in chrysanthemum, an important cut flower crop. To investigate this option, SL physiology and molecular biology were studied in chrysanthemum (Dendranthema grandiflorum), focusing on the CCD8/MAX4/DAD1/RMS1/D10 gene. Our results suggest that, as has been proposed for Arabidopsis, the ability of SLs to inhibit bud activity depends on the presence of a competing auxin source. The chrysanthemum SL biosynthesis gene, CCD8 was cloned, and found to be regulated in a similar, but not identical way to known CCD8s. Expression analyses revealed that DgCCD8 is predominantly expressed in roots and stems, and is up-regulated by exogenous auxin. Exogenous SL can down-regulate DgCCD8 expression, but this effect can be overridden by apical auxin application. This study provides evidence that SLs are promising candidates to alter the shoot branching habit of chrysanthemum. PMID:20478970

  10. SERCA directs cell migration and branching across species and germ layers

    PubMed Central

    Lansdale, Nick; Navarro, Sonia; Truong, Thai V.; Bower, Dan J.; Featherstone, Neil C.; Connell, Marilyn G.; Al Alam, Denise; Frey, Mark R.; Trinh, Le A.; Fernandez, G. Esteban; Warburton, David; Fraser, Scott E.; Bennett, Daimark; Jesudason, Edwin C.

    2017-01-01

    ABSTRACT Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding. PMID:28821490

  11. Growth of modern branched columnar stromatolites in Lake Joyce, Antarctica.

    PubMed

    Mackey, T J; Sumner, D Y; Hawes, I; Jungblut, A D; Andersen, D T

    2015-07-01

    Modern decimeter-scale columnar stromatolites from Lake Joyce, Antarctica, show a change in branching pattern during a period of lake level rise. Branching patterns correspond to a change in cyanobacterial community composition as preserved in authigenic calcite crystals. The transition in stromatolite morphology is preserved by mineralized layers that contain microfossils and cylindrical molds of cyanobacterial filaments. The molds are composed of two populations with different diameters. Large diameter molds (>2.8 μm) are abundant in calcite forming the oldest stromatolite layers, but are absent from younger layers. In contrast, <2.3 μm diameter molds are common in all stromatolites layers. Loss of large diameter molds corresponds to the transition from smooth-sided stromatolitic columns to branched and irregular columns. Mold diameters are similar to trichome diameters of the four most abundant living cyanobacteria morphotypes in Lake Joyce: Phormidium autumnale morphotypes have trichome diameters >3.5 μm, whereas Leptolyngbya antarctica, L. fragilis, and Pseudanabaena frigida morphotypes have diameters <2.3 μm. P. autumnale morphotypes were only common in mats at <12 m depth. Mats containing abundant P. autumnale morphotypes were smooth, whereas mats with few P. autumnale morphotypes contained small peaks and protruding bundles of filaments, suggesting that the absence of P. autumnale morphotypes allowed small-scale topography to develop on mats. Comparisons of living filaments and mold diameters suggest that P. autumnale morphotypes were present early in stromatolite growth, but disappeared from the community through time. We hypothesize that the mat-smoothing behavior of P. autumnale morphotypes inhibited nucleation of stromatolite branches. When P. autumnale morphotypes were excluded from the community, potentially reflecting a rise in lake level, short-wavelength roughness provided nuclei for stromatolite branches. This growth history provides a

  12. Managing International Branch Campuses: Lessons Learnt from Eight Years on a Branch Campus in Malaysia

    ERIC Educational Resources Information Center

    Hill, Christopher; Thabet, Rawy Abdelrahman

    2018-01-01

    Purpose: International branch campuses (IBCs) are complex entities and while much has been written about their expansion and development, the literature is largely from an external perspective. There have been few longitudinal studies examining the development of an IBC over time. The purpose of this paper is to review the development of one IBC…

  13. 23. TERMINUS, NORTH BRANCH PRAIRIE CITY DITCH. DITCH COMES FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TERMINUS, NORTH BRANCH PRAIRIE CITY DITCH. DITCH COMES FROM ISOLATED GROUP OF TREES IN MIDDLE DISTANCE, AND ENDS AT CENTER RIGHT. WATER THEN PROCEEDED DOWN SWALE, INTO TREES AT LEFT. VIEW TO NORTH. - Natomas Ditch System, Rhoades' Branch Ditch, Approximately 7 miles between Nesmith Court and White Rock Road, Folsom, Sacramento County, CA

  14. Side-branch wire entrapment during bifurcation PCI: avoidance and management.

    PubMed

    Burns, Andrew T; Gutman, Jack; Whitbourn, Rob

    2010-02-15

    An LAD/D1 bifurcation intervention was complicated by side-branch wire entrapment and unravelling requiring goose-neck snare removal. Residual microfilaments were retrieved from the main branch after further balloon inflations with a satisfactory final angiographic result and one-year follow-up. Various methods are available to avoid and deal with this complication.

  15. Concentrative nitrogen allocation to sun-lit branches and the effects on whole-plant growth under heterogeneous light environments.

    PubMed

    Sugiura, D; Tateno, M

    2013-08-01

    We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.

  16. Heat Transfer Processes Linking Fire Behavior and Tree Mortality

    NASA Astrophysics Data System (ADS)

    Michaletz, S. T.; Johnson, E. A.

    2004-12-01

    Traditional methods for predicting post-fire tree mortality employ statistical models which neglect the processes linking fire behavior to physiological mortality mechanisms. Here we present a physical process approach which predicts tree mortality by linking fireline intensity with lateral (vascular cambium) and apical (vegetative bud) meristem necrosis. We use a linefire plume model with independently validated conduction and lumped capacitance heat transfer analyses to predict lethal meristem temperatures in tree stems, branches, and buds. These models show that meristem necrosis in large diameter (Bi ≥ 0.3) stems/branches is governed by meristem height, bark thickness, and bark water content, while meristem necrosis in small diameter (Bi < 0.3) branches/buds is governed by meristem height, branch/bud size, branch/bud water content, and foliage architecture. To investigate effects of interspecfic variation in these properties, we compare model results for Picea glauca (Moench) Voss and Pinus contorta Loudon var. latifolia Engelm. at fireline intensities from 50 to 3000 kWm-1. Parameters are obtained from allometric models which relate stem/branch diameter to bark thickness and height, as well as bark and bud water content data collected in the southern Canadian Rocky Mountains. Variation in foliage architecture is quantified using forced convection heat transfer coefficients measured in a laminar flow wind tunnel at Re from 100 to 2000, typical for branches/buds in a linefire plume. Results indicate that in unfoliated stems/branches, P. glauca meristems are more protected due to thicker bark, whereas in foliated branches/buds, P. contorta meristems are more protected due to larger bud size and foliage architecture.

  17. Msx1 is expressed in retina endothelial cells at artery branching sites.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Robert, Benoît

    2012-04-15

    Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1(lacZ) is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2(lacZ) is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina and choroid are two highly vascularized tissues. Vessel alterations in the retina are associated with several human diseases and the retina has been intensely used for angiogenesis studies, whereas the choroid has been much less investigated. Using the Msx1(lacZ) and Msx2(lacZ) reporter alleles, we observed that Msx2 is not expressed in the eye vascular tree in contrast to Msx1, for which we establish the spatial and temporal expression pattern in these tissues. In the retina, expression of Msx1 takes place from P3, and by P10, it becomes confined to a subpopulation of ECs at branching points of superficial arterioles. These branching sites are characterized by a subpopulation of mural cells that also show specific expression programs. Specific Msx gene inactivation in the endothelium, using Msx1 and Msx2 conditional mutant alleles together with a Tie2-Cre transgene, did not lead to conspicuous structural defects in the retinal vascular network. Expression of Msx1 at branching sites might therefore be linked to vessel physiology. The retinal blood flow is autonomously regulated and perfusion of capillaries has been proposed to depend on arteriolar precapillary structures that might be the sites for Msx1 expression. On the other hand, branching sites are subject to shear stress that might induce Msx1 expression. In the choroid vascular layer Msx1(lacZ) is expressed more broadly and dynamically. At birth Msx1(lacZ) expression takes place in the endothelium but at P21 its expression has shifted towards the mural layer. We discuss the possible functions of Msx1 in the eye vasculature.

  18. Msx1 is expressed in retina endothelial cells at artery branching sites

    PubMed Central

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Robert, Benoît

    2012-01-01

    Summary Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1lacZ is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2lacZ is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina and choroid are two highly vascularized tissues. Vessel alterations in the retina are associated with several human diseases and the retina has been intensely used for angiogenesis studies, whereas the choroid has been much less investigated. Using the Msx1lacZ and Msx2lacZ reporter alleles, we observed that Msx2 is not expressed in the eye vascular tree in contrast to Msx1, for which we establish the spatial and temporal expression pattern in these tissues. In the retina, expression of Msx1 takes place from P3, and by P10, it becomes confined to a subpopulation of ECs at branching points of superficial arterioles. These branching sites are characterized by a subpopulation of mural cells that also show specific expression programs. Specific Msx gene inactivation in the endothelium, using Msx1 and Msx2 conditional mutant alleles together with a Tie2-Cre transgene, did not lead to conspicuous structural defects in the retinal vascular network. Expression of Msx1 at branching sites might therefore be linked to vessel physiology. The retinal blood flow is autonomously regulated and perfusion of capillaries has been proposed to depend on arteriolar precapillary structures that might be the sites for Msx1 expression. On the other hand, branching sites are subject to shear stress that might induce Msx1 expression. In the choroid vascular layer Msx1lacZ is expressed more broadly and dynamically. At birth Msx1lacZ expression takes place in the endothelium but at P21 its expression has shifted towards the mural layer. We discuss the possible functions of Msx1 in the eye vasculature. PMID:23213427

  19. Processing of Presolar Grains around Post-Asymptotic Giant Branch Stars: Silicon Carbide as the Carrier of the 21 Micron Feature

    NASA Astrophysics Data System (ADS)

    Speck, Angela K.; Hofmeister, Anne M.

    2004-01-01

    Some proto-planetary nebulae (PPNs) exhibit an enigmatic feature in their infrared spectra at ~21 μm. This feature is not seen in the spectra of either the precursors to PPNs, the asymptotic giant branch (AGB) stars, or the successors of PPNs, ``normal'' planetary nebulae (PNs). However, the 21 μm feature has been seen in the spectra of PNs with Wolf-Rayet central stars. Therefore, the carrier of this feature is unlikely to be a transient species that only exists in the PPN phase. This feature has been attributed to various molecular and solid-state species, none of which satisfy all constraints, although titanium carbide (TiC) and polycyclic aromatic hydrocarbons (PAHs) have seemed the most viable. We present new laboratory data for silicon carbide (SiC) and show that it has a spectral feature that is a good candidate for the carrier of the 21 μm feature. The SiC spectral feature appears at approximately the same wavelength (depending on the polytype/grain size) and has the same asymmetric profile as the observed astronomical feature. We suggest that processing and cooling of the SiC grains known to exist around carbon-rich AGB stars are responsible for the emergence of the enigmatic 21 μm feature. The emergence of this feature in the spectra of post-AGB stars demonstrates the processing of dust due to the changing physical environments around evolving stars.

  20. Quantum interference in coherent tunneling through branched molecular junctions containing ferrocene centers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Kastlunger, Georg; Stadler, Robert

    2017-08-01

    In our theoretical study where we combine a nonequilibrium Green's function approach with density functional theory we investigate branched compounds containing ferrocene moieties in both branches which, due to their metal centers, are designed to allow for asymmetry induced by local charging. In these compounds the ferrocene moieties are connected to pyridyl anchor groups either directly or via acetylenic spacers in a metaconnection, where we also compare our results with those obtained for the respective single-branched molecules with both meta- and paraconnections between the metal center and the anchors. We find a destructive quantum interference (DQI) feature in the transmission function slightly below the lowest unoccupied molecular orbital, which dominates the conductance even for the uncharged branched compound with spacer groups inserted. In an analysis based on mapping the structural characteristics of the range of molecules in our article onto tight-binding models, we identify the structural source of the DQI minimum as the through-space coupling between the pyridyl anchor groups. We also find that local charging in one of the branches changes the conductance only by about one order of magnitude, which we explain in terms of the spatial distributions of the relevant molecular orbitals for the branched compounds.

  1. Preventing Death and Serious Injury from Falling Trees and Branches

    ERIC Educational Resources Information Center

    Brookes, Andrew

    2007-01-01

    Of 128 outdoor education related deaths examined since 1960, 14 have been due to falling trees or branches. This article examines the grounds on which death or serious injury due to falling trees or branches can be regarded as an inherent risk in outdoor education, and the extent to which such incidents can be regarded as preventable. It compares…

  2. The International Branch Campus as Transnational Strategy in Higher Education

    ERIC Educational Resources Information Center

    Wilkins, Stephen; Huisman, Jeroen

    2012-01-01

    The international branch campus is a phenomenon on the rise, but we still have limited knowledge of the strategic choices underlying the start of these ventures. The objective of this paper is to shed light on the motivations and decisions of universities to engage (or not) with the establishment of international branch campuses. As a point of…

  3. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  4. The S-Process Branching-Point at 205PB

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-09-01

    Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  5. Genetic interactions underlying tree branch orientation

    USDA-ARS?s Scientific Manuscript database

    Expanding our understanding of the molecular and genetic mechanisms behind branch orientation in trees both addresses a fundamental developmental phenomenon and can lead to significant impacts on tree crop agriculture and forestry. Using the p-nome (pooled genome) sequencing-based mapping approac...

  6. Water-quality reconnaissance of the Middle and North Branch Park River watersheds, northeastern North Dakota

    USGS Publications Warehouse

    Ackerman, D.J.

    1980-01-01

    In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.

  7. The perforating branches of the P1 segment of the posterior cerebral artery.

    PubMed

    Kaya, Ahmet Hilmi; Dagcinar, Adnan; Ulu, Mustafa Onur; Topal, Arif; Bayri, Yasar; Ulus, Aykan; Kopuz, Cem; Sam, Bulent

    2010-01-01

    The perforating branches of the P1 segment of the posterior cerebral artery are vulnerable to injury. Because of their close proximity to the basilar artery, the vulnerability occurs especially during surgical interventions for vascular pathologies such as basilar apex aneurysms. Therefore, extensive knowledge of the microsurgical anatomy of this area is mandatory to prevent poor post-operative outcomes. We microscopically examined 28 P1 segments obtained from 14 adult fresh cadaver brains (6 silicone injected, 8 freshly examined). The P1 segments ranged between 2.8mm and 12.2mm (mean 6.8mm) in length with a mean outer diameter of 1.85 mm (range 0.8-4.5mm). All 94 thalamoperforating branches identified in 27 P1 segments (mean 3.35 branches per segment) arose from the postero-superior aspect of P1 and were the most proximally originating branch in nearly all specimens (96.4%). In addition in 28 P1s, 12 short circumflex arteries (42.8%; mean 0.42 branches per segment), 16 long circumflex arteries (57.1%; mean 0.57 branches per segment) and 10 medial posterior choroidal arteries (35.7%; mean 0.35 branches per segment) were identified and all originated from the posterior or postero-inferior surface of the P1 segment. When the P1 segment had more than one type of branch, it was the short circumflex arteries that were always more proximal in origin than the others. The medial posterior choroidal arteries were always more distal in origin. All three branches were not observed together in any of the P1 segments. The findings in this, and future, anatomical studies may help to reduce the post-surgical morbidity and mortality rates after surgery for posterior circulation aneurysms. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Modeling the growth and branching of plants: A simple rod-based model

    NASA Astrophysics Data System (ADS)

    Faruk Senan, Nur Adila; O'Reilly, Oliver M.; Tresierras, Timothy N.

    A rod-based model for plant growth and branching is developed in this paper. Specifically, Euler's theory of the elastica is modified to accommodate growth and remodeling. In addition, branching is characterized using a configuration force and evolution equations are postulated for the flexural stiffness and intrinsic curvature. The theory is illustrated with examples of multiple static equilibria of a branched plant and the remodeling and tip growth of a plant stem under gravitational loading.

  9. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    USGS Publications Warehouse

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  10. Severe Storms Branch research report (April 1984 April 1985)

    NASA Technical Reports Server (NTRS)

    Dubach, L. (Editor)

    1985-01-01

    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.

  11. The MATCHIT Automaton: Exploiting Compartmentalization for the Synthesis of Branched Polymers

    PubMed Central

    Weyland, Mathias S.; Fellermann, Harold; Hadorn, Maik; Sorek, Daniel; Lancet, Doron; Rasmussen, Steen; Füchslin, Rudolf M.

    2013-01-01

    We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield. PMID:24489601

  12. Organization of Amphiphilic Molecular Disks with Branched Hydrophilic Tails and Hexa-peri-hexabenzocoronene Core

    NASA Astrophysics Data System (ADS)

    Lee, Myongsoo; Kim, Jung-Woo; Yoo, Yong-Sik; Peleshanko, Sergey; Larson, Kirsten; Vaknin, David; Markutsya, Sergei; Tsukruk, Vladimir V.

    2002-03-01

    Amphiphilic branched discotics consisting of the aromatic core and oligoethers as the branched peripheral chains have been characterized in bulk and monolayer states. The discotics based on di-branched oligoether side chains have been observed to self-organize into an ordered hexagonal columnar structure within liquid crystalline (LC) phases. The tetrabranched molecule showed only an isotropic liquid. The LC molecules with di-branched tails have been observed to form stable monolayers on the water surface in contrast to the tetra-branched tails. We suggest a crab-like molecular conformation and cluster-segregated monolayers with six-fold symmetry of face-on packing on a solid surface.

  13. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H2 Generation.

    PubMed

    Zhang, Zhenyi; Jiang, Xiaoyi; Liu, Benkang; Guo, Lijiao; Lu, Na; Wang, Li; Huang, Jindou; Liu, Kuichao; Dong, Bin

    2018-03-01

    The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W 18 O 49 nanowires (as branches) onto TiO 2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W 18 O 49 branches to the TiO 2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 12 to 5.5 × 10 12 s -1 . Upon LSPR excitation by low-energy IR photons, the W 18 O 49 /TiO 2 branched heterostructure exhibits obviously enhanced catalytic H 2 generation from ammonia borane compared with that of W 18 O 49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].

    PubMed

    Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun

    2013-09-01

    By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

  15. [Angiographic evaluation of branching pattern and anatomy of the aortic arch].

    PubMed

    Ergun, Onur; Tatar, İdil Güneş; Birgi, Erdem; Durmaz, Hasan Ali; Akçalar, Seray; Kurt, Aydın; Hekimoğlu, Baki

    2015-04-01

    The study aimed to investigate anatomical variations in branching pattern and anatomy of the aortic arch, and the prevalence of each type. Between September 2011 and November 2013, angiographic studies of 270 patients (144 male, 126 female) were analyzed retrospectively for variations in branching pattern and anatomy of the aortic arch. Patient mean age was 59.8 years (range, 13-88). Branching variations were found and divided into subtypes. Patients were also classified according to arch anatomy. Incidence of variations and types of aortic arch were statistically analysed. Analysis of the 270 patients revealed six types of branching pattern. Type I, classical pattern arch with three branches (TB, LCC, LS), was observed in 198 cases (73.3%). Type II (bovine arch), the most commonly observed variation, in which LCC originates from TB, was observed in 58 cases (21.5%). Type III, in which the left vertebral artery arises from the arch, was seen in seven cases (2.6%). Type IV, a combination of types II and III, was observed in three cases (1.1%). Type V, common origin of common carotids, LS and aberrant RS, was found in three cases (1.1%). Type VI (avian type), arch with only two branches, was observed in one case (0.4%). When patients were classified according to aortic arch anatomy, Type 1, Type 2 and Type 3 were observed in 195, 40 and 35 patients respectively. Knowledge of the variations and anatomy of the aortic arch is essential during interventional procedures and neck-thorax surgery.

  16. Anomalous scaling in an age-dependent branching model.

    PubMed

    Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin

    2015-02-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.

  17. Genes and QTLs controlling inflorescence and culm branch architecture in Leymus (Poaceae: Triticeae) wildrye

    USDA-ARS?s Scientific Manuscript database

    Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses including wheat, barley, and 400-500 wild species are usually contracted into a spike formation with the number of flowering branches (spikele...

  18. Irc3 is a mitochondrial DNA branch migration enzyme

    PubMed Central

    Gaidutšik, Ilja; Sedman, Tiina; Sillamaa, Sirelin; Sedman, Juhan

    2016-01-01

    Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules. PMID:27194389

  19. ORD’s Urban Watershed Management Branch

    EPA Science Inventory

    This is a poster for the Edison Science Day, tentatively scheduled for June 10, 2009. This poster presentation summarizes key elements of the EPA Office of Research and Development’s (ORD) Urban Watershed Management Branch (UWMB). An overview of the national problems posed by w...

  20. Highly-branched anisotropic hybrid nanoparticles at surfaces.

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir

    2009-03-01

    We present a brief overview of our recent studies on combined hybrid anisotropic structures composed of inorganic nanoparticles and highly branched molecules such as modified silsesquioxanes polyhedra cores (POSS) with mixed hydrophobic-hydrophilic tails and silver nanowires with functionalized star block copolymer with embedded gold nanoparticles (nanocobs). We demonstrate two-stage melting of that branched POSS and their ability to form monolayer and multilayered LB structures. On the other hand, we observed that silver-BCP-gold nanocobs display extremely bright Raman scattering caused by surface enhanced Raman effect with very different longitudinal and transversal optical properties as revealed by high-resolution confocal Raman microscopy. To study these hybrid nanostructures we applied combined AFM, SEM, TEM, XPS, SERS, UV-vis, and XR techniques.