Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.
Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze-Hardy Rule.
Trefalt, Gregor; Szilagyi, Istvan; Téllez, Gabriel; Borkovec, Michal
2017-02-21
The Schulze-Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze-Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.
Zhang, Kunyu; Lin, Sien; Feng, Qian; Dong, Chaoqun; Yang, Yanhua; Li, Gang; Bian, Liming
2017-12-01
Hydrogels are appealing biomaterials for applications in regenerative medicine due to their tunable physical and bioactive properties. Meanwhile, therapeutic metal ions, such as magnesium ion (Mg 2+ ), not only regulate the cellular behaviors but also stimulate local bone formation and healing. However, the effective delivery and tailored release of Mg 2+ remains a challenge, with few reports on hydrogels being used for Mg 2+ delivery. Bisphosphonate exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as Mg 2+ . Herein, we describe a nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. These nanoparticles bearing acrylate groups on the surface not only function as effective multivalent crosslinkers to strengthen the hydrogel network structure, but also promote the mineralization of hydrogels and mediate sustained release of Mg 2+ . The released Mg 2+ ions facilitate stem cell adhesion and spreading on the hydrogel substrates in the absence of cell adhesion ligands, and promote osteogenesis of the seeded hMSCs in vitro. Furthermore, the acellular porous hydrogels alone can support in situ bone regeneration without using exogenous cells and inductive agents, thereby greatly simplifying the approaches of bone regeneration therapy. In this study, we developed a novel bioactive nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. Such hydrogels are stabilized by the multivalent crosslinking domains formed by the aggregation of Ac-BP-Mg NPs, and therefore show enhanced mechanical properties, improved capacity for mineralization, and controlled release kinetics of Mg 2+ . Moreover, the released Mg 2+ can enhance cell adhesion and spreading, and further promote the osteogenic differentiation of hMSCs. Owing to these unique properties, these acellular hydrogels alone can well facilitate the in vivo bone regeneration at the intended sites. We believe that the strategy reported in this work opens up a new route to develop biopolymer-based nanocomposite hydrogels with enhanced physical and biological functionalities for regenerative medicine. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Multivalent Ion Transport in Polymers via Metal-Ligand Coordination
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel
Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.
Secondary batteries with multivalent ions for energy storage
Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng
2015-01-01
The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...
2017-02-03
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Liu, Miao; Rong, Ziqin; Malik, Rahul; ...
2014-12-16
In this study, batteries that shuttle multivalent ions such as Mg 2+ and Ca 2+ ions are promising candidates for achieving higher energy density than available with current Li-ion technology. Finding electrode materials that reversibly store and release these multivalent cations is considered a major challenge for enabling such multivalent battery technology. In this paper, we use recent advances in high-throughput first-principles calculations to systematically evaluate the performance of compounds with the spinel structure as multivalent intercalation cathode materials, spanning a matrix of five different intercalating ions and seven transition metal redox active cations. We estimate the insertion voltage, capacity,more » thermodynamic stability of charged and discharged states, as well as the intercalating ion mobility and use these properties to evaluate promising directions. Our calculations indicate that the Mn 2O 4 spinel phase based on Mg and Ca are feasible cathode materials. In general, we find that multivalent cathodes exhibit lower voltages compared to Li cathodes; the voltages of Ca spinels are ~0.2 V higher than those of Mg compounds (versus their corresponding metals), and the voltages of Mg compounds are ~1.4 V higher than Zn compounds; consequently, Ca and Mg spinels exhibit the highest energy densities amongst all the multivalent cation species. The activation barrier for the Al³⁺ ion migration in the Mn₂O₄ spinel is very high (~1400 meV for Al 3+ in the dilute limit); thus, the use of an Al based Mn spinel intercalation cathode is unlikely. Amongst the choice of transition metals, Mn-based spinel structures rank highest when balancing all the considered properties.« less
Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho
2014-12-10
The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.
Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2
NASA Astrophysics Data System (ADS)
Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; Body, Monique; Legein, Christophe; Dachraoui, Walid; Giannini, Mattia; Demortière, Arnaud; Salanne, Mathieu; Dardoize, François; Groult, Henri; Borkiewicz, Olaf J.; Chapman, Karena W.; Strasser, Peter; Dambournet, Damien
2017-11-01
In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials, providing a new strategy for the chemical design of materials for practical multivalent batteries.
Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Haiqing L.
2016-01-01
We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.
Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.
In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2.more » In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.« less
Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2
Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; ...
2017-09-18
In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2.more » In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.« less
A Universal Organic Cathode for Ultrafast Lithium- and Multivalent Metal Batteries.
Fan, Xiulin; Wang, Fei; Ji, Xiao; Wang, Ruixing; Gao, Tao; Hou, Singyuk; Chen, Ji; Deng, Tao; Li, Xiaogang; Chen, Long; Luo, Chao; Wang, Luning; Wang, Chunsheng
2018-04-27
Low-cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li + , Mg 2+ , Al 3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fang, Peixiang; He, Xinlin; Li, Junfeng; Yang, Guang; Wang, Zhaoyang; Sun, Zhihua; Zhang, Xuan; Zhao, Chun
2018-05-15
The long-term and short-term effects of salinity on the multivalent metal ions within extracellular polymeric substance (EPS) were investigated in this study. The results indicated that the Na + content within the EPS increased significantly from 19.53% to 60.86% under high salinity, and this content in the saline system was 2.2 times higher than that of the control system at the end of the operation. The K + , Ca 2+ and Mg 2+ contents within the EPS decreased from 33.85%, 39.19% and 5.54% to 7.07%, 25.64% and 3.28%, respectively, when the salinity was increased from 0 g/L to 30 g/L. These ions were replaced by Na + through ion exchange and competing ionic binding sites under salt stress. The interaction between divalent metal ions and Na + was reversible with the adaption of anammox to salinity. Salinity exhibited a limited influence on the Fe 3+ within the EPS. Sludge granulation was inhibited under conditions of high salinity due to the replacement of multivalent metal ions by Na + .
Lateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brettmann, Blair; Pincus, Philip; Tirrell, Matthew
2017-01-13
We provide a theoretical model for the collapse of polyelectrolyte brushes in the presence of multivalent ions, focusing on the formation of lateral inhomogeneties in the collapsed state. Polyelectrolyte brushes are important in a variety of applications, including stabilizing colloidal particles and lubricating surfaces. Many uses rely on the extension of the densely grafted polymer chains from the surface in the extended brush morphology. In the presence Extended Brush of multivalent ions, brushes are significantly shorter than in monovalent ionic solutions, which greatly affects their properties. We base our theoretical analysis on an analogous collapse of polyelectrolyte brushes in amore » poor solvent, providing an energy balance representation for pinned micelles and cylindrical bundles. The equilibrium brush heights predicted for these structures are of a similar magnitude to those measured experimentally. The formation of lateral structures can open new avenues for stimuli-responsive applications that rely on nanoscale pattern formation on surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huali; Bi, Xuanxuan; Bai, Ying
The high-capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self-assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well-layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathinmore » flower petals deliver a stable capacity of 250 mA h g-1 in a Li-ion cell, 110 mA h g-1 in a Na-ion cell, and 80 mA h g-1 in an Al-ion cell in their respective potential ranges (2.0–4.0 V for Li and Na-ion batteries and 0.1–2.5 V for Al-ion battery) after 100 cycles.« less
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David
2015-10-27
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doe, Robert E.; Downie, Craig M.; Fischer, Christopher
2016-01-19
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher
2016-07-26
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less
Baskin, Artem; Prendergast, David
2016-02-05
In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less
A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes.
Guduru, Ramesh K; Icaza, Juan C
2016-02-26
Rapidly growing global demand for high energy density rechargeable batteries has driven the research toward developing new chemistries and battery systems beyond Li-ion batteries. Due to the advantages of delivering more than one electron and giving more charge capacity, the multivalent systems have gained considerable attention. At the same time, affordability, ease of fabrication and safety aspects have also directed researchers to focus on aqueous electrolyte based multivalent intercalation batteries. There have been a decent number of publications disclosing capabilities and challenges of several multivalent battery systems in aqueous electrolytes, and while considering an increasing interest in this area, here, we present a brief overview of their recent progress, including electrode chemistries, functionalities and challenges.
A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes
Guduru, Ramesh K.; Icaza, Juan C.
2016-01-01
Rapidly growing global demand for high energy density rechargeable batteries has driven the research toward developing new chemistries and battery systems beyond Li-ion batteries. Due to the advantages of delivering more than one electron and giving more charge capacity, the multivalent systems have gained considerable attention. At the same time, affordability, ease of fabrication and safety aspects have also directed researchers to focus on aqueous electrolyte based multivalent intercalation batteries. There have been a decent number of publications disclosing capabilities and challenges of several multivalent battery systems in aqueous electrolytes, and while considering an increasing interest in this area, here, we present a brief overview of their recent progress, including electrode chemistries, functionalities and challenges. PMID:28344298
Anomalous Protein-Protein Interactions in Multivalent Salt Solution.
Pasquier, Coralie; Vazdar, Mario; Forsman, Jan; Jungwirth, Pavel; Lund, Mikael
2017-04-13
The stability of aqueous protein solutions is strongly affected by multivalent ions, which induce ion-ion correlations beyond the scope of classical mean-field theory. Using all-atom molecular dynamics (MD) and coarse grained Monte Carlo (MC) simulations, we investigate the interaction between a pair of protein molecules in 3:1 electrolyte solution. In agreement with available experimental findings of "reentrant protein condensation", we observe an anomalous trend in the protein-protein potential of mean force with increasing electrolyte concentration in the order: (i) double-layer repulsion, (ii) ion-ion correlation attraction, (iii) overcharge repulsion, and in excess of 1:1 salt, (iv) non Coulombic attraction. To efficiently sample configurational space we explore hybrid continuum solvent models, applicable to many-protein systems, where weakly coupled ions are treated implicitly, while strongly coupled ones are treated explicitly. Good agreement is found with the primitive model of electrolytes, as well as with atomic models of protein and solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qiang; Come, Jeremy; Naguib, Michael
2017-01-01
Two-dimensional materials, such as MXenes, are attractive candidates for energy storage and electrochemical actuators due to their high volume changes upon ion intercalation. Of special interest for boosting energy storage is the intercalation of multivalent ions such as Mg 2+, which suffers from sluggish intercalation and transport kinetics due to its ion size. By combining traditional electrochemical characterization techniques with electrochemical dilatometry and contact resonance atomic force microscopy, the synergetic effects of the pre-intercalation of K +ions are demonstrated to improve the charge storage of multivalent ions, as well as tune the mechanical and actuation properties of the Ti 3Cmore » 2MXene. Our results have important implications for quantitatively understanding the charge storage processes in intercalation compounds and provide a new path for studying the mechanical evolution of energy storage materials.« less
Electrostatic Origin of Salt-Induced Nucleosome Array Compaction
Korolev, Nikolay; Allahverdi, Abdollah; Yang, Ye; Fan, Yanping; Lyubartsev, Alexander P.; Nordenskiöld, Lars
2010-01-01
The physical mechanism of the folding and unfolding of chromatin is fundamentally related to transcription but is incompletely characterized and not fully understood. We experimentally and theoretically studied chromatin compaction by investigating the salt-mediated folding of an array made of 12 positioning nucleosomes with 177 bp repeat length. Sedimentation velocity measurements were performed to monitor the folding provoked by addition of cations Na+, K+, Mg2+, Ca2+, spermidine3+, Co(NH3)63+, and spermine4+. We found typical polyelectrolyte behavior, with the critical concentration of cation needed to bring about maximal folding covering a range of almost five orders of magnitude (from 2 μM for spermine4+ to 100 mM for Na+). A coarse-grained model of the nucleosome array based on a continuum dielectric description and including the explicit presence of mobile ions and charged flexible histone tails was used in computer simulations to investigate the cation-mediated compaction. The results of the simulations with explicit ions are in general agreement with the experimental data, whereas simple Debye-Hückel models are intrinsically incapable of describing chromatin array folding by multivalent cations. We conclude that the theoretical description of the salt-induced chromatin folding must incorporate explicit mobile ions that include ion correlation and ion competition effects. PMID:20858435
Uchida, Noriyuki; Okuro, Kou; Niitani, Yamato; Ling, Xiao; Ariga, Takayuki; Tomishige, Michio; Aida, Takuzo
2013-03-27
A water-soluble dendron with a fluorescein isothiocyanate (FITC) fluorescent label and bearing nine pendant guanidinium ion (Gu(+))/benzophenone (BP) pairs at its periphery (Glue(BP)-FITC) serves as a "photoclickable molecular glue". By multivalent salt-bridge formation between Gu(+) ions and oxyanions, Glue(BP)-FITC temporarily adheres to a kinesin/microtubule hybrid. Upon subsequent exposure to UV light, this noncovalent binding is made permanent via a cross-linking reaction mediated by carbon radicals derived from the photoexcited BP units. This temporal-to-permanent transformation by light occurs quickly and efficiently in this preorganized state, allowing the movements of microtubules on a kinesin-coated glass plate to be photochemically controlled. A fundamental difference between such temporal and permanent bindings was visualized by the use of "optical tweezers".
Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates
NASA Astrophysics Data System (ADS)
Farina, Robert M.
Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via electrostatic interactions. Complex coacervates are highly regarded for their extremely low interfacial energy resulting in an ability to spread and adhere to surfaces under water, utilized by marine organisms (e.g. mussels and tubeworms), as well as many encapsulation applications (e.g. pigment encapsulation for carbon-less paper and electronic paper displays). Here, the interfacial energy of coacervates composed of oppositely charged polypeptides, poly(L-lysine) and poly(L-glutamic acid), was investigated using the SFA in regards to changes in bulk mono-valent salt concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Robert; Laugel, Nicolas; Yu, Jing
Applications of end-tethered polyelectrolyte “brushes” to modify solid surfaces have been developed and studied for their colloidal stabilization and high lubrication properties. Current efforts have expanded into biological realms and stimuli-responsive materials. Our work explores responsive and reversible aspects of polyelectrolyte brush behavior when polyelectrolyte chains interact with oppositely charged multivalent ions and complexes, which act as counterions. There is a significant void in the polyelectrolyte literature regarding interactions with multivalent species. This paper demonstrates that interactions between solid surfaces bearing negatively charged polyelectrolyte brushes are highly sensitive to the presence of trivalent lanthanum, La3+. Lanthanum cations have unique interactionsmore » with polyelectrolyte chains, in part due to their small size and hydration radius which results in a high local charge density. Using La3+ in conjunction with the surface forces apparatus (SFA), adhesion has been observed to reversibly appear and disappear upon the uptake and release, respectively, of these multivalent cations acting as counterions. In media of fixed ionic strength set by monovalent sodium salt, at I0 = 0.003 M and I0 = 0.3 M, the sign of the interaction forces between overlapping brushes changes from repulsive to attractive when La3+ concentrations reach 0.1 mol % of the total ion concentration. These results are also shown to be generally consistent with, but subtlety different from, previous polyelectrolyte brush experiments using trivalent ruthenium hexamine in the role of the multivalent counterion.« less
Predicting Electrostatic Forces in RNA Folding
Tan, Zhi-Jie; Chen, Shi-Jie
2016-01-01
Metal ion-mediated electrostatic interactions are critical to RNA folding. Although considerable progress has been made in mechanistic studies, the problem of accurate predictions for the ion effects in RNA folding remains unsolved, mainly due to the complexity of several potentially important issues such as ion correlation and dehydration effects. In this chapter, after giving a brief overview of the experimental findings and theoretical approaches, we focus on a recently developed new model, the tightly bound ion (TBI) model, for ion electrostatics in RNA folding. The model is unique because it can treat ion correlation and fluctuation effects for realistic RNA 3D structures. For monovalent ion (such as Na+) solutions, where ion correlation is weak, TBI and the Poisson–Boltzmann (PB) theory give the same results and the results agree with the experimental data. For multivalent ion (such as Mg2+) solutions, where ion correlation can be strong, however, TBI gives much improved predictions than the PB. Moreover, the model suggests an ion correlation- induced mechanism for the unusual efficiency of Mg2+ ions in the stabilization of RNA tertiary folds. In this chapter, after introducing the theoretical framework of the TBI model, we will describe how to apply the model to predict ion-binding properties and ion-dependent folding stabilities. PMID:20946803
Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions
Aimetti, Alex A.; Feaver, Kristen R.
2014-01-01
A unique method has been developed for the formation of multivalent cyclic peptides. This procedure exploits on-resin peptide cyclization using a photoinitiated thiol-ene click reaction and subsequent clustering using thiol-yne photochemistry. Both reactions utilize the sulfhydryl group on natural cysteine amino acids to participate in the thiol-mediated reactions. PMID:20552127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, Artem; Prendergast, David
In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less
Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils.
Li, Yuping; Douglas, Elliot P
2013-12-01
Even though the behavior of collagen monomers self-assembling into fibrils is commonly understood in terms of hydrophobic and electrostatic interactions, the mechanisms that drive their ordered, longitudinal alignment to form a characteristic periodicity are still unclear. By introducing various salts into the collagen fibrillogenesis system, the intermolecular interactions of fibril formation were studied. We found that the pH and ion species play a critical role in forming native fibrils. Turbidity and electron microscopy revealed that collagen self-assembled into fibrils with a native banding pattern in the presence of multivalent ions. The isoelectric point of collagen in 12mM of NaCl is pH 8.9; it shifted to pH 9.4 and pH 7.0 after adding 10mM CaCl2 and Na2SO4, respectively. Native fibrils were reconstituted at pH 7.4 in salts with divalent anions and at pH 9.0 in salts with divalent cations. Circular dichroism spectroscopy showed a loss of helicity in the conditions where fibrillogenesis was unable to be achieved. The multivalent ions not only change the surface charge of collagen, but also facilitate the formation of fibrils with the native D-periodic banding pattern. It is likely that the binding multivalent ions induce the like-charge attraction and facilitate monomers' longitudinal registration to form fibrils with the native banding. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gheytani, Saman; Liang, Yanliang; Wu, Feilong
Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anodemore » and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Finally, additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.« less
Gheytani, Saman; Liang, Yanliang; Wu, Feilong; Jing, Yan; Dong, Hui; Rao, Karun K; Chi, Xiaowei; Fang, Fang; Yao, Yan
2017-12-01
Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anode and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.
Gheytani, Saman; Liang, Yanliang; Wu, Feilong; ...
2017-10-26
Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anodemore » and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Finally, additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.« less
Peng, Bo; Yu, Yang-Xin
2009-10-07
The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.
NASA Astrophysics Data System (ADS)
García-Giménez, Elena; Alcaraz, Antonio; Aguilella, Vicente M.
2010-02-01
We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be inferred from the change in sign of the measured quantity, the channel zero current potential. By comparing experimental results in protein channels whose charge has been modified after site-directed mutagenesis, the predictions of current theories of charge inversion are critically examined. It is emphasized that charge inversion does not necessarily increase with the bare surface charge density of the interface and that even this concept of surface charge density may become meaningless in some biological ion channels. Thus, any theory based on electrostatic correlations or chemical binding should explicitly take into account the particular structure of the charged interface.
Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nano-channels
NASA Astrophysics Data System (ADS)
Zheng, Zhi; Conlisk, A. Terrence
2002-11-01
In this work, the effect of multivalent ions on electroosmotic flow is investigated. Applications in biomedical engineering are numerous, including design of drug delivery systems, rapid molecular analysis and lab-on-a-chip. We specifically consider incorporating Ca^2+ and HPO4^2- and other monovalent ions, such as K^+ and H2PO4^-, into an aqueous NaCl solution. All previous work has been for the case where the mixture contains a pair of ionic species of equal valence. Electrochemical equilibrium considerations are used in determining the boundary conditions. The results can be applied to rectangular channels for which the height is on the nanometer scale up to the micrometer scale. The classical electroosmotic velocity profile is obtained at larger channel heights for fixed electrolyte concentration where an analytic solution for the velocity, potential and mole fractions may be obtained. The theory is valid for an arbitrary number of ionic species.
Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes-A Review.
Rajput, Nav Nidhi; Seguin, Trevor J; Wood, Brandon M; Qu, Xiaohui; Persson, Kristin A
2018-04-26
Fundamental molecular-level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applications. In particular, exhaustive knowledge of solvation structure, stability, and transport properties is critical for developing stable electrolytes for fast-charging and high-energy-density next-generation energy storage systems. Accordingly, there is growing interest in the rational design of electrolytes for beyond lithium-ion systems by tuning the molecular-level interactions of solvate species present in the electrolytes. Here we present a review of the solvation structure of multivalent electrolytes and its impact on the electrochemical performance of these batteries. A direct correlation between solvate species present in the solution and macroscopic properties of electrolytes is sparse for multivalent electrolytes and contradictory results have been reported in the literature. This review aims to illustrate the current understanding, compare results, and highlight future needs and directions to enable the deep understanding needed for the rational design of improved multivalent electrolytes.
TBI server: a web server for predicting ion effects in RNA folding.
Zhu, Yuhong; He, Zhaojian; Chen, Shi-Jie
2015-01-01
Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects. The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects. By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.
Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.
Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory
2011-07-01
Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.
Fraioli, Anthony V.
1984-01-01
A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.
Sun, Yidi; Leong, Nicole T; Jiang, Tommy; Tangara, Astou; Darzacq, Xavier; Drubin, David G
2017-08-16
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior.
Li, Yi-Jia; Perkins, Angela L; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A; Chen, Yuan
2012-03-13
Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects.
Li, Yi-Jia; Perkins, Angela L.; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A.; Chen, Yuan
2012-01-01
Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects. PMID:22388745
The effect of multivalent counterions to the structure of highly dense polystyrene sulfonate brushes
Yu, Jing; Mao, Jun; Yuan, Guangcui; ...
2016-02-23
Surface tethered polyelectrolyte brushes are scientifically interesting and technologically relevant to many applications, ranging from colloidal stabilization to responsive and tunable materials to lubrication. Many applications operate in environments containing multi-valent ions, media in which our scientific understanding is not yet well-developed. In this paper, we synthesized high-density polystyrene sulfonate (PSS) brushes via surface initiated atom-transfer radical polymerization, and performed neutron reflectivity (NR) measurements to investigate and compare the effects of mono-valent Rb + and tri-valent Y 3+ counterions to the structure of the densely tethered PSS brushes. Our NR results show that in mono-valent RbNO 3 solution, the densemore » PSS brush retained its full thickness up to a salt concentration of 1 M, whereas it immediately collapsed upon adding 1.67 mM of tri-valent Y 3+. Increasing the concentration of Y 3+ beyond this level did not lead to any significant further structure change of the PSS brush. Finally, our findings demonstrate that the presence of multi-valent counterions can significantly alter the structure of polyelectrolyte brushes, in a manner different from mono-valent ions, which has implications for the functionality of the brushes.« less
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.
Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior
NASA Astrophysics Data System (ADS)
Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
NASA Astrophysics Data System (ADS)
Bruce, Ellen E.; van der Vegt, Nico F. A.
2018-06-01
Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.
Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.
Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2013-03-21
Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra
2010-12-05
Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC{sub 50}s ranging from 0.1 to 7.4 {mu}g/ml. Inhibition of Env-mediated membrane fusion by MVC wasmore » also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: {yields}Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. {yields}MVCs inhibited infection by T cell line-adapted viruses. {yields}MVCs inhibited infection by primary isolates of HIV-1. {yields}MVCs inhibited Env-mediated membrane fusion.« less
Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sang-Don; Kim, Soojeong; Li, Dongguo
2017-05-19
Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolytemore » and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less
Doyle, D A; Wallace, B A
1998-01-01
The conformation of the polypeptide antibiotic gramicidin is greatly influenced by its environment. In methanol, it exists as an equilibrium mixture of four interwound double-helical conformers that differ in their handedness, chain orientation, and alignment. Upon the addition of multivalent cationic salts, there is a shift in the equilibrium to a single conformer, which was monitored in this study by circular dichroism spectroscopy. With increasing concentrations of multivalent cations, both the magnitude of the entire spectrum and the ratio of the 229-nm to the 210-nm peak were increased. The spectral change is not related to the charge on the cation, but appears to be related to the cationic radius, with the maximum change in ellipticity occurring for cations with a radius of approximately 1 A. The effect requires the presence of an anion whose radius is greater than that of a fluoride ion, but is otherwise not a function of anion type. It is postulated that multivalent cations interact with a binding site in one of the conformers, known as species 1 (a left-handed, parallel, no stagger double helix), stabilizing a modified form of this type of structure. PMID:9675165
Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry.
Morrison, Kelsey A; Bendiak, Brad K; Clowers, Brian H
2018-05-25
Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts. Graphical Abstract ᅟ.
Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry
NASA Astrophysics Data System (ADS)
Morrison, Kelsey A.; Bendiak, Brad K.; Clowers, Brian H.
2018-05-01
Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts.
Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery
Han, Sang-Don; Kim, Soojeong; Li, Dongguo; ...
2017-05-08
Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn 2+ ion chemistry. There are several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. Our study utilizes a combination of analytical tools to probe the chemistry of a nanostructured δ-MnO 2 cathode in association withmore » a nonaqueous acetonitrile–Zn(TFSI) 2 electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte–electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. There are numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/δ-MnO 2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less
Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan
2017-07-13
Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.
Heteroaggregation of oppositely charged particles in the presence of multivalent ions.
Cao, Tianchi; Sugimoto, Takuya; Szilagyi, Istvan; Trefalt, Gregor; Borkovec, Michal
2017-06-14
Time-resolved dynamic light scattering is used to measure absolute heteroaggregation rate coefficients and the corresponding stability ratios for heteroaggregation between amidine and sulfate latex particles. These measurements are complemented by the respective quantities for the homoaggregation of the two systems and electrophoresis. Based on the latter measurements, the stability ratios are calculated using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. In monovalent salt solutions, the two types of particles investigated are oppositely charged. In the presence of multivalent ions, however, one particle type reverses its charge, while the charge of the other particle type is hardly affected. In this region, the heteroaggregation stability ratio goes through a pronounced maximum when plotted versus concentration. This region of slow aggregation is wider than the one observed in the corresponding homoaggregation process. One also finds that the onset of this region sensitively depends on the boundary conditions used to calculate the double layer force. The present results are more in line with constant potential boundary conditions.
Quantum Electrodynamical Shifts in Multivalent Heavy Ions.
Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-12-16
The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.
Multi-shell model of ion-induced nucleic acid condensation
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.
2016-04-01
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding shells."
Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods
Bizarro, C. V.; Alemany, A.; Ritort, F.
2012-01-01
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na+]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg2+ salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710
NASA Astrophysics Data System (ADS)
Krafcik, Matthew J.; Erk, Kendra A.
Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.
Jiang, Li-Yang; Lv, Bing; Luo, Ying
2013-04-01
By presenting biomolecular ligands on the surface in high density, ligand-decorated dendrimers are capable of binding to membrane receptors and cells with specificity and avidity. Despite the various uses, fundamental investigations on ligand-dendrimer conjugates have mainly focused on their binding behavior with cells, whereas their potential bioactivity and applications in multicellular systems, especially in three-dimensional (3D) culture systems, remains untapped. In this study, a typical adhesive peptide ligand - RGD - was modified to generation 4 polyamidoamine (PAMAM), and the bioactivity of suspended RGD-PAMAM conjugates was investigated on cells cultured as multicellular spheroids. Our results demonstrate that the RGD-PAMAM conjugates, after being incorporated into the 3D spheroids, were able to promote cellular proliferation and aggregation, and affect the mRNA expression of extracellular factors by NIH 3T3 cells. These bioactive functions were multivalency-dependent, as none of similar effects was observed for monovalent RGD ligand. Our study suggests that multivalent ligand-dendrimer conjugates may act as a unique type of artificial factors to mediate the cellular microenvironment in 3D culture, a property attributable to the spatial organization of the ligands and possible "cell-gluing" function of multivalent conjugates. This new finding opens the door for further exploring multivalent ligand-dendrimer conjugates for applications in 3D cell culture and tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Liwen; Prendergast, David
2014-03-01
There is a growing interest in developing multivalent ion batteries that could, in principle, double or triple the energy density compared to the monovalent Li-ion batteries. However, the strong electrostatic interaction caused by the extra charge also makes it very challenging to find appropriate intercalation compounds that allow for relatively fast and reversible ion transport. An established working multivalent battery is comprised of Mg(AlCl2BuEt)2 salts in THF solution as the electrolyte, and Mg metal and Mo6S8 Chevrel phase as the anode and cathode, respectively. Currently, we lack a clear understanding of the mechanism for Mg desolvation and intercalation at the interface between the electrolyte and Chevrel phase surfaces, which is critical in designing new advanced battery systems with improved ion diffusion rate. Here, we present a theoretical investigation of the dynamics and kinetics of the Mg desolvation/intercalation process. The surface properties of Mo6S8 are studied for the first time using density functional theory (DFT) and its interaction with the electrolyte is simulated via an ab initio molecular dynamics (AIMD) approach. The free energy barrier for Mg diffusing through the interface is then calculated by performing a set of biased AIMD simulations. This work is supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.
NASA Technical Reports Server (NTRS)
Vezzoli, G. C.; Chen, M. F.; Craver, F.
1991-01-01
It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.
Chemical & Biological Point Detection Decontamination
2002-04-01
high priority in biological defense. Research on multivalent assays is also ongoing. Biased libraries, generated from immunized animals, or unbiased ...2003 TBD decontamination and modeling and simulation I I The Chem-Bio Point Detection Roadmap The summary level updated and expanded Bio Point... Molecular Imprinted Polymer Sensor, Dendrimer-based Antibody Assays, Pyrolysis-GC-ion mobility spectrometry, and surface enhanced Raman spectroscopy. Data
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Importance of Diffuse Metal Ion Binding to RNA
Tan, Zhi-Jie; Chen, Shi-Jie
2016-01-01
RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269
Importance of diffuse metal ion binding to RNA.
Tan, Zhi-Jie; Chen, Shi-Jie
2011-01-01
RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.
Renal Control of Calcium, Phosphate, and Magnesium Homeostasis
Chonchol, Michel; Levi, Moshe
2015-01-01
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933
Multi-shell model of ion-induced nucleic acid condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derivedmore » from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.”.« less
Multi-shell model of ion-induced nucleic acid condensation
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Onufriev, Alexey V.
2016-01-01
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion binding shells.” PMID:27389241
Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E
2018-05-01
Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Renal control of calcium, phosphate, and magnesium homeostasis.
Blaine, Judith; Chonchol, Michel; Levi, Moshe
2015-07-07
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.
Chacko, Ann-Marie; Han, Jingyan; Greineder, Colin F; Zern, Blaine J; Mikitsh, John L; Nayak, Madhura; Menon, Divya; Johnston, Ian H; Poncz, Mortimer; Eckmann, David M; Davies, Peter F; Muzykantov, Vladimir R
2015-07-28
Nanocarriers (NCs) coated with antibodies (Abs) to extracellular epitopes of the transmembrane glycoprotein PECAM (platelet endothelial cell adhesion molecule-1/CD31) enable targeted drug delivery to vascular endothelial cells. Recent studies revealed that paired Abs directed to adjacent, yet distinct epitopes of PECAM stimulate each other's binding to endothelial cells in vitro and in vivo ("collaborative enhancement"). This phenomenon improves targeting of therapeutic fusion proteins, yet its potential role in targeting multivalent NCs has not been addressed. Herein, we studied the effects of Ab-mediated collaborative enhancement on multivalent NC spheres coated with PECAM Abs (Ab/NC, ∼180 nm diameter). We found that PECAM Abs do mutually enhance endothelial cell binding of Ab/NC coated by paired, but not "self" Ab. In vitro, collaborative enhancement of endothelial binding of Ab/NC by paired Abs is modulated by Ab/NC avidity, epitope selection, and flow. Cell fixation, but not blocking of endocytosis, obliterated collaborative enhancement of Ab/NC binding, indicating that the effect is mediated by molecular reorganization of PECAM molecules in the endothelial plasmalemma. The collaborative enhancement of Ab/NC binding was affirmed in vivo. Intravascular injection of paired Abs enhanced targeting of Ab/NC to pulmonary vasculature in mice by an order of magnitude. This stimulatory effect greatly exceeded enhancement of Ab targeting by paired Abs, indicating that '"collaborative enhancement"' effect is even more pronounced for relatively large multivalent carriers versus free Abs, likely due to more profound consequences of positive alteration of epitope accessibility. This phenomenon provides a potential paradigm for optimizing the endothelial-targeted nanocarrier delivery of therapeutic agents.
Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju
2017-10-01
Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Attractive non-DLVO forces induced by adsorption of monovalent organic ions.
Smith, Alexander M; Maroni, Plinio; Borkovec, Michal
2017-12-20
Direct force measurements between negatively charged colloidal particles were carried out using an atomic force microscope (AFM) in aqueous solutions containing monovalent organic cations, namely tetraphenylarsonium (Ph 4 As + ), 1-hexyl-3-methylimidazolium (HMIM + ), and 1-octyl-3-methylimidazolium (OMIM + ). These ions adsorb to the particle surface, and induce a charge reversal. The forces become attractive at the charge neutralization point, but they are stronger than van der Waals forces. This additional and unexpected attraction decays exponentially with a decay length of a few nanometers, and is strikingly similar to the one previously observed in the presence of multivalent ions. This attractive force probably originates from coupled spontaneous charge fluctuations on the respective surfaces as initially suggested by Kirkwood and Shumaker.
Low-temperature thermally regenerative electrochemical system
Loutfy, R.O.; Brown, A.P.; Yao, N.P.
1982-04-21
A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
Low temperature thermally regenerative electrochemical system
Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping
1983-01-01
A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
An effective method to screen sodium-based layered materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen
2018-03-01
Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.
Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals
NASA Astrophysics Data System (ADS)
Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.
2018-02-01
Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.
Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck
Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.
2015-01-01
The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976
Structure of Polyelectrolyte Brushes in the Presence of Multivalent Counterions
Yu, Jing; Mao, Jun; Yuan, Guangcui; ...
2016-07-20
Polyelectrolyte brushes are of great importance to a wide range of fields, ranging from colloidal stabilization to responsive and tunable materials to lubrication. Here, we synthesized high-density polystyrenesulfonate (PSS) brushes using surface initiated atom transfer radical polymerization and performed neutron reflectivity (NR) and surface force measurements using a surface forces apparatus (SFA) to investigate the effect of monovalent Na +, divalent Ca 2+, Mg 2+, and Ba 2+, and trivalent Y 3+ counterions on the structure of the PSS brushes. NR and SFA results demonstrate that in monovalent salt solution the behavior of the PSS brushes agrees with scaling theorymore » well, exhibiting two distinct regimes: the osmotic and salted brush regimes. Introducing trivalent Y 3+ cations causes an abrupt shrinkage of the PSS brush due to the uptake of Y 3+ counterions. The uptake of Y 3+ counterions and shrinkage of the brush are reversible upon increasing the concentration of monovalent salt. Divalent cations, Mg 2+, Ca 2+, and Ba 2+, while all significantly affecting the structure of PSS brushes, show strong ion specific effects that are related to the specific interactions between the divalent cations and the sulfonate groups. Our results demonstrate that the presence of multivalent counterions, even at relatively low concentrations, can strongly affect the structure of polyelectrolyte brushes. Finally, the results also highlight the importance of ion specificity to the structure of polyelectrolyte brushes in solution.« less
MCTBI: a web server for predicting metal ion effects in RNA structures.
Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie
2017-08-01
Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg 2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Heitner, Tara; Satozawa, Noboru; McLean, Kirk; Vogel, David; Cobb, Ronald R; Liu, Bing; Mahmoudi, Mithra; Finster, Silke; Larsen, Brent; Zhu, Ying; Zhou, Hongxing; Müller-Tiemann, Beate; Monteclaro, Felipe; Zhao, Xiao-Yan; Light, David R
2006-12-01
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.
Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.
Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T
2016-01-19
Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.
Gu, Yunpeng; Katsura, Yukari; Yoshino, Takafumi; Takagi, Hidenori; Taniguchi, Kouji
2015-01-01
Rechargeable ion-batteries, in which ions such as Li+ carry charges between electrodes, have been contributing to the improvement of power-source performance in a wide variety of mobile electronic devices. Among them, Mg-ion batteries are recently attracting attention due to possible low cost and safety, which are realized by abundant natural resources and stability of Mg in the atmosphere. However, only a few materials have been known to work as rechargeable cathodes for Mg-ion batteries, owing to strong electrostatic interaction between Mg2+ and the host lattice. Here we demonstrate rechargeable performance of Mg-ion batteries at ambient temperature by selecting TiSe2 as a model cathode by focusing on electronic structure. Charge delocalization of electrons in a metal-ligand unit through d-p orbital hybridization is suggested as a possible key factor to realize reversible intercalation of Mg2+ into TiSe2. The viewpoint from the electronic structure proposed in this study might pave a new way to design electrode materials for multivalent-ion batteries. PMID:26228263
Using multivalency to tailor the superselective binding of polymers on substrates
NASA Astrophysics Data System (ADS)
Tito, Nicholas; Frenkel, Daan
2014-03-01
Multivalency is a microscopic design concept in which a single nanoscopic entity contains multiple ligands, each of which may bind to multiple receptors on another entity. A useful property of many multivalent systems is ``superselectivity,'' where the fraction of the multivalent species bound to their complementary receptors grows sharply with the total number of receptors available. For example in the past two decades, multivalency has been exploited to develop DNA-coated nanoparticles that self-assemble into aggregates over an extremely narrow temperature window. In this talk, we use analytic and self-consistent field theories to explore the binding of multivalent polymers to receptors on a flat substrate. Discussion will focus on how the sequence, number, and binding strength of ligands along the polymer chain can be used to tune the superselectivity of the system. Comparison with recent experiments on model systems will be presented as time permits. We wish to thank ERC Advanced Grant 227758.
Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier
2003-01-01
Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.
ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes.
Monestier, Marie; Charbonnier, Peggy; Gateau, Christelle; Cuillel, Martine; Robert, Faustine; Lebrun, Colette; Mintz, Elisabeth; Renaudet, Olivier; Delangle, Pascale
2016-04-01
Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W
2016-02-02
The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.
Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne
2010-01-01
Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566
EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids
USDA-ARS?s Scientific Manuscript database
Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...
Synthesis and photochemical properties of ferrotitanate In4FeTi3O13.5 with layer structure
NASA Astrophysics Data System (ADS)
Liu, Xuanxuan; Huang, Yanlin; Qin, Chuanxiang; Seo, Hyo Jin
2018-01-01
In4FeTi3O13.5 (InTi0.75Fe0.25O3.375) semiconductor was prepared via sol-gel citrate-complexation synthesis. This ferrotitanate derives from a solid-solution with InFeO3:In2Ti2O7 = 2:3. Phase formation and crystal structure of the sample were confirmed via XRD Rietveld refinement. Structural analyses indicated that there were two dimensional layers in the structure. The mutual repulsion in the layers induces great displacements of oxygen ions. The optical properties of In4FeTi3O13.5 nanoparticles were investigated. The direct allowed band gap (2.56 eV) shows a characteristic charge-transfer (CT) transitions of (O2p + Fe3d) → (Ti/Fe)3d in visible-light region. The band structure and energy positions were discussed. In4FeTi3O13.5 nanoparticles are demonstrated to be efficient for the photodegradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The photocatalytic activities were attributed to the special layer structure and the catalytic mediators of multivalent Ti4+/3+ and Fe3+/2+ confirmed by XPS measurements.
NASA Astrophysics Data System (ADS)
Solanki, Ketan Subhash
Hybrid supercapacitors (HSC) have been extensively investigated for enhanced charge storage capacity (Yoo, et al. 2014). Although Li-ion batteries are known for high energy density, but their limited power density has driven the research toward developing hybrid supercapacitors (Jayalakshmi and Balasubramanian 2008). They combine non-faradic properties of electric double layer capacitors (EDLC) and faradic properties of pseudocapacitors to provide high energy density without compromising high Power density (Yoo, et al. 2014) (Lukatskaya, Dunn and Gogotsi 2016). In HSC, one electrode will store energy by double layer mechanism whereas the other stores through redox intercalation or surface redox reactions (Lukatskaya, Dunn and Gogotsi 2016) (Karthikeyan, et al. 2010). In this study, we have examined the electrochemical characteristics of vanadium pentoxide (V2O5) and activated carbon (AC) in an aqueous multivalent aluminum nitrate (nonhydrate, Al(NO3)3) electrolyte for viable electrode applications in battery-type hybrid supercapacitors, also known as supercapattery. A Specific capacitance of 340 Fg -1 was obtained at a scanning rate of 10 mV/s. Although this configuration showed promising storage and cyclability capability but the voltage for intercalation of Al3+ ions occurred below zero voltage. Hence, right selection of electrodes for such configurations may help in obtaining intercalation and de-intercalation voltages above zero volt and thereby result in a viable practical application with better performance.
Prabakaran, G; Hoti, S L
2008-08-01
Immobilized techniques have been used widely for the controlled release formulation of mosquitoes. Among the microbial formulations, polymeric matrices play an important role in the controlled release of microbial pesticide at rates sufficiently effective to kill mosquitoes in the field. The advantage of these matrices is that they enhance the stability of both spores and toxin against pH, temperature variations, and UV irradiation. The disadvantage of using calcium alginate beads is that they are unstable upon contact with phosphate of potassium or sodium ions rich in the mosquito habitats. To overcome these problems, attempts were made to encapsulate Bacillus thuringiensis var. israelensis within alginate by using different multivalent counterions, namely, calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride, and the beads formed were tested for its mosquito larvicidal activity. Among all the beads tested, zinc alginate beads resulted in maximum larvicidal activity of 98% (+/-1.40 SE) against Culex quinquefasciatus IIIrd instar larvae and maximum spore count of 3.36 x 10(5) (+/-5291.50 SE) CFU/ml. Zinc alginate beads maintained their structure for up to 48 h when shaken vigorously on a rotary shaker at 180 rpm in the presence of 10 mM potassium phosphate buffer (pH 6.8 +/- 0.1). In conclusion, our results suggest that the use of zinc sulfate as counterions to encapsulate B. thuringiensis var. israelensis within alginate may be a potent mosquito control program in the habitats where more phosphate ions are present.
Alkali-enhanced steam foam oil recovery process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, H.C.
1986-09-02
This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less
Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty
2017-11-07
Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.
Multivalent ligands control stem cell behaviour in vitro and in vivo
NASA Astrophysics Data System (ADS)
Conway, Anthony; Vazin, Tandis; Spelke, Dawn P.; Rode, Nikhil A.; Healy, Kevin E.; Kane, Ravi S.; Schaffer, David V.
2013-11-01
There is broad interest in designing nanostructured materials that can interact with cells and regulate key downstream functions. In particular, materials with nanoscale features may enable control over multivalent interactions, which involve the simultaneous binding of multiple ligands on one entity to multiple receptors on another and are ubiquitous throughout biology. Cellular signal transduction of growth factor and morphogen cues (which have critical roles in regulating cell function and fate) often begins with such multivalent binding of ligands, either secreted or cell-surface-tethered to target cell receptors, leading to receptor clustering. Cellular mechanisms that orchestrate ligand-receptor oligomerization are complex, however, so the capacity to control multivalent interactions and thereby modulate key signalling events within living systems is currently very limited. Here, we demonstrate the design of potent multivalent conjugates that can organize stem cell receptors into nanoscale clusters and control stem cell behaviour in vitro and in vivo. The ectodomain of ephrin-B2, normally an integral membrane protein ligand, was conjugated to a soluble biopolymer to yield multivalent nanoscale conjugates that potently induce signalling in neural stem cells and promote their neuronal differentiation both in culture and within the brain. Super-resolution microscopy analysis yielded insights into the organization of the receptor-ligand clusters at the nanoscale. We also found that synthetic multivalent conjugates of ephrin-B1 strongly enhance human embryonic and induced pluripotent stem cell differentiation into functional dopaminergic neurons. Multivalent bioconjugates are therefore powerful tools and potential nanoscale therapeutics for controlling the behaviour of target stem cells in vitro and in vivo.
Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio
2011-10-01
The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.
NASA Astrophysics Data System (ADS)
Carrillo, Alvaro; Gujraty, Kunal V.; Rai, Prakash R.; Kane, Ravi S.
2005-07-01
Multivalent molecules, i.e. scaffolds presenting multiple copies of a suitable ligand, constitute an emerging class of nanoscale therapeutics. We present a novel approach for the design of multivalent ligands, which allows the biofunctionalization of polymers with proteins or peptides in a controlled orientation. It consists of the synthesis of water-soluble, activated polymer scaffolds of controlled molecular weight, which can be biofunctionalized with various thiolated ligands in aqueous media under mild conditions. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) and further modified to make them water-soluble. The incorporation of chloride groups activated the polymers to react with thiol-containing peptides or proteins, and the formation of multivalent ligands in aqueous media was demonstrated. This strategy represents a convenient route for synthesizing multivalent ligands of controlled dimensions and valency.
NASA Astrophysics Data System (ADS)
Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.
2016-09-01
New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong
2016-09-01
New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions frommore » a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.« less
Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2
NASA Astrophysics Data System (ADS)
Samad, Abdus; Shafique, Aamir; Shin, Young-Han
2017-04-01
A comparative study of the monovalent (Li, Na, and K) and multivalent (Be, Mg, Ca, and Al) metal ion adsorption and diffusion on an electronically semi-metallic two-dimensional nanosheet of 1T structured TiS2 is presented here to contribute to the search for abundant, cheap, and nontoxic ingredients for efficient rechargeable metal ion batteries. The total formation energy of the metal ion adsorption and the Bader charge analysis show that the divalent Mg and Ca ions can have a charge storage density double that of the monovalent Li, Na, and K ions, while the Be and Al ions form metallic clusters even at a low adsorption density because of their high bulk energies. The adsorption of Mg ions shows the lowest averaged open circuit voltage (0.13 V). The activation energy barriers for the diffusion of metal ions on the surface of the monolayer successively decrease from Li to K and Be to Ca. Mg and Ca, being divalent, are capable of storing a higher power density than Li while K and Na have a higher rate capability than the Li ions. Therefore, rechargeable Li ion batteries can be totally or partially replaceable by Mg ion batteries, where high power density and high cell voltage are required, while the abundant, cheap, and fast Na ions can be used for green grid applications.
Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W
2016-01-01
The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI: http://dx.doi.org/10.7554/eLife.13571.001 PMID:26836305
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M.; Dutta, Kaushik; Karp, Jerome M.; Cabana, Christina M.; Rout, Michael P.; Cowburn, David
2018-01-01
Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe–Gly nucleoporins (FG Nups) that contain multiple phenylalanine–glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy–entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG–TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of “fuzzy” interactions involving IDPs. PMID:29374059
Mitrea, Diana M.; Cika, Jaclyn A.; Guy, Clifford S.; ...
2016-02-02
In this study, the nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identifymore » multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.« less
Multivalent interaction based carbohydrate biosensors for signal amplification
Wang, Yanyan; Chalagalla, Srinivas; Li, Tiehai; Sun, Xue-long; Zhao, Wei; Wang, Peng; Zeng, Xiangqun
2010-01-01
Multivalent interaction between boronic acids immobilized on Quartz Crystal Microbalance (QCM) sensor surface and the carbohydrates modified Au - nanoparticle (AuNP) has been demonstrated for the development of a sensitive carbohydrate biosensor. Briefly, a boronic acid - containing polymer (boropolymer) as multivalent carbohydrate receptor was oriented immobilized on the cysteamine coated electrode through isourea bond formation. Carbohydrates were conjugated to AuNPs to generate a multivalent carbohydrates moiety to amplify the response signal. Thus, the binding of the carbohydrate conjugated AuNPs to the boropolymer surface are multivalent which could simultaneously increase the binding affinity and specificity. We systematically studied the binding between five carbohydrate conjugated AuNPs and the boropolymer. Our studies show that the associate constant (Ka) was in the order of fucose < glucose < mannose < galactose < maltose. A linear response in the range from 23 µM to 3.83 mM was observed for mannose conjugated AuNPs and the boropolymer recognition elements, with the lower detection limit of 1.5 µM for the carbohydrate analytes. Furthermore, the multivalent binding between carbohydrates and boronic acids are reversible and allow the regeneration of boropolymer surface by using 1M acetic acid so as to sequentially capture and release the carbohydrate analytes. PMID:20863680
NASA Astrophysics Data System (ADS)
Rao, M. V. Sambasiva; Kumar, A. Suneel; Ram, G. Chinna; Tirupataiah, Ch.; Rao, D. Krishna
2018-01-01
Multi-component glass ceramics composition Na2O-PbO-Bi2O3-SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.
Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature
NASA Astrophysics Data System (ADS)
Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang
2016-05-01
DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College Innovation Talent Team of Guizhou Province, (2014) 32
Multivalent Cation-Bridged PI(4,5)P2 Clusters Form at Very Low Concentrations.
Wen, Yi; Vogt, Volker M; Feigenson, Gerald W
2018-06-05
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca 2+ , Mg 2+ , Zn 2+ , or trivalent ions Fe 3+ and Al 3+ . Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patel, J.; Mishra, A. K.
2007-08-01
In the present paper an extended fractional differintegral operator , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investigated by applying the techniques of differential subordination. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.
Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.
Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2018-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.
Paudyal, Hari; Pangeni, Bimala; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Ghimire, Kedar Nath; Alam, Shafiq
2013-11-01
A green seaweed, Ulva japonica, was modified by loading multivalent metal ions such as Zr(IV) and La(III) after CaCl2 cross-linking to produce metal loaded cross-linked seaweed (M-CSW) adsorbents, which were characterized by elemental analysis, functional groups identification, and metal content determination. Maximum sorption potential for fluoride was drastically increased after La(III) and Zr(IV) loading, which were evaluated as 0.58 and 0.95 mmol/g, respectively. Loaded fluoride was quantitatively desorbed by using dilute alkaline solution for its regeneration. Mechanism of fluoride adsorption was inferred in terms of ligand exchange reaction between hydroxyl ion on co-ordination sphere of the loaded metal ions of M-CSW and fluoride ion in aqueous solution. Application of M-CSW for the treatment of actual waste plating solution exhibited successful removal of fluoride to clear the effluent and environmental standards in Japan, suggesting high possibility of its application for the treatment of fluoride rich waste water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Functional Materials from Polymeric Ionic Liquids
NASA Astrophysics Data System (ADS)
Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram
Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.
Extracellular electron transfer mechanisms between microorganisms and minerals.
Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K
2016-10-01
Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.
Electrochemical characterization of nanodimensional metal oxide materials
NASA Astrophysics Data System (ADS)
Tang, Paul Enle
Energy storage devices have become a bottleneck in performance improvements for portable electronics. This research seeks to answer basic science questions that may lead to the necessary improvements. First, this work demonstrates that insertion of multivalent ions into vanadium oxide greatly exceeds the storage capacity of materials presently used. Second, this work demonstrates that potassium ferrate exhibits a uniquely large pseudocapacitive effect. This effect can be used to great advantage when high power density and high energy density are required. Lastly, this work proposes a model of pseudocapacitance that has a greater descriptive power than that of previous models.
Song, Xuedong; Swanson, Basil I.
2001-10-02
An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.
Chemical treatment of wastewater from flue gas desulphurisation
NASA Astrophysics Data System (ADS)
Pasiecznik, Iwona; Szczepaniak, Włodzimierz
2017-11-01
The article presents results of laboratory tests of removing boron and arsenium from non-ideal solutions using double-layered magnesium/aluminium hydroxides (Mg/Al Double-Layered Hydroxide - DLH) produced with nitrate-chloride method. In research, wastewater from an installation for flue gas desulfurization was examined. Double-layered hydroxides are perfect absorbents for anionic compounds. The research proved high effectiveness of preparation with reference to arsenium, as well as confirmed the effect of presence of sulfatic and arsenate ions on the effectiveness of boron removal. On the basis of research on absorption kinetics a theoretical dose of DLH/NO3-Cl/M preparation was calculated and compared with a dose that ensures emimination of boron below the limit standarized by the national regulations. Application of double-layered magnesium/aluminium hydroxides for boron elimination from industrial wastewater requires significantly higher doses of preparation than those calculated in model investigations. It is due to the priority of removal of multivalent ions, such as sulfatic, arsenate or phosphate ions, by DLH/NO3-Cl/M.
Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.
Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker
2018-05-01
Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhibition of HIV Fusion with Multivalent Gold Nanoparticles
Bowman, Mary-Catherine; Ballard, T. Eric; Ackerson, Christopher J.; Feldheim, Daniel L.; Margolis, David M.; Melander, Christian
2010-01-01
The design and synthesis of a multivalent gold nanoparticle therapeutic is presented. SDC-1721, a fragment of the potent HIV inhibitor TAK-779, was synthesized and conjugated to 2.0 nm diameter gold nanoparticles. Free SDC-1721 had no inhibitory effect on HIV infection; however, the (SDC-1721)-gold nanoparticle conjugates displayed activity comparable to that of TAK-779. This result suggests that multivalent presentation of small molecules on gold nanoparticle surfaces can convert inactive drugs into potent therapeutics. PMID:18473457
Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.
Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun
2016-01-01
Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A
2011-11-15
Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear them.
Charge reversal at a planar boundary between two dielectrics.
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Charge reversal at a planar boundary between two dielectrics
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong
2016-01-01
Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.
Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia
NASA Astrophysics Data System (ADS)
Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.
1994-11-01
Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.
Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands
Wang, Xuemei; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem
2012-01-01
Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high selectivity and sensitivity to Hg2+, with a linear working range of 0–50 μM, a wide pH span of 4–10, and a detection limit of 0.4 μM Hg2+. PMID:23222686
Extracellular electron transfer mechanisms between microorganisms and minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Liang; Dong, Hailiang; Reguera, Gemma
Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels andmore » nanomaterials.« less
Flotation of Heterocoagulated Particulates in Ulexite/SDS/Electrolyte System.
Celik; Yasar; El-Shall
1998-07-15
Salt-type minerals can be usually floated with either anionic or cationic collectors. In a number of systems, flotation has been reported to remarkably increase above the concentrations where precipitation of the collector salt is initiated. Some studies attribute this phenomenon to heterocoagulation of oppositely charged colloidal precipitate and mineral particles. In this study, ulexite, a semisoluble boron mineral, in the presence of various multivalent ions, i.e. Ba2+, Mg2+, Ca2+, and Al3+, was found to exhibit excellent flotation even when particles, colloidal precipitates, and bubbles acquire a similar charge, which indicates that attractive structural forces exceed the forces of electrostatic repulsion. Copyright 1998 Academic Press.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200
NASA Astrophysics Data System (ADS)
Yang, Ruidong
Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than the commercial Nafion 117 membrane. The high proton transport selectivity is a result of the molecular sieving effect between the H3O+ and multivalent vanadium ions by the zeolitic pores; thus the zeolite particles significantly reduced the effective membrane surface area for vanadium ion permeation. The low resistance of the composite membrane can be attributed to the reduced thickness of the Nafion base film and the thinness of the colloidal silicalite top layer. The composite membrane outperformed the Nafion 117 membrane in the vanadium RFB operation in terms of the overall charge-discharge energy efficiency. Efforts have been made in further investigation of ion and molecular transport diffusivity in the polycrystalline silicalite film using zeolite-coated optical fiber interferometers. A physical model has been established for analyzing the molecular diffusivity in the zeolite layer based on the temporal responses of the optical interferometric signals during the transient process of molecular sorption. Experiments were first carried out to study the diffusivity of isobutane to evaluate the effectiveness of the proposed optical method. The isobutane diffusivities in silicalite measured by this method were in good agreement with the values reported in literature. The zeolite coated fiber optic interferometer was however ineffective in monitoring ion sorption or ion exchange in the silicalite films. It is suggested that more sensitive fiber optic devices are needed for studying the ion diffusion.
All 2D materials as electrodes for high power hybrid energy storage applications
NASA Astrophysics Data System (ADS)
Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.
2018-04-01
Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.
EPR and IR spectral investigations on some leafy vegetables of Indian origin
NASA Astrophysics Data System (ADS)
Prasuna, C. P. Lakshmi; Chakradhar, R. P. S.; Rao, J. L.; Gopal, N. O.
2009-09-01
EPR spectral investigations have been carried out on four edible leafy vegetables of India, which are used as dietary component in day to day life. In Rumex vesicarius leaf sample, EPR spectral investigations at different temperatures indicate the presence of anti-ferromagnetically coupled Mn(IV)-Mn(IV) complexes. EPR spectra of Trigonella foenum graecum show the presence of Mn ions in multivalent state and Fe 3+ ions in rhombic symmetry. EPR spectra of Basella rubra indicate the presence of Mn(IV)-O-Mn(IV) type complexes. The EPR spectra of Basella rubra have been studied at different temperatures. It is found that the spin population for the resonance signal at g = 2.06 obeys the Boltzmann distribution law. The EPR spectra of Moringa oliefera leaves show the presence of Mn 2+ ions. Radiation induced changes in free radical of this sample have also been studied. The FT-IR spectra of Basella rubra and Moringa oliefera leaves show the evidences for the protein matrix bands and those corresponding to carboxylic C dbnd O bonds.
Trona-enhanced steam foam oil recovery process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, H.C.
1988-03-01
In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less
Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko
2011-01-01
We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.
Kong, Desheng; Wang, Yan; Ji, Ping; Li, Wei; Ying, Tianlei; Huang, Jinghe; Wang, Chen; Wu, Yanling; Wang, Yanping; Chen, Weizao; Hao, Yanling; Hong, Kunxue; Shao, Yiming; Dimitrov, Dimiter S; Jiang, Shibo; Ma, Liying
2018-05-11
Current treatments cannot completely eradicate HIV-1 owing to the presence of latently infected cells which harbor transcriptionally silent HIV-1. However, defucosylated antibodies can readily kill latently infected cells after their activation to express envelope glycoprotein (Env) through antibody-dependent cellular cytotoxicity (ADCC). We herein aimed to test a defucosylated bispecific multivalent molecule consisting of domain-antibody and single-domain CD4, LSEVh-LS-F, for its HIV-1 neutralizing activity and ADCC against the reactivated latently infected cells, compared with the non-defucosylated molecule LSEVh-LS. LSEVh-LS-F's neutralizing activity against a panel of newly characterized Chinese HIV-1 clinical isolates was assessed by using TZM-bl- and PBMC-based assays. LSEVh-LS-F-mediated ADCC in the presence of NK cells against cell lines that stably express Env proteins, HIV-1-infected cells and LRA-reactivated HIV-1 latent cells, was measured using a lactate dehydrogenase (LDH) cytotoxicity assay or flow cytometry. LSEVh-LS-F and LSEVh-LS were equally effective in neutralized infection of all HIV-1 isolates tested with IC50 and IC90 values 3∼4-fold lower than those of VRC01. LSEVh-LS-F was more effective in NK-mediated killing of HIV-1 Env-expressing cell lines, HIV-1-infected cells, latency reactivation agents-reactivated ACH2 cells, and reactivated latently infected resting CD4 T cell line as well as resting CD4 T lymphocytes isolated from patients receiving highly active anti-retroviral therapy (HAART). LSEVh-LS-F exhibits broad HIV-1 neutralizing activity and enhanced ADCC against HIV-1-infected cells, reactivated latently infected cell lines and primary CD4 T cells, thus being a promising candidate therapeutic for eradicating the HIV-1 reservoir.
Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.
Gordeyeva, Korneliya S; Fall, Andreas B; Hall, Stephen; Wicklein, Bernd; Bergström, Lennart
2016-06-15
Aggregation of dispersed rod-like particles like nanocellulose can improve the strength and rigidity of percolated networks but may also have a detrimental effect on the foamability. However, it should be possible to improve the strength of nanocellulose foams by multivalent ion-induced aggregation if the aggregation occurs after the foam has been formed. Lightweight and highly porous foams based on TEMPO-mediated oxidized cellulose nanofibrils (CNF) were formulated with the addition of a non-ionic surfactant, pluronic P123, and CaCO3 nanoparticles. Foam volume measurements show that addition of the non-ionic surfactant generates wet CNF/P123 foams with a high foamability. Foam bubble size studies show that delayed Ca-induced aggregation of CNF by gluconic acid-triggered dissolution of the CaCO3 nanoparticles significantly improves the long-term stability of the wet composite foams. Drying the Ca-reinforced foam at 60 °C results in a moderate shrinkage and electron microscopy and X-ray tomography studies show that the pores became slightly oblate after drying but the overall microstructure and pore/foam bubble size distribution is preserved after drying. The elastic modulus (0.9-1.4 MPa) of Ca-reinforced composite foams with a density of 9-15 kg/m(3) is significantly higher than commercially available polyurethane foams used for thermal insulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.
Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry
2017-05-26
A multivalent phosphorus dendrimer 1G 3 and its corresponding Cu-complex, 1G 3 -Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G 3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A Sucrose-derived Scaffold for Multimerization of Bioactive Peptides
Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K.; Morse, David L.; Gillies, Robert J.; Mash, Eugene A.
2011-01-01
A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N3(CH2)5(C=O)-His-dPhe-Arg-Trp-NH2 (MSH4) or N3(CH2)5(C=O)-Trp-Met-Asp-Phe-NH2 (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-dPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2 (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second “anchoring” binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. PMID:21940174
A sucrose-derived scaffold for multimerization of bioactive peptides.
Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K; Morse, David L; Gillies, Robert J; Mash, Eugene A
2011-11-01
A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N(3)(CH(2))(5)(CO)-His-DPhe-Arg-Trp-NH(2) (MSH4) or N(3)(CH(2))(5)(CO)-Trp-Met-Asp-Phe-NH(2) (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2) (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH(2) (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second 'anchoring' binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. Copyright © 2011 Elsevier Ltd. All rights reserved.
Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui
2015-06-04
Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peng, Lele; Zhu, Yue; Peng, Xu; Fang, Zhiwei; Chu, Wangsheng; Wang, Yu; Xie, Yujun; Li, Yafei; Cha, Judy J; Yu, Guihua
2017-10-11
Two-dimensional (2D) energy materials have shown the promising electrochemical characteristics for lithium ion storage. However, the decreased active surfaces and the sluggish charge/mass transport for beyond-lithium ion storage that has potential for large-scale energy storage systems, such as sodium or potassium ion storage, caused by the irreversible restacking of 2D materials during electrode processing remain a major challenge. Here we develop a general interlayer engineering strategy to address the above-mentioned challenges by using 2D ultrathin vanadyl phosphate (VOPO 4 ) nanosheets as a model material for challenging sodium ion storage. Via controlled intercalation of organic molecules, such as triethylene glycol and tetrahydrofuran, the sodium ion transport in VOPO 4 nanosheets has been significantly improved. In addition to advanced characterization including X-ray diffraction, high-resolution transmission electron microscopy, and X-ray absorption fine structure to characterize the interlayer and the chemical bonding/configuration between the organic intercalants and the VOPO 4 host layers, density functional theory calculations are also performed to understand the diffusion behavior of sodium ions in the pure and TEG intercalated VOPO 4 nanosheets. Because of the expanded interlayer spacing in combination with the decreased energy barriers for sodium ion diffusion, intercalated VOPO 4 nanosheets show much improved sodium ion transport kinetics and greatly enhanced rate capability and cycling stability for sodium ion storage. Our results afford deeper understanding of the interlayer-engineering strategy to improve the sodium ion storage performance of the VOPO 4 nanosheets. Our results may also shed light on possible multivalent-ion based energy storage such as Mg 2+ and Al 3+ .
Yamini, Goli; Kalu, Nnanya; Nestorovich, Ekaterina M
2016-11-15
Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA 63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA 63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC 50 values of the G2-OH/PA 63 and G2-NH₂/PA 63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis -negative voltage increase. We also describe kinetics of the PA 63 ion current modulation by two different types of the "imperfect" PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH₂ dendrimer and G3-NH₂ dendron. At low voltages, both "imperfect" dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH₂ PAMAM dendrimer.
Yamini, Goli; Kalu, Nnanya; Nestorovich, Ekaterina M.
2016-01-01
Nearly all the cationic molecules tested so far have been shown to reversibly block K+ current through the cation-selective PA63 channels of anthrax toxin in a wide nM–mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH2, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH2/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in kon and a decrease of only about ten times in tres with G2-OH compared to G2-NH2. At the same time for both blockers, kon and tres increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH2. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH2, increasing with the cis-negative voltage increase. We also describe kinetics of the PA63 ion current modulation by two different types of the “imperfect” PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH2 dendrimer and G3-NH2 dendron. At low voltages, both “imperfect” dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH2 PAMAM dendrimer. PMID:27854272
NASA Astrophysics Data System (ADS)
Muñoz, Antonio; Sigwalt, David; Illescas, Beatriz M.; Luczkowiak, Joanna; Rodríguez-Pérez, Laura; Nierengarten, Iwona; Holler, Michel; Remy, Jean-Serge; Buffet, Kevin; Vincent, Stéphane P.; Rojo, Javier; Delgado, Rafael; Nierengarten, Jean-François; Martín, Nazario
2016-01-01
The use of multivalent carbohydrate compounds to block cell-surface lectin receptors is a promising strategy to inhibit the entry of pathogens into cells and could lead to the discovery of novel antiviral agents. One of the main problems with this approach, however, is that it is difficult to make compounds of an adequate size and multivalency to mimic natural systems such as viruses. Hexakis adducts of [60]fullerene are useful building blocks in this regard because they maintain a globular shape at the same time as allowing control over the size and multivalency. Here we report water-soluble tridecafullerenes decorated with 120 peripheral carbohydrate subunits, so-called ‘superballs’, that can be synthesized efficiently from hexakis adducts of [60]fullerene in one step by using copper-catalysed azide-alkyne cycloaddition click chemistry. Infection assays show that these superballs are potent inhibitors of cell infection by an artificial Ebola virus with half-maximum inhibitory concentrations in the subnanomolar range.
Salting-out and multivalent cation precipitation of anionic surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, R.D. Jr.; Keppel, R.A.; Cosper, M.B.
1981-02-01
In this surfactant/polymer flooding process, a carefully designed surfactant slug is injected into an oil-bearing formation with a view to reducing the oil/water interfacial tension substantially so as to facilitate mobilization of oil droplets trapped in the less accessible void spaces of the reservoir rock. When the surfactant comes into contact with reservoir brine, oil and rock, several phenomena can occur which result in loss of surfactant from the slug, i.e., salting-out of surfactant by NaCl, precipitation of insoluble soaps by multivalent cations such as calcium, partitioning to oil of both dissolved and precipitated surfactant, and adsorption of surfactant onmore » reservoir rock have been identified as important surfactant loss processes. This study presents some experimental data which illustrate the effects of salt and multivalent cations, identifies the mechanisms which are operative, and develops mathematical relationships which enable one to describe the behavior of surfactant systems when brought into contact with salt, multivalent cations, or both. 26 references.« less
Muñoz, Antonio; Sigwalt, David; Illescas, Beatriz M; Luczkowiak, Joanna; Rodríguez-Pérez, Laura; Nierengarten, Iwona; Holler, Michel; Remy, Jean-Serge; Buffet, Kevin; Vincent, Stéphane P; Rojo, Javier; Delgado, Rafael; Nierengarten, Jean-François; Martín, Nazario
2016-01-01
The use of multivalent carbohydrate compounds to block cell-surface lectin receptors is a promising strategy to inhibit the entry of pathogens into cells and could lead to the discovery of novel antiviral agents. One of the main problems with this approach, however, is that it is difficult to make compounds of an adequate size and multivalency to mimic natural systems such as viruses. Hexakis adducts of [60]fullerene are useful building blocks in this regard because they maintain a globular shape at the same time as allowing control over the size and multivalency. Here we report water-soluble tridecafullerenes decorated with 120 peripheral carbohydrate subunits, so-called 'superballs', that can be synthesized efficiently from hexakis adducts of [60]fullerene in one step by using copper-catalysed azide–alkyne cycloaddition click chemistry. Infection assays show that these superballs are potent inhibitors of cell infection by an artificial Ebola virus with half-maximum inhibitory concentrations in the subnanomolar range.
Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri
2012-12-27
During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent plasmids. In a single shot, the design of efficient multivalent plasmids will be very beneficial for DNA-based vaccination against numerous diseases.
D'Adamio, Giampiero; Parmeggiani, Camilla; Goti, Andrea; Moreno-Vargas, Antonio J; Moreno-Clavijo, Elena; Robina, Inmaculada; Cardona, Francesca
2014-08-28
The synthesis of the first multivalent pyrrolizidine iminosugars is reported. The key azido intermediates 4 and 31 were prepared after suitable synthetic elaboration of the cycloadduct obtained from 1,3-dipolar cycloaddition of D-arabinose derived nitrone to dimethylacrylamide. The key step of the strategy was the stereoselective installation of an azido moiety at C-6 of the pyrrolizidine skeleton. The click reaction with different monovalent and dendrimeric alkyne scaffolds allowed the preparation of a library of new mono- and multivalent pyrrolizidine compounds that were preliminarily assayed as glycosidase inhibitors towards a panel of commercially available glycosyl hydrolases.
Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene
O'Hern, Sean C.; Jang, Doojoon; Bose, Suman; ...
2015-04-27
Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes formore » nanofiltration, desalination, and other separation processes.« less
Interfacing nanostructures to biological cells
Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.
2012-09-04
Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.
Bergström, Maria; Liu, Shuang; Kiick, Kristi L.; Ohlson, Sten
2009-01-01
Anti-adhesion drugs may be an alternative to antibiotics to control infection of micro-organisms. The well-characterized interaction between cholera toxin and the cellular glycolipid GM1 makes it an attractive model for inhibition studies in general. In this report, we demonstrate a high-performance liquid affinity chromatography approach called weak affinity chromatography to evaluate cholera toxin inhibitors. The cholera toxin B-subunit was covalently coupled to porous silica and a (weak) affinity column was produced. The KD values of galactose and meta-nitrophenyl α-D-galactoside were determined with weak affinity chromatography to be 52 and 1 mM, respectively, which agree well with IC50 values previously reported. To increase inhibition potency multivalent inhibitors have been developed and the interaction with multivalent glycopolypeptides was also evaluated. The affinity of these compounds was found to correlate with the galactoside content but KD values were not obtained because of the inhomogeneous response and slow off-rate from multivalent interactions. Despite the limitations in obtaining direct KD values of the multivalent galactopolypeptides, weak affinity chromatography represents an additional and valuable tool in the evaluation of monovalent as well as multivalent cholera toxin inhibitors. It offers multiple advantages, such as a low sample consumption, high reproducibility and short analysis time, which are often not observed in other methods of analysis. PMID:19152642
USDA-ARS?s Scientific Manuscript database
Our objective was to examine immunosuppression induced by dexamethasone (DEX) administration in cattle upon immunological responses to a multivalent respiratory vaccine containing replicating and non-replicating agents. Steers ( n = 32; 209 +/- 8 kg) seronegative to infectious bovine rhinotracheitis...
Application of ion mobility-mass spectrometry to microRNA analysis.
Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro
2013-03-01
Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.
Alidoosti, Elaheh; Zhao, Hui
2018-05-15
At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.
Effects of electrostatic interactions on ligand dissociation kinetics
NASA Astrophysics Data System (ADS)
Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.
2018-02-01
We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.
NASA Astrophysics Data System (ADS)
Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.
2018-05-01
Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.
Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard
2016-01-21
The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.
Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal
2018-05-01
When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.
Leistra, Abigail N; Han, Jong Hyun; Tang, Shengzhuang; Orr, Bradford G; Banaszak Holl, Mark M; Choi, Seok Ki; Sinniah, Kumar
2015-05-07
Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.
Lepage, Mathieu L; Schneider, Jérémy P; Bodlenner, Anne; Compain, Philippe
2015-11-06
A modular strategy has been developed to access a diversity of cyclic and acyclic oligosaccharide analogues designed as prefunctionalized scaffolds for the synthesis of multivalent ligands. This convergent approach is based on bifunctional sugar building blocks with two temporarily masked functionalities that can be orthogonally activated to perform Cu(I)-catalyzed azide-alkyne cycloaddition reactions (CuAAC). The reducing end is activated as a glycosyl azide and masked as a 1,6-anhydro sugar, while the nonreducing end is activated as a free alkyne and masked as a triethylsilyl-alkyne. Following a cyclooligomerization approach, the first examples of close analogues of cyclodextrins composed of d-glucose residues and triazole units bound together through α-(1,4) linkages were obtained. The cycloglucopyranoside analogue containing four sugar units was used as a template to prepare multivalent systems displaying a protected d-mannose derivative or an iminosugar by way of CuAAC. On the other hand, the modular approach led to acyclic alkyne-functionalized scaffolds of a controlled size that were used to synthesize multivalent iminosugars.
Hexameric supramolecular scaffold orients carbohydrates to sense bacteria.
Grünstein, Dan; Maglinao, Maha; Kikkeri, Raghavendra; Collot, Mayeul; Barylyuk, Konstantin; Lepenies, Bernd; Kamena, Faustin; Zenobi, Renato; Seeberger, Peter H
2011-09-07
Carbohydrates are integral to biological signaling networks and cell-cell interactions, yet the detection of discrete carbohydrate-lectin interactions remains difficult since binding is generally weak. A strategy to overcome this problem is to create multivalent sensors, where the avidity rather than the affinity of the interaction is important. Here we describe the development of a series of multivalent sensors that self-assemble via hydrophobic supramolecular interactions. The multivalent sensors are comprised of a fluorescent ruthenium(II) core surrounded by a heptamannosylated β-cyclodextrin scaffold. Two additional series of complexes were synthesized as proof-of-principle for supramolecular self-assembly, the fluorescent core alone and the core plus β-cyclodextrin. Spectroscopic analyses confirmed that the three mannosylated sensors displayed 14, 28, and 42 sugar units, respectively. Each complex adopted original and unique spatial arrangements. The sensors were used to investigate the influence of carbohydrate spatial arrangement and clustering on the mechanistic and qualitative properties of lectin binding. Simple visualization of binding between a fluorescent, multivalent mannose complex and the Escherichia coli strain ORN178 that possesses mannose-specific receptor sites illustrates the potential for these complexes as biosensors.
Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuang Liu
2012-10-24
This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition ofmore » G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.« less
Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.
Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D
2016-05-18
A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation.
The role of multivalency in the association kinetics of patchy particle complexes.
Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G
2017-06-21
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
The role of multivalency in the association kinetics of patchy particle complexes
NASA Astrophysics Data System (ADS)
Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.
2017-06-01
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Singh, Ajay N.; Liu, Wei; Hao, Guiyang; Kumar, Amit; Gupta, Anjali; Öz, Orhan K.; Hsieh, Jer-Tsong; Sun, Xiankai
2011-01-01
The role of the multivalent effect has been well recognized in the design of molecular imaging probes towards the desired imaging signal amplification. Recently we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds (tBu3-1-COOH, tBu3-2-(COOH)2 and tBu3-3-(COOH)3) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for 68Ga-based PET probe design and signal amplification via multivalent effect. For proof of principle, a known integrin αvβ3 specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H31, H32, and H33), which present 1 – 3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin αvβ3 binding affinities (IC50 values), the enhanced specific binding was observed for multivalent conjugates (H32: 43.9 ± 16.1 nM; H33: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H31: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with 68Ga3+ within 30 min at room temperature in high radiochemical yields (> 95%). The in vivo evaluation of the labeled conjugates, 68Ga-1, 68Ga-2 and 68Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin αvβ3 positive PC-3 tumor xenografts (n = 3). All 68Ga -labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h post-injection (p.i.). The PET signal amplification in PC-3 tumor by multivalent effect was clearly displayed by the tumor uptake of the 68Ga-labeled conjugates (68Ga-3: 2.55 ± 0.50%ID/g; 68Ga-2: 1.90 ± 0.10 %ID/g; 68Ga-1: 1.66 ± 0.15 %ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal amplification properties, which may find potential applications in diagnostic gallium radiopharmaceuticals. PMID:21740059
Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping
2017-12-01
Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emergence of complex chemistry on an organic monolayer.
Prins, Leonard J
2015-07-21
In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system originate from two features: the presence of metal ions that are complexed in the organic monolayer and the multivalent nature of the system. Complexed metal ions play an important role in determining the affinity and selectivity of the interaction with small molecules, but serve also as regulatory elements for determining how many molecules are bound simultaneously. Importantly, neighboring metal ion complexes also create catalytic pockets in which two metal ions cooperatively catalyze the cleavage of an RNA-model compound. The multivalent nature of the system permits multiple noncovalent interactions with small molecules that enhances the affinity, but is also at the basis of simple signal transduction pathways and adaptive behavior.
The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.
Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri
2011-06-21
In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar membranes and charged proteins or biopolymers for encapsulation and delivery applications. © 2011 American Chemical Society
The Counterproliferation Imperative: Meeting Tomorrow’s Challenges
2001-11-01
western equine encephalitis / eastern equine encephalitis ) vaccine Multiagent vaccine delivery system Portable Common Diagnostic System Licensed multivalent...vaccine Licensed new plague vaccine Licensed new Venezuelan Equine Encephalomyelitis (VEE) vaccine Licensed multivalent equine encephalitis (VEE...NOV 2001 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The Counterproliferation Imperative Meeting Tomorrow’s Challenges 5a
Khelashvili, George; Weinstein, Harel; Harries, Daniel
2008-01-01
As charged macromolecules adsorb and diffuse on cell membranes in a large variety of cell signaling processes, they can attract or repel oppositely charged lipids. This results in lateral membrane rearrangement and affects the dynamics of protein function. To address such processes quantitatively we introduce a dynamic mean-field scheme that allows self-consistent calculations of the equilibrium state of membrane-protein complexes after such lateral reorganization of the membrane components, and serves to probe kinetic details of the process. Applicable to membranes with heterogeneous compositions containing several types of lipids, this comprehensive method accounts for mobile salt ions and charged macromolecules in three dimensions, as well as for lateral demixing of charged and net-neutral lipids in the membrane plane. In our model, the mobility of membrane components is governed by the diffusion-like Cahn-Hilliard equation, while the local electrochemical potential is based on nonlinear Poisson-Boltzmann theory. We illustrate the method by applying it to the adsorption of the anionic polypeptide poly-Lysine on negatively charged lipid membranes composed of binary mixtures of neutral and monovalent lipids, or onto ternary mixtures of neutral, monovalent, and multivalent lipids. Consistent with previous calculations and experiments, our results show that at steady-state multivalent lipids (such as PIP2), but not monovalent lipid (such as phosphatidylserine), will segregate near the adsorbing macromolecules. To address the corresponding diffusion of the adsorbing protein in the membrane plane, we couple lipid mobility with the propagation of the adsorbing protein through a dynamic Monte Carlo scheme. We find that due to their higher mobility dictated by the electrochemical potential, multivalent lipids such as PIP2 more quickly segregate near oppositely charged proteins than do monovalent lipids, even though their diffusion constants may be similar. The segregation, in turn, slows protein diffusion, as lipids introduce an effective drag on the motion of the adsorbate. In contrast, monovalent lipids such as phosphatidylserine only weakly segregate, and the diffusions of protein and lipid remain largely uncorrelated. PMID:18065451
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-21
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
Mono and Multivalency In Tethered Protein-Carbohydrate Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratto, T V; Langry, K C; Rudd, R E
2004-01-29
Molecular recognition in biological systems typically involves large numbers of interactions simultaneously. By using a multivalent approach, weak interactions with fairly low specificity can become strong highly specific interactions. Additionally, this allows an organism to control the strength and specificity of an interaction simply by controlling the number of binding molecules (or binding sites), which in turn can be controlled through transcriptional regulation.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. Beef heifers and cows (n=122), seronegative and virus negative for BVDV, were randomly ...
Use of a Genetically Engineered Protein for the Design of a Multivalent MRI Contrast Agent
Karfeld, Lindsay S.; Bull, Steve R.; Davis, Nicolynn E.; Meade, Thomas J.; Barron, Annelise E.
2008-01-01
The majority of clinically used contrast agents (CAs) for magnetic resonance imaging have low relaxivities and thus require high concentrations for signal enhancement. Research has turned to multivalent, macromolecular CAs to increase CA efficiency. However, previously developed macromolecular CAs do not provide high relaxivities, have limited biocompatibility, and/or do not have a structure that is readily modifiable to tailor to particular applications. We report a new family of multivalent, biomacromolecular, genetically engineered protein polymer-based CAs; the protein backbone contains evenly spaced lysines that are derivatized with gadolinium (Gd(III)) chelators. The protein's length and repeating amino acid sequence are genetically specified. We reproducibly obtained conjugates with an average of 8 – 9 Gd(III) chelators per protein. These multivalent CAs reproducibly provide a high relaxivity of 7.3 mM-1s-1 per Gd(III) and 62.6 mM-1s-1 per molecule. Furthermore, they can be incorporated into biomaterial hydrogels via chemical crosslinking of remaining free lysines, and provide a dramatic contrast enhancement. Thus, these protein polymer CAs could be a useful tool for following the evolution of tissue engineering scaffolds. PMID:17927227
Interactions between silica particles in the presence of multivalent coions.
Uzelac, Biljana; Valmacco, Valentina; Trefalt, Gregor
2017-08-30
Forces between charged silica particles in solutions of multivalent coions are measured with colloidal probe technique based on atomic force microscopy. The concentration of 1 : z electrolytes is systematically varied to understand the behavior of electrostatic interactions and double-layer properties in these systems. Although the coions are multivalent the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory perfectly describes the measured force profiles. The diffuse-layer potentials and regulation properties are extracted from the forces profiles by using the DLVO theory. The dependencies of the diffuse-layer potential and regulation parameter shift to lower concentration with increasing coion valence when plotted as a function of concentration of 1 : z salt. Interestingly, these profiles collapse to a master curve if plotted as a function of monovalent counterion concentration.
Snapper, Clifford M
2016-06-24
Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M.; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2015-01-01
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05906a
Researchers at the NCI have developed a treatment for prostate and breast cancer using multivalent peptides derived from TARP, the T cell receptor gamma alternate reading frame protein. These immunogenic peptides from TARP elicit an immune response, triggering T cells to kill only the cancer cells within a patient. NCI seeks licensees or co-development partners to commercialize this invention.
Structural Insights into Ail-Mediated Adhesion in Yersinia pestis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.
2012-01-30
Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin,more » and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.« less
Synthetic and Biopolymer Gels - Similarities and Difference.
NASA Astrophysics Data System (ADS)
Horkay, Ferenc
2006-03-01
Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.
Myung, Ja Hye; Eblan, Michael J; Caster, Joseph M; Park, Sin-Jung; Poellmann, Michael J; Wang, Kyle; Tam, Kevin A; Miller, Seth M; Shen, Colette; Chen, Ronald C; Zhang, Tian; Tepper, Joel E; Chera, Bhishamjit S; Wang, Andrew Z; Hong, Seungpyo
2018-06-01
Purpose: We aimed to examine the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of circulating tumor cell (CTC) capture. We also investigated the clinical significance of CTCs and their kinetic profiles in patients with cancer undergoing radiotherapy treatment. Experimental Design: Patients with histologically confirmed primary carcinoma undergoing radiotherapy, with or without chemotherapy, were eligible for enrollment. Peripheral blood was collected prospectively at up to five time points, including before radiotherapy, at the first week, mid-point and final week of treatment, as well as 4 to 12 weeks after completion of radiotherapy. CTC capture was accomplished using a nanotechnology-based assay (CapioCyte) functionalized with aEpCAM, aHER-2, and aEGFR. Results: CapioCyte was able to detect CTCs in all 24 cancer patients enrolled. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. We also showed that cell rolling effect can improve CTC capture specificity (% of captured cells that are CK + /CD45 - /DAPI + ) up to 38%. Among the 18 patients with sequential CTC measurements, the median CTC decreased from 113 CTCs/mL before radiotherapy to 32 CTCs/mL at completion of radiotherapy ( P = 0.001). CTCs declined throughout radiotherapy in patients with complete clinical and/or radiographic response, in contrast with an elevation in CTCs at mid or post-radiotherapy in the two patients with known pathologic residual disease. Conclusions: Our study demonstrated that multivalent binding and cell rolling can improve the sensitivity and specificity of CTC capture compared with multivalent binding alone, allowing reliable monitoring of CTC changes during and after treatment. Clin Cancer Res; 24(11); 2539-47. ©2018 AACR . ©2018 American Association for Cancer Research.
Peterson, Elizabeth; Joseph, Christine; Peterson, Hannah; Bouwman, Rachael; Tang, Shengzhuang; Cannon, Jayme; Sinniah, Kumar; Choi, Seok Ki
2018-06-19
Multivalent ligand-receptor interaction provides the fundamental basis for the hypothetical notion that high binding avidity relates to the strong force of adhesion. Despite its increasing importance in the design of targeted nanoconjugates, an understanding of the physical forces underlying the multivalent interaction remains a subject of urgent investigation. In this study, we designed three vancomycin (Van)-conjugated dendrimers G5(Van) n ( n = mean valency = 0, 1, 4) for bacterial targeting with generation 5 (G5) poly(amidoamine) dendrimer as a multivalent scaffold and evaluated both their binding avidity and physical force of adhesion to a bacterial model surface by employing surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. The SPR experiment for these conjugates was performed in a biosensor chip surface immobilized with a bacterial cell-wall peptide Lys-d-Ala-d-Ala. Of these, G5(Van) 4 bound most tightly with a K D of 0.34 nM, which represents an increase in avidity by 2 or 3 orders of magnitude relative to a monovalent conjugate G5(Van) 1 or free vancomycin, respectively. By single-molecule force spectroscopy, we measured the adhesion force between G5(Van) n and the same cell-wall peptide immobilized on the surface. The distribution of adhesion forces increased in proportion to vancomycin valency with the mean force of 134 pN at n = 4 greater than 96 pN at n = 1 at a loading rate of 5200 pN/s. In summary, our results are strongly supportive of the positive correlation between the avidity and adhesion force in the multivalent interaction of vancomycin nanoconjugates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois
2010-12-10
The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity.more » Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.« less
Wang, Jianhao; Qin, Yuqin; Qin, Haifang; Liu, Li; Ding, Shumin; Teng, Yiwan; Ji, Junling; Qiu, Lin; Jiang, Pengju
2016-08-01
Herein, we have developed an in-capillary assay for simultaneous detection of the assembly and disassembly of the multivalent HA tag peptide and antibody. HA tag with hexahistidine at C terminus (YPYDVPDYAG4 H6 , termed YPYDH6 ) was conjugated with quantum dots (QDs) by metal-affinity force to form a multivalent HA tag (QD-YPYDH6 ). QD-YPYDH6 and monoclonal anti-HA antibody (anti-HA) were sequentially injected into the capillary. They were mixed and assembled inside the capillary. The reaction products were online discriminated and detected by fluorescence coupled capillary electrophoresis (CE-FL). For the in-capillary assay, the binding efficiency of the multivalent HA tag and antibody on was influenced by the molar ratio and injection time. Such novel assay could even give out the self-assembly kinetic constant of QDs and YPYDH6 as KD of 34.1 μM with n (binding cooperativeness) of 2.2 by Hill equation. More importantly, the simultaneous detection of the assembly and imidazole (Im) induced disassembly of the QD-YPYDH6 -anti-HA complex was achieved in a single in-capillary assay. Our study demonstrated a new method for the online detection of antigen-antibody interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmad, Kareem M; Xiao, Yi; Soh, H Tom
2012-12-01
Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.
NASA Astrophysics Data System (ADS)
Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.
2018-04-01
Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.
Glycodendritic structures: promising new antiviral drugs.
Rojo, Javier; Delgado, Rafael
2004-09-01
DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides.
Botulinum neurotoxin A complex recognizes host carbohydrates through its hemagglutinin component.
Yao, Guorui; Lee, Kwangkook; Gu, Shenyan; Lam, Kwok-Ho; Jin, Rongsheng
2014-02-12
Botulinum neurotoxins (BoNTs) are potent bacterial toxins. The high oral toxicity of BoNTs is largely attributed to the progenitor toxin complex (PTC), which is assembled from BoNT and nontoxic neurotoxin-associated proteins (NAPs) that are produced together with BoNT in bacteria. Here, we performed ex vivo studies to examine binding of the highly homogeneous recombinant NAPs to mouse small intestine. We also carried out the first comprehensive glycan array screening with the hemagglutinin (HA) component of NAPs. Our data confirmed that intestinal binding of the PTC is partly mediated by the HA moiety through multivalent interactions between HA and host carbohydrates. The specific HA-carbohydrate recognition could be inhibited by receptor-mimicking saccharides.
Roy, Chandra Nath; Promjunyakul, Warunya; Hatakeyama, Hiroyasu; Gonda, Kohsuke; Imamura, Junji; Vasudevanpillai, Biju; Ohuchi, Noriaki; Kanzaki, Makoto; Higuchi, Hideo; Kaku, Mitsuo
2013-01-01
The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell's lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines. PMID:23732912
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Engineering of the function of diamond-like carbon binding peptides through structural design.
Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B
2015-02-09
The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.
Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles
Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing
2011-01-01
A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787
Thornalley, Kiri; Laurini, Erik; Pricl, Sabrina; Smith, David K
2018-05-15
A family of four self-assembling lipopeptides containing Ala-Lys peptides attached to a C16 aliphatic chain was synthesised. These compounds form two enantiomeric pairs that bear a diastereomeric relationship to one another (C16-L-Ala-L-Lys/C16-D-Ala-D-Lys) and (C16-D-Ala-L-Lys/C16-L-Ala-D-Lys). These diastereomeric pairs have very different critical micelle concentrations (CMCs), with LL/DD < DL/LD suggesting more effective assembly of the former. The self-assembled multivalent (SAMul) systems bind biological polyanions as result of the cationic lysine groups on their surfaces. Polyanion binding was investigated using dye displacement assays and isothermal calorimetry (ITC). On heparin binding, there was no significant enantioselectivity, but there was a binding preference for the diastereomeric assemblies with lower CMCs. Conversely, on binding DNA, there was a significant enantioselective preference for systems displaying D-lysine ligands, with a further slight preference for attachment to L-alanine, with the CMC being irrelevant. Binding to adaptive, ill-defined heparin has a large favourable entropic term, suggesting it depends primarily on the cationic SAMul nanostructure maximising surface contact with heparin, which can adapt, displacing solvent and other ions. Conversely, binding to well-defined, shape-persistent DNA has a larger favourable enthalpic term, and combined with the enantioselectivity, this allows us to suggest that its SAMul binding is based on optimised individual electrostatic interactions at the molecular level, with a preference for binding to D-lysine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rechargeable Aluminum-Ion Batteries Based on an Open-Tunnel Framework.
Kaveevivitchai, Watchareeya; Huq, Ashfia; Wang, Shaofei; Park, Min Je; Manthiram, Arumugam
2017-09-01
Rechargeable batteries based on an abundant metal such as aluminum with a three-electron transfer per atom are promising for large-scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al-ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo 2.5 + y VO 9 + z as a cathode for Al-ion batteries. The open-tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent-ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al-based batteries. This study also presents the use of Mo 2.5 + y VO 9 + z as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave-assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C 2 H 3 O 2 ) 2 ) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture-sensitive organometallic reagents. The Al-inserted Al x Mo 2.5 + y VO 9 + z obtained by the microwave-assisted chemical insertion can be used in Al-based rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-shell model of ion-induced nucleic acid condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois
2016-04-21
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely chargedmore » duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.« less
Multi-faceted characterization of battery reactions: the case of spinel hosts for Mg-ion batteries
NASA Astrophysics Data System (ADS)
Cabana, Jordi
2015-03-01
Electrochemical energy storage was an important enabler of the wireless revolution and it is touted as a key component of a society that shifts away from its dependence on fossil fuels. Batteries are the primary technology when high energy devices are required. They are complex reactors in which multiple physico-chemical phenomena are concurrent in time and space. As a result, it is increasingly clear that holistic approaches to define such phenomena require a breadth of characterization tools. I will exemplify this need in the context of our quest for hosts that are able to reversibly intercalate Mg2+ ions. Systems based on the intercalation of multivalent ions are pushed as next generation devices because, while they can resemble systems using Li+ ions, they can store more charge per mol of intercalated species, and adopt metals as the anode. Using a combination of characterization tools, including X-ray diffraction, spectroscopy and scattering, electron microscopy and nuclear magnetic resonance, we ascertained that spinel oxides are able to reversibly and extensively accommodate Mg2+. The mechanisms of this reaction were also elucidated. The rationale for the choice of techniques and the key pieces they provided to complete the picture will be discussed. This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.
Citron, Diane M.; Warren, Yumi A.; Goldstein, Ellie J. C.
2012-01-01
TD-1792 is a multivalent glycopeptide-cephalosporin heterodimer antibiotic with potent activity against Gram-positive bacteria. We tested TD-1792 against 377 anaerobes and 34 strains of Corynebacterium species. Against nearly all Gram-positive strains, TD-1792 had an MIC90 of 0.25 μg/ml and was typically 3 to 7 dilutions more active than vancomycin and daptomycin. PMID:22290981
Shu, Longfei; Laurila, Anssi; Räsänen, Katja
2015-01-01
Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453
Zazouli, Mohammad Ali; Kalankesh, Laleh R
2017-01-01
Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.
One-step assembly of coordination complexes for versatile film and particle engineering.
Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank
2013-07-12
The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2015-02-14
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.
Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw
2003-01-01
Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598
Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K
2017-10-19
We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.
Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.
2003-09-30
A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.
Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.
2006-03-28
A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.
Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.
2005-05-17
A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.
Notable Aspects of Glycan-Protein Interactions
Cohen, Miriam
2015-01-01
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640
Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2017-07-01
The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.
Autar, Reshma; Khan, A Salam; Schad, Matthias; Hacker, Jörg; Liskamp, Rob M J; Pieters, Roland J
2003-12-05
In order to evaluate their inhibition of bacterial adhesion, the carbohydrate sequences GalNAcbeta1-->4Gal and GalNAcbeta1-->4Galbeta1-->4Glc were synthesized. The disaccharide was conjugated to dendrons based on the 3,5-di-(2-aminoethoxy)-benzoic acid branching unit to yield di- and tetravalent versions of these compounds. A divalent compound was also prepared that had significantly longer spacer arms. Relevant monovalent compounds were prepared for comparison. Their anti-adhesion properties against F1C-fimbriated uropathogenic Escherichia coli were evaluated in an ELISA-type assay by using a recombinant strain and also by using Pseudomonas aeruginosa strains PAO and PAK. Adhesion inhibition was observed in all cases, and multivalency effects of up to one order of magnitude were observed. The combination of spacer and multivalency effects led to a 38-fold increase in the potency of a divalent inhibitor with long spacer arms towards the PAO strain when compared with the free carbohydrate.
Qi, Zhenhui; Bharate, Priya; Lai, Chian-Hui; Ziem, Benjamin; Böttcher, Christoph; Schulz, Andrea; Beckert, Fabian; Hatting, Benjamin; Mülhaupt, Rolf; Seeberger, Peter H; Haag, Rainer
2015-09-09
A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.
NASA Astrophysics Data System (ADS)
Miyakawa, Tomoki; Shiogai, Junichi; Shimizu, Sunao; Matsumoto, Michio; Ito, Yukihiro; Harada, Takayuki; Fujiwara, Kohei; Nojima, Tsutomu; Itoh, Yoshimitsu; Aida, Takuzo; Iwasa, Yoshihiro; Tsukazaki, Atsushi
2018-03-01
We report on an enhancement of the superconducting transition temperature (Tc) of the FeSe-based electric-double-layer transistor (FeSe-EDLT) by applying the multivalent oligomeric ionic liquids (ILs). The IL composed of dimeric cation (divalent IL) enables a large amount of charge accumulation on the surface of the FeSe ultrathin film, resulting in inducing electron-rich conduction even in a rather thick 10 nm FeSe channel. The onset Tc in FeSe-EDLT with the divalent IL is enhanced to be approaching about 50 K at the thin limit, which is about 7 K higher than that in EDLT with conventional monovalent ILs. The enhancement of Tc is a pronounced effect of the application of the divalent IL, in addition to the large capacitance, supposing preferable interface formation of ILs driven by geometric and/or Coulombic effect. The present finding strongly indicates that multivalent ILs are powerful tools for controlling and improving physical properties of materials.
2018-01-01
Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules’ residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly. PMID:29629870
Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes
NASA Astrophysics Data System (ADS)
Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.
2004-03-01
Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.
Ionic structure in liquids confined by dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-11-01
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.
"Killer" Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity.
Arya, Chandamany; Oh, Hyuntaek; Raghavan, Srinivasa R
2016-11-02
We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body's immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The "killer" capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu 2+ ) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu 2+ cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu 2+ cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu 2+ are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules.
Rhoden, John J.; Dyas, Gregory L.
2016-01-01
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022
Markin, Craig J; Xiao, Wei; Spyracopoulos, Leo
2010-08-18
RAP80 plays a key role in signal transduction in the DNA damage response by recruiting proteins to DNA damage foci by binding K63-polyubiquitin chains with two tandem ubiquitin-interacting motifs (tUIM). It is generally recognized that the typically weak interaction between ubiquitin (Ub) and various recognition motifs is intensified by themes such as tandem recognition motifs and Ub polymerization to achieve biological relevance. However, it remains an intricate problem to develop a detailed molecular mechanism to describe the process that leads to amplification of the Ub signal. A battery of solution-state NMR methods and molecular dynamics simulations were used to demonstrate that RAP80-tUIM employs mono- and multivalent interactions with polyUb chains to achieve enhanced affinity in comparison to monoUb interactions for signal amplification. The enhanced affinity is balanced by unfavorable entropic effects that include partial quenching of rapid reorientation between individual UIM domains and individual Ub domains in the bound state. For the RAP80-tUIM-polyUb interaction, increases in affinity with increasing chain length are a result of increased numbers of mono- and multivalent binding sites in the longer polyUb chains. The mono- and multivalent interactions are characterized by intrinsically weak binding and fast off-rates; these weak interactions with fast kinetics may be an important factor underlying the transient nature of protein-protein interactions that comprise DNA damage foci.
Guo, Le; Yin, Runting; Xu, Guangxian; Gong, Xiaojuan; Chang, Zisong; Hong, Dantong; Liu, Hongpeng; Ding, Shuqin; Han, Xuebo; Li, Yuan; Tang, Feng; Liu, Kunmei
2017-12-01
Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4 + T cells. This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection. © 2017 John Wiley & Sons Ltd.
Why double-stranded RNA resists condensation
Tolokh, Igor S.; Pabit, Suzette A.; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V.
2014-01-01
The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes—internal and external—distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode. PMID:25123663
Badawi, Alaa; Shering, Maria; Rahman, Shusmita; Lindsay, L Robbin
2017-04-20
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America. Currently, no vaccine is available to prevent LB in humans, although monovalent and multivalent vaccines have been developed in the past. The aim of the current study is to conduct a systematic review and meta-analysis to evaluate and compare the findings from these two classes of vaccines for their reactogenicity, immunogenicity and efficacy, in the hope this may assist in the development of future vaccines. A search strategy was developed for online databases (PubMed, Ovid MEDLINE, and Embase). Search terms used were "vaccine/vaccination", "Lyme disease/Borreliosis", "clinical trial(s)" and "efficacy". Only seven clinical trials were included to compare the results of the monovalent vaccines to those of the multivalent one. Meta-analyses were conducted to evaluate the reactogenicity and immunogenicity of the two vaccine classes. Odds ratio (OR) for LB (and 95% confidence intervals; 95% CI) were calculated for the efficacy of the monovalent vaccine from three different clinical trials at different dose schedules. Incidence of redness (local adverse effect) and fever (systemic side effect) were, respectively, 6.8- and 2.9-fold significantly lower (p < 0.05) in individuals who received multivalent vaccines compared to those receiving the monovalent one. Incidences of all other local and systemic adverse effects were non-significantly lower in the multivalent vaccine compared to the monovalent vaccines. Seroprotection was comparable among individuals who received the two vaccine classes at the 30 μg dose level. Efficacy in the prevention of LB was only evaluated for the monovalent vaccines. OR of LB ranged from 0.49 (95% CI: 0.14-0.70; p < 0.005, vs. placebo) to 0.31 (95% CI: 0.26-0.63; p < 0.005) for the initial and final doses respectively, with an overall OR of 0.4 (95% CI: 0.26-0.63, p < 0.001). The current study further validates that the monovalent and multivalent LB vaccines result in mild local side effects and self-limiting systemic adverse effects, with the multivalent vaccine slightly more tolerable than the monovalent one. Both vaccine classes were similarly highly immunogenic. A new vaccine with high safety standards, better efficacy, low cost, and public acceptance is yet to be developed. Meanwhile, personal protection limiting exposure to ticks is recommended.
Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri
2016-05-01
Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists, physical chemists, and biologists.
NASA Astrophysics Data System (ADS)
Gan, Weibing
A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.
Selective recovery of salt from coal gasification brine by nanofiltration membranes.
Li, Kun; Ma, Wencheng; Han, Hongjun; Xu, Chunyan; Han, Yuxing; Wang, Dexin; Ma, Weiwei; Zhu, Hao
2018-06-20
The selective extraction and concentration of salt from coal gasification brine (CGB) by nanofiltration membranes is a promising technology to achieve near-zero liquid discharge of coal gasification wastewater. To investigate the feasibility of recovery of salts and the interaction of organic compounds, multivalent ions and monovalent ions on the rejection ratio, three nanofiltration membranes (OWNF1, NF270 and Desal-5 DK) with an 1812 spiral-wound module were used in crossflow filtration. The rejection mechanism was analyzed by comparing the rejection performance as a function of the operation pressure (increasing from 1.0 MPa to 2.5 MPa), the concentration (increasing from 10,000 mg/L to 25,000 mg/L) and pH values (increasing from 3.0 to 10.0). The concentrations of anions and cations were determined using an ion chromatographic analyzer and an inductively coupled plasma emission spectrometer, respectively. The results show that the rejection of sulfate and the chemical oxygen demand were higher than 92.12% and 78.84%, respectively, at appropriate operation, while negative rejection of chloride was observed in the CGB. The decreasing rejection of organic compounds was due to swelling of the membrane pore in high-concentration solutions. Meanwhile, the organic compounds weakened the negative charge of the membrane active layer, consequently decreasing the ion rejection. More than 85% of the sodium chloride could be recovered, indicating that this technology is suitable for resource recovery from CGB and near-zero liquid discharge of coal gasification industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Studying of kinetics of rear earth ion (REI) nanoscale complex formation by resonant energy transfer
NASA Astrophysics Data System (ADS)
Ignatova, Tetyana; Pristinski, Denis; Rotkin, Slava V.
2011-03-01
We observed formation of nanoscale complexes between multivalent REIs (Tb and Eu) and negatively charged DNA wrapped SWNTs, ionized in the water solution. Foerster Resonance Energy Transfer (FRET) was found to be an ideal method to confirm the complex formation. Because of its high sensitivity and non-destructive characterization approach FRET can be used to trace the kinetics of the complex formation. Strong dependence of SWNT photoluminescence (PL) on the REI concentration was detected and interpreted as a competition between the REI absorption on the SWNTs and subsequent FRET enhanced PL and the SWNT agglomeration followed by PL quenching. We measured the distance between REI and SWNT which appears to be much shorter than the one from their relative concentration in solution. We speculate that Manning condensation of the REIs on the SWNT/DNA surface happens thereby significantly reducing their spacing and making FRET possible.
The influence of ionic strength on DNA diffusion in gel networks
NASA Astrophysics Data System (ADS)
Fu, Yuanxi; Jee, Ah-Young; Kim, Hyeong-Ju; Granick, Steve
Cations are known to reduce the rigidity of the DNA molecules by screening the negative charge along the sugar phosphate backbone. This was established by optical tweezer pulling experiment of immobilized DNA strands. However, little is known regarding the influence of ions on the motion of DNA molecules as they thread through network meshes. We imaged in real time the Brownian diffusion of fluorescent labeled lambda-DNA in an agarose gel network in the presence of salt with monovalent or multivalent cations. Each movie was analyzed using home-written program to yield a trajectory of center of the mass and the accompanying history of the shape fluctuations. One preliminary finding is that ionic strength has a profound influence on the slope of the trace of mean square displacement (MSD) versus time. The influence of ionic strength on DNA diffusion in gel networks.
Redox equilibria of multivalent ions in silicate glasses
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Morris, R. V.
1977-01-01
Experimental studies were made on the compositional dependence of the redox equilibrium of Eu in synthetic silicate liquids, together with an empirical model describing the observed compositional dependence. Electron paramagnetic resonance (EPR) was used to measure the concentration ratio of Eu(2+) to Eu(3+) in various glasses formed by rapidly quenching silicate liquids. The compositional field studied comprised mixtures of SiO2, TiO2, Al2O3, CaO, MgO, and Na2O. The proposed model describes the Eu(2+)/Eu(3+) ratio over the entire compositional field in terms of parameters easily related to each glass composition. The general applicability and utility of the model is further demonstrated by its application to the Fe(2+)-Fe(3+), Ce(3+)-Ce(4+), and Cr(3+)-Cr(6+) redox reactions in binary alkali oxide silicate glasses of Li, Na, and K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui
Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less
Thermodynamic and structural characterization of an antibody gel
Esue, Osigwe; Xie, Anna X.; Kamerzell, Tim J.; Patapoff, Thomas W.
2013-01-01
Although extensively studied, protein–protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues. PMID:23425660
Lindesmith, Lisa C; Ferris, Martin T; Mullan, Clancy W; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R; Baehner, Frank; Mendelman, Paul M; Bargatze, Robert F; Baric, Ralph S
2015-03-01
Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations. ClinicalTrials.gov NCT01168401.
Lindesmith, Lisa C.; Ferris, Martin T.; Mullan, Clancy W.; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R.; Baehner, Frank; Mendelman, Paul M.; Bargatze, Robert F.; Baric, Ralph S.
2015-01-01
Background Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Methods and Findings Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Conclusions Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations. Trial Registration ClinicalTrials.gov NCT01168401 PMID:25803642
Joseph, SK; Ramaswamy, K
2013-01-01
The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679
Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J
2016-05-20
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jinghua; Marnell, Lorraine L.; Marjon, Kristopher D.
Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q. More recently, members of the pentraxin family were found to interact with cell-surface Fc{gamma} receptors (Fc{gamma}R) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to Fc{gamma}R and its functional activation of Fc{gamma}R-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and Fc{gamma}RIIa reveals a diagonallymore » bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and Fc{gamma}RIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for Fc{gamma}R isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for Fc{gamma}R binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the Fc{gamma}R pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.« less
Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J
2017-09-05
Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW.
Henning, Lisa Maria; Bhatia, Sumati; Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer; Freund, Christian
2015-01-01
The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein-protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1-WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome.
Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW
Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer
2015-01-01
Summary The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein–protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1–WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome. PMID:26124874
Is a multivalent hand, foot, and mouth disease vaccine feasible?
Klein, Michel; Chong, Pele
2015-01-01
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed. PMID:26009802
Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells
Kang, Jeffrey C; Poovassery, Jayakumar S; Bansal, Pankaj; You, Sungyong; Manjarres, Isabel M; Ober, Raimund J; Ward, E Sally
2014-01-01
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert. PMID:24492289
Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent
Horwitz, E.P.; Kalina, D.G.
1984-05-21
A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.
Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding.
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; He, Xiaoxiao; Wang, Qing; Huang, Jin; Liu, Yan
2012-06-26
Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.
Dai, Heqiao; Liu, Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi; Hickey, Robert J.
2009-01-01
Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC50 =88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2–13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr (III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells. PMID:19371627
Salminen, Annika; Loimaranta, Vuokko; Joosten, John A F; Khan, A Salam; Hacker, Jörg; Pieters, Roland J; Finne, Jukka
2007-09-01
Uropathogenic P-fimbriated Escherichia coli adheres to host cells by specific adhesins recognizing galabiose (Galalpha1-4Gal)-containing structures on cell surfaces. In search of agents inhibiting this first step of infection, the inhibition potency of a set of synthetic mono- and multivalent galabiose compounds was evaluated. In order to mimic the flow conditions of natural infections, a live-bacteria application of surface plasmon resonance (SPR) was established. For the measurement of the binding of E. coli to a surface containing galabiose, live bacteria were injected over the flow cell, and the inhibition of adhesion caused by the galabiose inhibitors was recorded. Quantitative binding data were recorded in real-time for each inhibitor. The results were compared with those of conventional static haemagglutination and ELISA-based cell adhesion assays. Compared with the Gram-positive Streptococcus suis bacteria, which also bind to galabiose and whose binding inhibition is strongly dependent on the multivalency of the inhibitor, E. coli inhibition was only moderately affected by the valency. However, a novel octavalent compound was found to be the most effective inhibitor of E. coli PapG(J96) adhesion, with an IC50 value of 2 microM. Measurement of bacterial adhesion by SPR is an efficient way to characterize the adhesion of whole bacterial cells and allows the characterization of the inhibitory potency of adhesion inhibitors under dynamic flow conditions. Under these conditions, multivalency increases the anti-adhesion potency of galabiose-based inhibitors of P-fimbriated E. coli adhesion and provides a promising approach for the design of high-affinity anti-adhesion agents.
SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution.
Kaltenbach, Miriam; Stein, Viktor; Hollfelder, Florian
2011-09-19
Display systems connect a protein with the DNA encoding it. Such systems (e.g., phage or ribosome display) have found widespread application in the directed evolution of protein binders and constitute a key element of the biotechnological toolkit. In this proof-of-concept study we describe the construction of a system that allows the display of multiple copies of a protein of interest in order to take advantage of avidity effects during affinity panning. To this end, dendrimer-like DNA is used as a scaffold with docking points that can join the coding DNA with multiple protein copies. Each DNA construct is compartmentalised in water-in-oil emulsion droplets. The corresponding protein is expressed, in vitro, inside the droplets as a SNAP-tag fusion. The covalent bond between DNA and the SNAP-tag is created by reaction with dendrimer-bound benzylguanine (BG). The ability to form dendrimer-like DNA straightforwardly from oligonucleotides bearing BG allowed the comparison of a series of templates differing in size, valency and position of BG. In model selections the most efficient constructs show recoveries of up to 0.86 % and up to 400-fold enrichments. The comparison of mono- and multivalent constructs suggests that the avidity effect enhances enrichment by up to fivefold and recovery by up to 25-fold. Our data establish a multivalent format for SNAP-display based on dendrimer-like DNA as the first in vitro display system with defined tailor-made valencies and explore a new application for DNA nanostructures. These data suggest that multivalent SNAP dendrimers have the potential to facilitate the selection of protein binders especially during early rounds of directed evolution, allowing a larger diversity of candidate binders to be recovered. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of CD44-Hyaluronan Interactions in an Artificial Membrane System
Wolny, Patricia M.; Banerji, Suneale; Gounou, Céline; Brisson, Alain R.; Day, Anthony J.; Jackson, David G.; Richter, Ralf P.
2010-01-01
CD44 is a major cell surface receptor for the large polydisperse glycosaminoglycan hyaluronan (HA). Binding of the long and flexible HA chains is thought to be stabilized by the multivalent nature of the sugar molecule. In addition, high and low molecular weight forms of HA provoke distinct proinflammatory and anti-inflammatory effects upon binding to CD44 and can deliver either proliferative or antiproliferative signals in appropriate cell types. Despite the importance of such interactions, however, neither the stoichiometry of multivalent HA binding at the cell surface nor the molecular basis for functional distinction between different HA size categories is understood. Here we report on the design of a supported lipid bilayer system that permits quantitative analysis of multivalent binding through presentation of CD44 in a stable, natively oriented manner and at controlled density. Using this system in combination with biophysical techniques, we show that the amount of HA binding to bilayers that are densely coated with CD44 increases as a function of HA size, with half-maximal saturation at ∼30 kDa. Moreover, reversible binding was confined to the smaller HA species (molecular weight of ≤10 kDa), whereas the interaction was essentially irreversible with larger polymers. The amount of bound HA decreased with decreasing receptor surface density, but the stability of binding was not affected. From a physico-chemical perspective, the binding properties of HA share many similarities with the typical behavior of a flexible polymer as it adsorbs onto a homogeneously attractive surface. These findings provide new insight into the multivalent nature of CD44-HA interactions and suggest a molecular basis for the distinct biological properties of different size fractions of hyaluronan. PMID:20663884
Allostery Mediates Ligand Binding to Grb2 Adaptor in a Mutually Exclusive Manner
McDonald, Caleb B.; El Hokayem, Jimmy; Zafar, Nawal; Balke, Jordan E.; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Farooq, Amjad
2012-01-01
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery. PMID:23334917
NASA Technical Reports Server (NTRS)
Vezzoli, G. C.; Stanley, William
1990-01-01
The mediation by bound holes creating Cooper pairing in high T(sub c) superconductors has its origin in charge transfer excitations on the multivalence cation (virtual excitions) and in bound excitions or polarizations associated with the oxygen 2p electrons. These phenomena are produced and/or enhanced by a high internal electric field which is itself created by virtue of the unique crystal structures and polyhedral building blocks of high T(sub c) materials. The polarizations which can create oxygen holes (in addition to excitions) may be due to simply the internal electric field or to polaronic and electron-deficient bond behavior. This gives rise to two energy-dependent oxygen bands near the Fermi level. The magnitude and direction of the internal electric fields were calculated for Y1Ba2Cu3O(7-delta) (1-2-3) and show strong z-direction fields at the Cu(2), O2, and O3 sites and an even stronger -z direction field at the O4 site. The field calculations also show why electrical conductivity in the 1-2-3 material is essentially in the base plane of the CuO5 pyramid (the CuO2 plane).
Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.
Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L
2009-07-01
The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.
Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.
Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar
2014-06-17
There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.
Zhou, Limin; Liu, Qi; Zhang, Zihe; Zhang, Kai; Xiong, Fangyu; Tan, Shuangshuang; An, Qinyou; Kang, Yong-Mook; Zhou, Zhen; Mai, Liqiang
2018-06-25
Owing to the low-cost, safety, dendrite-free formation, and two-electron redox properties of magnesium (Mg), rechargeable Mg batteries are considered as promising next-generation secondary batteries with high specific capacity and energy density. However, the clumsy Mg 2+ with high polarity inclines to sluggish Mg insertion/deinsertion, leading to inadequate reversible capacity and rate performance. Herein, 2D VOPO 4 nanosheets with expanded interlayer spacing (1.42 nm) are prepared and applied in rechargeable magnesium batteries for the first time. The interlayer expansion provides enough diffusion space for fast kinetics of MgCl + ion flux with low polarization. Benefiting from the structural configuration, the Mg battery exhibits a remarkable reversible capacity of 310 mAh g -1 at 50 mA g -1 , excellent rate capability, and good cycling stability (192 mAh g -1 at 100 mA g -1 even after 500 cycles). In addition, density functional theory (DFT) computations are conducted to understand the electrode behavior with decreased MgCl + migration energy barrier compared with Mg 2+ . This approach, based on the regulation of interlayer distance to control cation insertion, represents a promising guideline for electrode material design on the development of advanced secondary multivalent-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Celma, Cristina C. P.; Boyce, Mark; van Rijn, Piet A.; Eschbaumer, Michael; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin; Haegeman, Andy; De Clercq, Kris
2013-01-01
Since 1998, 9 of the 26 serotypes of bluetongue virus (BTV) have spread throughout Europe, and serotype 8 has suddenly emerged in northern Europe, causing considerable economic losses, direct (mortality and morbidity) but also indirect, due to restriction in animal movements. Therefore, many new types of vaccines, particularly subunit vaccines, with improved safety and efficacy for a broad range of BTV serotypes are currently being developed by different laboratories. Here we exploited a reverse genetics-based replication-deficient BTV serotype 1 (BTV-1) (disabled infectious single cycle [DISC]) strain to generate a series of DISC vaccine strains. Cattle and sheep were vaccinated with these viruses either singly or in cocktail form as a multivalent vaccine candidate. All vaccinated animals were seroconverted and developed neutralizing antibody responses to their respective serotypes. After challenge with the virulent strains at 21 days postvaccination, vaccinated animals showed neither any clinical reaction nor viremia. Further, there was no interference with protection with a multivalent preparation of six distinct DISC viruses. These data indicate that a very-rapid-response vaccine could be developed based on which serotypes are circulating in the population at the time of an outbreak. PMID:23824810
Celma, Cristina C P; Boyce, Mark; van Rijn, Piet A; Eschbaumer, Michael; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin; Haegeman, Andy; De Clercq, Kris; Roy, Polly
2013-09-01
Since 1998, 9 of the 26 serotypes of bluetongue virus (BTV) have spread throughout Europe, and serotype 8 has suddenly emerged in northern Europe, causing considerable economic losses, direct (mortality and morbidity) but also indirect, due to restriction in animal movements. Therefore, many new types of vaccines, particularly subunit vaccines, with improved safety and efficacy for a broad range of BTV serotypes are currently being developed by different laboratories. Here we exploited a reverse genetics-based replication-deficient BTV serotype 1 (BTV-1) (disabled infectious single cycle [DISC]) strain to generate a series of DISC vaccine strains. Cattle and sheep were vaccinated with these viruses either singly or in cocktail form as a multivalent vaccine candidate. All vaccinated animals were seroconverted and developed neutralizing antibody responses to their respective serotypes. After challenge with the virulent strains at 21 days postvaccination, vaccinated animals showed neither any clinical reaction nor viremia. Further, there was no interference with protection with a multivalent preparation of six distinct DISC viruses. These data indicate that a very-rapid-response vaccine could be developed based on which serotypes are circulating in the population at the time of an outbreak.
Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei
2017-01-01
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori ( H. pylori ) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori , remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA 27-53 , UreA 183-203 , HpaA 132-141 , and HSP60 189-203 ), and also the epitope-rich regions of urease B subunit (UreB 158-251 and UreB 321-385 ) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori -infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB 158-172 , UreB 181-195 , UreB 211-225 , UreB 349-363 , HpaA 132-141 , and HSP60 189-203 ). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4 + T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori . These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei
2017-01-01
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection. PMID:28824883
Kang, Tong Mook; Markin, Vladislav S.; Hilgemann, Donald W.
2003-01-01
We have used ion-selective electrodes (ISEs) to quantify ion fluxes across giant membrane patches by measuring and simulating ion gradients on both membrane sides. Experimental conditions are selected with low concentrations of the ions detected on the membrane side being monitored. For detection from the cytoplasmic (bath) side, the patch pipette is oscillated laterally in front of an ISE. For detection on the extracellular (pipette) side, ISEs are fabricated from flexible quartz capillary tubing (tip diameters, 2–3 microns), and an ISE is positioned carefully within the patch pipette with the tip at a controlled distance from the mouth of the patch pipette. Transport activity is then manipulated by solution changes on the cytoplasmic side. Ion fluxes can be quantified by simulating the ion gradients with appropriate diffusion models. For extracellular (intrapatch pipette) recordings, ion diffusion coefficients can be determined from the time courses of concentration changes. The sensitivity and utility of the methods are demonstrated with cardiac membrane patches by measuring (a) potassium fluxes via ion channels, valinomycin, and Na/K pumps; (b) calcium fluxes mediated by Na/Ca exchangers; (c) sodium fluxes mediated by gramicidin and Na/K pumps; and (d) proton fluxes mediated by an unknown electrogenic mechanism. The potassium flux-to-current ratio for the Na/K pump is approximately twice that determined for potassium channels and valinomycin, as expected for a 3Na/2K pump stoichiometery (i.e., 2K/charge moved). For valinomycin-mediated potassium currents and gramicidin-mediated sodium currents, the ion fluxes calculated from diffusion models are typically 10–15% smaller than expected from the membrane currents. As presently implemented, the ISE methods allow reliable detection of calcium and proton fluxes equivalent to monovalent cation currents <1 pA in magnitude, and they allow detection of sodium and potassium fluxes equivalent to <5 pA currents. The capability to monitor ion fluxes, independent of membrane currents, should facilitate studies of both electrogenic and electroneutral ion–coupled transporters in giant patches. PMID:12668735
NASA Astrophysics Data System (ADS)
Tran, David Tu
In the area of receptor-targeted lipid nanoparticles for drug delivery, efficiency has been mainly focused on cell-specificity, endocytosis, and subsequently effects on bioactivity such as cell growth inhibition. Aspects of targeted liposomal uptake and intracellular sorting are not well defined. This dissertation assessed a series of ligands as targeted functional groups against HER2 and EGFR for liposomal drug delivery. Receptor-mediated uptake, both mono-targeted and dual-targeted to multiple receptors of different ligand valence, and the intracellular sorting of lipid nanoparticles were investigated to improve the delivery of drugs to cancer cells. Lipid nanoparticles were functionalized through a new sequential micelle transfer---conjugation method, while the micelle transfer method was extended to growth factors. Through a combination of both techniques, anti-HER2 and anti-EGFR dual-targeted immunoliposomes with different combinations of ligand valence were developed for comparative studies. With the array of lipid nanoparticles, the uptake and cytotoxicity of lipid nanoparticles in relationship to ligand valence, both mono-targeting and dual-targeting, were evaluated on a small panel of breast cancer cell lines that express HER2 and EGFR of varying levels. Comparable uptake ratios of ligand to expressed receptor and apparent cooperativity were observed. For cell lines that express both receptors, additive dose-uptake effects were also observed with dual-targeted immunoliposomes, which translated to marginal improvements in cell growth inhibition with doxorubicin delivery. Colocalization analysis revealed that ligand-conjugated lipid nanoparticles settle to endosomal compartments similar to their attached ligands. Pathway transregulation and pathway saturation were also observed to affect trafficking. In the end, liposomes routed to the recycling endosomes were never observed to traffic beyond the endosomes nor to be exocytose like recycled ligands. Based on the experimental data, models were developed to help interpret and predict the binding and trafficking of lipid nanoparticles. The crosslink multivalent binding model of lipid nanoparticles to monovalent receptors was able to predict ligand valence for optimum binding, cell association concentrations, offer explanations to the antagonistic effects observed from high ligand valence, and predict the binding limitations of both ligand valence and ligand affinity. Hopefully, the models will serve as valuable tools for future optimizations in targeted liposomal drug delivery.
Towards a wire-mediated coupling of trapped ions
NASA Astrophysics Data System (ADS)
Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut
2008-03-01
Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Heqiao; Liu Jianying; Malkas, Linda H.
2009-04-15
Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediatedmore » by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells.« less
Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface
Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar
2014-01-01
There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634
Estimation of Sorption Behavior of Europium(III) Using Biotite Flakes - 13272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Go; Niibori, Yuichi; Mimura, Hitoshi
2013-07-01
The interaction of biotite and Eu(III) (europium (III)) was examined by using secondary ion-microprobe mass spectrometer (SIMS), fluorescence emission spectrum and decay behavior of fluorescence emission spectrum in addition to the time-changes of Eu(III) and potassium ions concentrations in a solution, using the flake form samples. The results of SIMS showed that the intensity of Eu was gradually decreasing with depth, while the intensity of Eu in the case shaken for 30 days exceeded that in the case for 1 day. Furthermore, the spatial distribution of Eu(III) and potassium ions in the flake of biotite suggested that Eu ions diffusemore » mainly from the edges of biotite flake, while Eu ions can slightly diffuse through some small cracks existing on the flake surface far from the edges. Besides, the elution amount of potassium from the biotite flakes into a solution was proportional to the sorption amount of Eu(III). The changes nearly revealed ion exchange between these ions, while muscovite flake sample did not show such ion exchange reaction. In addition, from the time-change of Eu(III) concentration, an apparent diffusion coefficient was estimated to be 8.0x10{sup -12} m{sup 2}/s, by using two-dimensional diffusion model coupled with a film between the solid phase and the liquid phase. Furthermore, the fluorescent intensity decreased with the shaking (contacting) time. This means that Eu(III) gradually diffuses into the inside of biotite edges of the biotite flakes, after the sorption of Eu(III) in the edges. This tendency was observed also in the powder samples. The observed fluorescence decay (at 592 nm in wave length) showed almost similar curve in any samples, indicating a certain sorption form of Eu(III) onto the edges of the biotite flakes. These results mentioned above suggest that the diffusion processes through internal layer in biotite mainly control the sorption behavior of multivalent ions. Such diffusion processes affect the retardation-effects on fracture surfaces in the rock matrix, depending on the fluid flow velocity of groundwater. That is, a more reliable model considering the mass transfer in the internal layer of biotite may be required to estimate the sorption behavior of RNs with biotite which controls the whole sorption behavior of granite. (authors)« less
Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation
NASA Astrophysics Data System (ADS)
Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko
2015-07-01
In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time after irradiation.
Savukov, I. M.; Filin, D. V.
2014-12-29
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less
Hatano, Junichi; Okuro, Kou; Aida, Takuzo
2016-01-04
PGlue(PZ), a pyrazoline (PZ)-based fluorescent adhesive which can be generated spatiotemporally in living systems, was developed. Since PGlue(PZ) carries many guanidinium ion (Gu(+)) pendants, it strongly adheres to various oxyanionic substrates through a multivalent salt-bridge interaction. PGlue(PZ) is given by bioorthogonal photopolymerization of a Gu(+)-appended monomer (Glue(TZ)), bearing tetrazole (TZ) and olefinic termini. Upon exposure to UV light, Glue(TZ) transforms into a nitrileimine (NI) intermediate (Glue(NI)), which is eligible for 1,3-dipolar polycycloaddition. However, Glue(NI) in aqueous media can concomitantly be deactivated into Glue(WA) by the addition of water, and the polymerization hardly occurs unless Glue(NI) is concentrated. We found that, even under high dilution, Glue(NI) is concentrated on oxyanionic substrates to a sufficient level for the polymerization, so that their surfaces can be point-specifically functionalized with PGlue(PZ) by the use of a focused beam of UV light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calcium intercalation into layered fluorinated sodium iron phosphate
NASA Astrophysics Data System (ADS)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.
2017-11-01
The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.
Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui; ...
2017-08-24
Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P; Steirer, K Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei
2018-05-01
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg 2+ cannot penetrate such interphases. Here, we engineer an artificial Mg 2+ -conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V 2 O 5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
NASA Astrophysics Data System (ADS)
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei
2018-05-01
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.
Multivalent DNA-binding properties of the HMG-1 proteins.
Maher, J F; Nathans, D
1996-01-01
HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884
Ion acoustic shock wave in collisional equal mass plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less
Affinity adsorption of cells to surfaces and strategies for cell detachment.
Hubble, John
2007-01-01
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
Multivalent Nanoparticle Networks Enable Point of Care Detection of Human Phospholipase-A2 in Serum
Burnapp, Mark; Bentham, Andrew; Hillier, David; Zabron, Abigail; Khan, Shahid; Tyreman, Matthew; Stevens, Molly M.
2017-01-01
A rapid and highly sensitive point of care (PoC) lateral flow assay for phospholipase-A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multi-armed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localised surface plasmon resonance (LSPR) effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimising the molecular weight and multivalency of these biotinylated polymer linkers the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human-PLA2 in serum within 10 minutes. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point of care device for the first time. PMID:25756526
Design, synthesis, and testing of multivalent compounds targeted to melanocortin receptors
NASA Astrophysics Data System (ADS)
Dehigaspitiya, Dilani Chathurika
Our focus is on developing non-invasive molecular imaging reagents, which target human cancers that presently are difficult to detect, such as melanoma. We wish to apply the multivalency concept to differentiate between healthy cells and melanoma cells. Melanoma cells are known to over-express alpha melanocyte stimulating hormone receptors. A successful multivalent construct should show greater avidity towards melanoma cells than healthy cells due to the synergistic effects arising from multivalency. Both oligomeric and shorter linear constructs bearing the minimum active sequence of melanocyte stimulating hormone, His-DPhe-Arg-Trp-NH2(MSH4), which binds with low micromolar affinity to alpha melanocyte stimulating hormone receptors, were synthesized. Binding affinities of these constructs were evaluated in a competitive binding assay by competing with labeled ligands, Eu-DTPA-PEGO-MSH7 and/or Eu-DTPA-PEGO-NDP-alpha-MSH on the engineered cell line HEK293 CCK2R/hMC4R, which is genetically modified to over-express both the cholecystokinin 2 receptor (CCK2R) and human melanocortin 4 receptor (hMC4R). The oligomers were rapidly assembled using microwave-assisted copper catalyzed azide-alkyne cycloaddition between a dialkyne derivative of MSH4 and a diazide derivative of (Pro-Gly)3 as co-monomers. Three oligomer mixtures were further analyzed based on their degree of oligomerization and the route by which the MSH4 monomers were oligomerized, protected vs deprotected. Completive binding assay against Eu-DTPA-PEGO-MSH7 showed only a statistical enhancement of binding when calculated based on the total MSH4 concentration. However, when the calculation of avidity is based on an estimation of the particles numbers, there was a seven times enhancement of binding compared to a monovalent MSH4 control. The shorter linear multivalent MSH4 constructs were synthesized using ethylene glycol, glycerol, and mannitol as core scaffolds with maximum inter-ligand distances ranging from 27 - 37 A. The divalent construct with maximum inter-ligand distance of 27 A showed nanomolar binding with 29-fold and 18-fold enhancements in potency compared to a monovalent control when competed against the probes Eu-DTPA-PEGO-MSH7 and Eu-DTPA-PEGO-NDP-alpha-MSH, respectively. The trivalent and the tetravalent constructs showed only statistical enhancement when compared to the divalent construct. It is our hypothesis that clusters of two ligands with an inter-ligand distance of about 27 A distributed along an oligomeric backbone would have high potency towards melanocortin receptors.
Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta
2017-04-01
Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .
Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.
2016-04-08
Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 k BT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less
Wang, Xiaohua; Liu, Ni; Liu, Yunguo; Jiang, Luhua; Zeng, Guangming; Tan, Xiaofei; Liu, Shaobo; Yin, Zhihong; Tian, Sirong; Li, Jiang
2017-10-11
Rice straw biochar that produced at three pyrolysis temperatures (400, 500 and 600 °C) were used to investigate the adsorption properties of 17β-estradiol (E2). The biochar samples were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), elemental analysis and BET surface area measurements. The influences of pyrolysis temperature, E2 concentration, pH, ionic strength, background electrolyte and humic acid were studied. Kinetic and isotherm results illustrated that the adsorption process could be well described by pseudo-second-order and Freundlich models. Experimental results showed that ionic strength had less influence on the adsorption of E2 by 500 and 600 °C rice straw biochar. Further, multivalent ions had positive impact on E2 removal than monovalent ions and the influence of the pyrolysis temperature was unremarkable when background electrolyte existed in solutions. The adsorption capacity of E2 decreased with the pH ranged from 3.0 to 12.0 and the humic acid concentration from 2 to 10 mg L -1 . Electrostatic attractions and π-π interaction were involved in the adsorption mechanisms. Compared to low-temperature biochar, high-temperature biochar exhibited a better adsorption capacity for E2 in aqueous solution, indicated it had a greater potential for E2 pollution control.
Wang, Xiaohua; Liu, Ni; Liu, Yunguo; Jiang, Luhua; Zeng, Guangming; Tan, Xiaofei; Liu, Shaobo; Yin, Zhihong; Tian, Sirong; Li, Jiang
2017-01-01
Rice straw biochar that produced at three pyrolysis temperatures (400, 500 and 600 °C) were used to investigate the adsorption properties of 17β-estradiol (E2). The biochar samples were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), elemental analysis and BET surface area measurements. The influences of pyrolysis temperature, E2 concentration, pH, ionic strength, background electrolyte and humic acid were studied. Kinetic and isotherm results illustrated that the adsorption process could be well described by pseudo-second-order and Freundlich models. Experimental results showed that ionic strength had less influence on the adsorption of E2 by 500 and 600 °C rice straw biochar. Further, multivalent ions had positive impact on E2 removal than monovalent ions and the influence of the pyrolysis temperature was unremarkable when background electrolyte existed in solutions. The adsorption capacity of E2 decreased with the pH ranged from 3.0 to 12.0 and the humic acid concentration from 2 to 10 mg L−1. Electrostatic attractions and π-π interaction were involved in the adsorption mechanisms. Compared to low-temperature biochar, high-temperature biochar exhibited a better adsorption capacity for E2 in aqueous solution, indicated it had a greater potential for E2 pollution control. PMID:29019933
Linear scaffolds for multivalent targeting of melanocortin receptors.
Dehigaspitiya, Dilani Chathurika; Anglin, Bobbi L; Smith, Kara R; Weber, Craig S; Lynch, Ronald M; Mash, Eugene A
2015-12-21
Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.
Chloride (Cl-) ion-mediated shape control of palladium nanoparticles
NASA Astrophysics Data System (ADS)
Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj
2016-02-01
The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.
Olsen, Anja Weinreich; Lorenzen, Emma Kathrine; Rosenkrands, Ida; Follmann, Frank; Andersen, Peter
2017-01-01
There is an unmet need for a vaccine to control Chlamydia trachomatis ( C.t .) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t . serovars (Svs) D-F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4 + T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4's from SvF (extVD4 F *4), adjuvanted in CAF01. Hirep1 and extVD4 F *4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4 F *4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4 F *4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t . Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t . and support the inclusion of neutralizing targets in chlamydia vaccines.
Olsen, Anja Weinreich; Lorenzen, Emma Kathrine; Rosenkrands, Ida; Follmann, Frank; Andersen, Peter
2017-01-01
There is an unmet need for a vaccine to control Chlamydia trachomatis (C.t.) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t. serovars (Svs) D–F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4+ T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4’s from SvF (extVD4F*4), adjuvanted in CAF01. Hirep1 and extVD4F*4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4F*4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4F*4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t. Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t. and support the inclusion of neutralizing targets in chlamydia vaccines. PMID:29312283
Trapped-ion quantum logic gates based on oscillating magnetic fields.
Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J
2008-08-29
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.
CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells.
Peng, Wenjie; Paulson, James C
2017-09-13
CD22 is a sialic acid-binding immunoglobulin-like lectin (Siglec) that is highly expressed on B-cells and B cell lymphomas, and is a validated target for antibody and nanoparticle based therapeutics. However, cell targeted therapeutics are limited by their complexity, heterogeneity, and difficulties in production. We describe here a chemically defined natural N-linked glycan scaffold that displays high affinity CD22 glycan ligands and outcompetes the natural ligand for the receptor, resulting in single molecule binding to CD22 and endocytosis into cells. Binding affinity is increased by up to 1500-fold compared to the monovalent ligand, while maintaining the selectivity for hCD22 over other Siglecs. Conjugates of these multivalent ligands with auristatin and saporin toxins are efficiently internalized via hCD22 resulting in killing of B-cell lymphoma cells. This single molecule ligand targeting strategy represents an alternative to antibody- and nanoparticle-mediated approaches for delivery of agents to cells expressing CD22 and other Siglecs.
Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe
2015-03-01
A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells.
García-Vallejo, Juan J; Ambrosini, Martino; Overbeek, Annemieke; van Riel, Wilhelmina E; Bloem, Karien; Unger, Wendy W J; Chiodo, Fabrizio; Bolscher, Jan G; Nazmi, Kamran; Kalay, Hakan; van Kooyk, Yvette
2013-04-01
Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Multivalent peptoid conjugates which overcome enzalutamide resistance in prostate cancer cells
Wang, Yu; Dehigaspitiya, Dilani C.; Levine, Paul M.; Profit, Adam A.; Haugbro, Michael; Imberg-Kazdan, Keren; Logan, Susan K.; Kirshenbaum, Kent; Garabedian, Michael J.
2016-01-01
Development of resistance to anti-androgens for treating advanced prostate cancer is a growing concern, and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its anti-proliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction, and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacological studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. PMID:27488525
Danov, Krassimir D.; Basheva, Elka S.; Kralchevsky, Peter A.
2016-01-01
Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na2SO4, Na3Citrate, and MgSO4 are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the measured pressure in all other cases. The theory is extended to account for the effects of ionic correlations and finite ionic radii. Original analytical expressions are derived for the local activity coefficient, electrostatic disjoining pressure, and asymptotic screening parameter. With the same parameter of counterion binding as for a 1:1 electrolyte, the curves predicted by the extended theory are in perfect agreement with the experimental data for 1:2 and 1:3 electrolytes. In comparison with the DLVO theory, the effect of ionic correlations leads to more effective screening of electrostatic interactions, and lower electric potential and counterion concentrations in the film’s midplane, resulting in lower disjoining pressure, as experimentally observed. The developed theory is applicable to both multivalent coions and multivalent counterions. Its application could remove some discrepancies between theory and experiment observed in studies with liquid films from electrolyte solutions. PMID:28773269
Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.
Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less
Lai, Chian-Hui; Hütter, Julia; Hsu, Chien-Wei; Tanaka, Hidenori; Varela-Aramburu, Silvia; De Cola, Luisa; Lepenies, Bernd; Seeberger, Peter H
2016-01-13
Protein-carbohydrate binding depends on multivalent ligand display that is even more important for low affinity carbohydrate-carbohydrate interactions. Detection and analysis of these low affinity multivalent binding events are technically challenging. We describe the synthesis of dual-fluorescent sugar-capped silicon nanoparticles that proved to be an attractive tool for the analysis of low affinity interactions. These ultrasmall NPs with sizes of around 4 nm can be used for NMR quantification of coupled sugars. The silicon nanoparticles are employed to measure the interaction between the cancer-associated glycosphingolipids GM3 and Gg3 and the associated kD value by surface plasmon resonance experiments. Cell binding studies, to investigate the biological relevance of these carbohydrate-carbohydrate interactions, also benefit from these fluorescent sugar-capped nanoparticles.
Methods for performing electrochemical nitration reactions
Lister, Tedd Edward; Fox, Robert Vincent
2010-05-11
A method for the electrochemical synthesis of dinitro compounds is disclosed. The method comprises using an anode to oxidize an inactive chemical mediator, such as a ferrocyanide (Fe(CN).sub.6.sup.-4) ion, to an active chemical mediator or oxidizing agent, such as a ferricyanide (Fe(CN).sub.6.sup.-3) ion, in the presence of a differential voltage. The oxidizing agent reacts with a nitro compound and a nitrite ion to form a geminal dinitro compound. The anode may continuously oxidize ferrocyanide to regenerate active ferricyanide, thus keeping sufficient amounts of ferricyanide available for reaction..
NASA Astrophysics Data System (ADS)
Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong
2013-07-01
A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes. Electronic supplementary information (ESI) available: Experimental details; characterization of probes; the influence of electrolyte pH; probe concentration and glucose concentration on the electrode ECL effect. See DOI: 10.1039/c3nr01598j
FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.
Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa
2009-12-01
FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast cell-mediated allergic reactions.
CU(I)BR MEDIATED COUPLING OF ALKYNES WITH N-ACYLIMINE AND N-ACYLIMINIUM IONS IN WATER. (R828129)
A coupling of alkynes with N-acylimines and N-acyliminium ions mediated by Cu(I) was developed in water to generate propargyl amide derivatives.
Aggregate-mediated charge transport in ionomeric electrolytes
NASA Astrophysics Data System (ADS)
Lu, Keran; Maranas, Janna; Milner, Scott
Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.
Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation
NASA Astrophysics Data System (ADS)
Yonetani, Yoshiteru
2017-12-01
Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.
Phage based green chemistry for gold ion reduction and gold retrieval.
Setyawati, Magdiel I; Xie, Jianping; Leong, David T
2014-01-22
The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.
Hollenhorst, Monika I; Lips, Katrin S; Kummer, Wolfgang; Fronius, Martin
2012-11-27
Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system. Copyright © 2012 Elsevier Inc. All rights reserved.
Aptamer-functionalized nano-biosensors.
Chiu, Tai-Chia; Huang, Chih-Ching
2009-01-01
Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.
Chain Conformation of Phosphorycholine-based Zwitterionic Polymer Brushes in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Mao, Jun; Yu, Jing; Lee, Sungsik; Yuan, Guangcui; Satija, Sushil; Chen, Wei; Tirrell, Matthew
Polyzwitterionic brushes are resistant to nonspecific accumulation of proteins and microorganisms, making them excellent candidates for antifouling applications. It is well-known that polyzwitterions exhibit the so-called antipolyelectrolyte effect: Polyzwitterionic brushes would adopt a collapsed conformation at a low ionic strength due to the electrostatic inter/intra-chain association; whereas at a high ionic strength, they would exhibit an extended conformation because the electrostatic inter/intra-chain dipole-dipole interaction is weakened. However, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is a unique member in polyzwitterionic families. Its ultrahigh affinity to water leads to no detectable shrinks in aqueous solutions even at low ionic strengths. In this study, we synthesized highly dense PMPC brushes via surface initiated radical polymerization and systematically investigate their conformational behaviors at solid-liquid interfaces in the presence of multivalent counterions, combining X-ray and neutron scattering and force measurements. We have demonstrated that despite no obvious changes of the entire lengths of extended PMPC brushes in aqueous solutions, the chain conformations including, but not limited to, polyzwitterion distribution and charge correlation, varied, dependent on salt types, ionic strengths and ion valences.
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
Anthony, Kelsey C.; You, Changjiang; Piehler, Jacob; Pomeranz Krummel, Daniel A.
2014-01-01
SUMMARY There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle (AuNPtris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of AuNPtris-NTA labeled proteins by electron microscopy is further ensured by the reagent’s short conformationally restricted linker. We have employed AuNPtris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. AuNPtris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our new labeling reagent should find broad application in non-covalent site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies. PMID:24560806
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements formore » electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.« less
Photocatalytic ability of Bi6Ti3WO18 nanoparticles with a mix-layered Aurivillius structure
NASA Astrophysics Data System (ADS)
Mi, Longqing; Feng, Yongyi; Cao, Lei; Xue, Mingqiang; Qin, Chuanxiang; Huang, Yanlin; Qin, Lin; Seo, Hyo Jin
2018-01-01
Aurivillius phase layered perovskites Bi6Ti3WO18 was prepared by the sol-gel citrate-complexation synthesis. The sample developed into the plate-like nanoparticles with the exposed (001) facets. The phase formation and structure have been verified via X-ray polycrystalline powder diffraction (XRD) Rietveld refinements. The nanoparticles were investigated via the measurements such as FE-SEM, TEM, EDS, and the surface analyses. UV-Vis absorption data revealed that the Aurivillius compound has a direct band characteristic with the band energy of 2.214 eV. The band structure of Bi6Ti3WO18 nanoparticles was discussed on the base of the experiments and theoretical calculation. Bi3+-containing Aurivillius Bi6Ti3WO18 shows efficient photocatalytic degradation for rhodamine B dye (RhB) with the visible light irradiation ( λ > 420 nm). Dynamic characteristic of the light-created excitons was measured by the luminescence and decay lifetime. The multivalent properties of W and Ti ions in the Aurivillius-like lattices of Bi6Ti3WO18 photocatalyst were discussed.
Biosorbents for Removing Hazardous Metals and Metalloids †
Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke
2017-01-01
Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217
Eisenhut, Michael; Wallace, Helen
2011-04-01
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2
Kulkarni, Ashish A.; Fuller-Schaefer, Cynthia; Korman, Henry; Weiss, Alison A.; Iyer, Suri S.
2011-01-01
Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae, cause life-threatening conditions that include hemolytic-uremic syndrome (HUS), kidney failure and neurological complications. Cellular entry is mediated by the B subunit of the AB5 toxin, which recognizes cell surface glycolipids present in lipid raft like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These highly soluble glyconanoparticles were nontoxic to the Vero monkey kidney cell line and protected Vero cells from Stx-mediated toxicity in a dose dependent manner. The inhibition is highly dependent on the structure and density of the glycans; selective inhibition of Stx1 and the more clinically relevant Stx2 was achieved. Interestingly, natural variants of Stx2, Stx2c and Stx2d, possessing minimal amino acid variation in the receptor binding site of the B subunit or changes in the A subunit were not neutralized by either the Stx1- or Stx2-specific gold glyconanoparticles. Our results suggest that tailored glyconanoparticles that mimic the natural display of glycans in lipid rafts could serve as potential therapeutics for Stx1 and Stx2. However, a few amino acid changes in emerging Stx2 variants can change receptor specificity, and further research is needed to develop receptor mimics for the emerging variants of Stx2. PMID:20669970
Gold glyconanoparticles as new tools in antiadhesive therapy.
Rojo, Javier; Díaz, Vicente; de la Fuente, Jesús M; Segura, Inmaculada; Barrientos, Africa G; Riese, Hans H; Bernad, Antonio; Penadés, Soledad
2004-03-05
Gold glyconanoparticles (GNPs) have been prepared as new multivalent tools that mimic glycosphingolipids on the cell surface. GNPs are highly soluble under physiological conditions, stable against enzymatic degradation and nontoxic. Thereby GNPs open up a novel promising multivalent platform for biological applications. It has recently been demonstrated that specific tumor-associated carbohydrate antigens (glycosphingolipids and glycoproteins) are involved in the initial step of tumor spreading. A mouse melanoma model was selected to test glyconanoparticles as possible inhibitors of experimental lung metastasis. A carbohydrate-carbohydrate interaction is proposed as the first recognition step for this process. Glyconanoparticles presenting lactose (lacto-GNPs) have been used successfully to significantly reduce the progression of experimental metastasis. This result shows for the first time a clear biological effect of lacto-GNPs, demonstrating the potential application of this glyconanotechnology in biological processes.
Solid-phase synthesis of self-assembling multivalent π-conjugated peptides
Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...
2017-02-07
Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less
Pi-Pi contacts are an overlooked protein feature relevant to phase separation
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong
2018-01-01
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691
Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram
2012-01-01
We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2k(d)-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines.
Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram
2012-01-01
We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2kd-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines. PMID:23166703
NASA Astrophysics Data System (ADS)
Wu, Jun-Zheng; Zhou, Mei-Hong; Zhang, Neng-Hui
2017-10-01
The adsorption of charged biomolecules on a substrate will trigger a self-induced electric potential field that could deflect microcantilever biosensors in the nanometer regime. The paper is devoted to a multiscale characterization of the piezoelectric coefficient of double-stranded DNA (dsDNA) films with microscopic attractive interactions in multivalence salt solutions, which has a close relationship with biosensor signals. First, two different analytical models of cantilever deflections based on macroscopic piezoelectric theories or mesoscopic liquid crystal theories were combined in the sense of equivalent deformation in order to bridge the relation between the macroscopic piezoelectric coefficient of an adsorbate film and the sensitivity of its microstructure to surrounding conditions. Second, two interaction potentials of the free energy for repulsion-dominated DNA films in NaCl solution or attraction-repulsion-coexisted DNA films in multivalent salt solutions were used to compare the piezoelectric effect and the resultant cantilever deformation at various packing conditions, such as different packing density, various nucleotide numbers and two packing technologies, i.e. nano-grafting or self-assembling technology. The variational tendency of microcantilever deflections predicted by the present multiscale analytical model agrees well with the related DNA-mirocantilever experiments. Negative piezoelectric coefficient of dsDNA film exists in multivalent salt solutions, and its distinctive size effect with different packing densities and nucleotide numbers provides us with an opportunity to obtain a more sensitive microcantilever sensor by careful control of packing conditions.
Multivalent Peptoid Conjugates Which Overcome Enzalutamide Resistance in Prostate Cancer Cells.
Wang, Yu; Dehigaspitiya, Dilani C; Levine, Paul M; Profit, Adam A; Haugbro, Michael; Imberg-Kazdan, Keren; Logan, Susan K; Kirshenbaum, Kent; Garabedian, Michael J
2016-09-01
Development of resistance to antiandrogens for treating advanced prostate cancer is a growing concern and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here, we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its antiproliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacologic studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. Cancer Res; 76(17); 5124-32. ©2016 AACR. ©2016 American Association for Cancer Research.
Wang, Min; Jokinen, Jenny; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S.
2018-01-01
Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c+/CD8+ dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel. PMID:29287681
Smith, David K
2018-05-08
This feature article provides a personal insight into the research from my group over the past 10 years. In particular, the article explains how, inspired in 2005 by meeting my now-husband, Sam, who had cystic fibrosis, and who in 2011 went on to have a double lung transplant, I took an active decision to follow a more applied approach to some of our research, attempting to use fundamental supramolecular chemistry to address problems of medical interest. In particular, our strategy uses self-assembly to fabricate biologically-active nanosystems from simple low-molecular-weight building blocks. These systems can bind biological polyanions in highly competitive conditions, allowing us to approach applications in gene delivery and coagulation control. In the process, however, we have also developed new fundamental principles such as self-assembled multivalency (SAMul), temporary 'on-off' multivalency, and adaptive/shape-persistent multivalent binding. By targeting materials with applications in drug formulation and tissue engineering, we have discovered novel self-assembling low-molecular-weight hydrogelators based on the industrially-relevant dibenzylidenesorbitol framework and developed innovative approaches to spatially-resolved gels and functional multicomponent hybrid hydrogels. In this way, taking an application-led approach to research has also delivered significant academic value and conceptual advances. Furthermore, beginning to translate fundamental supramolecular chemistry into real-world applications, starts to demonstrate the power of this approach, and its potential to transform the world around us for the better.
Musa-Aziz, Raif; Boron, Walter F.; Parker, Mark D.
2010-01-01
The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (~1 mm diameter), (b) it has an established capacity to produce—from microinjected mRNAs or cRNAs—exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion-transporters as green-fluorescent-protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl−, H+ (and hence base equivalents like OH−1 and HCO3−), K+, and Na+ is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates. PMID:20051266
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yiqun; Luo, Ming; Tao, Jing
We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less
Zheng, Yiqun; Luo, Ming; Tao, Jing; ...
2014-12-11
We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
Santamaría-Díaz, Noelia; Méndez-Arriaga, José M; Salas, Juan M; Galindo, Miguel A
2016-05-17
The oligonucleotide d(TX)9 , which consists of an octadecamer sequence with alternating non-canonical 7-deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double-stranded DNA through the formation of hydrogen-bonded Watson-Crick base pairs. dsDNA with metal-mediated base pairs was then obtained by selectively replacing W-C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag(+) ions, and its stability is significantly enhanced in the presence of Ag(+) ions while its double-helix structure is retained. Temperature-dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)-mediated base pairs. This strategy could become useful for preparing stable metallo-DNA-based nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Chunliang; Su, Xiaoge; Floreancig, Paul E.
2013-01-01
Vinyl ethers can be protonated to generate oxocarbenium ions that react with Me3SiCN to form cyanohydrin alkyl ethers. Reactions that form racemic products proceed efficiently upon converting the vinyl ether to an α-chloro ether prior to cyanide addition in a pathway that proceeds through Brønsted acid-mediated chloride ionization. Enantiomerically enriched products can be accessed by directly protonating the vinyl ether with a chiral Brønsted acid to form a chiral ion pair. Me3SiCN acts as the nucleophile and PhOH serves as a stoichiometric proton source in a rare example of an asymmetric bimolecular nucleophilic addition reaction into an oxocarbenium ion. Computational studies provide a model for the interaction between the catalyst and the oxocarbenium ion. PMID:23968162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammerts van Bueren,A.; Higgins, M.; Wang, D.
2007-01-01
The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basismore » for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.« less
Pollock, Jacob F; Ashton, Randolph S; Rode, Nikhil A; Schaffer, David V; Healy, Kevin E
2012-09-19
The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product-consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multiangle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and help to better understand multivalent macromolecular interactions in biological systems.
Venter, P. Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E.; Schneemann, Anette
2011-01-01
Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery and tissue-specific bio-imaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to covalently display a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187
Pratt, William D.; Wang, Danher; Nichols, Donald K.; Luo, Min; Woraratanadharm, Jan; Dye, John M.; Holman, David H.; Dong, John Y.
2010-01-01
Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat. PMID:20181765
Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour.
Golczyk, Hieronim; Musiał, Krystyna; Rauwolf, Uwe; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan
2008-11-01
The genus Oenothera shows an intriguing extent of permanent translocation heterozygosity. Reciprocal translocations of chromosome arms in species or populations result in various kinds of chromosome multivalents in diakinesis. Early meiotic events conditioning such chromosome behaviour are poorly understood. We found a surprising uniformity of the leptotene-diplotene period, regardless of the chromosome configuration at diakinesis (ring of 14, 7 bivalents, mixture of bivalents and multivalents). It appears that the earliest chromosome interactions at Oenothera meiosis are untypical, since they involve pericentromeric regions. During early leptotene, proximal chromosome parts cluster and form a highly polarized Rabl configuration. Telomeres associated in pairs were seen at zygotene. The high degree of polarization of meiotic nuclei continues for an exceptionally long period, i.e., during zygotene-pachytene into the diplotene contraction stage. The Rabl-polarized meiotic architecture and clustering of pericentromeres suggest a high complexity of karyotypes, not only in structural heterozygotes but also in bivalent-forming homozygous species.
Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S
2015-06-23
Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.
Pratt, William D; Wang, Danher; Nichols, Donald K; Luo, Min; Woraratanadharm, Jan; Dye, John M; Holman, David H; Dong, John Y
2010-04-01
Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.
Pi-Pi contacts are an overlooked protein feature relevant to phase separation.
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah
2018-02-09
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.
Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.
Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen
2018-03-26
A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.
2013-01-01
The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081
Self-assembling choline mimicks with enhanced binding affinities to C-LytA protein
Shi, Yang; Zhou, Hao; Zhang, Xiaoli; Wang, Jingyu; Long, Jiafu; Yang, Zhimou; Ding, Dan
2014-01-01
Streptococcus pneumoniae (pneumococcus) causes multiple illnesses in humans. Exploration of effective inhibitors with multivalent attachment sites for choline-binding modules is of great importance to reduce the pneumococcal virulence. In this work, we successfully developed two self-assembling choline mimicks, Ada-GFFYKKK' and Nap-GFFYKKK', which have the abilities to self-assemble into nanoparticles and nanofibers, respectively, yielding multivalent architectures. Additionally, the best characterized choline-binding module, C-terminal moiety of the pneumococcal cell-wall amidase LytA (C-LytA) was also produced with high purity. The self-assembling Ada-GFFYKKK' and Nap-GFFYKKK' show strong interactions with C-LytA, which possess much higher association constant values to the choline-binding modules as compared to the individual peptide Fmoc-K'. This study thus provides a self-assembly approach to yield inhibitors that are very promising for reducing the pneumococcal virulence. PMID:25315737
Multivalent small molecule pan-RAS inhibitors
Welsch, Matthew E.; Kaplan, Anna; Chambers, Jennifer M.; Stokes, Michael E.; Bos, Pieter H.; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A.; Huang, Christine S.; Tran, Timothy H.; Akkiraju, Hemanth; Brown, Lewis M.; Nandakumar, Renu; Cremers, Serge; Yang, Wan S.; Tong, Liang; Olive, Kenneth P.; Ferrando, Adolfo; Stockwell, Brent R.
2017-01-01
SUMMARY Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, have potential use as chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers, and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. PMID:28235199
Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.
Karaoglu Hanzatian, Denise; Schwartz, Annette; Gizatullin, Farid; Erickson, Jamie; Deng, Kangwen; Villanueva, Ruth; Stedman, Christopher; Harris, Cristina; Ghayur, Tariq; Goodearl, Andrew
2018-05-17
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.
Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.
Bottini, Massimo; D'Annibale, Federica; Magrini, Andrea; Cerignoli, Fabio; Arimura, Yutaka; Dawson, Marcia I; Bergamaschi, Enrico; Rosato, Nicola; Bergamaschi, Antonio; Mustelin, Tomas
2007-01-01
To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.
Viral Capsid DNA Aptamer Conjugates as Multivalent Cell Targeting Vehicles
Tong, Gary J.; Hsiao, Sonny C.; Carrico, Zachary M.; Francis, Matthew B.
2009-01-01
Nucleic acid aptamers offer significant potential as convenient and evolvable targeting groups for drug delivery. To attach them to the surface of a genome-free viral capsid carrier, an efficient oxidative coupling strategy has been developed. The method involves the periodate-mediated reaction of phenylene diamine substituted oligonucleotides with aniline groups installed on the outer surface of the capsid shells. Up to 60 DNA strands can be attached to each viral capsid with no apparent loss of base-pairing capabilities or protein stability. The ability of the capsids to bind specific cellular targets was demonstrated through the attachment of a 41-nucleotide sequence that targets a tyrosine kinase receptor on Jurkat T cells. After the installation of a fluorescent dye on the capsid interior, capsids bearing the cell-targeting sequence showed significant levels of binding to the cells relative to control samples. Colocalization experiments using confocal microscopy indicated that the capsids were endocytosed and trafficked to lysosomes for degradation. These observations suggest that aptamer-labeled capsids could be used for the targeted drug delivery of acid-labile prodrugs that would be preferentially released upon lysosomal acidification. PMID:19603808
Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng
2016-03-15
The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diffusing colloidal probes of protein-carbohydrate interactions.
Eichmann, Shannon L; Meric, Gulsum; Swavola, Julia C; Bevan, Michael A
2013-02-19
We present diffusing colloidal probe measurements of weak, multivalent, specific protein-polysaccharide interactions mediated by a competing monosaccharide. Specifically, we used integrated evanescent wave and video microscopy methods to monitor the three-dimensional Brownian excursions of conconavilin A (ConA) decorated colloids interacting with dextran-functionalized surfaces in the presence of glucose. Particle trajectories were interpreted as binding lifetime histograms, binding isotherms, and potentials of mean force. Binding lifetimes and isotherms showed clear trends of decreasing ConA-dextran-specific binding with increasing glucose concentration, consistent with expectations. Net potentials were accurately captured by superposition of a short-range, glucose-independent ConA-dextran repulsion and a longer-range, glucose-dependent dextran bridging attraction modeled as a harmonic potential. For glucose concentrations greater than 100 mM, the net ConA-dextran potential was found to have only a nonspecific repulsion, similar to that of bovine serum albumin (BSA) decorated colloids over dextran determined in control experiments. Our results demonstrate the first use of optical microscopy methods to quantify the connections between potentials of mean force and the binding behavior of ConA-decorated colloids on dextran-functionalized surfaces.
Chilivery, Rakesh; Rana, Rohit Kumar
2017-01-25
A polyamine-mediated bioinspired strategy to assemble Keggin-type phosphomolybdic acid (PMA) clusters is demonstrated for the fabrication of microcapsule (MC) structures with unique surface textures. It involves supramolecular aggregation of polyamines with multivalent anions, which then allows the assembly of negatively charged PMA into MCs in an aqueous medium under ambient conditions. Resembling the role of polyamines in biosilicification of diatoms, the polyamine-anion interaction is shown to be the key for the assembly process. It not only provides structural stability but also facilitates an interesting transition from a smooth to a wrinkled surface alongside a change in the Keggin form to its lacunary form depending on the pH of the medium. Moreover, the presence of isolated PMA units in the hybrid structure enables them to be active in catalyzing the aerobic oxidation of alkenes under solvent-free conditions with better selectivity and reusability. Hence, the assembly approach represents an effective way for heterogenization of PMA-based materials and is expected to find considerable application in the wider hybrid-cluster field.
Synthesis of galactosyl compounds for targeted gene delivery.
Ren, T; Zhang, G; Liu, D
2001-11-01
Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.
Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes.
Roland, Felicia M; Peck, Evan M; Rice, Douglas R; Smith, Bradley D
2017-04-19
A new self-assembly process known as Synthavidin (synthetic avidin) technology was used to prepare targeted probes for near-infrared fluorescence imaging of anionic membranes and cell surfaces, a hallmark of many different types of disease. The probes were preassembled by threading a tetralactam macrocycle with six appended zinc-dipicolylamine (ZnDPA) targeting units onto a linear scaffold with one or two squaraine docking stations to produce hexavalent or dodecavalent fluorescent probes. A series of liposome titration experiments showed that multivalency promoted stronger membrane binding by the dodecavalent probe. In addition, the dodecavalent probe exhibited turn-on fluorescence due to probe unfolding during fluorescence microscopy at the membrane surface. However, the dodecavalent probe also had a higher tendency to self-aggregate after membrane binding, leading to probe self-quenching under certain conditions. This self-quenching effect was apparent during fluorescence microscopy experiments that recorded low fluorescence intensity from anionic dead and dying mammalian cells that were saturated with the dodecavalent probe. Conversely, probe self-quenching was not a factor with anionic microbial surfaces, where there was intense fluorescence staining by the dodecavalent probe. A successful set of rat tumor imaging experiments confirmed that the preassembled probes have sufficient mechanical stability for effective in vivo imaging. The results demonstrate the feasibility of this general class of preassembled fluorescent probes for multivalent targeting, but fluorescence imaging performance depends on the specific physical attributes of the biomarker target, such as the spatial distance between different copies of the biomarker and the propensity of the probe-biomarker complex to self-aggregate.
Unique DC-SIGN clustering activity of a small glycomimetic: A lesson for ligand design.
Sutkeviciute, Ieva; Thépaut, Michel; Sattin, Sara; Berzi, Angela; McGeagh, John; Grudinin, Sergei; Weiser, Jörg; Le Roy, Aline; Reina, Jose J; Rojo, Javier; Clerici, Mario; Bernardi, Anna; Ebel, Christine; Fieschi, Franck
2014-06-20
DC-SIGN is a dendritic cell-specific C-type lectin receptor that recognizes highly glycosylated ligands expressed on the surface of various pathogens. This receptor plays an important role in the early stages of many viral infections, including HIV, which makes it an interesting therapeutic target. Glycomimetic compounds are good drug candidates for DC-SIGN inhibition due to their high solubility, resistance to glycosidases, and nontoxicity. We studied the structural properties of the interaction of the tetrameric DC-SIGN extracellular domain (ECD), with two glycomimetic antagonists, a pseudomannobioside (1) and a linear pseudomannotrioside (2). Though the inhibitory potency of 2, as measured by SPR competition experiments, was 1 order of magnitude higher than that of 1, crystal structures of the complexes within the DC-SIGN carbohydrate recognition domain showed the same binding mode for both compounds. Moreover, when conjugated to multivalent scaffolds, the inhibitory potencies of these compounds became uniform. Combining isothermal titration microcalorimetry, analytical ultracentrifugation, and dynamic light scattering techniques to study DC-SIGN ECD interaction with these glycomimetics revealed that 2 is able, without any multivalent presentation, to cluster DC-SIGN tetramers leading to an artificially overestimated inhibitory potency. The use of multivalent scaffolds presenting 1 or 2 in HIV trans-infection inhibition assay confirms the loss of potency of 2 upon conjugation and the equal efficacy of chemically simpler compound 1. This study documents a unique case where, among two active compounds chemically derived, the compound with the lower apparent activity is the optimal lead for further drug development.
Tang, Jay X; Wen, Qi; Bennett, Andrew; Kim, Brian; Sheils, Catherine A; Bucki, Robert; Janmey, Paul A
2005-10-01
Bundles of F-actin and DNA present in the sputum of cystic fibrosis (CF) patients but absent from normal airway fluid contribute to the altered viscoelastic properties of sputum that inhibit clearance of infected airway fluid and exacerbate the pathology of CF. Previous strategies to remove these filamentous aggregates have focused on DNase to enzymatically depolymerize DNA to constituent monomers and gelsolin to sever F-actin to small fragments. The high densities of negative surface charge on DNA and F-actin suggest that the bundles of these filaments, which alone exhibit a strong electrostatic repulsion, may be stabilized by multivalent cations such as histones, antimicrobial peptides, and other positively charged molecules prevalent in airway fluid. This study reports that bundles of DNA or F-actin formed after addition of histone H1 or lysozyme are efficiently dissolved by soluble multivalent anions such as polymeric aspartate or glutamate. Addition of poly-aspartate or poly-glutamate also disperses DNA and actin-containing bundles in CF sputum and lowers the elastic moduli of these samples to levels comparable to those obtained after treatment with DNase I or gelsolin. Addition of poly-aspartic acid also increased DNase activity when added to samples containing DNA bundles formed with histone H1. When added to CF sputum, poly-aspartic acid significantly reduced the growth of bacteria, suggesting activation of endogenous antibacterial factors. These findings suggest that soluble multivalent anions have potential alone or in combination with other mucolytic agents to selectively dissociate the large bundles of charged biopolymers that form in CF sputum.
Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus*
Hendricks, Gabriel L.; Weirich, Kim L.; Viswanathan, Karthik; Li, Jing; Shriver, Zachary H.; Ashour, Joseph; Ploegh, Hidde L.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Finberg, Robert W.; Comolli, James C.; Wang, Jennifer P.
2013-01-01
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains. PMID:23362274
Bowersock, Terry L; Sobecki, Brian E; Terrill, Sarah J; Martinon, Nathalie C; Meinert, Todd R; Leyh, Randy D
2014-08-01
To determine the efficacy of a multivalent modified-live virus (MLV) vaccine containing a Mannheimia haemolytica toxoid to reduce pneumonia and mortality rate when administered to calves challenge exposed with virulent Bibersteinia trehalosi. Animals-74 Holstein calves. Calves were assigned to 2 treatment groups. Calves in the control group (n = 36) were vaccinated by SC administration of 2 mL of a commercial 5-way MLV vaccine, and calves in the other group (38) were vaccinated by SC administration of a 2-mL dose of a 5-way MLV vaccine containing M haemolytica toxoid (day 0). On day 21, calves were transtracheally administered B trehalosi. Serum was obtained for analysis of antibody titers against M haemolytica leukotoxin. Nasopharyngeal swab specimens were collected from calves 1 day before vaccination (day -1) and challenge exposure (day 20) and cultured to detect bacterial respiratory pathogens. Clinical scores, rectal temperature, and death attributable to the challenge-exposure organism were recorded for 6 days after challenge exposure. Remaining calves were euthanized at the end of the study. Necropsy was performed on all calves, and lung lesion scores were recorded. Calves vaccinated with the MLV vaccine containing M haemolytica toxoid had significantly lower lung lesion scores, mortality rate, and clinical scores for respiratory disease, compared with results for control calves. Administration of a multivalent MLV vaccine containing M haemolytica toxoid protected calves against challenge exposure with virulent B trehalosi by reducing the mortality rate, lung lesion scores, and clinical scores for respiratory disease.
Biodegradable Pectin/clay Aerogels
USDA-ARS?s Scientific Manuscript database
Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...
Solvent-mediated nonelectrostatic ion-ion interactions predicting anomalies in electrophoresis.
Goswami, Prakash; Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman
2017-03-01
We study the effects of solvent-mediated nonelectrostatic ion-ion interactions on electrophoretic mobility of a charged spherical particle. To this end, we consider the case of low surface electrostatic potential resulting in the linearization of the governing equations, which enables us to deduce a closed-form analytical solution to the electrophoretic mobility. We subsequently compare our results to the standard model using Henry's approach and report the changes brought about by the nonelectrostatic potential. The classical approach to determine the electrophoretic mobility underpredicts the particle velocity when compared with experiments. We show that this issue can be resolved by taking into account nonelectrostatic interactions. Our analysis further reveals the phenomenon of electrophoretic mobility reversal that has been experimentally observed in numerous previous studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A
2013-09-01
Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ion transport regulation by prostaglandins in mouse macrophages.
Braquet, P; Diez, J; Garay, R
1985-01-01
Although the prostaglandins PGE1, PGE2 and PGF2 alpha had no effect on ion transport in isolated human erythrocytes, they modulated ion transport in isolated mouse macrophages, apparently through the mediation of cAMP, by inhibiting the NA+, K+ cotransport system, stimulating the Na+, K+ pump, and stimulating the Na+: Ca++ exchange mechanism.
What dictates which ion, I- or Br-, mediates the growth of cubic Pd nanocrystals?
Wang, Ze-Hong; Wu, Ya-Jiao; Xue, Huan-Huan; Zhou, Lin-Nan; Geng, Wen-Chao; Yi, Hai-Bo; Li, Yong-Jun
2018-04-25
Cubic Pd nanocrystals (CPNCs) as one of typical nanostructures are generally fabricated using I- or Br- as capping ions. However, which ion, I- or Br-, exclusively mediates the growth of CPNCs in a given reaction system is not well understood. Herein, regardless of I- or Br- as the capping ion, we successfully achieved CPNCs in the same reaction system simply by adjusting the pH. Based on the Finke-Watzky kinetic model, an increase in pH accelerates the overall reduction rate of Pd2+, and the formation of CPNCs only occurs over the range of specific solution reduction rate constants (k1). This kinetically illuminates that the reduction rate of Pd2+ is the physicochemical parameter that determines which ion, I- or Br-, dictates the growth of CPNCs. Also, density functional theory (DFT) calculations further elucidate the dependence of the reduction rate of Pd2+ on pH and the configuration of the activated Pd2+ complex.
Rajmohan, Rajamani; Ayaz Ahmed, Khan Behlol; Sangeetha, Sampathkumar; Anbazhagan, Veerappan; Vairaprakash, Pothiappan
2017-09-08
Copper(ii) ion mediated C-H oxidation of dipyrromethanes (DPMs) to the corresponding dipyrrins followed by complexation invoked the selective sensing of copper(ii) ions in aqueous solutions. On the addition of copper, the colour of the DPM solution instantaneously changes from yellow to pink with the detection limit of 0.104 μM measured by absorption spectroscopy, whereas visible colour changes could be observed by the naked eye for concentrations as low as 3 μM.
Identification of novel small-molecule Ulex europaeus I mimetics for targeted drug delivery.
Hamashin, Christa; Spindler, Lisa; Russell, Shannon; Schink, Amy; Lambkin, Imelda; O'Mahony, Daniel; Houghten, Richard; Pinilla, Clemencia
2003-11-17
Lectin mimetics have been identified that may have potential application towards targeted drug delivery. Synthetic multivalent polygalloyl constructs effectively competed with Ulex europaeus agglutinin I (UEA1) for binding to intestinal Caco-2 cell membranes.
Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan
2016-10-01
Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.
Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling
Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen
2014-01-01
Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309
The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study.
Binns, D D; Helms, M K; Barylko, B; Davis, C T; Jameson, D M; Albanesi, J P; Eccleston, J F
2000-06-20
Dynamin II is a 98 kDa protein (870 amino acids) required for the late stages of clathrin-mediated endocytosis. The GTPase activity of dynamin is required for its function in the budding stages of receptor-mediated endocytosis and synaptic vesicle recycling. This activity is stimulated when dynamin self-associates on multivalent binding surfaces, such as microtubules and anionic liposomes. We first investigated the oligomeric state of dynamin II by analytical ultracentrifuge sedimentation equilibrium measurements at high ionic strength and found that it was best described by a monomer-tetramer equilibrium. We then studied the intrinsic dynamin GTPase mechanism by using a combination of fluorescence stopped-flow and HPLC methods using the fluorescent analogue of GTP, mantdGTP (2'-deoxy-3'-O-(N-methylanthraniloyl) guanosine-5'-triphosphate), under the same ionic strength conditions. The results are interpreted as showing that mantdGTP binds to dynamin in a two-step mechanism. The dissociation constant of mantdGTP binding to dynamin, calculated from the ratio of the off-rate to the on-rate (k(off)/k(on)), was 0.5 microM. Cleavage of mantdGTP then occurs to mantdGDP and P(i) followed by the rapid release of mantdGDP and P(i). No evidence of reversibility of hydrolysis was observed. The cleavage step itself is the rate-limiting step in the mechanism. This mechanism more closely resembles that of the Ras family of proteins involved in cell signaling than the myosin ATPase involved in cellular motility.
Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus.
Brument, S; Cheneau, C; Brissonnet, Y; Deniaud, D; Halary, F; Gouin, S G
2017-09-20
Human cytomegalovirus (HCMV) is a beta-herpesvirus with a high prevalence in the population. HCMV is asymptomatic for immunocompetent adults but is a leading cause of morbidity for new born and immunocompromised patients. It was recently shown that the envelope glycoprotein B (gB) of HCMV interacts with the Dendritic Cell-Specific ICAM-3 Grabbing Non integrin (DC-SIGN) to infect the host. In this work we developed a set of DC-SIGN blockers based on mono-, di-, tetra and polyvalent mannosides. The multivalent mannosides were designed to interact with the carbohydrate recognition domains of DC-SIGN in a chelate or bind and recapture process, and represent the first chemical antiadhesives of HCMV reported so far. Polymeric dextrans coated with triazolylheptylmannoside (THM) ligands were highly potent, blocking the gB and DC-SIGN interaction at nanomolar concentrations. The compounds were further assessed for their ability to prevent the DC-SIGN mediated HCMV infection of dendritic cells. A dextran polymer coated with an average of 902 THM ligands showed an outstanding effect in blocking the HCMV trans-infection with IC 50 values down to the picomolar range (nanomolar when expressed in THM concentration). Each THM moiety on the polymer surpassed the antiadhesive effect of the methylmannoside reference by more than four orders of magnitude. The compound proved non-cytotoxic at the high concentration of 2 mM and therefore represents an interesting antiadhesive candidate against HCMV and potentially against other virus hijacking dendritic cells to infect the host.
Biryukova, Inna; Heitzler, Pascal
2008-11-01
The peripheral nervous system is required for animals to detect and to relay environmental stimuli to central nervous system for the information processing. In Drosophila, the precise spatial and temporal expression of two proneural genes achaete (ac) and scute (sc), is necessary for development of the sensory organs. Here we present an evidence that the transcription co-repressor, dCtBP acts as a negative regulator of sensory organ prepattern. Loss of dCtBP function mutant exhibits ectopic sensory organs, while overexpression of dCtBP results in a dramatic loss of sensory organs. These phenotypes are correlated with mis-emerging of sensory organ precursors and perturbated expression of proneural transcription activator Ac. Mammalian CtBP-1 was identified via interaction with the consensus motif PXDLSX(K/R) of adenovirus E1A oncoprotein. We demonstrated that dCtBP binds directly to PLDLS motif of Drosophila Friend of GATA-1 protein, U-shaped and sharpens the adult sensory organ development. Moreover, we found that dCtBP mediates multivalent interaction with the GATA transcriptional activator Pannier and acts as a direct co-repressor of the Pannier-mediated activation of proneural genes. We demonstrated that Pannier genetically interacts with dCtBP-interacting protein HDAC1, suggesting that the dCtBP-dependent regulation of Pannier activity could utilize a repressive mechanism involving alteration of local chromatine structure.
Chough, S. P.; Goldenring, J. R.; Hurst, R. D.; Ballantyne, G. H.; Modlin, I. M.
1993-01-01
In mammalian intestine, a number of secretagogues have been shown to work through either cyclic nucleotide or calcium mediated pathways to elicit ion secretion. Because excessive intestinal electrolyte and fluid secretion is central to the pathogenesis of a variety of diarrheal disorders, understanding of these processes is essential to the development of future clinical treatments. In the current study, the effects of serotonin (5HT), histamine, and carbachol on intestinal ion transport were examined in in vitro preparations of rabbit ileum. All three agonists induced a rapid and transient increase short-circuit current (delta Isc) across ileal mucosa. Inhibition of the delta Isc response of all three agents in chloride-free solution or in the presence of bumetanide confirmed that chloride is the main electrolyte involved in electrogenic ion secretion. Pretreatment of tissue with tetrodotoxin or atropine did not effect secretagogue-mediated electrolyte secretion. While tachyphylaxis of delta Isc response was shown to develop after repeated exposure of a secretagogue to tissue, delta Isc responses after sequential addition of different agonists indicate that cross-tachyphylaxis between agents did not occur. Serotonin, histamine, and carbachol have previously been reported to mediate electrolyte secretion through calcium-dependent pathways. To access the role of extracellular calcium in regulating ion secretion, the effect of verapamil on each agent was tested; verapamil decreased 5HT-induced delta Isc by 65.2% and histamine response by 33.5%, but had no effect on carbachol-elicited chloride secretion. An additive secretory effect was found upon simultaneous exposure of 5HT and carbachol to the system; no other combination of agents produced a significant additive effect. Findings from this study support previous work which has suggested that multiple calcium pathways may be involved in mediating chloride secretion in mammalian intestine. PMID:7716972
Sun, Tiedong; Mirzoev, Alexander; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars
2017-08-24
It is well established that the presence of the trivalent cobalt(III)-hexammine cation (CoHex 3+ ) at submillimolar concentrations leads to bundling (condensation) of double-stranded DNA molecules, which is caused by DNA-DNA attraction induced by the multivalent counterions. However, the detailed mechanism of this process is still not fully understood. Furthermore, in all-atom molecular dynamics (MD) simulations, spontaneous aggregation of several DNA oligonucleotides in the presence of CoHex 3+ has previously not been demonstrated. In order to obtain a rigorous description of CoHex 3+ -nucleic acid interactions and CoHex 3+ -induced DNA condensation to be used in MD simulations, we have derived optimized force field parameters of the CoHex 3+ ion. They were obtained from Car-Parrinello molecular dynamics simulation of a single CoHex 3+ ion in the presence of 125 water molecules. The new set of force field parameters reproduces the experimentally known transition of DNA from B- to A-form, and qualitatively describes changes of DNA and RNA persistence lengths. We then carried out a 2 μs long atomistic simulation of four DNA oligomers each consisting of 36 base pairs in the presence of CoHex 3+ . We demonstrate that, in this system, DNA molecules display attractive interactions and aggregate into bundle-like structures. This behavior depends critically on the details of the CoHex 3+ interaction with DNA. A control simulation with a similar setup but in the presence of Mg 2+ does not induce DNA-DNA attraction, which is also in agreement with experiment.
Baclofen Solution for Low-Volume Therapeutic Delivery.
Meythaler, Jay M; Peduzzi, Jean D
2017-06-01
Baclofen is a zwitterion molecule where increased ions in the excipient increase the solubility. We developed baclofen in a stable solution similar to cerebrospinal fluid (CSF) without bicarbonate and proteins to improve the solubility of the baclofen and to reduce the potential toxicity to the central nervous system (CNS) and subarachnoid space. The objective is to develop a solution of baclofen wherein baclofen is solubilized in a multivalent physiological ion solution such as artificial cerebrospinal fluid (aCSF) at a concentration from 2 mg/cc to 10 mg/cc. First, to determine the solubility of Baclofen in aCSF, solubility was determined at six different pH levels at 37°C, by the addition of aCSF to a known amount of Baclofen. The final concentrations were confirmed by high performance liquid chromatography (HPLC) analysis. Second, the stability of Baclofen at 4 mg/cc investigated in a test manufacturing batch utilizing standard methods of production of 1500 20 cc vials inverted for 18 months at 25°C at 60% humidity. The stability and purity of the baclofen was verified at 18 months by HPLC analysis. Baclofen was initially soluble between pH of 6-8 above 7 mg/cc but fell back to 6.3-5.8 mg/cc level with time. Baclofen produced in vials with inversion were noted to be stable at 4 mg/cc at 18 months with less than 2% breakdown of the baclofen in solution. Baclofen is much more soluble in artificial CSF than normal saline. The artificial CSF may also be less toxic to the subarachnoid space than saline. © 2016 International Neuromodulation Society.
Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
Xu, Pei; Capito, Marissa; Cath, Tzahi Y
2013-09-15
Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.
Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿
Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor
2011-01-01
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells.
Arisaka, Akio; Mogaki, Rina; Okuro, Kou; Aida, Takuzo
2018-02-21
We developed dendritic caged molecular glues ( Caged Glue-R) as tags for nucleus-targeted drug delivery, whose multiple guanidinium ion (Gu + ) pendants are protected by an anionic photocleavable unit (butyrate-substituted nitroveratryloxycarbonyl; BA NVOC). Negatively charged Caged Glue-R hardly binds to anionic biomolecules because of their electrostatic repulsion. However, upon exposure of Caged Glue-R to UV light or near-infrared (NIR) light, the BA NVOC groups of Caged Glue-R are rapidly detached to yield an uncaged molecular glue ( Uncaged Glue-R) that carries multiple Gu + pendants. Because Gu + forms a salt bridge with PO 4 - , Uncaged Glue-R tightly adheres to anionic biomolecules such as DNA and phospholipids in cell membranes by a multivalent salt-bridge formation. When tagged with Caged Glue-R, guests can be taken up into living cells via endocytosis and hide in endosomes. However, when the Caged Glue-R tag is photochemically uncaged to form Uncaged Glue-R, the guests escape from the endosome and migrate into the cytoplasm followed by the cell nucleus. We demonstrated that quantum dots (QDs) tagged with Caged Glue-R can be delivered efficiently to cell nuclei eventually by irradiation with light.
Ionic Strength Is a Barrier to the Habitability of Mars.
Fox-Powell, Mark G; Hallsworth, John E; Cousins, Claire R; Cockell, Charles S
2016-06-01
The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.
High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment
NASA Astrophysics Data System (ADS)
Liu, Baicang; Wang, Shuai; Zhao, Pingju; Liang, Heng; Zhang, Wen; Crittenden, John
2018-03-01
Nanofiltration (NF) membranes have many excellent applications (e.g., removing multivalent ions and pretreating water before reverse osmosis, RO), but their relatively high cost limits their application. Especially in recent years, researchers have paid substantial attention to reducing the cost of NF membranes. In this paper, high-performance NF membranes were fabricated using interfacial polymerization (IP) methods. The polymer concentration, IP solution concentration, and thermal treatment conditions were varied. The synthesized membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), a contact angle goniometer, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and performance tests. The results show that water flux was significantly improved using a hot-water thermal treatment method. Our fabricated thermal-treated NF membrane had an approximately 15% higher water permeability with a value of 13.6 L/(m2 h bar) than that of the commercially available GE HL membrane with a value of 11.8 L/(m2 h bar). Our membranes had the same MgSO4 rejection as that of the GE HL membrane. We found that the thermal treatment causes the NF membrane surface to be smoother and have a high crosslinking degree.
Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.
Gan, Hin Hark; Schlick, Tamar
2010-10-20
Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel
Gurnev, Philip A.; Bezrukov, Sergey M.
2014-01-01
We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the “charge inversion” phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine. PMID:23088396
Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.
Gurnev, Philip A; Bezrukov, Sergey M
2012-11-13
We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.
Carbonate thermochemical cycle for the production of hydrogen
Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis, Jr, Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN
2010-02-23
The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.
Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong
2016-11-16
Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.
Jansod, Sutida; Wang, Lu; Cuartero, Maria; Bakker, Eric
2017-09-28
A new lipophilic dinonyl bipyridyl Os(ii)/Os(iii) complex successfully mediates ion transfer processes across voltammetric thin membranes. An added lipophilic cation-exchanger may impose voltammetric anion or cation transfer waves of Gaussian shape that are reversible and repeatable. The peak potential is found to shift with the ion concentration in agreement with the Nernst equation. The addition of tridodecylmethylammonium nitrate to the polymeric film dramatically reduces the peak separation from 240 mV to 65 mV, and the peak width to a near-theoretical value of 85 mV, which agrees with a surface confined process. It is suggested that the cationic additive serves as a phase transfer catalyst.
Mao, Qunying; Wang, Yiping; Bian, Lianlian; Xu, Miao; Liang, Zhenglun
2016-01-01
Enteroviruses (EVs) are the most common viral agents in humans. Although most infections are mild or asymptomatic, there is a wide spectrum of clinical manifestations that may be caused by EV infections with varying degrees of severity. Among these viruses, EV-A71 and coxsackievirus (CV) CV-A16 from group A EVs attract the most attention because they are responsible for hand, foot and mouth disease (HFMD). Other EV-A viruses such as CV-A6 and CV-A10 were also reported to cause HFMD outbreaks in several countries or regions. Group B EVs such as CV-B3, CV-B5 and echovirus 30 were reported to be the main pathogens responsible for myocarditis and encephalitis epidemics and were also detected in HFMD patients. Vaccines are the best tools to control infectious diseases. In December 2015, China's Food and Drug Administration approved two inactivated EV-A71 vaccines for preventing severe HFMD.The CV-A16 vaccine and the EV-A71-CV-A16 bivalent vaccine showed substantial efficacy against HFMD in pre-clinical animal models. Previously, research on EV-B group vaccines was mainly focused on CV-B3 vaccine development. Because the HFMD pathogen spectrum has changed, and the threat from EV-B virus-associated severe diseases has gradually increased, it is necessary to develop multivalent HFMD vaccines. This study summarizes the clinical symptoms of diseases caused by EVs, such as HFMD, myocarditis and encephalitis, and the related EV vaccine development progress. In conclusion, developing multivalent EV vaccines should be strongly recommended to prevent HFMD, myocarditis, encephalitis and other severe diseases. PMID:27436364
Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content
Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.
2014-01-01
Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287
Kueng, Hans J.; Manta, Calin; Haiderer, Daniela; Leb, Victoria M.; Schmetterer, Klaus G.; Neunkirchner, Alina; Byrne, Ruth A.; Scheinecker, Clemens; Steinberger, Peter; Seed, Brian; Pickl, Winfried F.
2010-01-01
We describe for the first time fluorescent virus-like particles decorated with biologically active mono- and multisubunit immune receptors of choice and the basic application of such fluorosomes (FSs) to visualize and target immune receptor-ligand interactions. For that purpose, human embryonic kidney (HEK)-293 cells were stably transfected with Moloney murine leukemia virus (MoMLV) matrix protein (MA) GFP fusion constructs. To produce FSs, interleukins (ILs), IL-receptors (IL-Rs), and costimulatory molecules were fused to the glycosyl phosphatidyl inositol anchor acceptor sequence of CD16b and coexpressed along with MoMLV group-specific antigen-polymerase (gag-pol) in MA::GFP+ HEK-293 cells. We show that IL-2 decorated but not control-decorated FSs specifically identify normal and malignant IL-2 receptor-positive (IL-2R+) lymphocytes by flow cytometry. In addition to cytokines and costimulatory molecules, FSs were also successfully decorated with the heterotrimeric IL-2Rs, allowing identification of IL-2+ target cells. Specificity of binding was proven by complete inhibition with nonlabeled, soluble ligands. Moreover, IL-2R FSs efficiently neutralized soluble IL-2 and thus induced unresponsiveness of T cells receiving full activation stimuli via T-cell antigen receptor and CD28. FSs are technically simple, multivalent tools for assessing and blocking mono- and multisubunit immune receptor-ligand interactions with natural constituents in a plasma membrane context.—Kueng, H. J., Manta, C., Haiderer, D., Leb, V. M., Schmetterer, K. G., Neunkirchner, A., Byrne, R. A., Scheinecker, C., Steinberger, P., Seed, B., Pickl, W. F. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions. PMID:20056716
Gallid herpesvirus 3 SB-1 strain as a recombinant viral vector for poultry vaccination.
Sadigh, Yashar; Powers, Claire; Spiro, Simon; Pedrera, Miriam; Broadbent, Andrew; Nair, Venugopal
2018-01-01
Live herpesvirus-vectored vaccines are widely used in veterinary medicine to protect against many infectious diseases. In poultry, three strains of herpesvirus vaccines are used against Marek's disease (MD). However, of these, only the herpesvirus of turkeys (HVT) has been successfully developed and used as a recombinant vaccine vector to induce protection against other avian viral diseases such as infectious bursal disease (IBD), Newcastle disease (ND) or avian influenza (AI). Although effective when administered individually, recombinant HVT vectors have limitations when combined in multivalent vaccines. Thus there is a need for developing additional viral vectors that could be combined with HVT in inducing protection against multiple avian diseases in multivalent vaccines. Gallid herpesvirus 3 (GaHV3) strain SB-1 is widely used by the poultry industry as bivalent vaccine in combination with HVT to exploit synergistic effects against MD. Here, we report the development and application of SB-1 as a vaccine vector to express the VP2 capsid antigen of IBD virus. A VP2 expression cassette was introduced into the SB-1 genome at three intergenic locations (UL3/UL4, UL10/UL11 and UL21/UL22) using recombineering methods on the full-length pSB-1 infectious clone of the virus. We show that the recombinant SB-1 vectors expressing VP2 induced neutralising antibody responses at levels comparable to that of commercial HVT-based VAXXITEK HVT+IBD vaccine. Birds vaccinated with the experimental recombinant SB-1 vaccine were protected against clinical disease after challenge with the very virulent UK661 IBDV isolate, demonstrating its value as an efficient viral vector for developing multivalent vaccines against avian diseases.
Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian
2011-11-04
The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.
Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian
2011-01-01
The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome. PMID:21917930
Mao, Qunying; Wang, Yiping; Bian, Lianlian; Xu, Miao; Liang, Zhenglun
2016-07-20
Enteroviruses (EVs) are the most common viral agents in humans. Although most infections are mild or asymptomatic, there is a wide spectrum of clinical manifestations that may be caused by EV infections with varying degrees of severity. Among these viruses, EV-A71 and coxsackievirus (CV) CV-A16 from group A EVs attract the most attention because they are responsible for hand, foot and mouth disease (HFMD). Other EV-A viruses such as CV-A6 and CV-A10 were also reported to cause HFMD outbreaks in several countries or regions. Group B EVs such as CV-B3, CV-B5 and echovirus 30 were reported to be the main pathogens responsible for myocarditis and encephalitis epidemics and were also detected in HFMD patients. Vaccines are the best tools to control infectious diseases. In December 2015, China's Food and Drug Administration approved two inactivated EV-A71 vaccines for preventing severe HFMD.The CV-A16 vaccine and the EV-A71-CV-A16 bivalent vaccine showed substantial efficacy against HFMD in pre-clinical animal models. Previously, research on EV-B group vaccines was mainly focused on CV-B3 vaccine development. Because the HFMD pathogen spectrum has changed, and the threat from EV-B virus-associated severe diseases has gradually increased, it is necessary to develop multivalent HFMD vaccines. This study summarizes the clinical symptoms of diseases caused by EVs, such as HFMD, myocarditis and encephalitis, and the related EV vaccine development progress. In conclusion, developing multivalent EV vaccines should be strongly recommended to prevent HFMD, myocarditis, encephalitis and other severe diseases.
Gore, Thomas C; Lakshmanan, Nallakannu; Duncan, Karen L; Coyne, Michael J; Lum, Melissa A; Sterner, Frank J
2005-01-01
A challenge-of-immunity study was conducted to demonstrate immunity in dogs 3 years after their second vaccination with a new multivalent, modified-live vaccine containing canine adenovirus type 2 (CAV-2), canine parvovirus (CPV), and canine distemper virus (CDV). Twenty-three seronegative pups were vaccinated at 7 and 11 weeks of age. Eighteen seronegative pups, randomized into groups of six dogs, served as challenge controls. Dogs were kept in strict isolation for 3 years following the vaccination and then challenged sequentially with virulent canine adenovirus type 1 (CAV-1), CPV, and CDV. For each viral challenge, a separate group of six control dogs was also challenged. Clinical signs of CAV-1, CPV, and CDV infections were prevented in 100% of vaccinated dogs, demonstrating that the multivalent, modified-live test vaccine provided protection against virulent CAV-1, CPV, and CDV challenge in dogs 7 weeks of age or older for a minimum of 3 years following second vaccination.
Kim, Young Eun; Kim, Yu-na; Kim, Jung A.; Kim, Ho Min; Jung, Yongwon
2015-01-01
Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. PMID:25972078
Hoover, J P; Baldwin, C A; Rupprecht, C E
1989-01-15
Nine unrelated 12-week-old naive domestic ferrets (Mustela putorius furo) were used to evaluate the serologic responses to commercial canine distemper virus (CDV) and rabies virus (RV) vaccines. Five of the ferrets (group 1) were inoculated 3 times at 2-week intervals with a multivalent modified-live virus vaccine of canine cell-line origin, containing CDV and an inactivated RV vaccine. Four of the ferrets (group 2) were inoculated once with the multivalent modified-live virus vaccine containing CDV and were not inoculated with the RV vaccine. Both group-1 and group-2 ferrets seroconverted to the CDV component of the vaccine. Group-1 ferrets also seroconverted after RV vaccination and maintained serum antibody titers to both CDV and RV for at least 7 months. Domestic ferret sera were found to have IgG epitopes similar to sera of domestic dogs and cats. Domestic ferret sera did not contain antibodies to feline coronavirus or FeLV antigens.
Multivalency regulates activity in an intrinsically disordered transcription factor
Clark, Sarah; Myers, Janette B; King, Ashleigh; Fiala, Radovan; Novacek, Jiri; Pearce, Grant; Heierhorst, Jörg; Reichow, Steve L
2018-01-01
The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation. PMID:29714690
Preparation and Analysis of RNA Crystals
NASA Technical Reports Server (NTRS)
Todd, Paul
2000-01-01
The crystallization of RiboNucleic Acids (RNA) was studied from the standpoint of mechanisms of crystal growth in three tasks: (1) preparation of high-quality crystals of oligonuclotides for X-ray diffraction, (2) finding pathways to the growth of high-quality crystals for X-ray diffraction and (3) investigation of mechanisms of action of inertial acceleration on crystal growth. In these tasks: (1) RNA crystals were prepared and studied by X-ray diffraction; (2) a pathway to high-quality crystals was discovered and characterized; a combination of kinetic and equilibrium factors could be optimized as described below; and (3) an interplay between purity and gravity was found in a combination of space and ground experiments with nucleic acids and proteins. Most significantly, the rate of concentration of precipitant and RNA can be controlled by membrane-based methods of water removal or by diffusion of multivalent cations across an interface stabilized by a membrane. Oligonucleotide solutions are electrokinetically stabilized colloids, and crystals can form by the controlled addition of multivalent cations.
NASA Astrophysics Data System (ADS)
Duan, Xiaozheng; Li, Yunqi; Zhang, Ran; Shi, Tongfei; An, Lijia; Huang, Qingrong
2013-06-01
We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl-choline, PC) and multivalent anionic (phosphatidylinositol, PIP2) lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.
Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.
Henke, Helena; Brüggemann, Oliver; Teasdale, Ian
2017-02-01
This feature article briefly highlights some of the recent advances in polymers in which phosphorus is an integral part of the backbone, with a focus on the preparation of functional, highly branched, soluble polymers. A comparison is made between the related families of materials polyphosphazenes, phosphazene/phosphorus-based dendrimers and polyphosphoesters. The work described herein shows this to be a rich and burgeoning field, rapidly catching up with organic chemistry in terms of the macromolecular synthetic control and variety of available macromolecular architectures, whilst offering unique property combinations not available with carbon backbones, such as tunable degradation rates, high multi-valency and facile post-polymerization functionalization. As an example of their use in advanced applications, we highlight some investigations into their use as water-soluble drug carriers, whereby in particular the degradability in combination with multivalent nature has made them useful materials, as underlined by some of the recent studies in this area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Štimac, Adela; Cvitaš, Jelena TrmĿiĿ; Frkanec, Leo; Vugrek, Oliver; Frkanec, Ruža
2016-09-10
Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.
Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng
2018-05-30
Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Binding Affinity Effects on Physical Characteristics of a Model Phase-Separated Protein Droplet
NASA Astrophysics Data System (ADS)
Chuang, Sara; Banani, Salman; Rosen, Michael; Brangwynne, Clifford
2015-03-01
Non-membrane bound organelles are associated with a range of biological functions. Several of these structures exhibit liquid-like properties, and may represent droplets of phase-separated RNA and/or proteins. These structures are often enriched in multi-valent molecules, however little is known about the interactions driving the assembly, properties, and function. Here, we address this question using a model multi-valent protein system consisting of repeats of Small Ubiquitin-like Modifier (SUMO) protein and a SUMO-interacting motif (SIM). These proteins undergo phase separation into liquid-like droplets. We combine microrheology and quantitative microscopy to determine affect of binding affinity on the viscosity, density and surface tension of these droplets. We also use fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and partitioning experiments to probe the structure and dynamics within these droplets. Our results shed light on how inter-molecular interactions manifests in droplet properties, and lay the groundwork for a comprehensive biophysical picture of intracellular RNA/protein organelles.
Solid state proton and electron mediating membrane and use in catalytic membrane reactors
White, James H.; Schwartz, Michael; Sammells, Anthony F.
1998-01-01
This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB.sub.1-x B'.sub.x O.sub.3-y wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B' is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated-by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B' ion such that the stoichiometric ratio A:B:B' is 1:1-x:x where 0.2.ltoreq..times.0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the singlephase material to obtain a membrane.
Solid state proton and electron mediating membrane and use in catalytic membrane reactors
White, J.H.; Schwartz, M.; Sammells, A.F.
1998-10-13
This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.
Ion transport in broad bean leaf mesophyll under saline conditions.
Percey, William J; Shabala, Lana; Breadmore, Michael C; Guijt, Rosanne M; Bose, Jayakumar; Shabala, Sergey
2014-10-01
Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na (+) induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na(+) significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na(+) also induced a significant K(+) efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv'/Fm' were linked to K(+) homeostasis in the mesophyll tissue. Increased apoplastic Na(+) concentrations induced vanadate-sensitive net H(+) efflux, presumably mediated by the plasma membrane H(+)-ATPase. It is concluded that the observed pump's activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.
Gupta, Ruma; Sundararajan, Mahesh; Gamare, Jayashree S
2017-08-01
Reduction of UO 2 2+ ions to U 4+ ions is difficult due to involvement of two axially bonded oxygen atoms, and often requires a catalyst to lower the activation barrier. The noble metal nanoparticles (NPs) exhibit high electrocatalytic activity, and could be employed for the sensitive and rapid quantifications of U0 2 2+ ions in the aqueous matrix. Therefore, the Pd, Ru, and Rh NPs decorated glassy carbon electrode were examined for their efficacy toward electrocatalytic reduction of UO 2 2+ ions and observed that Ru NPs mediate efficiently the electro-reduction of UO 2 2+ ions. The mechanism of the electroreduction of UO 2 2+ by the RuNPs/GC was studied using density functional theory calculations which pointed different approach of 5f metal ions electroreduction unlike 4p metal ions such as As(III). RuNP decorated on the glassy carbon would be hydrated, which in turn assist to adsorb the uranyl sulfates through hydrogen bonding thus facilitated electro-reduction. Differential pulse voltammetric (DPV) technique, was used for rapid and sensitive quantification of UO 2 2+ ions. The RuNPs/GC based DPV technique could be used to determine the concentration of uranyl in a few minutes with a detection limit of 1.95 ppb. The RuNPs/GC based DPV was evaluated for its analytical performance using seawater as well lake water and groundwater spiked with known amounts of UO 2 2+ .
Hydrated multivalent cations are new class of molten salt mixtures
NASA Technical Reports Server (NTRS)
Angell, C. A.
1967-01-01
Electrical conductance and activation energy measurements on mixtures of calcium and potassium nitrate show the hydrated form to be a new class of molten salt. The theoretical glass transition temperature of the hydrate varied in a manner opposite to that of the anhydrous system.
Vacancies and Vacancy-Mediated Self Diffusion in Cr 2 O 3 : A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.
Charged and neutral vacancies and vacancy mediated self diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge state are the dominant defects in O-rich conditions. The charge transition levels of both O and Cr vacancies are deep within the bandgap indicating the stability ofmore » these defects. Transport calculations indicate that vacancy mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy mediated self diffusion processes correspond to the diffusion of Cr ion in 3+ charge state and O ion in 2- state, respectively. Our calculations reveal that Cr triple defects comprised of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c-axis have a lower formation energy compared to that of charged Cr vacancies. The formation of such triple defects facilitate Cr self diffusion along the c-axis.« less
Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Zhihui; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049; Zhang, Feng
2015-04-15
By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface areamore » up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.« less
Transport of Multivalent Electrolyte Mixtures in Micro- and Nanochannels
2013-11-08
equations for this process are the unsteady Navier-Stokes equations along with continuity and the Poisson- Nernst -Planck system for the electro- static part...about five times the Debye screening length D (the 1/e lengthscale for the potential from the solution of the linearized Poisson- Boltzmann equation
Dey, Nilanjan; Bhattacharya, Santanu
2017-05-11
An easily synthesizable probe has been employed for dual mode sensing of glucosamine in pure water. The method was also applied for glucosamine estimation in blood serum samples and pharmaceutical tablets. Further, selective detection of glucosamine was also achieved using portable color strips.
A multivalent three-point linkage analysis model of autotetraploids
USDA-ARS?s Scientific Manuscript database
A cytogenetic study was conducted on a dihaploid individual (2n'='2X'='18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci...
Art Practice as Prosthetic Visuality
ERIC Educational Resources Information Center
Garoian, Charles R.
2010-01-01
In this lecture I explore and conceptualize the anomalous spaces of perception and memory in art practice and research where experimental and alternative discourses and pedagogies can emerge. I argue that the instabilities and slippages between what is visible and invisible, known and unknown, in these spaces enable insightful and multivalent ways…
Interface mediated enhanced mixing of multilayered Ni-Bi thin films by swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Siva, V.; Chettah, A.; Ojha, S.; Tripathi, A.; Kanjilal, D.; Sahoo, Pratap K.
2017-10-01
We report the effect of ion beam mixing of Ni/Bi multilayers using 100 MeV Au ions as a function of irradiation fluences. X-ray diffraction study reveals the higher magnitude of NiBi3 and NiBi phases compared to elemental Ni and Bi after ion irradiation. We observe an evolution of grainy structures to a molten-like surface with increasing ion fluences. These features were also reflected in the Rutherford Backscattering spectrometry spectra, in terms of the enhanced mixing with increasing ion fluences. The experimental findings were understood on the basis of inelastic thermal spike model calculations.
The effect of positive air ions on reproduction and growth in laboratory rats
NASA Astrophysics Data System (ADS)
Hinsull, S. M.; Head, E. L.
1986-03-01
The aim of the present investigation was to determine the growth rates, reproductive success and early mortality of laboratory rats maintained at 10,000 positive ions/ml over two generations. These findings were compared with those from animals maintained at ambient ion levels. The present work indicates that positive ions do not have any adverse effects on the reproductive capabilities or the growth of laboratory rats. In contrast it is shown that exposure to elevated levels of positive ions promotes overall growth, particularly in male rats. This action of positive ions increases with each successive generation exposed to the ions. It is suggested that the growth promoting effect of positive ions may be mediated via some modulation of the endocrine system.
Cholinergic regulation of epithelial ion transport in the mammalian intestine
Hirota, C L; McKay, D M
2006-01-01
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004
Electrodiffusion of lipids on membrane surfaces.
Zhou, Y C
2012-05-28
Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.
Electrodiffusion of lipids on membrane surfaces
NASA Astrophysics Data System (ADS)
Zhou, Y. C.
2012-05-01
Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.
van Dijk, C; de Levie, R
1985-01-01
The continuum and single jump treatments of ion transport through black lipid membranes predict experimentally distinguishable results, even when the same mechanistic assumptions are made and the same potential-distance profile is used. On the basis of steady-state current-voltage curves for nonactin-mediated transport of potassium ions, we find that the continuum model describes the data accurately, whereas the single jump model fails to do so, for all cases investigated in which capacitance measurements indicate that the membrane thickness varies little with applied potential. PMID:3839420
Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.
2014-01-01
Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in other forms of neuropathy. PMID:24480367
Heaton, James T; Sheu, Shu Hsien; Hohman, Marc H; Knox, Christopher J; Weinberg, Julie S; Kleiss, Ingrid J; Hadlock, Tessa A
2014-04-18
Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in other forms of neuropathy. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Bacterially Induced Dolomite Formation in the Presence of Sulfate Ions under Aerobic Conditions
NASA Astrophysics Data System (ADS)
Sanchez-Roman, M.; McKenzie, J. A.; Vasconcelos, C.; Rivadeneyra, M.
2005-12-01
The origin of dolomite remains a long-standing enigma in sedimentary geology because, although thermodynamically favorable, precipitation of dolomite from modern seawater does not occur. Experiments conducted at elevated temperatures (200 oC) indicated that the presence of small concentrations of sulfate ions inhibits the transformation of calcite to dolomite [1]. Indeed, sulfate ions appeared to inhibit dolomite formation above 2 mM concentration (versus 28 mM in modern seawater). Recently, culture experiments have demonstrated that sulfate-reducing bacteria mediate the precipitation of dolomite at Earth surface conditions in the presence of sustained sulfate ion concentrations [2,3]. Additionally, in a number of modern hypersaline environments, dolomite forms from solutions with high sulfate ion concentrations (2 to 70 times seawater). These observations suggest that the experimentally observed sulfate-ion inhibition [1] may not apply to all ancient dolomite formation. Here, we report aerobic culture experiments conducted at low temperatures (25 and 35 oC) and variable sulfate ion concentrations (0, 0.5, 1 and 2 x seawater values) using moderately halophilic bacteria, Halomonas meridiana. After an incubation period of 15 days, experiments at 35 oC with variable sulfate ion concentrations (0, 0.5 x and seawater values) contained crystals of Ca-dolomite and stochiometric dolomite. The experiment at 35 oC with 2 x seawater sulfate ion concentration produced dolomite crystals after 20 days of incubation. In a parallel set of experiments at 25 oC, precipitation of dolomite was observed after 25 days of incubation in cultures with variable sulfate ion concentrations (0, 0.5 x and seawater values). In the culture with 2 x seawater sulfate ion concentration, dolomite crystals were observed after 30 days. Our study demonstrates that halophilic bacteria (or heterotrophic microorganisms), which do not require sulfate ions for metabolism, can mediate dolomite precipitation in the presence of sulfate ions. Apparently, microbial dolomite precipitation is not intrinsically linked to any particular group of organisms or specific metabolic processes or even specific environment. Furthermore, because heterotrophic microorganisms appear to be able to mediate microbial dolomite precipitation with or without sulfate ions in the media, our results indicate that the kinetic inhibition effect of sulfate ions can be overcome under specific sedimentary conditions. The present study adds a new insight to the dolomite problem, which could lead to a better clarification of the mechanism(s) involved in the massive dolomite formation observed in the geological record. References: [1] Baker, P.A., and Kastner, M., (1981), Science, 213, 214-216. [2] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J., (1995), Nature 377, 220-222.. [3] Warthmann R., van Lith Y., Vasconcelos C., McKenzie J.A. and Karpoff A.M., (2000), Geology 28, 1091-1094.
HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION
We have previously shown that exposure to zinc ions can activate epidermal growth factor (EGF) receptor (EGFR) signaling in murine fibroblasts and A431 cells through a mechanism involving Src kinase. While studying the effects of zinc ions in normal human bronchial epithelial cel...
The use of a diuretic agent as a probe to investigate site and mechanism of ion transport processes.
Giebisch, G
1985-01-01
Several features emerge from consideration of a furosemide-sensitive cotransport mechanism in the various tissues surveyed. First discovered in epithelia, above all in the kidney because of its potent diuretic effect, furosemide inhibits a cotransport mechanism that tightly couples the movement of sodium, chloride and potassium. Its mode of operation is electrically neutral and in all tissues so far examined, the cotransport-mediated ion movement is driven by the electrochemical potential of the cotransported ion-species. The energy for this ion movement derives ultimately from the Na-K pump that establishes the Na gradient that drives the coupled ion movement. This type of carrier-mediated and ion-specific solute movement expands the traditional "pump-leak" model of cellular ion transport by providing dissipative "leak" pathways in addition to the well-established ion channels that allow solute movement by electrodiffusion. An important feature of the cotransport mechanism is its important role in both reabsorptive and secretory epithelial transport operations. This variability can be adequately explained by the location of the cotransport mechanism in either the apical or basolateral cell membrane of such epithelia as the renal tubule, the intestinal mucosa, the rectal gland or the trachea. In addition, the furosemide-sensitive transporter has also been shown to play a significant role in cell volume regulation, both in epithelia and in non-epithelia cells, and it appears to participate in the regulation of the cell chloride concentrations in excitable tissues.
Single-Cell Measurements of IgE-Mediated FcεRI Signaling Using an Integrated Microfluidic Platform
Liu, Yanli; Barua, Dipak; Liu, Peng; ...
2013-03-27
Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. In this paper, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chipmore » flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI) signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Finally, model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.« less
Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions
NASA Astrophysics Data System (ADS)
Sutton, Catherine C. R.; Franks, George V.; da Silva, Gabriel
2015-01-01
The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm-1 to 1250 cm-1; this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm-1 using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm-1 to 1250 cm-1 region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.
NASA Astrophysics Data System (ADS)
Suchyna, Thomas M.; Besch, Steven R.; Sachs, Frederick
2004-03-01
All cells, from bacteria to human, are mechanically sensitive. The most rapid of these membrane protein transducers are mechanosensitive ion channels, ionic pores in the membrane that open and close in response to membrane tension. In specific sensory organs, these channels serve the senses of touch and hearing, and inform the central nervous system about the filling of hollow organs such as the bladder. Non-specialized cells use these channels to report on changes in cell volume and local strain. To preserve dynamic sensitivity, sensory receptors adapt to steady-state stimuli. Here we show that in rat astrocytes, the most abundant cells in the brain, this apparent adaptation to the stimulus is actually an inactivation. We have been able to track the time course of local strain by measuring attofarad changes in membrane capacitance and show that it is not correlated with loss of channel activity. The reduction in current with time is caused by an increased occupancy of low conductance states, and a reduction in the probability of opening, not a relaxation of local stress. The occupancy of these substates depends on the integrity of the cell's cytoplasm. However, while disruption of the cytoskeleton leads to a loss of inactivation, it leaves activation unaffected. The activation process is voltage-insensitive, closely correlated with changes in capacitance, and seems to arise solely from stress in the bilayer. The inactivation rate decreases with depolarization, and kinetic analysis suggests that the process involves multiple cytoplasmic ligands. Surprisingly, multivalent ions such as Gd+3 and Ca+2 that bind to the lipids and affect channel gating, do not affect the strain-induced increase in membrane capacitance; contrary to expectations, membrane elasticity is unchanged.
L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations
NASA Astrophysics Data System (ADS)
Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.
2015-11-01
The original SOLT model now includes the evolution of ion pressure consistent with drift-ordering. It is a two-dimensional, electrostatic reduced model wherein closure relations, obtained by integrating the equations along the B-field, model parallel physics that includes sheath-mediated current and heat flux in the scrape-off-layer and electron drift waves inside the separatrix. Low (L) and high (H) confinement regimes are observed in SOLT simulations, depending on the strength of an ion pressure (i.e., ion heating) source localized inside the separatrix: With increasing heating, particle and energy confinement times at first decrease in the L-mode then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles of these sheared flows in mediating the L-H transition are explored. A new diagnostic, based on the density correlation function, is applied to study blob velocities in different regimes. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.
A novel model for studies of blood-mediated long-term responses to cellular transplants
Lindblom, Susanne; Hong, Jaan; Nilsson, Bo; Korsgren, Olle; Ronquist, Gunnar
2015-01-01
Aims Interaction between blood and bio-surfaces is important in many medical fields. With the aim of studying blood-mediated reactions to cellular transplants, we developed a whole-blood model for incubation of small volumes for up to 48 h. Methods Heparinized polyvinyl chloride tubing was cut in suitable lengths and sealed to create small bags. Multiple bags, with fresh venous blood, were incubated attached to a rotating wheel at 37°C. Physiological variables in blood were monitored: glucose, blood gases, mono- and divalent cations and chloride ions, osmolality, coagulation (platelet consumption, thrombin-antithrombin complexes (TAT)), and complement activation (C3a and SC5b-9), haemolysis, and leukocyte viability. Results Basic glucose consumption was high. Glucose depletion resulted in successive elevation of extracellular potassium, while sodium and calcium ions decreased due to inhibition of energy-requiring ion pumps. Addition of glucose improved ion balance but led to metabolic acidosis. To maintain a balanced physiological environment beyond 6 h, glucose and sodium hydrogen carbonate were added regularly based on analyses of glucose, pH, ions, and osmotic pressure. With these additives haemolysis was prevented for up to 72 h and leukocyte viability better preserved. Despite using non-heparinized blood, coagulation and complement activation were lower during long-term incubations compared with addition of thromboplastin and collagen. Conclusion A novel whole-blood model for studies of blood-mediated responses to a cellular transplant is presented allowing extended observations for up to 48 h and highlights the importance of stringent evaluations and adjustment of physiological conditions. PMID:25322825
Large enhancement of capacitance driven by electrostatic image forces
NASA Astrophysics Data System (ADS)
Loth, Matthew Scott
The purpose of this thesis is to examine the role of electrostatic images in determining the capacitance and the structure of the electrostatic double layer (EDL) formed at the interface of a metal electrode and an electrolyte. Current mean field theories, and the majority of simulations, do not account for ions to form image charges in the metal electrodes and claim that the capacitance of the double layer cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments, and simulations where the images are included, the apparent width of the capacitor is substantially smaller. Monte Carlo simulations are used to examine the interface between a metal electrode and a room temperature ionic liquid (RTIL) modeled by hard spheres (the "restricted primitive model"). Image charges for each ion are included in the simulated electrode. At moderately low temperatures the capacitance of the metal/RTIL interface is so large that the effective thickness of the electrostatic double-layer is up to 3 times smaller than the ion radius. To interpret these results, an approach is used that is based on the interaction between discrete ions and their image charges, which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V, producing a "bell-shaped" C( V) curve. In the case of a semi-metal electrode, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode resulting in a "camel-shaped" C(V) curve, which is parabolic near V = 0, reaches a maximum and then decreases. These predictions are in qualitative agreement with experiment. A similarly simple model is employed to simulate the EDL of superionic crystals. In this case only small cations are mobile and other ions form an oppositely charged background. Simulations show an effective thickness of the EDL that may be 3 times smaller than the ion radius. The weak repulsion of ion-image dipoles again plays a central role in determining the capacitance in this theory, which is in reasonable agreement with experiment. Finally, the problem of a strongly charged, insulating macroion in a dilute solution of multivalent counterions is considered. While an ideal conductor does not exist in the problem, and no images are explicitly included, simulations demonstrate that adsorbed counterions form a strongly correlated liquid of at the surface of the macroion and acts as an effective metal surface. In fact, the surface screens the electric field of distant ions with a negative screening radius. The simulation results serve to confirm existing non-mean-field theories.
Hegde, Raghurama P; Pavithra, Gowribidanur C; Dey, Debayan; Almo, Steven C; Ramakumar, S; Ramagopal, Udupi A
2017-09-01
Protein crystallization is one of the major bottlenecks in protein structure elucidation with new strategies being constantly developed to improve the chances of crystallization. Generally, well-ordered epitopes possessing complementary surface and capable of producing stable inter-protein interactions generate a regular three-dimensional arrangement of protein molecules which eventually results in a crystal lattice. Metals, when used for crystallization, with their various coordination numbers and geometries, can generate such epitopes mediating protein oligomerization and/or establish crystal contacts. Some examples of metal-mediated oligomerization and crystallization together with our experience on metal-mediated crystallization of a putative rRNA methyltransferase from Sinorhizobium meliloti are presented. Analysis of crystal structures from protein data bank (PDB) using a non-redundant data set with a 90% identity cutoff, reveals that around 67% of proteins contain at least one metal ion, with ∼14% containing combination of metal ions. Interestingly, metal containing conditions in most commercially available and popular crystallization kits generally contain only a single metal ion, with combinations of metals only in a very few conditions. Based on the results presented in this review, it appears that the crystallization screens need expansion with systematic screening of metal ions that could be crucial for stabilizing the protein structure or for establishing crystal contact and thereby aiding protein crystallization. © 2017 The Protein Society.
Yang, Haozhe; Mei, Hui; Seela, Frank
2015-07-06
Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...
Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*
Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh
2014-01-01
The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577
Preface: Special Topic on Ions in Water.
Allen, Heather C; Tobias, Douglas J
2018-06-14
This special topic contains a diverse collection of 40 articles that span the vast range of subjects that fall under the heading "Ions in Water," a longstanding mainstay of chemical physics. The investigations reported herein employ state-of-the-art theoretical, computational, and experimental techniques, as well as combinations thereof, to provide new insights into the fundamental aspects of ion solvation and the important roles that ions play in mediating physicochemical processes occurring in solutions and at interfaces in a wide variety of settings relevant to biological, environmental, and technological applications.
Preface: Special Topic on Ions in Water
NASA Astrophysics Data System (ADS)
Allen, Heather C.; Tobias, Douglas J.
2018-06-01
This special topic contains a diverse collection of 40 articles that span the vast range of subjects that fall under the heading "Ions in Water," a longstanding mainstay of chemical physics. The investigations reported herein employ state-of-the-art theoretical, computational, and experimental techniques, as well as combinations thereof, to provide new insights into the fundamental aspects of ion solvation and the important roles that ions play in mediating physicochemical processes occurring in solutions and at interfaces in a wide variety of settings relevant to biological, environmental, and technological applications.
Ion sound instability driven by the ion flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshkarov, O., E-mail: koshkarov.alexandr@usask.ca; Smolyakov, A. I.; National Research Centre
2015-05-15
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instabilitymore » is studied analytically and the results are compared with direct, initial value numerical simulations.« less
Multivalent Narratives: Extending the Narrative Paradigm with Insights from Ancient Indian Rhetoric.
ERIC Educational Resources Information Center
Stroud, Scott R.
Research that has focused on ancient Indian rhetoric, a sub-category of Eastern rhetoric, has largely eschewed focus on the narrative paradigm as a theoretical guide. These narratives often enshrine didactic elements, contradictions, and mythic traits that often confound and inspire Western audiences. These archaic religious/philosophical texts…
USDA-ARS?s Scientific Manuscript database
A better understanding of the immune response elicited by bovine respiratory syncytial virus (BRSV) vaccines is needed for vaccine improvement. Although killed-BRSV vaccines are available as part of multivalent products, their efficacy is controversial. We screened for BRSV-specific T cell responses...
Multivalent Narratives and Indian Rhetoric: Insights from the "Bhagavad Gita."
ERIC Educational Resources Information Center
Stroud, Scott R.
The "Bhagavad Gita" is a didactic dialogue inserted approximately in the middle of an immensely long Indian epic entitled the "Mahabharata." This paper examines the use of narrative in this ancient Hindu religious work, the "Bhagavad Gita"--specific attention is given to how the story in this didactic text uses…
Moazzami-Gudarzi, Mohsen; Adam, Pavel; Smith, Alexander M; Trefalt, Gregor; Szilágyi, István; Maroni, Plinio; Borkovec, Michal
2018-04-04
Direct force measurements involving amidine latex (AL) and sulfate latex (SL) particles in aqueous solutions containing multivalent ferrocyanide anions are presented. These measurements feature three different pairs of particles, namely SL-SL, AL-SL, and AL-AL. The force profiles are quantitatively interpreted in terms of the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) that is combined with a short-ranged exponential attraction. In monovalent salt solutions, the AL particles are positively charged, while the SL particles are negatively charged. In solutions containing ferrocyanide, the charge of the AL particles is reversed as the concentration is increased. The longer-ranged component of all force profiles is fully compatible with DLVO theory, provided effects of charge regulation are included. At shorter distances, an additional exponential attraction must be introduced, whereby the respective decay length is about 2 nm for the AL-AL pair, and below 1 nm for the SL-SL pair. This non-DLVO force is intermediate for the asymmetric AL-SL pair. These additional forces are probably related to charge fluctuations, patch-charged interactions, or hydrophobic forces.
Soil chemical sensor and precision agricultural chemical delivery system and method
Colburn, Jr., John W.
1991-01-01
A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.
York, Adam W.; Zhang, Yilin; Holley, Andrew C.; Guo, Yanlin; Huang, Faqing; McCormick, Charles L.
2009-01-01
Cell specific delivery of small interfering ribonucleic acid (siRNA) using well-defined multivalent folate-conjugated block copolymers is reported. Primary amine functional, biocompatible, hydrophilic-block-cationic copolymers were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. N-(2-hydroxypropyl)methacrylamide) (HPMA), a permanently hydrophilic monomer, was copolymerized with a primary amine containing monomer, N-(3-aminopropyl)methacrylamide (APMA). Poly(HPMA) confers biocompatibility while APMA provides amine functionality allowing conjugation of folate derivatives. (HPMA-stat-APMA) was chain extended with a cationic block, poly(N-[3-(dimethylamino)propyl]methacrylamide) in order to promote electrostatic complexation between the copolymer and the negatively charged phosphate backbone of siRNA. Notably, poly(HPMA) stabilizes the neutral complexes in aqueous solution while APMA allows the conjugation of a targeting moiety, thus, dually circumventing problems associated with the delivery of genes via cationically charged complexes (universal transfection). Fluorescence microscopy and gene down-regulation studies indicate that these neutral complexes can be specifically delivered to cancer cells that over-express folate receptors. PMID:19290625
Ocsoy, Ismail; Yusufbeyoglu, Sadi; Yılmaz, Vedat; McLamore, Eric S; Ildız, Nilay; Ülgen, Ahmet
2017-11-01
In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT. Copyright © 2017 Elsevier B.V. All rights reserved.
GATG dendrimers and PEGylated block copolymers: from synthesis to bioapplications.
Sousa-Herves, Ana; Novoa-Carballal, Ramon; Riguera, Ricardo; Fernandez-Megia, Eduardo
2014-09-01
Dendrimers are synthetic macromolecules composed of repetitive layers of branching units that emerge from a central core. They are characterized by a tunable size and precise number of peripheral groups which determine their physicochemical properties and function. Their high multivalency, functional surface, and globular architecture with diameters in the nanometer scale makes them ideal candidates for a wide range of applications. Gallic acid-triethylene glycol (GATG) dendrimers have attracted our attention as a promising platform in the biomedical field because of their high tunability and versatility. The presence of terminal azides in GATG dendrimers and poly(ethylene glycol) (PEG)-dendritic block copolymers allows their efficient functionalization with a variety of ligands of biomedical relevance including anionic and cationic groups, carbohydrates, peptides, or imaging agents. The resulting functionalized dendrimers have found application in drug and gene delivery, as antiviral agents and for the treatment of neurodegenerative diseases, in diagnosis and as tools to study multivalent carbohydrate recognition and dendrimer dynamics. Herein, we present an account on the preparation and recent applications of GATG dendrimers in these fields.
Soil chemical sensor and precision agricultural chemical delivery system and method
Colburn, J.W. Jr.
1991-07-23
A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.
Reina, José J; Maldonado, Olivia S; Tabarani, Georges; Fieschi, Franck; Rojo, Javier
2007-01-01
The design of glycoconjugates to allow the generation of multivalent ligands capable of interacting with the receptor DC-SIGN is a topic of high interest due to the role played by this lectin in pathogen infections. Mannose, a ligand of this lectin, could be conjugated at two different positions, 1 and 6, not implicated in the binding process. We have prepared mannose conjugates at these two positions with a long spacer to allow their attachment to a biosensor chip surface. Analysis of the interaction between these surfaces and the tetravalent extracellular domain (ECD) of DC-SIGN by SPR biosensor has demonstrated that both positions are available for this conjugation without affecting the protein binding process. These results emphasize the possibility to conjugate mannose at position 6, allowing the incorporation of hydrophobic groups at the anomeric position to interact with hydrophobic residues in the carbohydrate recognition domain of DC-SIGN, increasing binding affinities. This fact is relevant for the future design of new ligands and the corresponding multivalent systems for DC-SIGN.
Ogata, Makoto; Umemura, Seiichiro; Sugiyama, Naohiro; Kuwano, Natsuki; Koizumi, Ami; Sawada, Tadakazu; Yanase, Michiyo; Takaha, Takeshi; Kadokawa, Jun-Ichi; Usui, Taichi
2016-11-20
A series of multivalent sialoglyco-conjugated nanoparticles were efficiently synthesized by using highly-branched α-glucuronic acid-linked cyclic dextrins (GlcA-HBCD) as a backbone. The sialoglycoside-moieties, with varying degrees of substitution, could be incorporated onto the preformed nanoparticles. These synthesized particles, which are highly soluble in aqueous solution, were shown to have a spherical nanostructure with a diameter of approximately 15nm. The interactions of the sialoglyco-nanoparticles (Neu5Acα2,6LacNAc-GlcA-HBCDs) with human influenza virus strain A/Beijing/262/95 (H1N1) were investigated using a hemagglutination inhibition assay. The sialoglyco-nanoparticle, in which the number of sialic acid substitution is 30, acted as a powerful inhibitor of virus binding activity. We show that both distance and multiplicity of effective ligand-virus formation play important roles in enhancing viral inhibition. Our results indicate that the GlcA-HBCD backbone can be used as a novel spherical nanocluster material for preparing a variety of glyco-nanoparticles to facilitate molecular recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A
2001-06-01
This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.
Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland
2015-05-07
We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.
NASA Astrophysics Data System (ADS)
Carnal, Fabrice; Stoll, Serge
2011-01-01
Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.
Carnal, Fabrice; Stoll, Serge
2011-01-28
Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.
Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation.
Courtney, Adam H; Puffer, Erik B; Pontrello, Jason K; Yang, Zhi-Qiang; Kiessling, Laura L
2009-02-24
CD22 is an inhibitory coreceptor on the surface of B cells that attenuates B cell antigen receptor (BCR) signaling and, therefore, B cell activation. Elucidating the molecular mechanisms underlying the inhibitory activity of CD22 is complicated by the ubiquity of CD22 ligands. Although antigens can display CD22 ligands, the receptor is known to bind to sialylated glycoproteins on the cell surface. The propinquity of CD22 and cell-surface glycoprotein ligands has led to the conclusion that the inhibitory properties of the receptor are due to cis interactions. Here, we examine the functional consequences of trans interactions by employing sialylated multivalent antigens that can engage both CD22 and the BCR. Exposure of B cells to sialylated antigens results in the inhibition of key steps in BCR signaling. These results reveal that antigens bearing CD22 ligands are powerful suppressors of B cell activation. The ability of sialylated antigens to inhibit BCR signaling through trans CD22 interactions reveals a previously unrecognized role for the Siglec-family of receptors as modulators of immune signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulaei, Tinoush; Shenoy, Shilpa R.; Giomarelli, Barbara
2010-10-28
Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry. Cell-based antiviral activity assays utilizing different variants of mGRFT indicated that the monomeric form of the lectin had greatly reduced activity against HIV-1, suggesting that the antiviralmore » activity of GRFT stems from crosslinking and aggregation of viral particles via multivalent interactions between GRFT and oligosaccharides present on HIV envelope glycoproteins. Atomic resolution crystal structure of a complex between mGRFT and nonamannoside revealed that a single mGRFT molecule binds to two different nonamannoside molecules through all three carbohydrate-binding sites present on the monomer.« less
Rational Design of Peptide Vaccines Against Multiple Types of Human Papillomavirus
Dey, Sumanta; De, Antara; Nandy, Ashesh
2016-01-01
Human papillomavirus (HPV) occurs in many types, some of which cause cervical, genital, and other cancers. While vaccination is available against the major cancer-causing HPV types, many others are not covered by these preventive measures. Herein, we present a bioinformatics study for the designing of multivalent peptide vaccines against multiple HPV types as an alternative strategy to the virus-like particle vaccines being used now. Our technique of rational design of peptide vaccines is expected to ensure stability of the vaccine against many cycles of mutational changes, elicit immune response, and negate autoimmune possibilities. Using the L1 capsid protein sequences, we identified several peptides for potential vaccine design for HPV 16, 18, 33, 35, 45, and 11 types. Although there are concerns about the epitope-binding affinities for the peptides identified in this process, the technique indicates possibilities of multivalent, adjuvanted, peptide vaccines against a wider range of HPV types, and tailor-made different combinations of the peptides to address frequency variations of types over different population groups as required for prophylaxis and at lower cost than are in use at the present time. PMID:27279731
The Delicate Balance of Preorganisation and Adaptability in Multiply Bonded Host-Guest Complexes.
von Krbek, Larissa K S; Achazi, Andreas J; Schoder, Stefan; Gaedke, Marius; Biberger, Tobias; Paulus, Beate; Schalley, Christoph A
2017-02-24
Rigidity and preorganisation are believed to be required for high affinity in multiply bonded supramolecular complexes as they help reduce the entropic penalty of the binding event. This comes at the price that such rigid complexes are sensitive to small geometric mismatches. In marked contrast, nature uses more flexible building blocks. Thus, one might consider putting the rigidity/high-affinity notion to the test. Multivalent crown/ammonium complexes are ideal for this purpose as the monovalent interaction is well understood. A series of divalent complexes with different spacer lengths and rigidities has thus been analysed to correlate chelate cooperativities and spacer properties. Too long spacers reduce chelate cooperativity compared to exactly matching ones. However, in contrast to expectation, flexible guests bind with chelate cooperativities clearly exceeding those of rigid structures. Flexible spacers adapt to small geometric host-guest mismatches. Spacer-spacer interactions help overcome the entropic penalty of conformational fixation during binding and a delicate balance of preorganisation and adaptability is at play in multivalent complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Billeter, M A; Naim, H Y; Udem, S A
2009-01-01
An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.
Wang, Yanhua; Hao, Hang; Liu, Haoming; Wang, Yifan; Li, Yan; Yang, Gaojie; Ma, Jun; Mao, Chuanbin; Zhang, Shengmin
2015-08-26
Selenite-doped bone mineral nanoparticles can retard the growth of osteosarcoma in a nude mice model, through sustained release of selenite ions. The selenite ions released from the nanoparticles through a degradation-mediated fashion inhibit tumor metastasis. Blood routine analysis indicates that selenite ions can also improve the functions of liver, kidney, and heart. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ovanesyan, Zaven
Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects, which are important details for proper description of EDL properties. In this thesis, we implement an efficient and accurate classical solvation density functional theory (CDSFT) for EDLs of spherical macroions and cylindrical polyelectrolytes embedded in aqueous electrolytes. This approach extends the capabilities of mean field approximations by taking into account electrostatic ion-ion correlations, size asymmetry and excluded volume effects without compromising the computational cost. We apply the computational tool to study the structural and thermodynamic properties of the ionic atmosphere around B-DNA and spherical nanoparticles. We demonstrate that the presence of solvent molecules at experimental concentration and size values has a significant impact on the layering of ions. This layering directly influences the integrated charge and mean electrostatic potential in the diffuse region of the spherical electrical double layer (SEDL) and have a noticeable impact on the behavior of zeta potential (ZP). Recently, we have extended the aforementioned CSDFT to account for the charge-regulated mechanisms of the macroion surface on the structural and thermodynamic properties of spherical EDLs. In the approach, the CSDFT is combined with a surface complexation model to account for ion correlation and excluded volume effects on the surface titration of spherical macroions. We apply the proposed computational approach to describe the role that the ion size and solvent excluded volume play on the surface titration properties of silica nanoparticles. We analyze the effects of the nanoparticle size, pH and salt concentration of the aqueous solution on the nanoparticle's surface charge and zeta potential. The results reveal that surface charge density and zeta potential significantly depend on excluded volume and ion-ion correlation effects as well as on pH for monovalent ion species at high salt concentrations. Overall, our results are in good agreement with Monte Carlo simulations and available experimental data. We discuss future directions of this work, which includes extension of the solvation model for studying the flexibility properties of rigid peptides and globular proteins, and describes benefits that this research can potentially bring to scientific and non scientific communities.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater
Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei
2015-01-01
Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014
Plating and stripping calcium in an organic electrolyte
NASA Astrophysics Data System (ADS)
Wang, Da; Gao, Xiangwen; Chen, Yuhui; Jin, Liyu; Kuss, Christian; Bruce, Peter G.
2018-01-01
There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium. Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm-2, and accompanied by significant side reactions. Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm-2 at a rate of 1 mA cm-2, with low polarization (~100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH4)2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO3, Ca(OH)2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.
NASA Astrophysics Data System (ADS)
Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the RÃo Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Mogaki, Rina
2015-01-01
Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Gluen–BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Gluen–BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10–BA and Glue29–BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG–BA). Most importantly, Glue10–BA inhibited the protease activity of trypsin 13-fold more than TEG–BA. In sharp contrast, mGlue27–BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG–BA for trypsin, was inferior even to TEG–BA for trypsin inhibition. PMID:28706668
Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries
NASA Astrophysics Data System (ADS)
Huang, Haili; Guo, Yinjian; Cheng, Yuanhui
2018-03-01
α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.
Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Co(III) as mediator in phenol destruction using electrochemical oxidation
NASA Astrophysics Data System (ADS)
Herlina, Herlina; Derlini, Derlini; Muhammad, Razali
2017-03-01
Mediated electrochemical oxidation is one of the method for oxidation of organic compound by using a mediator. This method has been developed because have several advantages which low cost and efficient, the exhaust gas does not contain toxic materials and hazardous waste and the process take place at a relatively low temperature. Electrochemical oxidation of organic compounds using metal ion mediator is one alternative method that is appropriate for the treatment of organic waste. Co(III) is a strong oxidizing agent used as a mediator has been prepared in Pt electrodes. The concentration of Co(III) formed during oxidation determined by potentiometric titration where Co(III) aliquot was added into Fe(II) excess solution and the remaining Fe(II) which did not react has been titrated with Ce(IV). In optimum condition, Co(III) was then used to oxidize the organic compound into carbon dioxide. The parameters has been studied are the standard oxidation potential of mediator, acid concentration and temperature. The results obtained at potential of 6 Volt, with nitric acid 4 M and temperature of 25°C give result 23.86% where Co (II) is converted to Co(III) within 2 hours. The addition of silver nitrate can increase the concentration of Co(III). At the optimum conditions, the mediator ion Co(III) can destructed to 66.44% of phenol compound oxidized into carbon dioxide.
This study reports on the sulfate radical pathway of room temperature degradation of two phenolic compounds in water. The radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from...
Tjhung, Katrina F; Deiss, Frédérique; Tran, Jessica; Chou, Ying; Derda, Ratmir
2015-01-01
In this paper, we describe multivalent display of peptide and protein sequences typically censored from traditional N-terminal display on protein pIII of filamentous bacteriophage M13. Using site-directed mutagenesis of commercially available M13KE phage cloning vector, we introduced sites that permit efficient cloning using restriction enzymes between domains N1 and N2 of the pIII protein. As infectivity of phage is directly linked to the integrity of the connection between N1 and N2 domains, intra-domain phage display (ID-PhD) allows for simple quality control of the display and the natural variations in the displayed sequences. Additionally, direct linkage to phage propagation allows efficient monitoring of sequence cleavage, providing a convenient system for selection and evolution of protease-susceptible or protease-resistant sequences. As an example of the benefits of such an ID-PhD system, we displayed a negatively charged FLAG sequence, which is known to be post-translationally excised from pIII when displayed on the N-terminus, as well as positively charged sequences which suppress production of phage when displayed on the N-terminus. ID-PhD of FLAG exhibited sub-nanomolar apparent Kd suggesting multivalent nature of the display. A TEV-protease recognition sequence (TEVrs) co-expressed in tandem with FLAG, allowed us to demonstrate that 99.9997% of the phage displayed the FLAG-TEVrs tandem and can be recognized and cleaved by TEV-protease. The residual 0.0003% consisted of phage clones that have excised the insert from their genome. ID-PhD is also amenable to display of protein mini-domains, such as the 33-residue minimized Z-domain of protein A. We show that it is thus possible to use ID-PhD for multivalent display and selection of mini-domain proteins (Affibodies, scFv, etc.).
An Air Breathing Lithium-Oxygen Battery
NASA Astrophysics Data System (ADS)
Sayahpour, Baharak Sayah
Given that the current Li-ion battery technology is approaching theoretical specific capacity and specific energy values that are still not enough for powering satisfactorily electric vehicles or providing enough grid level storage capacities, interest in other electrochemical energy conversion and storage devices have emerged. Although systems based on multi-valent cations (Mg 2+, Zn2+, etc.) are also been studied, metal air batteries have shown the highest theoretical capacity and energy densities of any other battery chemistries. However, some fundamental challenges have hampered the applications of this class of batteries as the alternative for metal-ion batteries. In brief, the major challenges holding the metal air system from large scale applications are: (i) absence of an effective air electrode which easily transfer oxygen to the heterogenous reaction interphase for oxygen reduction and evolution reactions. (ii) electrolyte instability in large voltage windows which usually occurs because of high charge overpotentials. (iii) anode poisoning and corrosion due to oxidation or reaction with air species such as CO 2 and moisture. Given such obstacles, development of novel materials is needed to overcome these challenges in metal air batteries. In this thesis, a system comprised of a protected anode based on lithium carbonate, molybdenum disulfide cathode, and ionic liquid/dimethyl sulfoxide electrolyte is studied that work together, in presence of air components, such as Nitrogen, Carbon dioxide, and humidity, as a real Li-air battery with high cyclability performance up to 700 cycles. The combination of experimental and computational studies are used to provide insight into how this system operates in air and revealed that the long-life performance of this system is due to (i) a suppression of side reactions on the cathode side, which prevent the formation of by-products such as Li2CO 3 and LiOH, and (ii) an effective protected anode covered with a Li 2CO3 coating that effectively blocks the diffusion of the actual air components e.g., N2, CO2, and H2O and allowing only for Li ion transport. The Li-air battery developed in this work, which for the first time successfully operates in a realistic atmosphere with high cycle-life, is a promising step toward engineering the next generation of Li batteries with much higher specific energy density than Li-ion batteries.
A melanosomal two-pore sodium channel regulates pigmentation
Bellono, Nicholas W.; Escobar, Iliana E.; Oancea, Elena
2016-01-01
Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233
Chakrabarti, Bornali; Bairagya, Hridoy R; Mukhopadhyay, Bishnu P; Sekar, K
2017-02-01
Human matrix metalloproteinase (MMP)-1 or collagenase-1 plays a significant role in embryonic development, tissue remodeling, and is also involved in several diseases like arthritis, metastasis, etc. Molecular dynamics simulation studies on hMMP-1 X-ray structures (PDB Id. 1CGE, 1CGF, 1CGL, 1HFC, and 2TCL) suggest that the three conserved water molecules (W H/1 , W I , W S ) are coordinated with catalytic zinc (Zn C ), and one water molecule (W) is associated at structural zinc ion (Zn S ). Transition of the coordination geometry around Zn C from tetrahedral to octahedral and tetrahedral to trigonal bipyramidal at Zn S are also observed during the dynamics. Recognition of two zinc ions through water mediated bridges (Zn C - W H (W 1 )…W 2 ….H 183 - Zn S ) and stabilization of secondary coordination zone around the metal ions indicates the possibility of Zn C …Zn S coupled catalytic mechanism in hMMP-I. This study not only reveals a functionally important role of conserved water molecules in hMMP-I but also highlights the involvement of other non catalytic residues, such as S172 and D170 in the catalytic mechanism. The results obtained in this study could be relevant for importance of conserved water mediated recognition site of the sequence residue id. 202(RWTNNFREY)210, interaction of W(tryptophan)203 to zinc bound histidine, their influence on the water molecules that are involved in bridging between Zn C and Zn S , and structure-based design of specific hMMP inhibitors. Graphical abstract Water mediated recognition of structural and catalytic zinc ions of hMMP-1 structure (MD simulatated conformation).
Korkina, L G; Durnev, A D; Suslova, T B; Cheremisina, Z P; Daugel-Dauge, N O; Afanas'ev, I B
1992-02-01
The mutagenic effect of chrysotile asbestos fibers and zeolite and latex particles on human lymphocytes in whole blood has been studied. It was concluded that their mutagenic activities were mediated by oxygen radicals because they were inhibited by antioxidant enzymes (SOD and catalase) and oxygen radical scavengers (rutin, ascorbic acid, and bemitil). It was proposed that oxygen radicals were released by phagocytes activated upon exposure to mineral dusts and fibers. The study of lucigenin- and luminol-amplified chemiluminescence of peritoneal macrophages stimulated by chrysotile fibers and zeolite and latex particles has shown that their mutagenic action is probably mediated by different oxygen species, namely, by the iron-oxygen complexes (perferryl ions) plus hydrogen peroxide, hydrogen peroxide, and superoxide ion, respectively. From the oxygen radical scavengers studied, rutin was the most effective inhibitor of the mutagenic effect of mineral fibers and dusts.
Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki
2013-01-01
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl− and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl− efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl− efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network. PMID:23950973
Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki
2013-01-01
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.
From Safe Spaces to Resilient Places: A Role for Interfaith Cooperation in Contentious Times
ERIC Educational Resources Information Center
Gill, Rahuldeep Singn
2017-01-01
This article builds on theories of safe and brave spaces to demonstrate how to transform higher education institutions to be better able to incorporate multivalent forms of diversity. In particular, the article suggests leveraging the civic-oriented methodology of interfaith cooperation (Patel & Meyer, 2011) in order to encourage people to…
Some subclasses of multivalent functions involving a certain linear operator
NASA Astrophysics Data System (ADS)
Srivastava, H. M.; Patel, J.
2005-10-01
The authors investigate various inclusion and other properties of several subclasses of the class of normalized p-valent analytic functions in the open unit disk, which are defined here by means of a certain linear operator. Problems involving generalized neighborhoods of analytic functions in the class are investigated. Finally, some applications of fractional calculus operators are considered.
Effects of stimulation technique, anatomical region and time on human sweat lipid mediator profiles.
USDA-ARS?s Scientific Manuscript database
Few studies compare sampling protocol effect on sweat composition. Here we evaluate the impact of sweat stimulation mode and site of collection on lipid mediator composition. Sweat from healthy males (n = 7) was collected weekly for three weeks from the volar forearm following either pilocarpine ion...
NASA Astrophysics Data System (ADS)
Economos, R. C.; Boehnke, P.; Burgisser, A.
2017-12-01
Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jeong-Pyong; Kawasaki, Masahiro; Kavli IPMU
We consider nearly equal number of gauge mediation type charged (anti-) Q-balls with charge of ±α{sup −1}≃±137 well before the BBN epoch and discussed how they evolve in time. We found that ion-like objects with electric charges of +O(1) are likely to become relics in the present universe, which we expect to be the dark matter. These are constrained by MICA experiment, where the trail of heavy atom-like or ion-like object in 10{sup 9} years old ancient mica crystals is not observed. We found that the allowed region for gauge mediation model parameter and reheating temperature have to be smallermore » than the case of the neutral Q-ball dark matter.« less
Hydrodynamic ion sound instability in systems of a finite length
NASA Astrophysics Data System (ADS)
Koshkarov, O.; Chapurin, O.; Smolyakov, A.; Kaganovich, I.; Ilgisonis, V.
2016-09-01
Plasmas permeated by an energetic ion beam is prone to the kinetic ion-sound instability that occurs as a result of the inverse Landau damping for ion velocity. It is shown here that in a finite length system there exists another type of the ion sound instability which occurs for v02
Kurashige, Yuki; Saitow, Masaaki; Chalupský, Jakub; Yanai, Takeshi
2014-06-28
The O-O (oxygen-oxygen) bond formation is widely recognized as a key step of the catalytic reaction of dioxygen evolution from water. Recently, the water oxidation catalyzed by potassium ferrate (K2FeO4) was investigated on the basis of experimental kinetic isotope effect analysis assisted by density functional calculations, revealing the intramolecular oxo-coupling mechanism within a di-iron(vi) intermediate, or diferrate [Sarma et al., J. Am. Chem. Soc., 2012, 134, 15371]. Here, we report a detailed examination of this diferrate-mediated O-O bond formation using scalable multireference electronic structure theory. High-dimensional correlated many-electron wave functions beyond the one-electron picture were computed using the ab initio density matrix renormalization group (DMRG) method along the O-O bond formation pathway. The necessity of using large active space arises from the description of complex electronic interactions and varying redox states both associated with two-center antiferromagnetic multivalent iron-oxo coupling. Dynamic correlation effects on top of the active space DMRG wave functions were additively accounted for by complete active space second-order perturbation (CASPT2) and multireference configuration interaction (MRCI) based methods, which were recently introduced by our group. These multireference methods were capable of handling the double shell effects in the extended active space treatment. The calculations with an active space of 36 electrons in 32 orbitals, which is far over conventional limitation, provide a quantitatively reliable prediction of potential energy profiles and confirmed the viability of the direct oxo coupling. The bonding nature of Fe-O and dual bonding character of O-O are discussed using natural orbitals.
Profiling Heparin-Chemokine Interactions Using Synthetic Tools
de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.
2009-01-01
Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990
Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
Janke, Abigail M; Seo, Da Hee; Rahmanian, Vahid; Conicella, Alexander E; Mathews, Kaylee L; Burke, Kathleen A; Mittal, Jeetain; Fawzi, Nicolas L
2018-05-01
Many cancer-causing chromosomal translocations result in transactivating protein products encoding FET family (FUS, EWSR1, TAF15) low-complexity (LC) domains fused to a DNA binding domain from one of several transcription factors. Recent work demonstrates that higher-order assemblies of FET LC domains bind the carboxy-terminal domain of the large subunit of RNA polymerase II (RNA pol II CTD), suggesting FET oncoproteins may mediate aberrant transcriptional activation by recruiting RNA polymerase II to promoters of target genes. Here we use nuclear magnetic resonance (NMR) spectroscopy and hydrogel fluorescence microscopy localization and fluorescence recovery after photobleaching to visualize atomic details of a model of this process, interactions of RNA pol II CTD with high-molecular weight TAF15 LC assemblies. We report NMR resonance assignments of the intact degenerate repeat half of human RNA pol II CTD alone and verify its predominant intrinsic disorder by molecular simulation. By measuring NMR spin relaxation and dark-state exchange saturation transfer, we characterize the interaction of RNA pol II CTD with amyloid-like hydrogel fibrils of TAF15 and hnRNP A2 LC domains and observe that heptads far from the acidic C-terminal tail of RNA pol II CTD bind TAF15 fibrils most avidly. Mutation of CTD lysines in heptad position 7 to consensus serines reduced the overall level of TAF15 fibril binding, suggesting that electrostatic interactions contribute to complex formation. Conversely, mutations of position 7 asparagine residues and truncation of the acidic tail had little effect. Thus, weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation.
Neiser, Susann; Koskenkorva, Taija S; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna
2016-07-21
Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions.
Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R
2017-12-29
The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.
Affinity of C-Reactive Protein toward FcγRI Is Strongly Enhanced by the γ-Chain
Röcker, Carlheinz; Manolov, Dimitar E.; Kuzmenkina, Elza V.; Tron, Kyrylo; Slatosch, Holger; Torzewski, Jan; Nienhaus, G. Ulrich
2007-01-01
C-reactive protein (CRP), the prototype human acute phase protein, is widely regarded as a key player in cardiovascular disease, but the identity of its cellular receptor is still under debate. By using ultrasensitive confocal imaging analysis, we have studied CRP binding to transfected COS-7 cells expressing the high-affinity IgG receptor FcγRI. Here we show that CRP binds to FcγRI on intact cells, with a kd of 10 ± 3 μmol/L. Transfection of COS-7 cells with a plasmid coding for both FcγRI and its functional counterpart, the γ-chain, markedly increases CRP affinity to FcγRI, resulting in a kd of 0.35 ± 0.10 μmol/L. The affinity increase results from an ∼30-fold enhanced association rate coefficient. The pronounced enhancement of affinity by the γ-chain suggests its crucial involvement in the CRP receptor interaction, possibly by mediating interactions between the transmembrane moieties of the receptors. Dissociation of CRP from the cell surfaces cannot be detected throughout the time course of several hours and is thus extremely slow. Considering the pentameric structure of CRP, this result indicates that multivalent binding and receptor clustering are crucially involved in the interaction of CRP with nucleated cells. PMID:17255341
Vinson, Mary; Rausch, Oliver; Maycox, Peter R; Prinjha, Rab K; Chapman, Debra; Morrow, Rachel; Harper, Alex J; Dingwall, Colin; Walsh, Frank S; Burbidge, Stephen A; Riddell, David R
2003-03-01
The interaction between myelin-associated glycoprotein (MAG), expressed at the periaxonal membrane of myelin, and receptors on neurons initiates a bidirectional signalling system that results in inhibition of neurite outgrowth and maintenance of myelin integrity. We show that this involves a lipid-raft to lipid-raft interaction on opposing cell membranes. MAG is exclusively located in low buoyancy Lubrol WX-insoluble membrane fractions isolated from whole brain, primary oligodendrocytes, or MAG-expressing CHO cells. Localisation within these domains is dependent on cellular cholesterol and occurs following terminal glycosylation in the trans-Golgi network, characteristics of association with lipid rafts. Furthermore, a recombinant form of MAG interacts specifically with lipid-raft fractions from whole brain and cultured cerebellar granule cells, containing functional MAG receptors GT1b and Nogo-66 receptor and molecules required for transduction of signal from MAG into neurons. The localisation of both MAG and MAG receptors within lipid rafts on the surface of opposing cells may create discrete areas of high avidity multivalent interaction, known to be critical for signalling into both cell types. Localisation within lipid rafts may provide a molecular environment that facilitates the interaction between MAG and multiple receptors and also between MAG ligands and molecules involved in signal transduction.
Emerging human papillomavirus vaccines
Ma, Barbara; Maraj, Bharat; Tran, Nam Phuong; Knoff, Jayne; Chen, Alexander; Alvarez, Ronald D; Hung, Chien-Fu; Wu, T.-C.
2013-01-01
Introduction Identification of human papillomavirus (HPV) as the etiologic factor of cervical, anogenital, and a subset of head and neck cancers has stimulated the development of preventive and therapeutic HPV vaccines to control HPV-associated malignancies. Excitement has been generated by the commercialization of two preventive L1-based vaccines, which use HPV virus-like particles (VLPs) to generate capsid-specific neutralizing antibodies. However, factors such as high cost and requirement for cold chain have prevented widespread implementation where they are needed most. Areas covered Next generation preventive HPV vaccine candidates have focused on cost-effective stable alternatives and generating broader protection via targeting multivalent L1 VLPs, L2 capsid protein, and chimeric L1/L2 VLPs. Therapeutic HPV vaccine candidates have focused on enhancing T cell-mediated killing of HPV-transformed tumor cells, which constitutively express HPV-encoded proteins, E6 and E7. Several therapeutic HPV vaccines are in clinical trials. Expert opinion Although progress is being made, cost remains an issue inhibiting the use of preventive HPV vaccines in countries that carry the majority of the cervical cancer burden. In addition, progression of therapeutic HPV vaccines through clinical trials may require combination strategies employing different therapeutic modalities. As research in the development of HPV vaccines continues, we may generate effective strategies to control HPV-associated malignancies. PMID:23163511
Evolving phage vectors for cell targeted gene delivery.
Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew
2002-03-01
We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.
Controlling Protein Conformation and Activities on Block-Copolymer Nanopatterns
2013-10-24
adsorption: the need for large stick pads! Average area = 2.4±1.5x104 nm2 Average area = 7.9±4.7x104 nm2 ~14 nm2 ~56 nm2 ~350 nm2 Kinetic...Fluidity in multivalent interactions Pre-clustering - “ sweet spot” Dynamic- clustering Label free lipid bilayer arrays with SPR The dark area
The African Diaspora: Using the Multivalent Theory to Understand Slave Autobiographies
ERIC Educational Resources Information Center
Morehouse, Maggi M.
2007-01-01
In simple terms, diaspora can be defined as the identity community that is formed when people move. Although the term African Diaspora seems relatively new, a number of 20th century scholars have utilized a diasporic framework to explain the commonalities among people of African descent around the world. The earliest scholars did not use the term;…
USDA-ARS?s Scientific Manuscript database
The objective of this research was to examine the effects of dexamethasone (DEX) treatment on various aspects of immunity following administration of a multivalent respiratory vaccine, using a model intended to mimic acute versus chronic stress. Angus × Hereford steers (n = 32; 209 ± 8 kg) were str...
2017-10-01
Requirements ........................ 5 9. Appendices ......................................................... none 1. INTRODUCTION: Androgens are ...hormones that play a critical role in stimulating prostate cancer growth. Androgens activate a protein called the androgen receptor ( AR ), which...regulates genes involved in cell growth. Although powerful anti-androgen drugs can be administered to block AR action and have been used successfully to
Process for tertiary oil recovery using tall oil pitch
Radke, C.J.
1983-07-25
A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)
Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?
ERIC Educational Resources Information Center
Rudy, Alan P.
2005-01-01
Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…
Chemical comminution and deashing of low-rank coals
Quigley, David R.
1992-01-01
A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.
Chemical comminution and deashing of low-rank coals
Quigley, David R.
1992-12-01
A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.
Quantitative assessment of the multivalent protein-carbohydrate interactions on silicon.
Yang, Jie; Chazalviel, Jean-Noël; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal
2014-10-21
A key challenge in the development of glycan arrays is that the sensing interface be fabricated reliably so as to ensure the sensitive and accurate analysis of the protein-carbohydrate interaction of interest, reproducibly. These goals are complicated in the case of glycan arrays as surface sugar density can influence dramatically the strength and mode of interaction of the sugar ligand at any interface with lectin partners. In this Article, we describe the preparation of carboxydecyl-terminated crystalline silicon (111) surfaces onto which are grafted either mannosyl moieties or a mixture of mannose and spacer alcohol molecules to provide "diluted" surfaces. The fabrication of the silicon surfaces was achieved efficiently through a strategy implicating a "click" coupling step. The interactions of these newly fabricated glycan interfaces with the lectin, Lens culinaris, have been characterized using quantitative infrared (IR) spectroscopy in the attenuated total geometry (ATR). The density of mannose probes and lectin targets was precisely determined for the first time by the aid of special IR calibration experiments, thus allowing for the interpretation of the distribution of mannose and its multivalent binding with lectins. These experimental findings were accounted for by numerical simulations of lectin adsorption.
The Politics and Regulation of Anger in Urban China.
Yang, Jie
2016-03-01
Negative emotions such as anger, and community responses to their expression are culturally and politically conditioned, including by dominant medical discourse on anger's somatic and psychic effects. In this article I examine local genres of anger expression in Beijing, China, particularly among marginalized workers, and address culturally specific responses to them. Through majie (rant), xiangpi ren (silenced rage), and nande hutu (muddledness as a more difficult kind of smartness), workers strategically employ anger to seek redress for injustices and legitimate their moral indignation while challenging official psychotherapeutic interventions. Those who seek to regulate anger, mostly psychosocial workers acting as arm's-length agents of the state, use mixed methods that draw on Western psychotherapy and indigenous psychological resources to frame, medicalize or appease workers' anger in the name of health and social stability. I demonstrate how the two processes--anger expression and responses to it--create tensions and result in an ambiguous and multivalent social terrain which Chinese subjects must negotiate and which the state attempts to govern. I argue that the ambivalence and multi-valence of anger expressions and state-sponsored reactions to them render this emotion both subversive vis-à-vis power and subject to manipulations that maintain social order.
Multivalency of Sonic hedgehog conjugated to linear polymer chains modulates protein potency.
Wall, Samuel T; Saha, Krishanu; Ashton, Randolph S; Kam, Kimberly R; Schaffer, David V; Healy, Kevin E
2008-04-01
A potently active multivalent form of the protein Sonic hedgehog (Shh) was produced by bioconjugation of a modified recombinant form of Shh to the linear polymers poly(acrylic acid) (pAAc) and hyaluronic acid (HyA) via a two-step reaction exploiting carboimiide and maleimide chemistry. Efficiency of the conjugation was approximately 75% even at stoichiometric ratios of 30 Shh molecules per linear HyA chain (i.e., 30:1 Shh/HyA). Bioactivity of the conjugates was tested via a cellular assay across a range of stoichiometric ratios of Shh molecules to HyA linear chains, which was varied from 0.6:1 Shh/HyA to 22:1 Shh/HyA. Results indicate that low conjugation ratios decrease Shh bioactivity and high ratios increase this activity beyond the potency of monomeric Shh, with approximately equal activity between monomeric soluble Shh and conjugated Shh at 7:1 Shh/HyA. In addition, high-ratio constructs increased angiogenesis determined by the in vivo chick chorioallantoic membrane (CAM) assay. These results are captured by a kinetic model of multiple interactions between the Shh/HyA conjugates and cell surface receptors resulting in higher cell signaling at lower bulk Shh concentrations.
Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains
2014-01-01
Background Ras is a membrane-associated small G-protein that funnels growth and differentiation signals into downstream signal transduction pathways by cycling between an inactive, GDP-bound and an active, GTP-bound state. Aberrant Ras activity as a result of oncogenic mutations causes de novo cell transformation and promotes tumor growth and progression. Results Here, we describe a novel strategy to block deregulated Ras activity by means of oligomerized cognate protein modules derived from the Ras-binding domain of c-Raf (RBD), which we named MSOR for multivalent scavengers of oncogenic Ras. The introduction of well-characterized mutations into RBD was used to adjust the affinity and hence the blocking potency of MSOR towards activated Ras. MSOR inhibited several oncogenic Ras-stimulated processes including downstream activation of Erk1/2, induction of matrix-degrading enzymes, cell motility and invasiveness in a graded fashion depending on the oligomerization grade and the nature of the individual RBD-modules. The amenability to accurate experimental regulation was further improved by engineering an inducible MSOR-expression system to render the reversal of oncogenic Ras effects controllable. Conclusion MSOR represent a new tool for the experimental and possibly therapeutic selective blockade of oncogenic Ras signals. PMID:24383791
Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH
USDA-ARS?s Scientific Manuscript database
Cation exchangers CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3...
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP
Sciacca, Michele F.M.; Milardi, Danilo; Messina, Grazia M.L.; Marletta, Giovanni; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo
2013-01-01
Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca2+ ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca2+ ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. PMID:23332070
All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers
2012-01-01
Alzheimer’s disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor–peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn2+, a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca2+ leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism. PMID:22423218
Organotin-mediated exchange diffusion of anions in human red cells
1979-01-01
Organotin cations (R3Sn+) form electrically neutral ion pairs with monovalent anions. It is demonstrated that the tin derivatives induce exchange diffusion of chloride in red cells and resealed ghosts, without any detectable increase of membrane permeability to net movements of chloride ions. The obligatory anion exchange is believed to be due to the permeation of electroneural ion pairs, whereas the organic cation (R3Sn+) has an extremely low membrane permeability. Exchange fluxes of chloride increased with the lipophilicity of the substituting group (R3). At the same molar concentration of organotin, the relative potencies of the tin derivatives as anion carriers (with trimethyltin as a reference) were: methyl 1, ethyl 30, propyl = phenyl 1,00, and butyl 10,000. Tributyltin-mediated anion exchange was studied in detail. The organotin-induced anion transport increased through the sequence: F- less than Cl- less than Br- less than I- = SCN- less than OH-. Partitioning of tributyltin into red cell membranes was greater in iodide than in chloride media (partition coefficients 6.6 and 1.7 x 10(- 3) cm, respectively). Bicarbonate, fluoride, nitrate, phosphate, and sulphate did not exchange with chloride in the presence of tributyltin. Chloride exchange fluxes increased linearly with tributylin concentrations up to 10(-5) M, and with chloride concentrations up to at least 0.9 M. The apparent turnover number for tributyltin-mediated chloride exchange increased from 15 to 1,350 s-1 between 0 and 38 degrees C. These figures are minimum turnover numbers, because it is not known what fraction of the organotin in the membrane exists as chloride ion pairs. PMID:479814