Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun
2016-01-01
As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.
Multivariate Analysis and Machine Learning in Cerebral Palsy Research
Zhang, Jing
2017-01-01
Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP. PMID:29312134
Multivariate Analysis and Machine Learning in Cerebral Palsy Research.
Zhang, Jing
2017-01-01
Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.
Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.
Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao
2016-11-30
Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Correlative and multivariate analysis of increased radon concentration in underground laboratory.
Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena
2014-11-01
The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana
2013-01-01
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030
Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.
Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao
2016-07-01
Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.
Duan, Fenghai; Xu, Ye
2017-01-01
To analyze a microarray experiment to identify the genes with expressions varying after the diagnosis of breast cancer. A total of 44 928 probe sets in an Affymetrix microarray data publicly available on Gene Expression Omnibus from 249 patients with breast cancer were analyzed by the nonparametric multivariate adaptive splines. Then, the identified genes with turning points were grouped by K-means clustering, and their network relationship was subsequently analyzed by the Ingenuity Pathway Analysis. In total, 1640 probe sets (genes) were reliably identified to have turning points along with the age at diagnosis in their expression profiling, of which 927 expressed lower after turning points and 713 expressed higher after the turning points. K-means clustered them into 3 groups with turning points centering at 54, 62.5, and 72, respectively. The pathway analysis showed that the identified genes were actively involved in various cancer-related functions or networks. In this article, we applied the nonparametric multivariate adaptive splines method to a publicly available gene expression data and successfully identified genes with expressions varying before and after breast cancer diagnosis.
Localization of genes involved in the metabolic syndrome using multivariate linkage analysis.
Olswold, Curtis; de Andrade, Mariza
2003-12-31
There are no well accepted criteria for the diagnosis of the metabolic syndrome. However, the metabolic syndrome is identified clinically by the presence of three or more of these five variables: larger waist circumference, higher triglyceride levels, lower HDL-cholesterol concentrations, hypertension, and impaired fasting glucose. We use sets of two or three variables, which are available in the Framingham Heart Study data set, to localize genes responsible for this syndrome using multivariate quantitative linkage analysis. This analysis demonstrates the applicability of using multivariate linkage analysis and how its use increases the power to detect linkage when genes are involved in the same disease mechanism.
Risk factors for baclofen pump infection in children: a multivariate analysis.
Spader, Heather S; Bollo, Robert J; Bowers, Christian A; Riva-Cambrin, Jay
2016-06-01
OBJECTIVE Intrathecal baclofen infusion systems to manage severe spasticity and dystonia are associated with higher infection rates in children than in adults. Factors unique to this population, such as poor nutrition and physical limitations for pump placement, have been hypothesized as the reasons for this disparity. The authors assessed potential risk factors for infection in a multivariate analysis. METHODS Patients who underwent implantation of a programmable pump and intrathecal catheter for baclofen infusion at a single center between January 1, 2000, and March 1, 2012, were identified in this retrospective cohort study. The primary end point was infection. Potential risk factors investigated included preoperative (i.e., demographics, body mass index [BMI], gastrostomy tube, tracheostomy, previous spinal fusion), intraoperative (i.e., surgeon, antibiotics, pump size, catheter location), and postoperative (i.e., wound dehiscence, CSF leak, and number of revisions) factors. Univariate analysis was performed, and a multivariate logistic regression model was created to identify independent risk factors for infection. RESULTS A total of 254 patients were evaluated. The overall infection rate was 9.8%. Univariate analysis identified young age, shorter height, lower weight, dehiscence, CSF leak, and number of revisions within 6 months of pump placement as significantly associated with infection. Multivariate analysis identified young age, dehiscence, and number of revisions as independent risk factors for infection. CONCLUSIONS Young age, wound dehiscence, and number of revisions were independent risk factors for infection in this pediatric cohort. A low BMI and the presence of either a gastrostomy or tracheostomy were not associated with infection and may not be contraindications for this procedure.
ERIC Educational Resources Information Center
Martin, James L.
This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…
NASA Technical Reports Server (NTRS)
Wolf, S. F.; Lipschutz, M. E.
1993-01-01
Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Application of two tests of multivariate discordancy to fisheries data sets
Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.
2008-01-01
The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.
Use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond.
Erb-Downward, John R; Sadighi Akha, Amir A; Wang, Juan; Shen, Ning; He, Bei; Martinez, Fernando J; Gyetko, Margaret R; Curtis, Jeffrey L; Huffnagle, Gary B
2012-01-01
This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.
Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers
USDA-ARS?s Scientific Manuscript database
The rumen has a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen fluid metabolomic analysis by LC-MS and multivariate/univariate statistical analysis were used to identify differences in r...
Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index
NASA Astrophysics Data System (ADS)
Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun
2018-02-01
It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.
MULTIVARIATE RECEPTOR MODELS-CURRENT PRACTICE AND FUTURE TRENDS. (R826238)
Multivariate receptor models have been applied to the analysis of air quality data for sometime. However, solving the general mixture problem is important in several other fields. This paper looks at the panoply of these models with a view of identifying common challenges and ...
Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel
2015-01-01
The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.
STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL
2015-01-01
Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749
Metric Selection for Evaluation of Human Supervisory Control Systems
2009-12-01
finding a significant effect when there is none becomes more likely. The inflation of type I error due to multiple dependent variables can be handled...with multivariate analysis techniques, such as Multivariate Analysis of Variance (MANOVA) (Johnson & Wichern, 2002). However, it should be noted that...the few significant differences among many insignificant ones. The best way to avoid failure to identify significant differences is to design an
Multivariate frequency domain analysis of protein dynamics
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori
2009-03-01
Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L
2015-12-30
Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Using sperm morphometry and multivariate analysis to differentiate species of gray Mazama
Duarte, José Maurício Barbanti
2016-01-01
There is genetic evidence that the two species of Brazilian gray Mazama, Mazama gouazoubira and Mazama nemorivaga, belong to different genera. This study identified significant differences that separated them into distinct groups, based on characteristics of the spermatozoa and ejaculate of both species. The characteristics that most clearly differentiated between the species were ejaculate colour, white for M. gouazoubira and reddish for M. nemorivaga, and sperm head dimensions. Multivariate analysis of sperm head dimension and format data accurately discriminated three groups for species with total percentage of misclassified of 0.71. The individual analysis, by animal, and the multivariate analysis have also discriminated correctly all five animals (total percentage of misclassified of 13.95%), and the canonical plot has shown three different clusters: Cluster 1, including individuals of M. nemorivaga; Cluster 2, including two individuals of M. gouazoubira; and Cluster 3, including a single individual of M. gouazoubira. The results obtained in this work corroborate the hypothesis of the formation of new genera and species for gray Mazama. Moreover, the easily applied method described herein can be used as an auxiliary tool to identify sibling species of other taxonomic groups. PMID:28018612
Zhou, Fei; Zhao, Yajing; Peng, Jiyu; Jiang, Yirong; Li, Maiquan; Jiang, Yuan; Lu, Baiyi
2017-07-01
Osmanthus fragrans flowers are used as folk medicine and additives for teas, beverages and foods. The metabolites of O. fragrans flowers from different geographical origins were inconsistent in some extent. Chromatography and mass spectrometry combined with multivariable analysis methods provides an approach for discriminating the origin of O. fragrans flowers. To discriminate the Osmanthus fragrans var. thunbergii flowers from different origins with the identified metabolites. GC-MS and UPLC-PDA were conducted to analyse the metabolites in O. fragrans var. thunbergii flowers (in total 150 samples). Principal component analysis (PCA), soft independent modelling of class analogy analysis (SIMCA) and random forest (RF) analysis were applied to group the GC-MS and UPLC-PDA data. GC-MS identified 32 compounds common to all samples while UPLC-PDA/QTOF-MS identified 16 common compounds. PCA of the UPLC-PDA data generated a better clustering than PCA of the GC-MS data. Ten metabolites (six from GC-MS and four from UPLC-PDA) were selected as effective compounds for discrimination by PCA loadings. SIMCA and RF analysis were used to build classification models, and the RF model, based on the four effective compounds (caffeic acid derivative, acteoside, ligustroside and compound 15), yielded better results with the classification rate of 100% in the calibration set and 97.8% in the prediction set. GC-MS and UPLC-PDA combined with multivariable analysis methods can discriminate the origin of Osmanthus fragrans var. thunbergii flowers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
McKenna, J.E.
2003-01-01
The biosphere is filled with complex living patterns and important questions about biodiversity and community and ecosystem ecology are concerned with structure and function of multispecies systems that are responsible for those patterns. Cluster analysis identifies discrete groups within multivariate data and is an effective method of coping with these complexities, but often suffers from subjective identification of groups. The bootstrap testing method greatly improves objective significance determination for cluster analysis. The BOOTCLUS program makes cluster analysis that reliably identifies real patterns within a data set more accessible and easier to use than previously available programs. A variety of analysis options and rapid re-analysis provide a means to quickly evaluate several aspects of a data set. Interpretation is influenced by sampling design and a priori designation of samples into replicate groups, and ultimately relies on the researcher's knowledge of the organisms and their environment. However, the BOOTCLUS program provides reliable, objectively determined groupings of multivariate data.
NASA Astrophysics Data System (ADS)
Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
Heuristics to Facilitate Understanding of Discriminant Analysis.
ERIC Educational Resources Information Center
Van Epps, Pamela D.
This paper discusses the principles underlying discriminant analysis and constructs a simulated data set to illustrate its methods. Discriminant analysis is a multivariate technique for identifying the best combination of variables to maximally discriminate between groups. Discriminant functions are established on existing groups and used to…
Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André
2017-01-01
Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.
Noguchi, M; Kido, Y; Kubota, H; Kinjo, H; Kohama, G
1999-12-01
The records of 136 patients with N1-3 oral squamous cell carcinoma treated by surgery were investigated retrospectively, with the aim of finding out which factors were predictive of survival on multivariate analysis. Four independent factors significantly influenced survival in the following order: pN stage; T stage; histological grade; and N stage. The most significant was pN stage, the five-year survival for patients with pN0 being 91% and for patients with pN1-3 41%. A further study was carried out on the 80 patients with pN1-3 to find out their prognostic factors for survival and the independent factors identified by multivariate analysis were T stage and presence or absence of extracapsular spread to metastatic lymph nodes.
Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.
Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz
2017-03-01
Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
A Unified Framework for Association Analysis with Multiple Related Phenotypes
Stephens, Matthew
2013-01-01
We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data. PMID:23861737
Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun
2015-11-04
There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beppler, Christina L
2015-12-01
A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less
NASA Astrophysics Data System (ADS)
Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini
2018-03-01
In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.
Kroese, Leonard F; Kleinrensink, Gert-Jan; Lange, Johan F; Gillion, Jean-Francois
2018-03-01
Incisional hernia is a frequent complication after midline laparotomy. Surgical hernia repair is associated with complications, but no clear predictive risk factors have been identified. The European Hernia Society (EHS) classification offers a structured framework to describe hernias and to analyze postoperative complications. Because of its structured nature, it might prove to be useful for preoperative patient or treatment classification. The objective of this study was to investigate the EHS classification as a predictor for postoperative complications after incisional hernia surgery. An analysis was performed using a registry-based, large-scale, prospective cohort study, including all patients undergoing incisional hernia surgery between September 1, 2011 and February 29, 2016. Univariate analyses and multivariable logistic regression analysis were performed to identify risk factors for postoperative complications. A total of 2,191 patients were included, of whom 323 (15%) had 1 or more complications. Factors associated with complications in univariate analyses (p < 0.20) and clinically relevant factors were included in the multivariable analysis. In the multivariable analysis, EHS width class, incarceration, open surgery, duration of surgery, Altemeier wound class, and therapeutic antibiotic treatment were independent risk factors for postoperative complications. Third recurrence and emergency surgery were associated with fewer complications. Incisional hernia repair is associated with a 15% complication rate. The EHS width classification is associated with postoperative complications. To identify patients at risk for complications, the EHS classification is useful. Copyright © 2017. Published by Elsevier Inc.
Wilson, Iain; Paul Barrett, Michael; Sinha, Ashish; Chan, Shirley
2014-11-01
Elderly patients are often judged to be fit for emergency surgery based on age alone. This study identified risk factors predictive of in-hospital mortality amongst octogenarians undergoing emergency general surgery. A retrospective review of octogenarians undergoing emergency general surgery over 3 years was performed. Parametric survival analysis using Cox multivariate regression model was used to identify risk factors predictive of in-hospital mortality. Hazard ratios (HR) and corresponding 95% confidence interval were calculated. Seventy-three patients with a median age of 84 years were identified. Twenty-eight (38%) patients died post-operatively. Multivariate analysis identified ASA grade (ASA 5 HR 23.4 95% CI 2.38-230, p = 0.007) and chronic obstructive pulmonary disease (COPD) (HR 3.35 95% CI 1.15-9.69, p = 0.026) to be the only significant predictors of in-hospital mortality. Identification of high risk surgical patients should be based on physiological fitness for surgery rather than chronological age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Ma, Chunhui; Dastmalchi, Keyvan; Flores, Gema; Wu, Shi-Biao; Pedraza-Peñalosa, Paola; Long, Chunlin; Kennelly, Edward J
2013-04-10
There are many neotropical blueberries, and recent studies have shown that some have even stronger antioxidant activity than the well-known edible North American blueberries. Antioxidant marker compounds were predicted by applying multivariate statistics to data from LC-TOF-MS analysis and antioxidant assays of 3 North American blueberry species (Vaccinium corymbosum, Vaccinium angustifolium, and a defined mixture of Vaccinium virgatum with V. corymbosum) and 12 neotropical blueberry species (Anthopterus wardii, Cavendishia grandifolia, Cavendishia isernii, Ceratostema silvicola, Disterigma rimbachii, Macleania coccoloboides, Macleania cordifolia, Macleania rupestris, Satyria boliviana, Sphyrospermum buxifolium, Sphyrospermum cordifolium, and Sphyrospermum ellipticum). Fourteen antioxidant markers were detected, and 12 of these, including 7 anthocyanins, 3 flavonols, 1 hydroxycinnamic acid, and 1 iridoid glycoside, were identified. This application of multivariate analysis to bioactivity and mass data can be used for identification of pharmacologically active natural products and may help to determine which neotropical blueberry species will be prioritized for agricultural development. Also, the compositional differences between North American and neotropical blueberries were determined by chemometric analysis, and 44 marker compounds including 16 anthocyanins, 15 flavonoids, 7 hydroxycinnamic acid derivatives, 5 triterpene glycosides, and 1 iridoid glycoside were identified.
Sharif, K M; Rahman, M M; Azmir, J; Khatib, A; Sabina, E; Shamsudin, S H; Zaidul, I S M
2015-12-01
Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed. Copyright © 2015 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Hwang, Heungsun; Montreal, Hec; Dillon, William R.; Takane, Yoshio
2006-01-01
An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…
Detecting Outliers in Factor Analysis Using the Forward Search Algorithm
ERIC Educational Resources Information Center
Mavridis, Dimitris; Moustaki, Irini
2008-01-01
In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani,…
Williams, L. Keoki; Buu, Anne
2017-01-01
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206
Yue, Yong; Osipov, Arsen; Fraass, Benedick; Sandler, Howard; Zhang, Xiao; Nissen, Nicholas; Hendifar, Andrew; Tuli, Richard
2017-02-01
To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients. Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis. Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%). Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.
Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario
2018-04-15
Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Zhixiang; Shao, Peng; Sun, Qizhao; Zhao, Dong
2015-03-01
The purpose of the present study was to use a prospectively collected data to evaluate the rate of incidental durotomy (ID) during lumbar surgery and determine the associated risk factors by using univariate and multivariate analysis. We retrospectively reviewed 2184 patients who underwent lumbar surgery from January 1, 2009 to December 31, 2011 at a single hospital. Patients with ID (n=97) were compared with the patients without ID (n=2019). The influences of several potential risk factors that might affect the occurrence of ID were assessed using univariate and multivariate analyses. The overall incidence of ID was 4.62%. Univariate analysis demonstrated that older age, diabetes, lumbar central stenosis, posterior approach, revision surgery, prior lumber surgery and minimal invasive surgery are risk factors for ID during lumbar surgery. However, multivariate analysis identified older age, prior lumber surgery, revision surgery, and minimally invasive surgery as independent risk factors. Older age, prior lumber surgery, revision surgery, and minimal invasive surgery were independent risk factors for ID during lumbar surgery. These findings may guide clinicians making future surgical decisions regarding ID and aid in the patient counseling process to alleviate risks and complications. Copyright © 2015 Elsevier B.V. All rights reserved.
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
Marino, S R; Lin, S; Maiers, M; Haagenson, M; Spellman, S; Klein, J P; Binkowski, T A; Lee, S J; van Besien, K
2012-02-01
The identification of important amino acid substitutions associated with low survival in hematopoietic cell transplantation (HCT) is hampered by the large number of observed substitutions compared with the small number of patients available for analysis. Random forest analysis is designed to address these limitations. We studied 2107 HCT recipients with good or intermediate risk hematological malignancies to identify HLA class I amino acid substitutions associated with reduced survival at day 100 post transplant. Random forest analysis and traditional univariate and multivariate analyses were used. Random forest analysis identified amino acid substitutions in 33 positions that were associated with reduced 100 day survival, including HLA-A 9, 43, 62, 63, 76, 77, 95, 97, 114, 116, 152, 156, 166 and 167; HLA-B 97, 109, 116 and 156; and HLA-C 6, 9, 11, 14, 21, 66, 77, 80, 95, 97, 99, 116, 156, 163 and 173. In all 13 had been previously reported by other investigators using classical biostatistical approaches. Using the same data set, traditional multivariate logistic regression identified only five amino acid substitutions associated with lower day 100 survival. Random forest analysis is a novel statistical methodology for analysis of HLA mismatching and outcome studies, capable of identifying important amino acid substitutions missed by other methods.
Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...
2014-12-02
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
Sun, Li-Li; Wang, Meng; Zhang, Hui-Jie; Liu, Ya-Nan; Ren, Xiao-Liang; Deng, Yan-Ru; Qi, Ai-Di
2018-01-01
Polygoni Multiflori Radix (PMR) is increasingly being used not just as a traditional herbal medicine but also as a popular functional food. In this study, multivariate chemometric methods and mass spectrometry were combined to analyze the ultra-high-performance liquid chromatograph (UPLC) fingerprints of PMR from six different geographical origins. A chemometric strategy based on multivariate curve resolution-alternating least squares (MCR-ALS) and three classification methods is proposed to analyze the UPLC fingerprints obtained. Common chromatographic problems, including the background contribution, baseline contribution, and peak overlap, were handled by the established MCR-ALS model. A total of 22 components were resolved. Moreover, relative species concentrations were obtained from the MCR-ALS model, which was used for multivariate classification analysis. Principal component analysis (PCA) and Ward's method have been applied to classify 72 PMR samples from six different geographical regions. The PCA score plot showed that the PMR samples fell into four clusters, which related to the geographical location and climate of the source areas. The results were then corroborated by Ward's method. In addition, according to the variance-weighted distance between cluster centers obtained from Ward's method, five components were identified as the most significant variables (chemical markers) for cluster discrimination. A counter-propagation artificial neural network has been applied to confirm and predict the effects of chemical markers on different samples. Finally, the five chemical markers were identified by UPLC-quadrupole time-of-flight mass spectrometer. Components 3, 12, 16, 18, and 19 were identified as 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside, emodin-8-O-β-d-glucopyranoside, emodin-8-O-(6'-O-acetyl)-β-d-glucopyranoside, emodin, and physcion, respectively. In conclusion, the proposed method can be applied for the comprehensive analysis of natural samples. Copyright © 2016. Published by Elsevier B.V.
Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan
2008-01-01
Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198
Inouye, Michael; Ripatti, Samuli; Kettunen, Johannes; Lyytikäinen, Leo-Pekka; Oksala, Niku; Laurila, Pirkka-Pekka; Kangas, Antti J.; Soininen, Pasi; Savolainen, Markku J.; Viikari, Jorma; Kähönen, Mika; Perola, Markus; Salomaa, Veikko; Raitakari, Olli; Lehtimäki, Terho; Taskinen, Marja-Riitta; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Palotie, Aarno; de Bakker, Paul I. W.
2012-01-01
Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis. PMID:22916037
Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles
Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.
2012-01-01
Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443
Hakimzadeh, Neda; Parastar, Hadi; Fattahi, Mohammad
2014-01-24
In this study, multivariate curve resolution (MCR) and multivariate classification methods are proposed to develop a new chemometric strategy for comprehensive analysis of high-performance liquid chromatography-diode array absorbance detection (HPLC-DAD) fingerprints of sixty Salvia reuterana samples from five different geographical regions. Different chromatographic problems occurred during HPLC-DAD analysis of S. reuterana samples, such as baseline/background contribution and noise, low signal-to-noise ratio (S/N), asymmetric peaks, elution time shifts, and peak overlap are handled using the proposed strategy. In this way, chromatographic fingerprints of sixty samples are properly segmented to ten common chromatographic regions using local rank analysis and then, the corresponding segments are column-wise augmented for subsequent MCR analysis. Extended multivariate curve resolution-alternating least squares (MCR-ALS) is used to obtain pure component profiles in each segment. In general, thirty-one chemical components were resolved using MCR-ALS in sixty S. reuterana samples and the lack of fit (LOF) values of MCR-ALS models were below 10.0% in all cases. Pure spectral profiles are considered for identification of chemical components by comparing their resolved spectra with the standard ones and twenty-four components out of thirty-one components were identified. Additionally, pure elution profiles are used to obtain relative concentrations of chemical components in different samples for multivariate classification analysis by principal component analysis (PCA) and k-nearest neighbors (kNN). Inspection of the PCA score plot (explaining 76.1% of variance accounted for three PCs) showed that S. reuterana samples belong to four clusters. The degree of class separation (DCS) which quantifies the distance separating clusters in relation to the scatter within each cluster is calculated for four clusters and it was in the range of 1.6-5.8. These results are then confirmed by kNN. In addition, according to the PCA loading plot and kNN dendrogram of thirty-one variables, five chemical constituents of luteolin-7-o-glucoside, salvianolic acid D, rosmarinic acid, lithospermic acid and trijuganone A are identified as the most important variables (i.e., chemical markers) for clusters discrimination. Finally, the effect of different chemical markers on samples differentiation is investigated using counter-propagation artificial neural network (CP-ANN) method. It is concluded that the proposed strategy can be successfully applied for comprehensive analysis of chromatographic fingerprints of complex natural samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers
USDA-ARS?s Scientific Manuscript database
The rumen plays a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen metabolomic analysis by ultra-performance liquid chromatography/ time-of-flight mass spectrometry (MS) and multivariate/u...
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi
2017-01-01
High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
MULTIVARIATE ANALYSIS OF DRINKING BEHAVIOUR IN A RURAL POPULATION
Mathrubootham, N.; Bashyam, V.S.P.; Shahjahan
1997-01-01
This study was carried out to find out the drinking pattern in a rural population, using multivariate techniques. 386 current users identified in a community were assessed with regard to their drinking behaviours using a structured interview. For purposes of the study the questions were condensed into 46 meaningful variables. In bivariate analysis, 14 variables including dependent variables such as dependence, MAST & CAGE (measuring alcoholic status), Q.F. Index and troubled drinking were found to be significant. Taking these variables and other multivariate techniques too such as ANOVA, correlation, regression analysis and factor analysis were done using both SPSS PC + and HCL magnum mainframe computer with FOCUS package and UNIX systems. Results revealed that number of factors such as drinking style, duration of drinking, pattern of abuse, Q.F. Index and various problems influenced drinking and some of them set up a vicious circle. Factor analysis revealed mainly 3 factors, abuse, dependence and social drinking factors. Dependence could be divided into low/moderate dependence. The implications and practical applications of these tests are also discussed. PMID:21584077
Hierl, L.A.; Loftin, C.S.; Longcore, J.R.; McAuley, D.G.; Urban, D.L.
2007-01-01
We assessed changes in vegetative structure of 49 impoundments at Moosehorn National Wildlife Refuge (MNWR), Maine, USA, between the periods 1984-1985 to 2002 with a multivariate, adaptive approach that may be useful in a variety of wetland and other habitat management situations. We used Mahalanobis Distance (MD) analysis to classify the refuge?s wetlands as poor or good waterbird habitat based on five variables: percent emergent vegetation, percent shrub, percent open water, relative richness of vegetative types, and an interspersion juxtaposition index that measures adjacency of vegetation patches. Mahalanobis Distance is a multivariate statistic that examines whether a particular data point is an outlier or a member of a data cluster while accounting for correlations among inputs. For each wetland, we used MD analysis to quantify a distance from a reference condition defined a priori by habitat conditions measured in MNWR wetlands used by waterbirds. Twenty-five wetlands declined in quality between the two periods, whereas 23 wetlands improved. We identified specific wetland characteristics that may be modified to improve habitat conditions for waterbirds. The MD analysis seems ideal for instituting an adaptive wetland management approach because metrics can be easily added or removed, ranges of target habitat conditions can be defined by field-collected data, and the analysis can identify priorities for single or multiple management objectives.
Redo surgery risk in patients with cardiac prosthetic valve dysfunction
Maciejewski, Marek; Piestrzeniewicz, Katarzyna; Bielecka-Dąbrowa, Agata; Piechowiak, Monika; Jaszewski, Ryszard
2011-01-01
Introduction The aim of the study was to analyse the risk factors of early and late mortality in patients undergoing the first reoperation for prosthetic valve dysfunction. Material and methods A retrospective observational study was performed in 194 consecutive patients (M = 75, F = 119; mean age 53.2 ±11 years) with a mechanical prosthetic valve (n = 103 cases; 53%) or bioprosthesis (91; 47%). Univariate and multivariate Cox statistical analysis was performed to determine risk factors of early and late mortality. Results The overall early mortality was 18.6%: 31.4% in patients with symptoms of NYHA functional class III-IV and 3.4% in pts in NYHA class I-II. Multivariate analysis identified symptoms of NYHA class III-IV and endocarditis as independent predictors of early mortality. The overall late mortality (> 30 days) was 8.2% (0.62% year/patient). Multivariate analysis identified age at the time of reoperation as a strong independent predictor of late mortality. Conclusions Reoperation in patients with prosthetic valves, performed urgently, especially in patients with symptoms of NYHA class III-IV or in the case of endocarditis, bears a high mortality rate. Risk of planned reoperation, mostly in patients with symptoms of NYHA class I-II, does not differ from the risk of the first operation. PMID:22291767
Masiá, M; Gutiérrez, F; Padilla, S; Soldán, B; Mirete, C; Shum, C; Hernández, I; Royo, G; Martin-Hidalgo, A
2007-02-01
The aim of this study was to characterise community-acquired pneumonia (CAP) caused by atypical pathogens by combining distinctive clinical and epidemiological features and novel biological markers. A population-based prospective study of consecutive patients with CAP included investigation of biomarkers of bacterial infection, e.g., procalcitonin, C-reactive protein and lipopolysaccharide-binding protein (LBP) levels. Clinical, radiological and laboratory data for patients with CAP caused by atypical pathogens were compared by univariate and multivariate analysis with data for patients with typical pathogens and patients from whom no organisms were identified. Two predictive scoring models were developed with the most discriminatory variables from multivariate analysis. Of 493 patients, 94 had CAP caused by atypical pathogens. According to multivariate analysis, patients with atypical pneumonia were more likely to have normal white blood cell counts, have repetitive air-conditioning exposure, be aged <65 years, have elevated aspartate aminotransferase levels, have been exposed to birds, and have lower serum levels of LBP. Two different scoring systems were developed that predicted atypical pathogens with sensitivities of 35.2% and 48.8%, and specificities of 93% and 91%, respectively. The combination of selected patient characteristics and laboratory data identified up to half of the cases of atypical pneumonia with high specificity, which should help clinicians to optimise initial empirical therapy for CAP.
Multi-country health surveys: are the analyses misleading?
Masood, Mohd; Reidpath, Daniel D
2014-05-01
The aim of this paper was to review the types of approaches currently utilized in the analysis of multi-country survey data, specifically focusing on design and modeling issues with a focus on analyses of significant multi-country surveys published in 2010. A systematic search strategy was used to identify the 10 multi-country surveys and the articles published from them in 2010. The surveys were selected to reflect diverse topics and foci; and provide an insight into analytic approaches across research themes. The search identified 159 articles appropriate for full text review and data extraction. The analyses adopted in the multi-country surveys can be broadly classified as: univariate/bivariate analyses, and multivariate/multivariable analyses. Multivariate/multivariable analyses may be further divided into design- and model-based analyses. Of the 159 articles reviewed, 129 articles used model-based analysis, 30 articles used design-based analyses. Similar patterns could be seen in all the individual surveys. While there is general agreement among survey statisticians that complex surveys are most appropriately analyzed using design-based analyses, most researchers continued to use the more common model-based approaches. Recent developments in design-based multi-level analysis may be one approach to include all the survey design characteristics. This is a relatively new area, however, and there remains statistical, as well as applied analytic research required. An important limitation of this study relates to the selection of the surveys used and the choice of year for the analysis, i.e., year 2010 only. There is, however, no strong reason to believe that analytic strategies have changed radically in the past few years, and 2010 provides a credible snapshot of current practice.
Cohen, Mitchell J; Grossman, Adam D; Morabito, Diane; Knudson, M Margaret; Butte, Atul J; Manley, Geoffrey T
2010-01-01
Advances in technology have made extensive monitoring of patient physiology the standard of care in intensive care units (ICUs). While many systems exist to compile these data, there has been no systematic multivariate analysis and categorization across patient physiological data. The sheer volume and complexity of these data make pattern recognition or identification of patient state difficult. Hierarchical cluster analysis allows visualization of high dimensional data and enables pattern recognition and identification of physiologic patient states. We hypothesized that processing of multivariate data using hierarchical clustering techniques would allow identification of otherwise hidden patient physiologic patterns that would be predictive of outcome. Multivariate physiologic and ventilator data were collected continuously using a multimodal bioinformatics system in the surgical ICU at San Francisco General Hospital. These data were incorporated with non-continuous data and stored on a server in the ICU. A hierarchical clustering algorithm grouped each minute of data into 1 of 10 clusters. Clusters were correlated with outcome measures including incidence of infection, multiple organ failure (MOF), and mortality. We identified 10 clusters, which we defined as distinct patient states. While patients transitioned between states, they spent significant amounts of time in each. Clusters were enriched for our outcome measures: 2 of the 10 states were enriched for infection, 6 of 10 were enriched for MOF, and 3 of 10 were enriched for death. Further analysis of correlations between pairs of variables within each cluster reveals significant differences in physiology between clusters. Here we show for the first time the feasibility of clustering physiological measurements to identify clinically relevant patient states after trauma. These results demonstrate that hierarchical clustering techniques can be useful for visualizing complex multivariate data and may provide new insights for the care of critically injured patients.
NASA Astrophysics Data System (ADS)
O'Shea, Bethany; Jankowski, Jerzy
2006-12-01
The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-14
This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.
Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail
2011-02-01
The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.
Harris, Jenny; Cornelius, Victoria; Ream, Emma; Cheevers, Katy; Armes, Jo
2017-07-01
The purpose of this review was to identify potential candidate predictors of anxiety in women with early-stage breast cancer (BC) after adjuvant treatments and evaluate methodological development of existing multivariable models to inform the future development of a predictive risk stratification model (PRSM). Databases (MEDLINE, Web of Science, CINAHL, CENTRAL and PsycINFO) were searched from inception to November 2015. Eligible studies were prospective, recruited women with stage 0-3 BC, used a validated anxiety outcome ≥3 months post-treatment completion and used multivariable prediction models. Internationally accepted quality standards were used to assess predictive risk of bias and strength of evidence. Seven studies were identified: five were observational cohorts and two secondary analyses of RCTs. Variability of measurement and selective reporting precluded meta-analysis. Twenty-one candidate predictors were identified in total. Younger age and previous mental health problems were identified as risk factors in ≥3 studies. Clinical variables (e.g. treatment, tumour grade) were not identified as predictors in any studies. No studies adhered to all quality standards. Pre-existing vulnerability to mental health problems and younger age increased the risk of anxiety after completion of treatment for BC survivors, but there was no evidence that chemotherapy was a predictor. Multiple predictors were identified but many lacked reproducibility or were not measured across studies, and inadequate reporting did not allow full evaluation of the multivariable models. The use of quality standards in the development of PRSM within supportive cancer care would improve model quality and performance, thereby allowing professionals to better target support for patients.
Zhang, Tan; Li, Fangxuan; Mu, Jiali; Liu, Juntian; Zhang, Sheng
2017-06-01
To explore the significance of ultrasonic features in differential diagnosis of thyroid nodules via combining the thyroid imaging reporting and data system (TI-RADS) and multivariate statistical analysis. Patients who received surgical treatment and was diagnosed with single thyroid nodule by postoperative pathology and preoperative ultrasound were enrolled in this study. Multivariate analysis was applied to assess the significant ultrasonic features which correlated with identifying benign or malignance and grading the TI-RADS classification of thyroid nodule. There were significant differences in the nodule size, aspect ratio, internal, echogenicity, boundary, presence or absence of calcifications, calcification type and CDFI between benign and malignant thyroid nodules. Multivariate analysis showed clear-cut distinction both between benign and malignance and among different TI-RADS categories of malignancy nodules. The shape and calcification of the nodule were important factors for distinguish the benign and malignance. Height of the nodule, aspect and calcification was important factors for grading TI-RADS categories of malignancy thyroid nodules. Ill-defined boundary, irregular shape and presence of calcification related with highly malignant risk for thyroid nodule. The larger height and aspect and presence of calcification related with higher TI-RADS classification of malignancy thyroid nodule.
Liu, Zechang; Wang, Liping; Liu, Yumei
2018-01-18
Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Guglielminotti, Jean; Dechartres, Agnès; Mentré, France; Montravers, Philippe; Longrois, Dan; Laouénan, Cedric
2015-10-01
Prognostic research studies in anesthesiology aim to identify risk factors for an outcome (explanatory studies) or calculate the risk of this outcome on the basis of patients' risk factors (predictive studies). Multivariable models express the relationship between predictors and an outcome and are used in both explanatory and predictive studies. Model development demands a strict methodology and a clear reporting to assess its reliability. In this methodological descriptive review, we critically assessed the reporting and methodology of multivariable analysis used in observational prognostic studies published in anesthesiology journals. A systematic search was conducted on Medline through Web of Knowledge, PubMed, and journal websites to identify observational prognostic studies with multivariable analysis published in Anesthesiology, Anesthesia & Analgesia, British Journal of Anaesthesia, and Anaesthesia in 2010 and 2011. Data were extracted by 2 independent readers. First, studies were analyzed with respect to reporting of outcomes, design, size, methods of analysis, model performance (discrimination and calibration), model validation, clinical usefulness, and STROBE (i.e., Strengthening the Reporting of Observational Studies in Epidemiology) checklist. A reporting rate was calculated on the basis of 21 items of the aforementioned points. Second, they were analyzed with respect to some predefined methodological points. Eighty-six studies were included: 87.2% were explanatory and 80.2% investigated a postoperative event. The reporting was fairly good, with a median reporting rate of 79% (75% in explanatory studies and 100% in predictive studies). Six items had a reporting rate <36% (i.e., the 25th percentile), with some of them not identified in the STROBE checklist: blinded evaluation of the outcome (11.9%), reason for sample size (15.1%), handling of missing data (36.0%), assessment of colinearity (17.4%), assessment of interactions (13.9%), and calibration (34.9%). When reported, a few methodological shortcomings were observed, both in explanatory and predictive studies, such as an insufficient number of events of the outcome (44.6%), exclusion of cases with missing data (93.6%), or categorization of continuous variables (65.1%.). The reporting of multivariable analysis was fairly good and could be further improved by checking reporting guidelines and EQUATOR Network website. Limiting the number of candidate variables, including cases with missing data, and not arbitrarily categorizing continuous variables should be encouraged.
Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H
2015-02-01
Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®
Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic
2016-12-01
Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun
2014-08-01
Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioprospecting Chemical Diversity and Bioactivity in a Marine Derived Aspergillus terreus.
Adpressa, Donovon A; Loesgen, Sandra
2016-02-01
A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7-desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally-induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich
2011-01-01
The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189
Multivariate analysis of risk factors for long-term urethroplasty outcome.
Breyer, Benjamin N; McAninch, Jack W; Whitson, Jared M; Eisenberg, Michael L; Mehdizadeh, Jennifer F; Myers, Jeremy B; Voelzke, Bryan B
2010-02-01
We studied the patient risk factors that promote urethroplasty failure. Records of patients who underwent urethroplasty at the University of California, San Francisco Medical Center between 1995 and 2004 were reviewed. Cox proportional hazards regression analysis was used to identify multivariate predictors of urethroplasty outcome. Between 1995 and 2004, 443 patients of 495 who underwent urethroplasty had complete comorbidity data and were included in analysis. Median patient age was 41 years (range 18 to 90). Median followup was 5.8 years (range 1 month to 10 years). Stricture recurred in 93 patients (21%). Primary estimated stricture-free survival at 1, 3 and 5 years was 88%, 82% and 79%. After multivariate analysis smoking (HR 1.8, 95% CI 1.0-3.1, p = 0.05), prior direct vision internal urethrotomy (HR 1.7, 95% CI 1.0-3.0, p = 0.04) and prior urethroplasty (HR 1.8, 95% CI 1.1-3.1, p = 0.03) were predictive of treatment failure. On multivariate analysis diabetes mellitus showed a trend toward prediction of urethroplasty failure (HR 2.0, 95% CI 0.8-4.9, p = 0.14). Length of urethral stricture (greater than 4 cm), prior urethroplasty and failed endoscopic therapy are predictive of failure after urethroplasty. Smoking and diabetes mellitus also may predict failure potentially secondary to microvascular damage. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.
Cichy, Radoslaw Martin; Pantazis, Dimitrios
2017-09-01
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.
Multivariate analysis of prognostic factors in synovial sarcoma.
Koh, Kyoung Hwan; Cho, Eun Yoon; Kim, Dong Wook; Seo, Sung Wook
2009-11-01
Many studies have described the diversity of synovial sarcoma in terms of its biological characteristics and clinical features. Moreover, much effort has been expended on the identification of prognostic factors because of unpredictable behaviors of synovial sarcomas. However, with the exception of tumor size, published results have been inconsistent. We attempted to identify independent risk factors using survival analysis. Forty-one consecutive patients with synovial sarcoma were prospectively followed from January 1997 to March 2008. Overall and progression-free survival for age, sex, tumor size, tumor location, metastasis at presentation, histologic subtype, chemotherapy, radiation therapy, and resection margin were analyzed, and standard multivariate Cox proportional hazard regression analysis was used to evaluate potential prognostic factors. Tumor size (>5 cm), nonlimb-based tumors, metastasis at presentation, and a monophasic subtype were associated with poorer overall survival. Multivariate analysis showed metastasis at presentation and monophasic tumor subtype affected overall survival. For the progression-free survival, monophasic subtype was found to be only 1 prognostic factor. The study confirmed that histologic subtype is the single most important independent prognostic factors of synovial sarcoma regardless of tumor stage.
NASA Astrophysics Data System (ADS)
Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi
2016-11-01
The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.
ERIC Educational Resources Information Center
Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.
2008-01-01
Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…
Multivariate analysis of early and late nest sites of Abert's Towhees
Deborah M. Finch
1985-01-01
Seasonal variation in nest site selection by the Abert's towhee (Pipilo aberti) was studied in honey mesquite (Prosopis glandulosa) habitat along the lower Colorado River from March to July, 1981. Stepwise discriminant function analysis identified nest vegetation type, nest direction, and nest height as the three most important variables that characterized the...
Introducing Undergraduate Students to Metabolomics Using a NMR-Based Analysis of Coffee Beans
ERIC Educational Resources Information Center
Sandusky, Peter Olaf
2017-01-01
Metabolomics applies multivariate statistical analysis to sets of high-resolution spectra taken over a population of biologically derived samples. The objective is to distinguish subpopulations within the overall sample population, and possibly also to identify biomarkers. While metabolomics has become part of the standard analytical toolbox in…
Prenatal Sonographic Predictors of Neonatal Coarctation of the Aorta.
Anuwutnavin, Sanitra; Satou, Gary; Chang, Ruey-Kang; DeVore, Greggory R; Abuel, Ashley; Sklansky, Mark
2016-11-01
To identify practical prenatal sonographic markers for the postnatal diagnosis of coarctation of the aorta. We reviewed the fetal echocardiograms and postnatal outcomes of fetal cases of suspected coarctation of the aorta seen at a single institution between 2010 and 2014. True- and false-positive cases were compared. Logistic regression analysis was used to determine echocardiographic predictors of coarctation of the aorta. Optimal cutoffs for these markers and a multivariable threshold scoring system were derived to discriminate fetuses with coarctation of the aorta from those without coarctation of the aorta. Among 35 patients with prenatal suspicion of coarctation of the aorta, the diagnosis was confirmed postnatally in 9 neonates (25.7% true-positive rate). Significant predictors identified from multivariate analysis were as follows: Z score for the ascending aorta diameter of -2 or less (P = < .001), Z score for the mitral valve annulus of -2 or less (P= .033), Zscore for the transverse aortic arch diameter of -2 or less (P= .028), and abnormal aortic valve morphologic features (P= .026). Among all variables studied, the ascending aortic Z score had the highest sensitivity (78%) and specificity (92%) for detection of coarctation of the aorta. A multivariable threshold scoring system identified fetuses with coarctation of the aorta with still greater sensitivity (89%) and only mildly decreased specificity (88%). The finding of a diminutive ascending aorta represents a powerful and practical prenatal predictor of neonatal coarctation of the aorta. A multivariable scoring system, including dimensions of the ascending and transverse aortas, mitral valve annulus, and morphologic features of the aortic valve, provides excellent sensitivity and specificity. The use of these practical sonographic markers may improve prenatal detection of coarctation of the aorta. © 2016 by the American Institute of Ultrasound in Medicine.
NASA Astrophysics Data System (ADS)
Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.
2017-01-01
Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.
Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M
2016-10-01
A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Alizai, Patrick H; Haelsig, Annabel; Bruners, Philipp; Ulmer, Florian; Klink, Christian D; Dejong, Cornelis H C; Neumann, Ulf P; Schmeding, Maximilian
2018-01-01
Liver failure remains a life-threatening complication after liver resection, and is difficult to predict preoperatively. This retrospective cohort study evaluated different preoperative factors in regard to their impact on posthepatectomy liver failure (PHLF) after extended liver resection and previous portal vein embolization (PVE). Patient characteristics, liver function and liver volumes of patients undergoing PVE and subsequent liver resection were analyzed. Liver function was determined by the LiMAx test (enzymatic capacity of cytochrome P450 1A2). Factors associated with the primary end point PHLF (according to ISGLS definition) were identified through multivariable analysis. Secondary end points were 30-day mortality and morbidity. 95 patients received PVE, of which 64 patients underwent major liver resection. PHLF occurred in 7 patients (11%). Calculated postoperative liver function was significantly lower in patients with PHLF than in patients without PHLF (67 vs. 109 μg/kg/h; p = 0.01). Other factors associated with PHLF by univariable analysis were age, future liver remnant, MELD score, ASA score, renal insufficiency and heart insufficiency. By multivariable analysis, future liver remnant was the only factor significantly associated with PHLF (p = 0.03). Mortality and morbidity rates were 4.7% and 29.7% respectively. Future liver remnant is the only preoperative factor with a significant impact on PHLF. Assessment of preoperative liver function may additionally help identify patients at risk for PHLF.
Schlinkmann, K M; Razum, O; Werber, D
2017-04-01
Foodborne disease outbreaks (FBDOs) occur frequently in Europe. Employing analytical epidemiological study designs increases the likelihood of identifying the suspected vehicle(s), but these studies are rarely applied in FBDO investigations. We used multivariable binary logistic regression analysis to identify characteristics of investigated FBDOs reported to the European Food Safety Authority (2007-2011) that were associated with analytical epidemiological evidence (compared to evidence from microbiological investigations/descriptive epidemiology only). The analysis was restricted to FBDO investigations, where the evidence for the suspected vehicle was considered 'strong', i.e. convincing. The presence of analytical epidemiological evidence was reported in 2012 (50%) of these 4038 outbreaks. In multivariable analysis, increasing outbreak size, number of hospitalizations, causative (i.e. aetiological) agent (whether identified and, if so, which one), and the setting in which these outbreaks occurred (e.g. geographically dispersed outbreaks) were independently associated with presence of analytical evidence. The number of investigations with reported analytical epidemiological evidence was unexpectedly high, likely indicating the need for quality assurance within the European Union foodborne outbreak reporting system, and warranting cautious interpretation of our findings. This first analysis of evidence implicating a food vehicle in FBDOs may help to inform public health authorities on when to use analytical epidemiological study designs.
Wang, Fang-Xu; Yuan, Jian-Chao; Kang, Li-Ping; Pang, Xu; Yan, Ren-Yi; Zhao, Yang; Zhang, Jie; Sun, Xin-Guang; Ma, Bai-Ping
2016-09-10
An ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry approach coupled with multivariate statistical analysis was established and applied to rapidly distinguish the chemical differences between fibrous root and rhizome of Anemarrhena asphodeloides. The datasets of tR-m/z pairs, ion intensity and sample code were processed by principal component analysis and orthogonal partial least squares discriminant analysis. Chemical markers could be identified based on their exact mass data, fragmentation characteristics, and retention times. And the new compounds among chemical markers could be isolated rapidly guided by the ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry and their definitive structures would be further elucidated by NMR spectra. Using this approach, twenty-four markers were identified on line including nine new saponins and five new steroidal saponins of them were obtained in pure form. The study validated this proposed approach as a suitable method for identification of the chemical differences between various medicinal parts in order to expand medicinal parts and increase the utilization rate of resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Thiagarajah, Shankar; Wilkinson, J. Mark; Panoutsopoulou, Kalliope; Day‐Williams, Aaron G.; Cootes, Timothy F.; Wallis, Gillian A.; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Chapman, Kay; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Timothy D.; Valdes, Ana M.; Wallis, Gillian A.; Mark Wilkinson, J.; Zeggini, Eleftheria
2015-01-01
Objective To test whether previously reported hip morphology or osteoarthritis (OA) susceptibility loci are associated with proximal femur shape as represented by statistical shape model (SSM) modes and as univariate or multivariate quantitative traits. Methods We used pelvic radiographs and genotype data from 929 subjects with unilateral hip OA who had been recruited previously for the Arthritis Research UK Osteoarthritis Genetics Consortium genome‐wide association study. We built 3 SSMs capturing the shape variation of the OA‐unaffected proximal femur in the entire mixed‐sex cohort and for male/female‐stratified cohorts. We selected 41 candidate single‐nucleotide polymorphisms (SNPs) previously reported as being associated with hip morphology (for replication analysis) or OA (for discovery analysis) and for which genotype data were available. We performed 2 types of analysis for genotype–phenotype associations between these SNPs and the modes of the SSMs: 1) a univariate analysis using individual SSM modes and 2) a multivariate analysis using combinations of SSM modes. Results The univariate analysis identified association between rs4836732 (within the ASTN2 gene) and mode 5 of the female SSM (P = 0.0016) and between rs6976 (within the GLT8D1 gene) and mode 7 of the mixed‐sex SSM (P = 0.0003). The multivariate analysis identified association between rs5009270 (near the IFRD1 gene) and a combination of modes 3, 4, and 9 of the mixed‐sex SSM (P = 0.0004). Evidence of associations remained significant following adjustment for multiple testing. All 3 SNPs had previously been associated with hip OA. Conclusion These de novo findings suggest that rs4836732, rs6976, and rs5009270 may contribute to hip OA susceptibility by altering proximal femur shape. PMID:25939412
Effect of duration of denervation on outcomes of ansa-recurrent laryngeal nerve reinnervation.
Li, Meng; Chen, Shicai; Wang, Wei; Chen, Donghui; Zhu, Minhui; Liu, Fei; Zhang, Caiyun; Li, Yan; Zheng, Hongliang
2014-08-01
To investigate the efficacy of laryngeal reinnervation with ansa cervicalis among unilateral vocal fold paralysis (UVFP) patients with different denervation durations. We retrospectively reviewed 349 consecutive UVFP cases of delayed ansa cervicalis to the recurrent laryngeal nerve (RLN) anastomosis. Potential influencing factors were analyzed in multivariable logistic regression analysis. Stratification analysis performed was aimed at one of the identified significant variables: denervation duration. Videostroboscopy, perceptual evaluation, acoustic analysis, maximum phonation time (MPT), and laryngeal electromyography (EMG) were performed preoperatively and postoperatively. Gender, age, preoperative EMG status and denervation duration were analyzed in multivariable logistic regression analysis. Stratification analysis was performed on denervation duration, which was divided into three groups according to the interval between RLN injury and reinnervation: group A, 6 to 12 months; group B, 12 to 24 months; and group C, > 24 months. Age, preoperative EMG, and denervation duration were identified as significant variables in multivariable logistic regression analysis. Stratification analysis on denervation duration showed significant differences between group A and C and between group B and C (P < 0.05)-but showed no significant difference between group A and B (P > 0.05) with regard to parameters overall grade, jitter, shimmer, noise-to-harmonics ratio, MPT, and postoperative EMG. In addition, videostroboscopic and laryngeal EMG data, perceptual and acoustic parameters, and MPT values were significantly improved postoperatively in each denervation duration group (P < 0.01). Although delayed laryngeal reinnervation is proved valid for UVFP, surgical outcome is better if the procedure is performed within 2 years after nerve injury than that over 2 years. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Spelt, Lidewij; Sasor, Agata; Ansari, Daniel; Andersson, Roland
2016-10-01
To identify significant predictive factors for overall survival (OS) and disease-free survival (DFS) after liver resection for colon cancer metastases, with special focus on features of the primary colon cancer, such as lymph node ratio (LNR), vascular invasion, and perineural invasion. Patients operated for colonic cancer liver metastases between 2006 and 2014 were included. Details on patient characteristics, the primary colon cancer operation and metastatic disease were collected. Multivariate analysis was performed to select predictive variables for OS and DFS. Median OS and DFS were 67 and 20 months, respectively. 1-, 3- and 5-year OS were 97, 76, and 52%. 1-, 3- and 5-year DFS were 65, 42, and 37%. Multivariate analysis showed LNR to be an independent predictive factor for DFS but not for OS. Other identified predictive factors were vascular and perineural invasion of the primary colon cancer, size of the largest metastasis and severe complications after liver surgery for OS, and perineural invasion, number of liver metastases and preoperative CEA-level for DFS. Traditional N-stage was also considered to be an independent predictive factor for DFS in a separate multivariate analysis. LNR and perineural invasion of the primary colon cancer can be used as a prognostic variable for DFS after a concomitant liver resection for colon cancer metastases. Vascular and perineural invasion of the primary colon cancer are predictive for OS.
Ma, Emily; Vetter, Joel; Bliss, Laura; Lai, H. Henry; Mysorekar, Indira U.
2016-01-01
Overactive bladder (OAB) is a common debilitating bladder condition with unknown etiology and limited diagnostic modalities. Here, we explored a novel high-throughput and unbiased multiplex approach with cellular and molecular components in a well-characterized patient cohort to identify biomarkers that could be reliably used to distinguish OAB from controls or provide insights into underlying etiology. As a secondary analysis, we determined whether this method could discriminate between OAB and other chronic bladder conditions. We analyzed plasma samples from healthy volunteers (n = 19) and patients diagnosed with OAB, interstitial cystitis/bladder pain syndrome (IC/BPS), or urinary tract infections (UTI; n = 51) for proinflammatory, chemokine, cytokine, angiogenesis, and vascular injury factors using Meso Scale Discovery (MSD) analysis and urinary cytological analysis. Wilcoxon rank-sum tests were used to perform univariate and multivariate comparisons between patient groups (controls, OAB, IC/BPS, and UTI). Multivariate logistic regression models were fit for each MSD analyte on 1) OAB patients and controls, 2) OAB and IC/BPS patients, and 3) OAB and UTI patients. Age, race, and sex were included as independent variables in all multivariate analysis. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic potential of a given analyte. Our findings demonstrate that five analytes, i.e., interleukin 4, TNF-α, macrophage inflammatory protein-1β, serum amyloid A, and Tie2 can reliably differentiate OAB relative to controls and can be used to distinguish OAB from the other conditions. Together, our pilot study suggests a molecular imbalance in inflammatory proteins may contribute to OAB pathogenesis. PMID:27029431
Nishikawa, Hiroki; Nishijima, Norihiro; Enomoto, Hirayuki; Sakamoto, Azusa; Nasu, Akihiro; Komekado, Hideyuki; Nishimura, Takashi; Kita, Ryuichi; Kimura, Toru; Iijima, Hiroko; Nishiguchi, Shuhei; Osaki, Yukio
2017-01-01
To investigate variables before sorafenib therapy on the clinical outcomes in hepatocellular carcinoma (HCC) patients receiving sorafenib and to further assess and compare the predictive performance of continuous parameters using time-dependent receiver operating characteristics (ROC) analysis. A total of 225 HCC patients were analyzed. We retrospectively examined factors related to overall survival (OS) and progression free survival (PFS) using univariate and multivariate analyses. Subsequently, we performed time-dependent ROC analysis of continuous parameters which were significant in the multivariate analysis in terms of OS and PFS. Total sum of area under the ROC in all time points (defined as TAAT score) in each case was calculated. Our cohort included 175 male and 50 female patients (median age, 72 years) and included 158 Child-Pugh A and 67 Child-Pugh B patients. The median OS time was 0.68 years, while the median PFS time was 0.24 years. On multivariate analysis, gender, body mass index (BMI), Child-Pugh classification, extrahepatic metastases, tumor burden, aspartate aminotransferase (AST) and alpha-fetoprotein (AFP) were identified as significant predictors of OS and ECOG-performance status, Child-Pugh classification and extrahepatic metastases were identified as significant predictors of PFS. Among three continuous variables (i.e., BMI, AST and AFP), AFP had the highest TAAT score for the entire cohort. In subgroup analyses, AFP had the highest TAAT score except for Child-Pugh B and female among three continuous variables. In continuous variables, AFP could have higher predictive accuracy for survival in HCC patients undergoing sorafenib therapy.
Willis, Michael; Asseburg, Christian; Nilsson, Andreas; Johnsson, Kristina; Kartman, Bernt
2017-03-01
Type 2 diabetes mellitus (T2DM) is chronic and progressive and the cost-effectiveness of new treatment interventions must be established over long time horizons. Given the limited durability of drugs, assumptions regarding downstream rescue medication can drive results. Especially for insulin, for which treatment effects and adverse events are known to depend on patient characteristics, this can be problematic for health economic evaluation involving modeling. To estimate parsimonious multivariate equations of treatment effects and hypoglycemic event risks for use in parameterizing insulin rescue therapy in model-based cost-effectiveness analysis. Clinical evidence for insulin use in T2DM was identified in PubMed and from published reviews and meta-analyses. Study and patient characteristics and treatment effects and adverse event rates were extracted and the data used to estimate parsimonious treatment effect and hypoglycemic event risk equations using multivariate regression analysis. Data from 91 studies featuring 171 usable study arms were identified, mostly for premix and basal insulin types. Multivariate prediction equations for glycated hemoglobin A 1c lowering and weight change were estimated separately for insulin-naive and insulin-experienced patients. Goodness of fit (R 2 ) for both outcomes were generally good, ranging from 0.44 to 0.84. Multivariate prediction equations for symptomatic, nocturnal, and severe hypoglycemic events were also estimated, though considerable heterogeneity in definitions limits their usefulness. Parsimonious and robust multivariate prediction equations were estimated for glycated hemoglobin A 1c and weight change, separately for insulin-naive and insulin-experienced patients. Using these in economic simulation modeling in T2DM can improve realism and flexibility in modeling insulin rescue medication. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Yang, James J; Williams, L Keoki; Buu, Anne
2017-08-24
A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.
Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics
Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven
2011-01-01
Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Xu, Rui; Zhen, Zonglei; Liu, Jia
2010-01-01
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081
Yang, Heejung; Lee, Dong Young; Jeon, Minji; Suh, Youngbae; Sung, Sang Hyun
2014-05-01
Five active compounds, chlorogenic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, jaceosidin, and eupatilin, in Artemisia princeps (Compositae) were simultaneously determined by ultra-performance liquid chromatography connected to diode array detector. The morphological resemblance between A. princeps and A. capillaris makes it difficult to properly identify species properly. It occasionally leads to misuse or misapplication in Korean traditional medicine. In the study, the discrimination between A. princeps and A. capillaris was optimally performed by the developed validation method, which resulted in definitely a difference between two species. Also, it was developed the most reliable markers contributing to the discrimination of two species by the multivariate analysis methods, such as a principal component analysis and a partial least squares discrimination analysis.
ERIC Educational Resources Information Center
Allegrante, John P.; And Others
The purpose of this study was to identify and analyze interaction effects of selected psychosocial variables on the development of subsequent smoking behavior among youth who had originally identified themselves on a survey as never having smoked. The subjects were seventh grade students who had participated in a total of three surveys over a two…
ERIC Educational Resources Information Center
Brusco, Michael J.; Singh, Renu; Steinley, Douglas
2009-01-01
The selection of a subset of variables from a pool of candidates is an important problem in several areas of multivariate statistics. Within the context of principal component analysis (PCA), a number of authors have argued that subset selection is crucial for identifying those variables that are required for correct interpretation of the…
Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli
2018-06-01
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. The results showed that 86.0% ([Formula: see text]) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.
NASA Astrophysics Data System (ADS)
Martinez Gomez, Monica
Quality improvement of university institutions represents the most important challenge in the next years, and the potential tool to achieve it is based on the institutional evaluation in general, and specially the evaluation of the teaching performance. The opinion questionnaire from the students is the most generalised tool used to evaluate the teaching performance at Spanish universities. The general objective of this thesis is to develop a statistical methodology suitable to extract, analyse and interpret the information contained in the Questionnaire of Teaching Evaluation from Student Opinion (CEDA) of the UPV, aimed at optimising its practical use. The study is centred in the application of different multivariate techniques and has been structured in three parts: (1) Evaluation of the reliability, validity and dimensionality of the tool. The multivariate method used for this purpose is the Factorial Analysis. (2) Determination of the capacity of the questionnaire to identify different profiles of lecturers based on the quality perceived by students. This target is conducted with different multivariate classification techniques: hierarchical cluster analysis, non-hierarchical and two-stage analysis. Moreover, those items that best discriminate among the teaching typologies obtained are identified in the questionnaire. (3) Identification of the teaching typologies according to different descriptive characteristics referent to the subject and lecturer, with the use of decision trees. Once identified these typologies, a new discriminant analysis is conducted aimed at identifying those items that best characterise each typology. Finally, a study is carried out with the classification method SIMCA (Soft Independent Modelling of Class Analogy) in order to determine the discriminant loading of every item among the identified teaching typologies, allowing the identification of those that best distinguish the different classes obtained. With the combined use of the proposed techniques, it is expected to optimise the use of CEDA as a measuring tool and an indicator of the teaching quality at the university, that would allow the introduction of actions for the continuous improvement in the teaching processes of the UPV.
Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.
Cleophas, Ton J
2016-01-01
Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.
2013-01-01
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524
Wang, Longfei; Lee, Sungyoung; Gim, Jungsoo; Qiao, Dandi; Cho, Michael; Elston, Robert C; Silverman, Edwin K; Won, Sungho
2016-09-01
Family-based designs have been repeatedly shown to be powerful in detecting the significant rare variants associated with human diseases. Furthermore, human diseases are often defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based analyses may be very efficient in detecting associations with rare variants. However, few statistical methods implementing this strategy have been developed for family-based designs. In this report, we describe one such implementation: the multivariate family-based rare variant association tool (mFARVAT). mFARVAT is a quasi-likelihood-based score test for rare variant association analysis with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant on multiple phenotypes. Simulation results show that the proposed method is generally robust and efficient for various disease models, and we identify some promising candidate genes associated with chronic obstructive pulmonary disease. The software of mFARVAT is freely available at http://healthstat.snu.ac.kr/software/mfarvat/, implemented in C++ and supported on Linux and MS Windows. © 2016 WILEY PERIODICALS, INC.
Huang, Dong-Dong; Chen, Xiao-Xi; Chen, Xi-Yi; Wang, Su-Lin; Shen, Xian; Chen, Xiao-Lei; Yu, Zhen; Zhuang, Cheng-Le
2016-11-01
One-year mortality is vital for elderly oncologic patients undergoing surgery. Recent studies have demonstrated that sarcopenia can predict outcomes after major abdominal surgeries, but the association of sarcopenia and 1-year mortality has never been investigated in a prospective study. We conducted a prospective study of elderly patients (≥65 years) who underwent curative gastrectomy for gastric cancer from July 2014 to July 2015. Sarcopenia was determined by the measurements of muscle mass, handgrip strength, and gait speed. Univariate and multivariate analyses were used to identify the risk factors associated with 1-year mortality. A total of 173 patients were included, in which 52 (30.1 %) patients were identified as having sarcopenia. Twenty-four (13.9 %) patients died within 1 year of surgery. Multivariate analysis showed that sarcopenia was an independent risk factor for 1-year mortality. Area under the receiver operating characteristic curve demonstrated an increased predictive power for 1-year mortality with the inclusion of sarcopenia, from 0.835 to 0.868. Solely low muscle mass was not predictive of 1-year mortality in the multivariate analysis. Sarcopenia is predictive of 1-year mortality in elderly patients undergoing gastric cancer surgery. The measurement of muscle function is important for sarcopenia as a preoperative assessment tool.
Tan, Guangguo; Lou, Ziyang; Jing, Jing; Li, Wuhong; Zhu, Zhenyu; Zhao, Liang; Zhang, Guoqing; Chai, Yifeng
2011-12-01
Aconite roots are popularly used in herbal medicines in China. Many cases of accidental and intentional intoxication with this plant have been reported; some of these are fatal because the toxicity of aconitum is very high. It is thus important to detect and identify aconitum alkaloids in biofluids. In this work, an improved method employing LC-TOFMS with multivariate data analysis was developed for screening and analysis of major aconitum alkaloids and their metabolites in rat urine following oral administration of aconite roots extract. Thirty-four signals highlighted by multivariate statistical analyses including 24 parent components and 10 metabolites were screened out and further identified by adjustment of the fragmentor voltage to produce structure-relevant fragment ions. It is helpful for studying aconite roots in toxicology, pharmacology and forensic medicine. This work also confirmed that the metabolomic approach provides effective tools for screening multiple absorbed and metabolic components of Chinese herbal medicines in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata
2017-03-17
An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
Differentiation of benign and malignant ampullary obstruction by multi-row detector CT.
Angthong, Wirana; Jiarakoop, Kran; Tangtiang, Kaan
2018-05-21
To determine useful CT parameters to differentiate ampullary carcinomas from benign ampullary obstruction. This study included 93 patients who underwent abdominal CT, 31 patients with ampullary carcinomas, and 62 patients with benign ampullary obstruction. Two radiologists independently evaluated CT parameters then reached consensus decisions. Statistically significant CT parameters were identified through univariate and multivariate analyses. In univariate analysis, the presence of ampullary mass, asymmetric, abrupt narrowing of distal common bile duct (CBD), dilated intrahepatic bile duct (IHD), dilated pancreatic duct (PD), peripancreatic lymphadenopathy, duodenal wall thickening, and delayed enhancement were more frequently in ampullary carcinomas observed (P < 0.05). Multivariate logistic regression analysis using significant CT parameters and clinical data from univariate analysis, and clinical symptom with jaundice (P = 0.005) was an independent predictor of ampullary carcinomas. For multivariate analysis using only significant CT parameters, abrupt narrowing of distal CBD was an independent predictor of ampullary carcinomas (P = 0.019). Among various CT criteria, abrupt narrowing of distal CBD and dilated IHD had highest sensitivity (77.4%) and highest accuracy (90.3%). The abrupt narrowing of distal CBD and dilated IHD is useful for differentiation of ampullary carcinomas from benign entity in patients without the presence of mass.
Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques
NASA Astrophysics Data System (ADS)
Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein
2017-10-01
The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.
Jewett, Lisa R; Kwakkenbos, Linda; Carrier, Marie-Eve; Malcarne, Vanessa L; Bartlett, Susan J; Furst, Daniel E; Gottesman, Karen; Mayes, Maureen D; Assassi, Shervin; Harcourt, Diana; Williamson, Heidi; Johnson, Sindhu R; Körner, Annett; Steen, Virginia; Fox, Rina S; Gholizadeh, Shadi; Mills, Sarah D; Molnar, Jacqueline C; Rice, Danielle B; Thombs, Brett D
2016-01-01
Appearance concerns are common in systemic sclerosis (SSc) and have been linked to younger age and more severe disease. No study has examined their association with sex or race/ethnicity. SSc patients were sampled from the Scleroderma Patient-centered Intervention Network Cohort. Presence of appearance concerns was assessed with a single item, and medical and sociodemographic information were collected. Of 644 patients, appearance concerns were present in 72%, including 421 of 565 women (75%), 42 of 79 men (53%), 392 of 550 patients who identified as White (71%), 35 of 41 who identified as Black (85%), and 36 of 53 who identified as another race/ethnicity (68%). In multivariate analysis, women had significantly greater odds of reporting appearance concerns than men (odds ratio (OR)=2.97, 95% confidence interval (CI)=1.78-4.95, p<.001). Black patients had significantly greater odds of appearance concerns than White patients in unadjusted (OR=2.64, 95% CI=1.01-6.34, p=.030), but not multivariate analysis (OR=1.76, 95% CI=0.67-4.60, p=.250). Compared to a general population sample, appearance concerns were substantially more common in SSc, particularly for men across all age groups and for younger women. The most commonly reported features of concern were related to the face and head, followed by the hands and fingers; this did not differ by sex or race/ethnicity. Appearance concerns were common in SSc. Women were substantially more likely than men to have appearance concerns. Although non-significant in multivariate analysis, Black patients were more likely to have concerns than White patients, likely due to more severe changes in appearance.
Yu, Chunhao; Wang, Chong-Zhi; Zhou, Chun-Jie; Wang, Bin; Han, Lide; Zhang, Chun-Feng; Wu, Xiao-Hui; Yuan, Chun-Su
2014-01-01
American ginseng (Panax quinquefolius) is originally grown in North America. Due to price difference and supply shortage, American ginseng recently has been cultivated in northern China. Further, in the market, some Asian ginsengs are labeled as American ginseng. In this study, forty-three American ginseng samples cultivated in the USA, Canada or China were collected and 14 ginseng saponins were determined using HPLC. HPLC coupled with hierarchical cluster analysis and principal component analysis was developed to identify the species. Subsequently, an HPLC-linear discriminant analysis was established to discriminate cultivation regions of American ginseng. This method was successfully applied to identify the sources of 6 commercial American ginseng samples. Two of them were identified as Asian ginseng, while 4 others were identified as American ginseng, which were cultivated in the USA (3) and China (1). Our newly developed method can be used to identify American ginseng with different cultivation regions. PMID:25044150
A factor analysis of landscape pattern and structure metrics
Kurt H. Riitters; R.V. O' Neill; C.T. Hunsaker; James D. Wickham; D.H. Yankee; S.P. Timmins; K.B. Jones; B.L. Jackson
1995-01-01
Fifty-five metrics of landscape pattern and structure were calculated for 85 maps of land use and land cover. A multivariate factor analysis was used to identify the common axes (or dimensions) of pattern and structure which were measured by a reduced set of 26 metrics. The first six factors explained about 87% of the variation in the 26 landscape metrics. These...
Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis
2018-02-09
The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Matiatos, Ioannis
2016-01-15
Nitrate (NO3) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ(15)N-NO3 and δ(18)O-NO3) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO3 sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC).
Factors Influencing Cecal Intubation Time during Retrograde Approach Single-Balloon Enteroscopy
Chen, Peng-Jen; Shih, Yu-Lueng; Huang, Hsin-Hung; Hsieh, Tsai-Yuan
2014-01-01
Background and Aim. The predisposing factors for prolonged cecal intubation time (CIT) during colonoscopy have been well identified. However, the factors influencing CIT during retrograde SBE have not been addressed. The aim of this study was to determine the factors influencing CIT during retrograde SBE. Methods. We investigated patients who underwent retrograde SBE at a medical center from January 2011 to March 2014. The medical charts and SBE reports were reviewed. The patients' characteristics and procedure-associated data were recorded. These data were analyzed with univariate analysis as well as multivariate logistic regression analysis to identify the possible predisposing factors. Results. We enrolled 66 patients into this study. The median CIT was 17.4 minutes. With univariate analysis, there was no statistical difference in age, sex, BMI, or history of abdominal surgery, except for bowel preparation (P = 0.021). Multivariate logistic regression analysis showed that inadequate bowel preparation (odds ratio 30.2, 95% confidence interval 4.63–196.54; P < 0.001) was the independent predisposing factors for prolonged CIT during retrograde SBE. Conclusions. For experienced endoscopist, inadequate bowel preparation was the independent predisposing factor for prolonged CIT during retrograde SBE. PMID:25505904
Fongaro, Lorenzo; Alamprese, Cristina; Casiraghi, Ernestina
2015-03-01
During ripening of salami, colour changes occur due to oxidation phenomena involving myoglobin. Moreover, shrinkage due to dehydration results in aspect modifications, mainly ascribable to fat aggregation. The aim of this work was the application of image analysis (IA) and multivariate image analysis (MIA) techniques to the study of colour and aspect changes occurring in salami during ripening. IA results showed that red, green, blue, and intensity parameters decreased due to the development of a global darker colour, while Heterogeneity increased due to fat aggregation. By applying MIA, different salami slice areas corresponding to fat and three different degrees of oxidised meat were identified and quantified. It was thus possible to study the trend of these different areas as a function of ripening, making objective an evaluation usually performed by subjective visual inspection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Portable XRF and principal component analysis for bill characterization in forensic science.
Appoloni, C R; Melquiades, F L
2014-02-01
Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.
Classification of adulterated honeys by multivariate analysis.
Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad
2017-06-01
In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F
2015-09-16
Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.
Hammad, Abdulrahman Y; Robbins, Jared R; Turaga, Kiran K; Christians, Kathleen K; Gamblin, T Clark; Johnston, Fabian M
2017-01-01
Palliative therapies are provided to a subset of hepatocellular carcinoma (HCC) patients with the aim of providing symptomatic relief, better quality of life and improved survival. The present study sought to assess and compare the efficacy of different palliative therapies for HCC. The National Cancer Database (NCDB), a retrospective national database that captures approximately 70% of all patients treated for cancer in the US, was queried for patients with HCC who were deemed unresectable from 1998-2011. Patients were stratified by receipt of palliative therapy. Survival analysis was examined by log-rank test and Kaplan Meier curves, and a multivariate proportional hazards model was utilized to identify the predictors of survival. A total of 3,267 patients were identified; 287 (8.7%) received surgical palliation, 827 (25.3%) received radiotherapy (RT), 877 (26.8%) received chemotherapy, 1,067 (32.6%) received pain management therapy, while 209 (6.4%) received a combination of the previous three modalities. On multivariate analysis palliative RT was identified as a positive predictor of survival [hazards ratio (HR) 0.65; 95% CI, 0.50-0.83]. Stratifying by disease stage, palliative RT provided a significant survival benefit for patients with stage IV disease. Palliative RT appears to extend survival and should be considered for patients presenting with late stage HCC.
A Baseline for the Multivariate Comparison of Resting-State Networks
Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.
2011-01-01
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040
Mostafa, Hamza; Amin, Arwa M; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Arif, Nor Hayati; Ibrahim, Baharudin
2016-12-01
Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD. To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics. Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC). The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0). This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.
Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Hanson, Stephen José; Haxby, James V.; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine-learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability. PMID:19184561
Carlesi, Serena; Ricci, Marilena; Cucci, Costanza; La Nasa, Jacopo; Lofrumento, Cristiana; Picollo, Marcello; Becucci, Maurizio
2015-07-01
This work explores the application of chemometric techniques to the analysis of lipidic paint binders (i.e., drying oils) by means of Raman and near-infrared spectroscopy. These binders have been widely used by artists throughout history, both individually and in mixtures. We prepared various model samples of the pure binders (linseed, poppy seed, and walnut oils) obtained from different manufacturers. These model samples were left to dry and then characterized by Raman and reflectance near-infrared spectroscopy. Multivariate analysis was performed by applying principal component analysis (PCA) on the first derivative of the corresponding Raman spectra (1800-750 cm(-1)), near-infrared spectra (6000-3900 cm(-1)), and their combination to test whether spectral differences could enable samples to be distinguished on the basis of their composition. The vibrational bands we found most useful to discriminate between the different products we studied are the fundamental ν(C=C) stretching and methylenic stretching and bending combination bands. The results of the multivariate analysis demonstrated the potential of chemometric approaches for characterizing and identifying drying oils, and also for gaining a deeper insight into the aging process. Comparison with high-performance liquid chromatography data was conducted to check the PCA results.
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
Multivariate Classification of Original and Fake Perfumes by Ion Analysis and Ethanol Content.
Gomes, Clêrton L; de Lima, Ari Clecius A; Loiola, Adonay R; da Silva, Abel B R; Cândido, Manuela C L; Nascimento, Ronaldo F
2016-07-01
The increased marketing of fake perfumes has encouraged us to investigate how to identify such products by their chemical characteristics and multivariate analysis. The aim of this study was to present an alternative approach to distinguish original from fake perfumes by means of the investigation of sodium, potassium, chloride ions, and ethanol contents by chemometric tools. For this, 50 perfumes were used (25 original and 25 counterfeit) for the analysis of ions (ion chromatography) and ethanol (gas chromatography). The results demonstrated that the fake perfume had low levels of ethanol and high levels of chloride compared to the original product. The data were treated by chemometric tools such as principal component analysis and linear discriminant analysis. This study proved that the analysis of ethanol is an effective method of distinguishing original from the fake products, and it may potentially be used to assist legal authorities in such cases. © 2016 American Academy of Forensic Sciences.
Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice
2017-06-30
In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Relationships between Social Cognition and Sibling Constellations.
ERIC Educational Resources Information Center
Goebel, Barbara L.
1985-01-01
First and second born college students (N=178) responded to measures of four social cognition factors. Multivariate analysis of variance identified relationships of social cognition factors with five sibling constellation components: subject's sex, subject's birth order (first or second), adjacent first or second born sibling's sex, spacing…
Multiple imputation for handling missing outcome data when estimating the relative risk.
Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B
2017-09-06
Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.
Aotani, Eriko; Hamano, Tetsutaro; Gemma, Akihiko; Takeuchi, Masahiro; Takebayashi, Toru; Kobayashi, Kunihiko
2016-10-01
In the CATS (Cisplatin And TS-1) randomized trial comparing cisplatin plus either docetaxel (DP arm) or TS-1 (SP arm) in lung cancer, efficacy was found to be equivalent but the global quality of life (QOL) score was higher in the SP arm. The purpose of the current study was to identify which of the adverse events (AEs) contributed to the deterioration of QOL. QOL and AE data from the CATS trial were used to quantitatively analyze the relationship between deterioration of QOL score and occurrence of AEs. Subtracted values of the QOL score from post-chemotherapy to pre-chemotherapy were fully compared between patients with or without each AE (Student's t test, significance level = 0.001). Multivariate linear regression analysis was also performed. Analysis of variance was performed to identify whether grade of AE(s) might be significantly correlated with the deterioration of the QOL score (significance level of 0.05). As expected, gastrointestinal (GI) toxicities were associated with worsening of a variety of QOL items in both trial arms, detected by both univariate and multivariate analysis (p < 0.001 and p < 0.0001, respectively). Multivariate analysis unpredictably indicated that an increase in serum bilirubin level was the only AE that was uniquely associated with worsening of physical functioning (p = 0.0002), cognitive functioning (p < 0.0001), and financial problems (p = 0.0005) in the DP arm, although not in the SP arm. GI toxicities tended to be prolonged in the SP arm. An increase in serum bilirubin level may contribute to the worse global QOL of subjects in the DP arm in the CATS trial. The method we used here may be a unique approach to identify unpredictable AE(s) that worsen the QOL of patients treated by chemotherapy.
Al-Shudifat, Abdul Rahman; Kahlon, Babar; Höglund, Peter; Soliman, Ahmed Y; Lindskog, Kristoffer; Siesjo, Peter
2014-01-01
The aim of the present study was to identify predictive factors for outcome after surgery of vestibular schwannomas. This is a retrospective study with partially collected prospective data of patients who were surgically treated for vestibular schwannomas at a single institution from 1979 to 2000. Patients with recurrent tumours, NF2 and those incapable of answering questionnaires were excluded from the study. The short form 36 (SF36) questionnaire and a specific questionnaire regarding neurological status, work status and independent life (IL) status were sent to all eligible patients. The questionnaires were sent to 430 eligible patients (out of 537) and 395 (93%) responded. Scores for work capacity (WC) and IL were compared with SF36 scores as outcome estimates. Patients were divided into two groups (<64, ≥64-years-old) in order to assess them for either WC or IL. Putative preoperative and postoperative predictive factors were tested in univariate and multivariable regression analysis for the outcome scores of WC, IL and SF36. In the group <64 years, age, gender and tumour diameter were independent predictive factors for postoperative WC in multivariate analysis. A high-risk group was identified in women with age >50 years and tumour diameter >25 mm. In patients ≥64, gender and tumour diameter were significant predictive factors for IL in univariate analysis. Perioperative and postoperative objective factors as length of surgery, blood loss and complications did not predict outcome in the multivariable analysis for any age group. Patients' assessment of change in balance function was the only neurological factor that showed significance both in univariate and multivariable analysis in both age cohorts. While SF36 scores were lower in surgically treated patients in relation to normograms for the general population, they did not correlate significantly to WC and IL. The SF36 questionnaire did not correlate to outcome measures as WC and IL in patients undergoing surgery for vestibular schwannomas. Women and patients above 50 years with larger tumours have a high risk for reduced WC after surgical treatment. These results question the validity of quality of life scores in assessment of outcome after surgery of benign skullbase lesions.
Mariappan, Shanthi; Sekar, Uma; Kamalanathan, Arunagiri
2017-01-01
Background: Carbapenemase-producing Enterobacteriaceae (CPE) have increased in recent years leading to limitations of treatment options. The present study was undertaken to detect CPE, risk factors for acquiring them and their impact on clinical outcomes. Methods: This retrospective observational study included 111 clinically significant Enterobacteriaceae resistant to cephalosporins subclass III and exhibiting a positive modified Hodge test. Screening for carbapenemase production was done by phenotypic methods, and polymerase chain reaction was performed to detect genes encoding them. Retrospectively, the medical records of the patients were perused to assess risk factors for infections with CPE and their impact. The data collected were duration of hospital stay, Intensive Care Unit (ICU) stay, use of invasive devices, mechanical ventilation, the presence of comorbidities, and antimicrobial therapy. The outcome was followed up. Univariate and multivariate analysis of the data were performed using SPSS software. Results: Carbapenemase-encoding genes were detected in 67 isolates. The genes detected were New Delhi metallo-β-lactamase, Verona integron-encoded metallo-β-lactamase, and oxacillinase-181.Although univariate analysis identified risk factors associated with acquiring CPE infections as ICU stay (P = 0.021), mechanical ventilation (P = 0.013), indwelling device (P = 0.011), diabetes mellitus (P = 0.036), usage of multiple antimicrobial agents (P = 0.007), administration of carbapenems (P = 0.042), presence of focal infection or sepsis (P = 0.013), and surgical interventions (P = 0.016), multivariate analysis revealed that all these factors were insignificant. Mortality rate was 56.7% in patients with CPE infections. By both univariate and multivariate analysis of impact of the variables on mortality in these patients, the significant factors were mechanical ventilation (odds ratio [OR]: 0.141, 95% confidence interval [CI]: 0.024–0.812) and presence of indwelling invasive device (OR: 8.034; 95% CI: 2.060–31.335). Conclusion: In this study, no specific factor was identified as an independent risk for acquisition of CPE infection. However, as it is evident by multivariate analysis, there is an increased risk of mortality in patients with CPE infections when they are ventilated and are supported by indwelling devices. PMID:28251105
Del Giudice, G; Padulano, R; Siciliano, D
2016-01-01
The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.
Lambers, Kaj T A; van den Bekerom, Michel P J; Doornberg, Job N; Stufkens, Sjoerd A S; van Dijk, C Niek; Kloen, Peter
2013-09-04
There is sparse information in the literature on the outcome of Maisonneuve-type pronation-external rotation ankle fractures treated with syndesmotic screws. The primary aim of this study was to determine the long-term results of such treatment of these fractures as indicated by standardized patient-based and physician-based outcome measures. The secondary aim was to identify predictors of the outcome with use of bivariate and multivariate statistical analysis. Fifty patients with pronation-external rotation (predominantly Maisonneuve) fractures were treated with open reduction and internal fixation of the syndesmosis utilizing only one or two screws. The results were evaluated at a mean of twenty-one years after the fracture utilizing three standardized outcomes instruments: (1) the Foot and Ankle Ability Measure (FAAM), (2) the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot scale, and (3) the Center for Epidemiologic Studies-Depression (CES-D) Scale. Osteoarthritis was graded according to the van Dijk and revised Takakura radiographic scoring systems. Bivariate and multivariate analyses were performed to identify predictors of long-term outcome. Forty-four (92%) of forty-eighty patients had good or excellent AOFAS scores, and forty-four (90%) of forty-nine had good or excellent FAAM scores. Arthrodesis for severe osteoarthritis was performed in two patients. Radiographic evidence of osteoarthritis was observed in twenty-four (49%) of forty-nine patients. Multivariate analysis identified pain as the most important independent predictor of long-term ankle function as indicated by the AOFAS and FAAM scores, explaining 91% and 53% of the variation in scores, respectively. Analysis of pain as the dependent variable in bivariate analyses revealed that depression, ankle range of motion, and a subsequent surgery were significantly correlated with higher pain scores. No firm conclusions could be drawn after multivariate analysis of predictors of pain. Long-term functional outcomes at a mean of twenty-one years after pronation-external rotation ankle fractures treated with one or two syndesmotic screws were good to excellent in the great majority of patients despite substantial radiographic evidence of osteoarthritis in one-half of the patients. The most important predictor of long-term functional outcome was patient-reported pain rather than physician-reported function or posttraumatic osteoarthritis. There was no significant association between radiographic signs of posttraumatic osteoarthritis and perceived pain in the present series.
NASA Astrophysics Data System (ADS)
Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli
2018-06-01
Objective. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. Approach. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. Main results. The results showed that 86.0% (p<0.001 ) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. Significance. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.
Pre-treatment plasma proteomic markers associated with survival in oesophageal cancer
Kelly, P; Paulin, F; Lamont, D; Baker, L; Clearly, S; Exon, D; Thompson, A
2012-01-01
Background: The incidence of oesophageal adenocarcinoma is increasing worldwide but survival remains poor. Neoadjuvant chemotherapy can improve survival, but prognostic and predictive biomarkers are required. This study built upon preclinical approaches to identify prognostic plasma proteomic markers in oesophageal cancer. Methods: Plasma samples collected before and during the treatment of oesophageal cancer and non-cancer controls were analysed by surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) mass spectroscopy (MS). Protein peaks were identified by MS in tryptic digests of purified fractions. Associations between peak intensities obtained in the spectra and clinical endpoints (survival, disease-free survival) were tested by univariate (Fisher's exact test) and multivariate analysis (binary logistic regression). Results: Plasma protein peaks were identified that differed significantly (P<0.05, ANOVA) between the oesophageal cancer and control groups at baseline. Three peaks, confirmed as apolipoprotein A-I, serum amyloid A and transthyretin, in baseline (pre-treatment) samples were associated by univariate and multivariate analysis with disease-free survival and overall survival. Conclusion: Plasma proteins can be detected prior to treatment for oesophageal cancer that are associated with outcome and merit testing as prognostic and predictive markers of response to guide chemotherapy in oesophageal cancer. PMID:22294182
Pre-treatment plasma proteomic markers associated with survival in oesophageal cancer.
Kelly, P; Paulin, F; Lamont, D; Baker, L; Clearly, S; Exon, D; Thompson, A
2012-02-28
The incidence of oesophageal adenocarcinoma is increasing worldwide but survival remains poor. Neoadjuvant chemotherapy can improve survival, but prognostic and predictive biomarkers are required. This study built upon preclinical approaches to identify prognostic plasma proteomic markers in oesophageal cancer. Plasma samples collected before and during the treatment of oesophageal cancer and non-cancer controls were analysed by surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) mass spectroscopy (MS). Protein peaks were identified by MS in tryptic digests of purified fractions. Associations between peak intensities obtained in the spectra and clinical endpoints (survival, disease-free survival) were tested by univariate (Fisher's exact test) and multivariate analysis (binary logistic regression). Plasma protein peaks were identified that differed significantly (P<0.05, ANOVA) between the oesophageal cancer and control groups at baseline. Three peaks, confirmed as apolipoprotein A-I, serum amyloid A and transthyretin, in baseline (pre-treatment) samples were associated by univariate and multivariate analysis with disease-free survival and overall survival. Plasma proteins can be detected prior to treatment for oesophageal cancer that are associated with outcome and merit testing as prognostic and predictive markers of response to guide chemotherapy in oesophageal cancer.
Kinoshita, Shoji; Kakuda, Wataru; Momosaki, Ryo; Yamada, Naoki; Sugawara, Hidekazu; Watanabe, Shu; Abo, Masahiro
2015-05-01
Early rehabilitation for acute stroke patients is widely recommended. We tested the hypothesis that clinical outcome of stroke patients who receive early rehabilitation managed by board-certificated physiatrists (BCP) is generally better than that provided by other medical specialties. Data of stroke patients who underwent early rehabilitation in 19 acute hospitals between January 2005 and December 2013 were collected from the Japan Rehabilitation Database and analyzed retrospectively. Multivariate linear regression analysis using generalized estimating equations method was performed to assess the association between Functional Independence Measure (FIM) effectiveness and management provided by BCP in early rehabilitation. In addition, multivariate logistic regression analysis was also performed to assess the impact of management provided by BCP in acute phase on discharge destination. After setting the inclusion criteria, data of 3838 stroke patients were eligible for analysis. BCP provided early rehabilitation in 814 patients (21.2%). Both the duration of daily exercise time and the frequency of regular conferencing were significantly higher for patients managed by BCP than by other specialties. Although the mortality rate was not different, multivariate regression analysis showed that FIM effectiveness correlated significantly and positively with the management provided by BCP (coefficient, .35; 95% confidence interval [CI], .012-.059; P < .005). In addition, multivariate logistic analysis identified clinical management by BCP as a significant determinant of home discharge (odds ratio, 1.24; 95% CI, 1.08-1.44; P < .005). Our retrospective cohort study demonstrated that clinical management provided by BCP in early rehabilitation can lead to functional recovery of acute stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup
2010-10-01
We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.
Mehta, Tapan; Hussain, Mohammed; Sheth, Khushboo; Ding, Yuchuan; McCullough, Louise D
2017-06-01
Several rheumatologic conditions including systemic lupus erythematosus, antiphospholipid antibody (APS) syndrome, rheumatoid arthritis, and scleroderma are known risk factors for stroke. The risk of hemorrhagic transformation after an acute ischemic stroke (AIS) in these patients is not known. We queried the Nationwide Inpatient Sample (NIS) data between 2010 and 2012 with ICD 9 diagnostic codes for AIS. The primary outcome was the development of hemorrhagic transformation. Multivariate predictors for hemorrhagic transformation were identified with a logistic regression model. Using SAS 9.2, Survey procedures were used to accommodate for hierarchical two stage cluster design of NIS. APS (OR 2.57, 95% CI 1.14-5.81, p = 0.0228) independently predicted risk of hemorrhagic transformation in multivariate regression analysis. Similarly, in multivariate regression models for the outcome variables of total charges of the hospitalization and length of stay (LOS), patients with APS had the highest charges ($56,286, p = 0.0228) and LOS (3.87 days, p = 0.0164) compared to other co-variates. Univariate analysis showed increased mortality in the APS compared to the non-APS group (11.68% vs. 7.16%, p = 0.0024). APS is an independent risk factor for hemorrhagic transformation in both thrombolytic and non-thrombolytic treated patients. APS is also associated with longer length and cost of hospital stay. Further research is warranted to identify the unique risk factors in these patients to identify strategies to reduce the risk of hemorrhagic transformation in this subgroup of the population.
Little, Paul; Moore, Michael; Hobbs, F D R; Mant, David; McNulty, Cliodna; Williamson, Ian; Cheng, Edith; Stuart, Beth; Kelly, Joanne; Barnett, Jane; Mullee, Mark
2013-01-01
Objective To assess the association between features of acute sore throat and the growth of streptococci from culturing a throat swab. Design Diagnostic cohort. Setting UK general practices. Participants Patients aged 5 or over presenting with an acute sore throat. Patients were recruited for a second cohort (cohort 2, n=517) consecutively after the first (cohort 1, n=606) from similar practices. Main outcome Predictors of the presence of Lancefield A/C/G streptococci. Results The clinical score developed from cohort 1 had poor discrimination in cohort 2 (bootstrapped estimate of area under the receiver operator characteristic (ROC) curve (0.65), due to the poor validity of the individual items in the second data set. Variables significant in multivariate analysis in both cohorts were rapid attendance (prior duration 3 days or less; multivariate adjusted OR 1.92 cohort, 1.67 cohort 2); fever in the last 24 h (1.69, 2.40); and doctor assessment of severity (severely inflamed pharynx/tonsils (2.28, 2.29)). The absence of coryza or cough and purulent tonsils were significant in univariate analysis in both cohorts and in multivariate analysis in one cohort. A five-item score based on Fever, Purulence, Attend rapidly (3 days or less), severely Inflamed tonsils and No cough or coryza (FeverPAIN) had moderate predictive value (bootstrapped area under the ROC curve 0.73 cohort 1, 0.71 cohort 2) and identified a substantial number of participants at low risk of streptococcal infection (38% in cohort 1, 36% in cohort 2 scored ≤1, associated with a streptococcal percentage of 13% and 18%, respectively). A Centor score of ≤1 identified 23% and 26% of participants with streptococcal percentages of 10% and 28%, respectively. Conclusions Items widely used to help identify streptococcal sore throat may not be the most consistent. A modified clinical scoring system (FeverPAIN) which requires further validation may be clinically helpful in identifying individuals who are unlikely to have major pathogenic streptococci. PMID:24163209
Little, Paul; Moore, Michael; Hobbs, F D R; Mant, David; McNulty, Cliodna; Williamson, Ian; Cheng, Edith; Stuart, Beth; Kelly, Joanne; Barnett, Jane; Mullee, Mark
2013-10-25
To assess the association between features of acute sore throat and the growth of streptococci from culturing a throat swab. Diagnostic cohort. UK general practices. Patients aged 5 or over presenting with an acute sore throat. Patients were recruited for a second cohort (cohort 2, n=517) consecutively after the first (cohort 1, n=606) from similar practices. Predictors of the presence of Lancefield A/C/G streptococci. The clinical score developed from cohort 1 had poor discrimination in cohort 2 (bootstrapped estimate of area under the receiver operator characteristic (ROC) curve (0.65), due to the poor validity of the individual items in the second data set. Variables significant in multivariate analysis in both cohorts were rapid attendance (prior duration 3 days or less; multivariate adjusted OR 1.92 cohort, 1.67 cohort 2); fever in the last 24 h (1.69, 2.40); and doctor assessment of severity (severely inflamed pharynx/tonsils (2.28, 2.29)). The absence of coryza or cough and purulent tonsils were significant in univariate analysis in both cohorts and in multivariate analysis in one cohort. A five-item score based on Fever, Purulence, Attend rapidly (3 days or less), severely Inflamed tonsils and No cough or coryza (FeverPAIN) had moderate predictive value (bootstrapped area under the ROC curve 0.73 cohort 1, 0.71 cohort 2) and identified a substantial number of participants at low risk of streptococcal infection (38% in cohort 1, 36% in cohort 2 scored ≤1, associated with a streptococcal percentage of 13% and 18%, respectively). A Centor score of ≤1 identified 23% and 26% of participants with streptococcal percentages of 10% and 28%, respectively. Items widely used to help identify streptococcal sore throat may not be the most consistent. A modified clinical scoring system (FeverPAIN) which requires further validation may be clinically helpful in identifying individuals who are unlikely to have major pathogenic streptococci.
Infection following Anterior Cruciate Ligament Reconstruction: An Analysis of 6,389 Cases.
Westermann, Robert; Anthony, Chris A; Duchman, Kyle R; Gao, Yubo; Pugely, Andrew J; Hettrich, Carolyn M; Amendola, Ned; Wolf, Brian R
2017-07-01
Infection following anterior cruciate ligament reconstruction (ACLR) is rare. Previous authors have concluded that diabetes, tobacco use, and previous knee surgery may influence infection rates following ACLR. The purpose of this study was to identify a cohort of patients undergoing ACLR and define (1) the incidence of infection after ACLR from a large multicenter database and (2) the risk factors for infection after ACLR. We identified patients undergoing elective ACLRs in the American College of Surgeons National Surgical Quality Improvement Program database between 2007 and 2013. The primary outcome was any surgical site infection within 30 days of surgery. We performed univariate and multivariate analyses comparing infected and noninfected cases to identify risk factors for infection. In total, 6,398 ACLRs were available for analysis of which 39 (0.61%) were diagnosed with a postoperative infection. Univariate analysis identified preoperative dyspnea, low hematocrit, operative time > 1 hour, and hospital admission following surgery as predictors of postoperative infection. Diabetes, tobacco use, age, and body mass index (BMI) were not associated with infection ( p > 0.05). After multivariate analysis, the only independent predictor of postoperative infection was hospital admission following surgery (odds ratio, 2.67; 95% confidence interval, 1.02-6.96; p = 0.04). Hospital admission following surgery was associated with an increased incidence of infection in this large, multicenter cohort. Smoking, elevated BMI, and diabetes did not increase the risk infection in the present study. Surgeons should optimize outpatient operating systems and practices to aid in same-day discharges following ACLR. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
USDA-ARS?s Scientific Manuscript database
This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...
EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...
FINGERPRINT ANALYSIS OF CONTAMINANT DATA: A FORENSIC TOOL FOR EVALUATING ENVIRONMENTAL CONTAMINATION
Several studies have been conducted on behalf of the U .S. Environmental Protection Agency (EPA) to identify detection monitoring parameters for specific industries.1,2,3,4,5 One outcome of these studies was the evolution of an empirical multi-variant contaminant fingerprinting p...
Schultze, Daniel; Hillebrand, Norbert; Hinz, Ulf; Büchler, Markus W.; Schemmer, Peter
2014-01-01
Background and Aims Liver transplantation is the only curative treatment for end-stage liver disease. While waiting list mortality can be predicted by the MELD-score, reliable scoring systems for the postoperative period do not exist. This study's objective was to identify risk factors that contribute to postoperative mortality. Methods Between December 2006 and March 2011, 429 patients underwent liver transplantation in our department. Risk factors for postoperative mortality in 266 consecutive liver transplantations were identified using univariate and multivariate analyses. Patients who were <18 years, HU-listings, and split-, living related, combined or re-transplantations were excluded from the analysis. The correlation between number of risk factors and mortality was analyzed. Results A labMELD ≥20, female sex, coronary heart disease, donor risk index >1.5 and donor Na+>145 mmol/L were identified to be independent predictive factors for postoperative mortality. With increasing number of these risk-factors, postoperative 90-day and 1-year mortality increased (0–1: 0 and 0%; 2: 2.9 and 17.4%; 3: 5.6 and 16.8%; 4: 22.2 and 33.3%; 5–6: 60.9 and 66.2%). Conclusions In this analysis, a simple score was derived that adequately identified patients at risk after liver transplantation. Opening a discussion on the inclusion of these parameters in the process of organ allocation may be a worthwhile venture. PMID:24905210
Malaquias, José B; Ramalho, Francisco S; Dos S Dias, Carlos T; Brugger, Bruno P; S Lira, Aline Cristina; Wilcken, Carlos F; Pachú, Jéssica K S; Zanuncio, José C
2017-02-09
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Malaquias, José B.; Ramalho, Francisco S.; dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-01-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied. PMID:28181503
NASA Astrophysics Data System (ADS)
Malaquias, José B.; Ramalho, Francisco S.; Dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-02-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Ng, Andrea K.; Dabaja, Bouthaina S.; Milgrom, Sarah A.; Gunther, Jillian R.; Fuller, C. David; Smith, Grace L.; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F.; Akhtari, Mani; Mawlawi, Osama; Medeiros, L. Jeffrey; Chuang, Hubert H.; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S.; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta
2018-01-01
Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [18F]fluorodeoxyglucose positron emission tomography–computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning–derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance (P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis (P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. PMID:29895624
Sharma, V; Katznelson, R; Jerath, A; Garrido-Olivares, L; Carroll, J; Rao, V; Wasowicz, M; Djaiani, G
2014-02-01
Because of a lack of contemporary data regarding seizures after cardiac surgery, we undertook a retrospective analysis of prospectively collected data from 11 529 patients in whom cardiopulmonary bypass was used from January 2004 to December 2010. A convulsive seizure was defined as a transient episode of disturbed brain function characterised by abnormal involuntary motor movements. Multivariate regression analysis was performed to identify independent predictors of postoperative seizures. A total of 100 (0.9%) patients developed postoperative convulsive seizures. Generalised and focal seizures were identified in 68 and 32 patients, respectively. The median (IQR [range]) time after surgery when the seizure occurred was 7 (6-12 [1-216]) h and 8 (6-11 [4-18]) h, respectively. Epileptiform findings on electroencephalography were seen in 19 patients. Independent predictors of postoperative seizures included age, female sex, redo cardiac surgery, calcification of ascending aorta, congestive heart failure, deep hypothermic circulatory arrest, duration of aortic cross-clamp and tranexamic acid. When tested in a multivariate regression analysis, tranexamic acid was a strong independent predictor of seizures (OR 14.3, 95% CI 5.5-36.7; p < 0.001). Patients with convulsive seizures had 2.5 times higher in-hospital mortality rates and twice the length of hospital stay compared with patients without convulsive seizures. Mean (IQR [range]) length of stay in the intensive care unit was 115 (49-228 [32-481]) h in patients with convulsive seizures compared with 26 (22-69 [14-1080]) h in patients without seizures (p < 0.001). Convulsive seizures are a serious postoperative complication after cardiac surgery. As tranexamic acid is the only modifiable factor, its administration, particularly in doses exceeding 80 mg.kg(-1), should be weighed against the risk of postoperative seizures.
Pinnix, Chelsea C; Ng, Andrea K; Dabaja, Bouthaina S; Milgrom, Sarah A; Gunther, Jillian R; Fuller, C David; Smith, Grace L; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F; Akhtari, Mani; Mawlawi, Osama; Medeiros, L Jeffrey; Chuang, Hubert H; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta
2018-06-12
Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [ 18 F]fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning-derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance ( P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis ( P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. © 2018 by The American Society of Hematology.
Wu, Q-M; Zhao, X-Y; You, H
2016-01-01
Esophageal-gastro Varices (EGV) may develop in any histological stages of primary biliary cirrhosis (PBC). We aim to establish and validate quantitative fibrosis (qFibrosis) parameters in portal, septal and fibrillar areas as ideal predictors of EGV in PBC patients. PBC patients with liver biopsy, esophagogastroscopy and Second Harmonic Generation (SHG)/Two-photon Excited Fluorescence (TPEF) microscopy images were retrospectively enrolled in this study. qFibrosis parameters in portal, septal and fibrillar areas were acquired by computer-assisted SHG/TPEF imaging system. Independent predictor was identified using multivariate logistic regression analysis. PBC patients with liver biopsy, esophagogastroscopy and Second Harmonic Generation (SHG)/Two-photon Excited Fluorescence (TPEF) microscopy images were retrospectively enrolled in this study. qFibrosis parameters in portal, septal and fibrillar areas were acquired by computer-assisted SHG/TPEF imaging system. Independent predictor was identified using multivariate logistic regression analysis. Among the forty-nine PBC patients with qFibrosis images, twenty-nine PBC patients with both esophagogastroscopy data and qFibrosis data were selected out for EGV prognosis analysis and 44.8% (13/29) of them had EGV. The qFibrosis parameters of collagen percentage and number of crosslink in fibrillar area, short/long/thin strings number and length/width of the strings in septa area were associated with EGV (p < 0.05). Multivariate logistic analysis showed that the collagen percentage in fibrillar area ≥ 3.6% was an independent factor to predict EGV (odds ratio 6.9; 95% confidence interval 1.6-27.4). The area under receiver operating characteristic (ROC), diagnostic sensitivity and specificity was 0.9, 100% and 75% respectively. Collagen percentage in Collagen percentage in the fibrillar area as an independent predictor can highly predict EGV in PBC patients.
Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P
2017-04-01
In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.
Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D
2016-05-01
The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Gauging Skills of Hospital Security Personnel: a Statistically-driven, Questionnaire-based Approach.
Rinkoo, Arvind Vashishta; Mishra, Shubhra; Rahesuddin; Nabi, Tauqeer; Chandra, Vidha; Chandra, Hem
2013-01-01
This study aims to gauge the technical and soft skills of the hospital security personnel so as to enable prioritization of their training needs. A cross sectional questionnaire based study was conducted in December 2011. Two separate predesigned and pretested questionnaires were used for gauging soft skills and technical skills of the security personnel. Extensive statistical analysis, including Multivariate Analysis (Pillai-Bartlett trace along with Multi-factorial ANOVA) and Post-hoc Tests (Bonferroni Test) was applied. The 143 participants performed better on the soft skills front with an average score of 6.43 and standard deviation of 1.40. The average technical skills score was 5.09 with a standard deviation of 1.44. The study avowed a need for formal hands on training with greater emphasis on technical skills. Multivariate analysis of the available data further helped in identifying 20 security personnel who should be prioritized for soft skills training and a group of 36 security personnel who should receive maximum attention during technical skills training. This statistically driven approach can be used as a prototype by healthcare delivery institutions worldwide, after situation specific customizations, to identify the training needs of any category of healthcare staff.
Gauging Skills of Hospital Security Personnel: a Statistically-driven, Questionnaire-based Approach
Rinkoo, Arvind Vashishta; Mishra, Shubhra; Rahesuddin; Nabi, Tauqeer; Chandra, Vidha; Chandra, Hem
2013-01-01
Objectives This study aims to gauge the technical and soft skills of the hospital security personnel so as to enable prioritization of their training needs. Methodology A cross sectional questionnaire based study was conducted in December 2011. Two separate predesigned and pretested questionnaires were used for gauging soft skills and technical skills of the security personnel. Extensive statistical analysis, including Multivariate Analysis (Pillai-Bartlett trace along with Multi-factorial ANOVA) and Post-hoc Tests (Bonferroni Test) was applied. Results The 143 participants performed better on the soft skills front with an average score of 6.43 and standard deviation of 1.40. The average technical skills score was 5.09 with a standard deviation of 1.44. The study avowed a need for formal hands on training with greater emphasis on technical skills. Multivariate analysis of the available data further helped in identifying 20 security personnel who should be prioritized for soft skills training and a group of 36 security personnel who should receive maximum attention during technical skills training. Conclusion This statistically driven approach can be used as a prototype by healthcare delivery institutions worldwide, after situation specific customizations, to identify the training needs of any category of healthcare staff. PMID:23559904
NASA Astrophysics Data System (ADS)
Malik, Riffat Naseem; Hashmi, Muhammad Zaffar
2017-10-01
Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.
Uchida, Takahito; Kishimoto, Taishiro; Koreki, Akihiro; Nakao, Shigetsugu; Owada, Ai; Koizumi, Teruki; Saito, Atsuyuki; Sato, Minako; Sawada, Shinya; Matsuzaki, Ryuta; Petrides, Georgios; Mimura, Masaru
2016-11-01
The study aimed to identify the predictors for readmission after a successful electroconvulsive therapy (ECT) course. Medical charts of patients who received ECT for major depressive episodes were reviewed. Patients' demographic characteristics and treatment parameters, such as ECT charge, seizure duration, the number of ECT sessions and pharmacotherapy, were extracted. We compared differences between those who were readmitted after successful ECT within 6 and 12 months, versus those not readmitted. We also conducted a multivariate logistic regression analysis to identify the predictors for readmission. Out of 51 patients who were discharged after ECT, 27 patients met the inclusion criteria and were included in the analysis. Eight patients were readmitted within 6 months after discharge, and four more patients were readmitted during the next 6-month follow up. Comparing patients who were and were not readmitted, we found no significant differences between groups, including ECT parameters such as the number of ECT sessions, average charge and final charge. No predictors for readmission were found through multivariate analysis. Although patients who require higher ECT charge and more sessions seem to be prone to readmission, our dataset suggested that none of these types of ECT parameters were risk factors for readmission.
ERIC Educational Resources Information Center
Queiroz, Fernanda Cristina Barbosa Pereira; Samohyl, Robert Wayne; Queiroz, Jamerson Viegas; Lima, Nilton Cesar; de Souza, Gustavo Henrique Silva
2014-01-01
This paper aims to develop and implement a method to identify the causes of the choice of a course and the reasons for evasion in higher education. This way, we sought to identify the factors that influence student choice to opt for Higher Education Institution parsed, as well as the factors influencing its evasion. The methodology employed was…
Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Todd F. Shupe
2003-01-01
In this research we experimented with a new and rapid way of analyzing wood. Near Infrared (NIR)spectroscopy together with multivariate analysis is becoming a widely used technique in the field of forest products especially for property determination and is already firmly established in the pulp and paper industry. This method is ideal for the chemical analysis of wood...
Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets.
Wang, Maoqing; Yang, Xue; Ren, Lihong; Li, Songtao; He, Xuan; Wu, Xiaoyan; Liu, Tingting; Lin, Liqun; Li, Ying; Sun, Changhao
2014-09-05
Nutritional rickets is a worldwide public health problem; however, the current diagnostic methods retain shortcomings for accurate diagnosis of nutritional rickets. To identify urinary biomarkers associated with nutritional rickets and establish a noninvasive diagnosis method, urinary metabonomics analysis by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis were employed to investigate the metabolic alterations associated with nutritional rickets in 200 children with or without nutritional rickets. The pathophysiological changes and pathogenesis of nutritional rickets were illustrated by the identified biomarkers. By urinary metabolic profiling, 31 biomarkers of nutritional rickets were identified and five candidate biomarkers for clinical diagnosis were screened and identified by quantitative analysis and receiver operating curve analysis. Urinary levels of five candidate biomarkers were measured using mass spectrometry or commercial kits. In the validation step, the combination of phosphate and sebacic acid was able to give a noninvasive and accurate diagnostic with high sensitivity (94.0%) and specificity (71.2%). Furthermore, on the basis of the pathway analysis of biomarkers, our urinary metabonomics analysis gives new insight into the pathogenesis and pathophysiology of nutritional rickets.
Multivariate analysis in thoracic research.
Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego
2015-03-01
Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.
Serum Irisin Predicts Mortality Risk in Acute Heart Failure Patients.
Shen, Shutong; Gao, Rongrong; Bei, Yihua; Li, Jin; Zhang, Haifeng; Zhou, Yanli; Yao, Wenming; Xu, Dongjie; Zhou, Fang; Jin, Mengchao; Wei, Siqi; Wang, Kai; Xu, Xuejuan; Li, Yongqin; Xiao, Junjie; Li, Xinli
2017-01-01
Irisin is a peptide hormone cleaved from a plasma membrane protein fibronectin type III domain containing protein 5 (FNDC5). Emerging studies have indicated association between serum irisin and many major chronic diseases including cardiovascular diseases. However, the role of serum irisin as a predictor for mortality risk in acute heart failure (AHF) patients is not clear. AHF patients were enrolled and serum was collected at the admission and all patients were followed up for 1 year. Enzyme-linked immunosorbent assay was used to measure serum irisin levels. To explore predictors for AHF mortality, the univariate and multivariate logistic regression analysis, and receiver-operator characteristic (ROC) curve analysis were used. To determine the role of serum irisin levels in predicting survival, Kaplan-Meier survival analysis was used. In this study, 161 AHF patients were enrolled and serum irisin level was found to be significantly higher in patients deceased in 1-year follow-up. The univariate logistic regression analysis identified 18 variables associated with all-cause mortality in AHF patients, while the multivariate logistic regression analysis identified 2 variables namely blood urea nitrogen and serum irisin. ROC curve analysis indicated that blood urea nitrogen and the most commonly used biomarker, NT-pro-BNP, displayed poor prognostic value for AHF (AUCs ≤ 0.700) compared to serum irisin (AUC = 0.753). Kaplan-Meier survival analysis demonstrated that AHF patients with higher serum irisin had significantly higher mortality (P<0.001). Collectively, our study identified serum irisin as a predictive biomarker for 1-year all-cause mortality in AHF patients though large multicenter studies are highly needed. © 2017 The Author(s). Published by S. Karger AG, Basel.
Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques
NASA Astrophysics Data System (ADS)
Gulgundi, Mohammad Shahid; Shetty, Amba
2018-03-01
Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
Bujkiewicz, Sylwia; Riley, Richard D
2016-01-01
Multivariate random-effects meta-analysis allows the joint synthesis of correlated results from multiple studies, for example, for multiple outcomes or multiple treatment groups. In a Bayesian univariate meta-analysis of one endpoint, the importance of specifying a sensible prior distribution for the between-study variance is well understood. However, in multivariate meta-analysis, there is little guidance about the choice of prior distributions for the variances or, crucially, the between-study correlation, ρB; for the latter, researchers often use a Uniform(−1,1) distribution assuming it is vague. In this paper, an extensive simulation study and a real illustrative example is used to examine the impact of various (realistically) vague prior distributions for ρB and the between-study variances within a Bayesian bivariate random-effects meta-analysis of two correlated treatment effects. A range of diverse scenarios are considered, including complete and missing data, to examine the impact of the prior distributions on posterior results (for treatment effect and between-study correlation), amount of borrowing of strength, and joint predictive distributions of treatment effectiveness in new studies. Two key recommendations are identified to improve the robustness of multivariate meta-analysis results. First, the routine use of a Uniform(−1,1) prior distribution for ρB should be avoided, if possible, as it is not necessarily vague. Instead, researchers should identify a sensible prior distribution, for example, by restricting values to be positive or negative as indicated by prior knowledge. Second, it remains critical to use sensible (e.g. empirically based) prior distributions for the between-study variances, as an inappropriate choice can adversely impact the posterior distribution for ρB, which may then adversely affect inferences such as joint predictive probabilities. These recommendations are especially important with a small number of studies and missing data. PMID:26988929
A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.
Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W
2015-11-01
A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.
A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis
Collins, Tony J.; Ylanko, Jarkko; Geng, Fei
2015-01-01
Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066
Effect of sexual steroids on boar kinematic sperm subpopulations.
Ayala, E M E; Aragón, M A
2017-11-01
Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Searching for New Biomarkers and the Use of Multivariate Analysis in Gastric Cancer Diagnostics.
Kucera, Radek; Smid, David; Topolcan, Ondrej; Karlikova, Marie; Fiala, Ondrej; Slouka, David; Skalicky, Tomas; Treska, Vladislav; Kulda, Vlastimil; Simanek, Vaclav; Safanda, Martin; Pesta, Martin
2016-04-01
The first aim of this study was to search for new biomarkers to be used in gastric cancer diagnostics. The second aim was to verify the findings presented in literature on a sample of the local population and investigate the risk of gastric cancer in that population using a multivariant statistical analysis. We assessed a group of 36 patients with gastric cancer and 69 healthy individuals. We determined carcinoembryonic antigen, cancer antigen 19-9, cancer antigen 72-4, matrix metalloproteinases (-1, -2, -7, -8 and -9), osteoprotegerin, osteopontin, prothrombin induced by vitamin K absence-II, pepsinogen I, pepsinogen II, gastrin and Helicobacter pylori for each sample. The multivariate stepwise logistic regression identified the following biomarkers as the best gastric cancer predictors: CEA, CA72-4, pepsinogen I, Helicobacter pylori presence and MMP7. CEA and CA72-4 remain the best markers for gastric cancer diagnostics. We suggest a mathematical model for the assessment of risk of gastric cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Hyponatremia in Guillain-Barré Syndrome.
Rumalla, Kavelin; Reddy, Adithi Y; Letchuman, Vijay; Mittal, Manoj K
2017-06-01
To evaluate incidence, risk factors, and in-hospital outcomes associated with hyponatremia in patients hospitalized for Guillain-Barré Syndrome (GBS). We identified adult patients with GBS in the Nationwide Inpatient Sample (2002-2011). Univariate and multivariable analyses were used. Among 54,778 patients hospitalized for GBS, the incidence of hyponatremia was 11.8% (compared with 4.0% in non-GBS patients) and increased from 6.9% in 2002 to 13.5% in 2011 (P < 0.0001). Risk factors associated with hyponatremia in multivariable analysis included advanced age, deficiency anemia, alcohol abuse, hypertension, and intravenous immunoglobulin (all P < 0.0001). Hyponatremia was associated with prolonged length of stay (16.07 vs. 10.41, days), increased costs (54,001 vs. 34,125, $USD), and mortality (20.5% vs. 11.6%) (all P < 0.0001). In multivariable analysis, hyponatremia was independently associated with adverse discharge disposition (odds ratio: 2.07, 95% confidence interval, 1.91-2.25, P < 0.0001). Hyponatremia is prevalent in GBS and is detrimental to patient-centered outcomes and health care costs. Sodium levels should be carefully monitored in high-risk patients.
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
Moore, Hannah E; Pechal, Jennifer L; Benbow, M Eric; Drijfhout, Falko P
2017-05-16
Cuticular hydrocarbons (CHC) have been successfully used in the field of forensic entomology for identifying and ageing forensically important blowfly species, primarily in the larval stages. However in older scenes where all other entomological evidence is no longer present, Calliphoridae puparial cases can often be all that remains and therefore being able to establish the age could give an indication of the PMI. This paper examined the CHCs present in the lipid wax layer of insects, to determine the age of the cases over a period of nine months. The two forensically important species examined were Calliphora vicina and Lucilia sericata. The hydrocarbons were chemically extracted and analysed using Gas Chromatography - Mass Spectrometry. Statistical analysis was then applied in the form of non-metric multidimensional scaling analysis (NMDS), permutational multivariate analysis of variance (PERMANOVA) and random forest models. This study was successful in determining age differences within the empty cases, which to date, has not been establish by any other technique.
NASA Astrophysics Data System (ADS)
Oh, Han Bin; Leach, Franklin E.; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I. Jonathan
2011-03-01
The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.
Classroom Management Self-Efficacy and Burnout: A Multivariate Meta-Analysis
ERIC Educational Resources Information Center
Aloe, Ariel M.; Amo, Laura C.; Shanahan, Michele E.
2014-01-01
Like many in the human services professions, teachers are susceptible to the feelings of burnout due to their job demands, as well as interactions with students, colleagues, administrators, and parents. Many studies have identified teacher burnout as one of the crucial components influencing teacher attrition. It has been suggested that…
Factors Associated with Participation in Employment for High School Leavers with Autism
ERIC Educational Resources Information Center
Chiang, Hsu-Min; Cheung, Ying Kuen; Li, Huacheng; Tsai, Luke Y.
2013-01-01
This study aimed to identify the factors associated with participation in employment for high school leavers with autism. A secondary data analysis of the National Longitudinal Transition Study 2 (NLTS2) data was performed. Potential factors were assessed using a weighted multivariate logistic regression. This study found that annual household…
A Cognitive Analysis of Credit Card Acquisition and College Student Financial Development.
ERIC Educational Resources Information Center
Kidwell, Blair; Turrisi, Robert
2000-01-01
Examines cognitions relevant to credit card decision making in college-aged participants (N=304). Assesses measures of beliefs, attitudes, and behavioral alternatives toward acquiring a credit card. Identifies a multivariate model predicting college student financial development of the attitudes and behavioral tendencies of acquiring a new card.…
Oliver, Julianne; Pandya, Anand
2012-01-01
Objectives. Using a comprehensive disaster model, we examined predictors of posttraumatic stress disorder (PTSD) in combined data from 10 different disasters. Methods. The combined sample included data from 811 directly exposed survivors of 10 disasters between 1987 and 1995. We used consistent methods across all 10 disaster samples, including full diagnostic assessment. Results. In multivariate analyses, predictors of PTSD were female gender, younger age, Hispanic ethnicity, less education, ever-married status, predisaster psychopathology, disaster injury, and witnessing injury or death; exposure through death or injury to friends or family members and witnessing the disaster aftermath did not confer additional PTSD risk. Intentionally caused disasters associated with PTSD in bivariate analysis did not independently predict PTSD in multivariate analysis. Avoidance and numbing symptoms represented a PTSD marker. Conclusions. Despite confirming some previous research findings, we found no associations between PTSD and disaster typology. Prospective research is needed to determine whether early avoidance and numbing symptoms identify individuals likely to develop PTSD later. Our findings may help identify at-risk populations for treatment research. PMID:22897543
Prediction of Gestational Diabetes through NMR Metabolomics of Maternal Blood.
Pinto, Joana; Almeida, Lara M; Martins, Ana S; Duarte, Daniela; Barros, António S; Galhano, Eulália; Pita, Cristina; Almeida, Maria do Céu; Carreira, Isabel M; Gil, Ana M
2015-06-05
Metabolic biomarkers of pre- and postdiagnosis gestational diabetes mellitus (GDM) were sought, using nuclear magnetic resonance (NMR) metabolomics of maternal plasma and corresponding lipid extracts. Metabolite differences between controls and disease were identified through multivariate analysis of variable selected (1)H NMR spectra. For postdiagnosis GDM, partial least squares regression identified metabolites with higher dependence on normal gestational age evolution. Variable selection of NMR spectra produced good classification models for both pre- and postdiagnostic GDM. Prediagnosis GDM was accompanied by cholesterol increase and minor increases in lipoproteins (plasma), fatty acids, and triglycerides (extracts). Small metabolite changes comprised variations in glucose (up regulated), amino acids, betaine, urea, creatine, and metabolites related to gut microflora. Most changes were enhanced upon GDM diagnosis, in addition to newly observed changes in low-Mw compounds. GDM prediction seems possible exploiting multivariate profile changes rather than a set of univariate changes. Postdiagnosis GDM is successfully classified using a 26-resonance plasma biomarker. Plasma and extracts display comparable classification performance, the former enabling direct and more rapid analysis. Results and putative biochemical hypotheses require further confirmation in larger cohorts of distinct ethnicities.
Computed tomography findings associated with the risk for emergency ventral hernia repair.
Mueck, Krislynn M; Holihan, Julie L; Mo, Jiandi; Flores-Gonzales, Juan R; Ko, Tien C; Kao, Lillian S; Liang, Mike K
2017-07-01
Conventional wisdom teaches that small hernia defects are more likely to incarcerate. We aim to identify radiographic features of ventral hernias associated with increased risk of bowel incarceration. We assessed all patients who underwent emergent ventral hernia repair for bowel complications from 2009 to 2015. Cases were matched 1:3 with elective controls. Computed tomography scans were reviewed to determine hernia characteristics. Univariate and multivariable analyses were performed to identify variables associated with emergent surgery. The cohort consisted of 88 patients and 264 controls. On univariate analysis, older age, higher ASA score, elevated BMI, ascites, larger hernias, small angle, and taller hernias were associated with emergent surgery. On multivariable analysis, morbid obesity, ascites, smaller angle, and taller hernias were independently associated with emergent surgery. The teaching that large defects do not incarcerate is inaccurate; bowel compromise occurs with ventral hernias of all sizes. Instead, taller height and smaller angle are associated with the need for emergent repair. Early elective repair should be considered for patients with hernia features concerning for increased risk of bowel compromise. Copyright © 2016 Elsevier Inc. All rights reserved.
Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana
2016-01-01
The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
ERIC Educational Resources Information Center
Grochowalski, Joseph H.
2015-01-01
Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…
Relevant Feature Set Estimation with a Knock-out Strategy and Random Forests
Ganz, Melanie; Greve, Douglas N.; Fischl, Bruce; Konukoglu, Ender
2015-01-01
Group analysis of neuroimaging data is a vital tool for identifying anatomical and functional variations related to diseases as well as normal biological processes. The analyses are often performed on a large number of highly correlated measurements using a relatively smaller number of samples. Despite the correlation structure, the most widely used approach is to analyze the data using univariate methods followed by post-hoc corrections that try to account for the data’s multivariate nature. Although widely used, this approach may fail to recover from the adverse effects of the initial analysis when local effects are not strong. Multivariate pattern analysis (MVPA) is a powerful alternative to the univariate approach for identifying relevant variations. Jointly analyzing all the measures, MVPA techniques can detect global effects even when individual local effects are too weak to detect with univariate analysis. Current approaches are successful in identifying variations that yield highly predictive and compact models. However, they suffer from lessened sensitivity and instabilities in identification of relevant variations. Furthermore, current methods’ user-defined parameters are often unintuitive and difficult to determine. In this article, we propose a novel MVPA method for group analysis of high-dimensional data that overcomes the drawbacks of the current techniques. Our approach explicitly aims to identify all relevant variations using a “knock-out” strategy and the Random Forest algorithm. In evaluations with synthetic datasets the proposed method achieved substantially higher sensitivity and accuracy than the state-of-the-art MVPA methods, and outperformed the univariate approach when the effect size is low. In experiments with real datasets the proposed method identified regions beyond the univariate approach, while other MVPA methods failed to replicate the univariate results. More importantly, in a reproducibility study with the well-known ADNI dataset the proposed method yielded higher stability and power than the univariate approach. PMID:26272728
Chemometrics-assisted chromatographic fingerprinting: An illicit methamphetamine case study.
Shekari, Nafiseh; Vosough, Maryam; Tabar Heidar, Kourosh
2017-03-01
The volatile chemical constituents in complex mixtures can be analyzed using gas chromatography with mass spectrometry. This analysis allows the tentative identification of diverse impurities of an illicit methamphetamine sample. The acquired two-dimensional data of liquid-liquid extraction was resolved by multivariate curve resolution alternating curve resolution to elucidate the embedded peaks effectively. This is the first report on the application of a curve resolution approach for chromatogram fingerprinting to identify particularly the embedded impurities of a drug of abuse. Indeed, the strong and broad peak of methamphetamine makes identifying the underlying peaks problematic and even impossible. Mathematical separation instead of conventional chromatographic approaches was performed in a way that trace components embedded in methamphetamine peak were successfully resolved. Comprehensive analysis of the chromatogram, using multivariate curve resolution, resulted in elution profiles and mass spectra for each pure compound. Impurities such as benzaldehyde, benzyl alcohol, benzene, propenyl methyl ketone, benzyl methyl ketone, amphetamine, N-benzyl-2-methylaziridine, phenethylamine, N,N,α-trimethylamine, phenethylamine, N,α,α-trimethylmethamphetamine, N-acetylmethamphetamine, N-formylmethamphetamine, and other chemicals were identified. A route-specific impurity, N-benzyl-2-methylaziridine, indicating a synthesis route based on ephedrine/pseudoephedrine was identified. Moreover, this is the first report on the detection of impurities such as phenethylamine, N,α,α-trimethylamine (a structurally related impurity), and clonitazene (as an adulterant) in an illicit methamphetamine sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial modeling of cutaneous leishmaniasis in the Andean region of Colombia.
Pérez-Flórez, Mauricio; Ocampo, Clara Beatriz; Valderrama-Ardila, Carlos; Alexander, Neal
2016-06-27
The objective of this research was to identify environmental risk factors for cutaneous leishmaniasis (CL) in Colombia and map high-risk municipalities. The study area was the Colombian Andean region, comprising 715 rural and urban municipalities. We used 10 years of CL surveillance: 2000-2009. We used spatial-temporal analysis - conditional autoregressive Poisson random effects modelling - in a Bayesian framework to model the dependence of municipality-level incidence on land use, climate, elevation and population density. Bivariable spatial analysis identified rainforests, forests and secondary vegetation, temperature, and annual precipitation as positively associated with CL incidence. By contrast, livestock agroecosystems and temperature seasonality were negatively associated. Multivariable analysis identified land use - rainforests and agro-livestock - and climate - temperature, rainfall and temperature seasonality - as best predictors of CL. We conclude that climate and land use can be used to identify areas at high risk of CL and that this approach is potentially applicable elsewhere in Latin America.
Kurnit, Katherine C; Kim, Grace N; Fellman, Bryan M; Urbauer, Diana L; Mills, Gordon B; Zhang, Wei; Broaddus, Russell R
2017-07-01
Although the majority of low grade, early stage endometrial cancer patients will have good survival outcomes with surgery alone, those patients who do recur tend to do poorly. Optimal identification of the subset of patients who are at high risk of recurrence and would benefit from adjuvant treatment has been difficult. The purpose of this study was to evaluate the impact of somatic tumor mutation on survival outcomes in this patient population. For this study, low grade was defined as endometrioid FIGO grades 1 or 2, while early stage was defined as endometrioid stages I or II (disease confined to the uterus). Next-generation sequencing was performed using panels comprised of 46-200 genes. Recurrence-free and overall survival was compared across gene mutational status in both univariate and multivariate analyses. In all, 342 patients were identified, 245 of which had endometrioid histology. For grades 1-2, stages I-II endometrioid endometrial cancer patients, age (HR 1.07, 95% CI 1.03-1.10), CTNNB1 mutation (HR 5.97, 95% CI 2.69-13.21), and TP53 mutation (HR 4.07, 95% CI 1.57-10.54) were associated with worse recurrence-free survival on multivariate analysis. When considering endometrioid tumors of all grades and stages, CTNNB1 mutant tumors were associated with significantly higher rates of grades 1-2 disease, lower rates of deep myometrial invasion, and lower rates of lymphatic/vascular space invasion. When both TP53 and CTNNB1 mutations were considered, presence of either TP53 mutation or CTNNB1 mutation remained a statistically significant predictor of recurrence-free survival on multivariate analysis and was associated with a more precise confidence interval (HR 4.69, 95% CI 2.38-9.24). Thus, mutational analysis of a 2 gene panel of CTNNB1 and TP53 can help to identify a subset of low grade, early stage endometrial cancer patients who are at high risk of recurrence.
Risk Factors for Urinary Tract Infections in Cardiac Surgical Patients
Gillen, Jacob R.; Isbell, James M.; Michaels, Alex D.; Lau, Christine L.
2015-01-01
Abstract Background: Risk factors for catheter-associated urinary tract infections (CAUTIs) in patients undergoing non-cardiac surgical procedures have been well documented. However, the variables associated with CAUTIs in the cardiac surgical population have not been clearly defined. Therefore, the purpose of this study was to investigate risk factors associated with CAUTIs in patients undergoing cardiac procedures. Methods: All patients undergoing cardiac surgery at a single institution from 2006 through 2012 (4,883 patients) were reviewed. Patients with U.S. Centers for Disease Control (CDC) criteria for CAUTI were identified from the hospital's Quality Assessment database. Pre-operative, operative, and post-operative patient factors were evaluated. Univariate and multivariable analyses were used to identify significant correlations between perioperative characteristics and CAUTIs. Results: There were 55 (1.1%) documented CAUTIs in the study population. On univariate analysis, older age, female gender, diabetes mellitus, cardiogenic shock, urgent or emergent operation, packed red blood cell (PRBC) units transfused, and intensive care unit length of stay (ICU LOS) were all significantly associated with CAUTI [p<0.05]. On multivariable logistic regression, older age, female gender, diabetes mellitus, and ICU LOS remained significantly associated with CAUTI. Additionally, there was a significant association between CAUTI and 30-d mortality on univariate analysis. However, when controlling for common predictors of operative mortality on multivariable analysis, CAUTI was no longer associated with mortality. Conclusions: There are several identifiable risk factors for CAUTI in patients undergoing cardiac procedures. CAUTI is not independently associated with increased mortality, but it does serve as a marker of sicker patients more likely to die from other comorbidities or complications. Therefore, awareness of the high-risk nature of these patients should lead to increased diligence and may help to improve peri-operative outcomes. Recognizing patients at high risk for CAUTI may lead to improved measures to decrease CAUTI rates within this population. PMID:26115336
Risk Factors for Urinary Tract Infections in Cardiac Surgical Patients.
Gillen, Jacob R; Isbell, James M; Michaels, Alex D; Lau, Christine L; Sawyer, Robert G
2015-10-01
Risk factors for catheter-associated urinary tract infections (CAUTIs) in patients undergoing non-cardiac surgical procedures have been well documented. However, the variables associated with CAUTIs in the cardiac surgical population have not been clearly defined. Therefore, the purpose of this study was to investigate risk factors associated with CAUTIs in patients undergoing cardiac procedures. All patients undergoing cardiac surgery at a single institution from 2006 through 2012 (4,883 patients) were reviewed. Patients with U.S. Centers for Disease Control (CDC) criteria for CAUTI were identified from the hospital's Quality Assessment database. Pre-operative, operative, and post-operative patient factors were evaluated. Univariate and multivariable analyses were used to identify significant correlations between perioperative characteristics and CAUTIs. There were 55 (1.1%) documented CAUTIs in the study population. On univariate analysis, older age, female gender, diabetes mellitus, cardiogenic shock, urgent or emergent operation, packed red blood cell (PRBC) units transfused, and intensive care unit length of stay (ICU LOS) were all significantly associated with CAUTI [p<0.05]. On multivariable logistic regression, older age, female gender, diabetes mellitus, and ICU LOS remained significantly associated with CAUTI. Additionally, there was a significant association between CAUTI and 30-d mortality on univariate analysis. However, when controlling for common predictors of operative mortality on multivariable analysis, CAUTI was no longer associated with mortality. There are several identifiable risk factors for CAUTI in patients undergoing cardiac procedures. CAUTI is not independently associated with increased mortality, but it does serve as a marker of sicker patients more likely to die from other comorbidities or complications. Therefore, awareness of the high-risk nature of these patients should lead to increased diligence and may help to improve peri-operative outcomes. Recognizing patients at high risk for CAUTI may lead to improved measures to decrease CAUTI rates within this population.
Wang, Yinqing; Cai, Ranze; Wang, Rui; Wang, Chunhua; Chen, Chunmei
2018-06-01
This is a retrospective study.The aim of this study was to illustrate the survival outcomes of patients with classic ependymoma (CE) and identify potential prognostic factors.CE is the most common category of spinal ependymomas, but few published studies have discussed predictors of the survival outcome.A Boolean search of the PubMed, Embase, and OVID databases was conducted by 2 investigators independently. The objects were intramedullary grade II ependymoma according to 2007 WHO classification. Univariate Kaplan-Meier analysis and Log-Rank tests were performed to identify variables associated with progression-free survival (PFS) or overall survival (OS). Multivariate Cox regression was performed to assess hazard ratios (HRs) with 95% confidence intervals (95% CIs). Statistical analysis was performed by SPSS version 23.0 (IBM Corp.) with statistical significance defined as P < .05.A total of 35 studies were identified, including 169 cases of CE. The mean follow-up time across cases was 64.2 ± 51.5 months. Univariate analysis showed that patients who had undergone total resection (TR) had better PFS and OS than those with subtotal resection (STR) and biopsy (P = .002, P = .004, respectively). Within either univariate or multivariate analysis (P = .000, P = .07, respectively), histological type was an independent prognostic factor for PFS of CE [papillary type: HR 0.002, 95% CI (0.000-0.073), P = .001, tanycytic type: HR 0.010, 95% CI (0.000-0.218), P = .003].It was the first integrative analysis of CE to elucidate the correlation between kinds of factors and prognostic outcomes. Definite histological type and safely TR were foundation of CE's management. 4.
The impact of moderate wine consumption on the risk of developing prostate cancer.
Vartolomei, Mihai Dorin; Kimura, Shoji; Ferro, Matteo; Foerster, Beat; Abufaraj, Mohammad; Briganti, Alberto; Karakiewicz, Pierre I; Shariat, Shahrokh F
2018-01-01
To investigate the impact of moderate wine consumption on the risk of prostate cancer (PCa). We focused on the differential effect of moderate consumption of red versus white wine. This study was a meta-analysis that includes data from case-control and cohort studies. A systematic search of Web of Science, Medline/PubMed, and Cochrane library was performed on December 1, 2017. Studies were deemed eligible if they assessed the risk of PCa due to red, white, or any wine using multivariable logistic regression analysis. We performed a formal meta-analysis for the risk of PCa according to moderate wine and wine type consumption (white or red). Heterogeneity between studies was assessed using Cochrane's Q test and I 2 statistics. Publication bias was assessed using Egger's regression test. A total of 930 abstracts and titles were initially identified. After removal of duplicates, reviews, and conference abstracts, 83 full-text original articles were screened. Seventeen studies (611,169 subjects) were included for final evaluation and fulfilled the inclusion criteria. In the case of moderate wine consumption: the pooled risk ratio (RR) for the risk of PCa was 0.98 (95% CI 0.92-1.05, p =0.57) in the multivariable analysis. Moderate white wine consumption increased the risk of PCa with a pooled RR of 1.26 (95% CI 1.10-1.43, p =0.001) in the multi-variable analysis. Meanwhile, moderate red wine consumption had a protective role reducing the risk by 12% (RR 0.88, 95% CI 0.78-0.999, p =0.047) in the multivariable analysis that comprised 222,447 subjects. In this meta-analysis, moderate wine consumption did not impact the risk of PCa. Interestingly, regarding the type of wine, moderate consumption of white wine increased the risk of PCa, whereas moderate consumption of red wine had a protective effect. Further analyses are needed to assess the differential molecular effect of white and red wine conferring their impact on PCa risk.
Analyzing developmental processes on an individual level using nonstationary time series modeling.
Molenaar, Peter C M; Sinclair, Katerina O; Rovine, Michael J; Ram, Nilam; Corneal, Sherry E
2009-01-01
Individuals change over time, often in complex ways. Generally, studies of change over time have combined individuals into groups for analysis, which is inappropriate in most, if not all, studies of development. The authors explain how to identify appropriate levels of analysis (individual vs. group) and demonstrate how to estimate changes in developmental processes over time using a multivariate nonstationary time series model. They apply this model to describe the changing relationships between a biological son and father and a stepson and stepfather at the individual level. The authors also explain how to use an extended Kalman filter with iteration and smoothing estimator to capture how dynamics change over time. Finally, they suggest further applications of the multivariate nonstationary time series model and detail the next steps in the development of statistical models used to analyze individual-level data.
Matsushita, Isao; Motomura, Hiraku; Seki, Eiko; Kimura, Tomoatsu
2017-07-01
The long-term effects of tumor necrosis factor (TNF)-blocking therapies on weight-bearing joints in patients with rheumatoid arthritis (RA) have not been fully characterized. The purpose of this study was to assess the radiographic changes of weight-bearing joints in patients with RA during 3-year of TNF-blocking therapies and to identify factors related to the progression of joint damage. Changes in clinical variables and radiological findings in 243 weight-bearing joints (63 hips, 54 knees, 71 ankles, and 55 subtalar joints) in 38 consecutive patients were investigated during three years of treatment with TNF-blocking agents. Multivariate logistic regression analysis was used to identify risk factors for the progression of weight-bearing joint damage. Seventeen (14.5%) of proximal weight-bearing joints (hips and knees) showed apparent radiographic progression during three years of treatment, whereas none of the proximal weight-bearing joints showed radiographic evidence of improvement or repair. In contrast, distal weight-bearing joints (ankle and subtalar joints) displayed radiographic progression and improvement in 20 (15.9%) and 8 (6.3%) joints, respectively. Multivariate logistic analysis for proximal weight-bearing joints identified the baseline Larsen grade (p < 0.001, OR:24.85, 95%CI: 5.07-121.79) and disease activity at one year after treatment (p = 0.003, OR:3.34, 95%CI:1.50-7.46) as independent factors associated with the progression of joint damage. On the other hand, multivariate analysis for distal weight-bearing joints identified disease activity at one year after treatment (p < 0.001, OR:2.13, 95%CI:1.43-3.18) as an independent factor related to the progression of damage. Baseline Larsen grade was strongly associated with the progression of damage in the proximal weight-bearing joints. Disease activity after treatment was an independent factor for progression of damage in proximal and distal weight-bearing joints. Early treatment with TNF-blocking agents and tight control of disease activity are necessary to prevent the progression of damage of the weight-bearing joints.
Partial Least Squares for Discrimination in fMRI Data
Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.
2011-01-01
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352
Nakao, Masayuki; Mun, Mingyon; Nakagawa, Ken; Nishio, Makoto; Ishikawa, Yuichi; Okumura, Sakae
2015-01-01
Purpose: To identify prognostic factors for pathologic N2 (pN2) non-small cell lung cancer (NSCLC) treated by surgical resection. Methods: Between 1990 and 2009, 287 patients with pN2 NSCLC underwent curative resection at the Cancer Institute Hospital without preoperative treatment. Results: The 5-year overall survival (OS), cancer-specific survival (CSS), and recurrence-free survival (RFS) rates were 46%, 55% and 24%, respectively. The median follow-up time was 80 months. Multivariate analysis identified four independent predictors for poor OS: multiple-zone mediastinal lymph node metastasis (hazard ratio [HR], 1.616; p = 0.003); ipsilateral intrapulmonary metastasis (HR, 1.042; p = 0.002); tumor size >30 mm (HR, 1.013; p = 0.002); and clinical stage N1 or N2 (HR, 1.051; p = 0.030). Multivariate analysis identified three independent predictors for poor RFS: multiple-zone mediastinal lymph node metastasis (HR, 1.457; p = 0.011); ipsilateral intrapulmonary metastasis (HR, 1.040; p = 0.002); and tumor size >30 mm (HR, 1.008; p = 0.032). Conclusion: Multiple-zone mediastinal lymph node metastasis, ipsilateral intrapulmonary metastasis, and tumor size >30 mm were common independent prognostic factors of OS, CSS, and RFS in pN2 NSCLC. PMID:25740454
Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables
Riccioni, Giulia; Stagioni, Marco; Landi, Monica; Ferrara, Giorgia; Barbujani, Guido; Tinti, Fausto
2013-01-01
Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation. PMID:24260341
Zhang, Chaosheng
2006-08-01
Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
PAPANNA, Ramesha; BLOCK-ABRAHAM, Dana; Mann, Lovepreet K; BUHIMSCHI, Irina A.; BEBBINGTON, Michael; GARCIA, Elisa; KAHLEK, Nahla; HARMAN, Christopher; JOHNSON, Anthony; BASCHAT, Ahmet; MOISE, Kenneth J.
2014-01-01
OBJECTIVE Despite improved perinatal survival following fetoscopic laser surgery (FLS) for twin twin transfusion syndrome (TTTS), prematurity remains an important contributor to perinatal mortality and morbidity. The objective of the study was to identify risk factors for complicated preterm delivery after FLS. STUDY DESIGN Retrospective cohort study of prospectively collected data on maternal/fetal demographics and pre-operative, operative and post-operative variables of 459 patients treated in 3 U.S. fetal centers. Multivariate linear regression was performed to identify significant risk factors associated with preterm delivery, which was cross-validated using K-fold method. Multivariate logistic regression was performed to identify risk factors for early vs. late preterm delivery based on median gestational age at delivery of 32 weeks. RESULTS There were significant differences in case selection and outcomes between the centers. After controlling for the center of surgery, a multivariate analysis indicated a lower maternal age at procedure, history of previous prematurity, shortened cervical length, use of amnioinfusion, 12 Fr cannula diameter, lack of a collagen plug placement and iatrogenic preterm premature rupture of membranes (iPPROM) were significantly associated with a lower gestational age at delivery. CONCLUSION Specific fetal/maternal and operative variables are associated with preterm delivery after FLS for the treatment of TTTS. Further studies to modify some of these variables may decrease the perinatal morbidity after laser therapy. PMID:24013922
Dalmolin, Graziele de Lima; Lunardi, Valéria Lerch; Lunardi, Guilherme Lerch; Barlem, Edison Luiz Devos; Silveira, Rosemary Silva da
2014-01-01
to identify relationships between moral distress and Burnout in the professional performance from the perceptions of the experiences of nursing workers. this is a survey type study with 375 nursing workers working in three different hospitals of southern Rio Grande do Sul, with the application of adaptations of the Moral Distress Scale and the Maslach Burnout Inventory, validated and standardized for use in Brazil. Data validation occurred through factor analysis and Cronbach's alpha. For the data analysis bivariate analysis using Pearson's correlation and multivariate analysis using multiple regression were performed. the existence of a weak correlation between moral distress and Burnout was verified. A possible positive correlation between Burnout and therapeutic obstinacy, and a negative correlation between professional fulfillment and moral distress were identified. the need was identified for further studies that include mediating and moderating variables that may explain more clearly the models studied.
Dalmolin, Graziele de Lima; Lunardi, Valéria Lerch; Lunardi, Guilherme Lerch; Barlem, Edison Luiz Devos; da Silveira, Rosemary Silva
2014-01-01
Objective to identify relationships between moral distress and Burnout in the professional performance from the perceptions of the experiences of nursing workers. Methods this is a survey type study with 375 nursing workers working in three different hospitals of southern Rio Grande do Sul, with the application of adaptations of the Moral Distress Scale and the Maslach Burnout Inventory, validated and standardized for use in Brazil. Data validation occurred through factor analysis and Cronbach's alpha. For the data analysis bivariate analysis using Pearson's correlation and multivariate analysis using multiple regression were performed. Results the existence of a weak correlation between moral distress and Burnout was verified. A possible positive correlation between Burnout and therapeutic obstinacy, and a negative correlation between professional fulfillment and moral distress were identified. Conclusion the need was identified for further studies that include mediating and moderating variables that may explain more clearly the models studied. PMID:24553701
Marques, Pedro; Leite, Valeriano; Bugalho, Maria João
2014-12-01
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. The widespread use of neck ultrasound (US) and US-guided fine-needle aspiration cytology is triggering an overdiagnosis of PTC. To evaluate clinical behavior and outcomes of patients with PTCs ≤2 cm, seeking for possible prognostic factors. Clinical records of cases with histological diagnosis of PTC ≤2 cm followed at the Endocrine Department of Instituto Português de Oncologia, Lisbon between 2002 and 2006 were analyzed retrospectively. We identified 255 PTCs, 111 were microcarcinomas. Most patients underwent near-total thyroidectomy, with lymph node dissections in 55 cases (21.6%). Radioiodine therapy was administered in 184 patients. At the last evaluation, 38 (14.9%) had evidence of disease. Two deaths were attributed to PTC. Median (±SD) follow-up was 74 (±23) months. Multivariate analysis identified vascular invasion, lymph node and systemic metastases significantly associated with recurrence/persistence of disease. In addition, lymph node involvement was significantly associated with extrathyroidal extension and angioinvasion. Median (±SD) disease-free survival (DFS) was estimated as 106 (±3) months and the 5-year DFS rate was 87.5%. Univariate Cox analysis identified some relevant parameters for DFS, but multivariate regression only identified lymph node and systemic metastases as significant independent factors. The median DFS estimated for lymph node and systemic metastases was 75 and 0 months, respectively. In the setting of small PTCs, vascular invasion, extrathyroidal extension and lymph node and/or systemic metastases may confer worse prognosis, perhaps justifying more aggressive therapeutic and follow-up approaches in such cases.
Risk factors associated with gastric cancer in Mexico: education, breakfast and chili.
Trujillo Rivera, Alejandro; Sampieri, Clara Luz; Morales Romero, Jaime; Montero, Hilda; Acosta Mesa, Héctor Gabriel; Cruz Ramírez, Nicandro; Novoa Del Toro, Elva María; León Córdoba, Kenneth
2018-06-01
the aim of the study was to use a validated questionnaire to identify factors associated with the development of gastric cancer (GC) in the Mexican population. the study included cases and controls that were paired by sex and ± 10 years of age at diagnosis. In relation to cases, 46 patients with a confirmed histopathological diagnosis of adenocarcinoma-type GC, as reported in the hospital records, were selected, and 46 blood bank donors from the same hospital were included as controls. The previously validated Questionnaire to Find Factors Associated with Gastric Cancer (QUFA-GC©) was used to collect data. Odds ratio (OR) and 95% confidence interval (IC) were estimated via univariate analysis (paired OR). Multivariate analysis was performed by logistic regression. A decision tree was constructed using the J48 algorithm. an association was found by univariate analysis between GC risk and a lack of formal education, having smoked for ≥ 10 years, eating rapidly, consuming very hot food and drinks, a non-suitable breakfast within two hours of waking, pickled food and capsaicin. In contrast, a protective association against GC was found with taking recreational exercise and consuming fresh fruit and vegetables. No association was found between the development of GC and having an income that reflected poverty, using a refrigerator, perception of the omission of breakfast and time period of alcoholism. In the final multivariate analysis model, having no formal education (OR = 17.47, 95% CI = 5.17-76.69), consuming a non-suitable breakfast within two hours of waking (OR = 8.99, 95% CI = 2.85-35.50) and the consumption of capsaicin ˃ 29.9 mg capsaicin per day (OR = 3.77, 95% CI = 1.21-13.11) were factors associated with GC. an association was found by multivariate analysis between the presence of GC and education, type of breakfast and the consumption of capsaicin. These variables are susceptible to intervention and can be identified via the QUFA-GC ©.
Lapolla, Annunziata; Ragazzi, Eugenio; Andretta, Barbara; Fedele, Domenico; Tubaro, Michela; Seraglia, Roberta; Molin, Laura; Traldi, Pietro
2007-06-01
To clarify the possible pathogenetic role of oxidation products originated from the glycation of proteins, human globins from nephropathic patients have been studied by matrix-assisted laser desorption/ionization mass spectrometry (MALDI), revealing not only unglycated and monoglycated globins, but also a series of different species. For the last ones, structural assignments were tentatively done on the basis of observed masses and expectations for the Maillard reaction pattern. Consequently, they must be considered only propositive, and the discussion which will follow must be considered in this view. In our opinion this approach does not seem to compromise the intended diagnostic use of the data because distinctions are valid even if the assignments are uncertain. We studied nine healthy subjects and 19 nephropathic patients and processed the data obtained from the MALDI spectra using a multivariate analysis. Our results showed that multivariate analytical techniques enable differential aspects of the profile of molecular species to be identified in the blood of end stage nephropathic patients. A correct grouping can be achieved by principal component analysis (PCA) and the results suggest that several products involved in carbonyl stress exist in nephropathic patients. These compounds may have a relevant role as specific markers of the pathological state.
Zhao, Xiao-Mei; Pu, Shi-Biao; Zhao, Qing-Guo; Gong, Man; Wang, Jia-Bo; Ma, Zhi-Jie; Xiao, Xiao-He; Zhao, Kui-Jun
2016-08-01
In this paper, the spectrum-effect correlation analysis method was used to explore the main effective components of Tripterygium wilfordii for liver toxicity, and provide reference for promoting the quality control of T. wilfordii. Chinese medicine T.wilfordii was taken as the study object, and LC-Q-TOF-MS was used to characterize the chemical components in T. wilfordii samples from different areas, and their main components were initially identified after referring to the literature. With the normal human hepatocytes (LO2 cell line)as the carrier, acetaminophen as positive medicine, and cell inhibition rate as testing index, the simple correlation analysis and multivariate linear correlation analysis methods were used to screen the main components of T. wilfordii for liver toxicity. As a result, 10 kinds of main components were identified, and the spectrum-effect correlation analysis showed that triptolide may be the toxic component, which was consistent with previous results of traditional literature. Meanwhile it was found that tripterine and demethylzeylasteral may greatly contribute to liver toxicity in multivariate linear correlation analysis. T. wilfordii samples of different varieties or different origins showed large difference in quality, and the T. wilfordii from southwest China showed lower liver toxicity, while those from Hunan and Anhui province showed higher liver toxicity. This study will provide data support for further rational use of T. wilfordii and research on its liver toxicity ingredients. Copyright© by the Chinese Pharmaceutical Association.
Hierarchical multivariate covariance analysis of metabolic connectivity
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-01-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129
Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul
2016-01-01
Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm -1 with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R 2 ) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.
Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi
2016-01-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405
Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi
2015-11-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.
Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel
2014-01-01
Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.
The Assessment of Neurological Systems with Functional Imaging
ERIC Educational Resources Information Center
Eidelberg, David
2007-01-01
In recent years a number of multivariate approaches have been introduced to map neural systems in health and disease. In this review, we focus on spatial covariance methods applied to functional imaging data to identify patterns of regional activity associated with behavior. In the rest state, this form of network analysis can be used to detect…
ERIC Educational Resources Information Center
Owen, Steven V.; Feldhusen, John F.
This study compares the effectiveness of three models of multivariate prediction for academic success in identifying the criterion variance of achievement in nursing education. The first model involves the use of an optimum set of predictors and one equation derived from a regression analysis on first semester grade average in predicting the…
ERIC Educational Resources Information Center
Rogers, Mary E.; Searle, Judy; Creed, Peter A.; Ng, Shu-Kay
2010-01-01
This study reports on the career intentions of 179 final year medical students who completed an online survey that included measures of personality, values, professional and lifestyle expectations, and well-being. Logistic regression analyses identified the determinants of preferred medical specialty, practice location and hours of work.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Jonathan; Xu, Beibei; Moores Cancer Center, University of California San Diego, La Jolla, California
Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences inmore » patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end of life.« less
Suicidality among pregnant women in Brazil: prevalence and risk factors.
Castro e Couto, Tiago; Brancaglion, Mayra Yara Martins; Cardoso, Mauro Nogueira; Faria, Gustavo Coutinho; Garcia, Frederico Duarte; Nicolato, Rodrigo; Aguiar, Regina Amélia Lopes P; Leite, Henrique Vitor; Corrêa, Humberto
2016-04-01
Suicide is one of the major causes of preventable death. We evaluated suicidality among pregnant women who participated in prenatal care in Brazil. A total of 255 patients were assessed using semi-structured interviews as well as the Edinburgh Postnatal Depression Scale (EPDS), Beck Depression Inventory (BDI), and Mini-International Neuropsychiatric Interview (MINI) Plus. Thereafter, Stata 12 was used to identify the significant predictors of current suicide risk (CSR) among participants using univariate and multivariate analyses (p < 0.05). According to MINI Plus module C, the lifetime suicide attempt rate was 12.55%. The overall CSR was 23.53%, distributed across risk levels of low (12.55%), moderate (1.18%), and high (9.80%). Our rates approximate those found in another Brazilian study (18.4%). Antenatal depression (AD), lifetime bipolar disorder, and any current anxiety disorder (as measured using the MINI) as well as BDI scores ≥15 and EPDS scores ≥11 were identified as positive risk factors in a univariate analysis (p < 0.001). These factors changed after a multivariate analysis was employed, and only years of education [odds ratio (OR) = 0.45; 95% confidence intervals (CIs) = 0.21-0.99], AD (OR = 3.42; 95% CIs = 1.37-8.53), and EPDS scores ≥11 (OR = 4.44; 95% CIs = 1.97-9.97) remained independent risk factors. AD and other psychiatric disorders were the primary risk factors for suicidality, although only the former remained an independent factor after a multivariate analysis. More than 10 years of education and EPDS scores ≥11 were also independent factors; the latter can be used as a screening tool for suicide risk.
Vitamin D insufficiency and subclinical atherosclerosis in non-diabetic males living with HIV.
Portilla, Joaquín; Moreno-Pérez, Oscar; Serna-Candel, Carmen; Escoín, Corina; Alfayate, Rocio; Reus, Sergio; Merino, Esperanza; Boix, Vicente; Giner, Livia; Sánchez-Payá, José; Picó, Antonio
2014-01-01
Vitamin D insufficiency (VDI) has been associated with increased cardiovascular risk in the non-HIV population. This study evaluates the relationship among serum 25-hydroxyvitamin D [25(OH)D] levels, cardiovascular risk factors, adipokines, antiviral therapy (ART) and subclinical atherosclerosis in HIV-infected males. A cross-sectional study in ambulatory care was made in non-diabetic patients living with HIV. VDI was defined as 25(OH)D serum levels <75 nmol/L. Fasting lipids, glucose, inflammatory markers (tumour necrosis factor-α, interleukin-6, high-sensitivity C-reactive protein) and endothelial markers (plasminogen activator inhibitor-1, or PAI-I) were measured. The common carotid artery intima-media thickness (C-IMT) was determined. A multivariate logistic regression analysis was made to identify factors associated with the presence of VDI, while multivariate linear regression analysis was used to identify factors associated with common C-IMT. Eighty-nine patients were included (age 42 ± 8 years), 18.9% were in CDC (US Centers for Disease Control and Prevention) stage C and 75 were on ART. VDI was associated with ART exposure, sedentary lifestyle, higher triglycerides levels and PAI-I. In univariate analysis, VDI was associated with greater common C-IMT. The multivariate linear regression model, adjusted by confounding factors, revealed an independent association between common C-IMT and patient age, time of exposure to protease inhibitors (PIs) and impaired fasting glucose (IFG). In contrast, there were no independent associations between common C-IMT and VDI or inflammatory and endothelial markers. VDI was not independently associated with subclinical atherosclerosis in non-diabetic males living with HIV. Older age, a longer exposure to PIs, and IFG were independent factors associated with common C-IMT in this population.
Multivariate Models for Normal and Binary Responses in Intervention Studies
ERIC Educational Resources Information Center
Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen
2016-01-01
Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…
Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola
2016-09-01
In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic traits characteristic of high-performance clones and enables informed decisions on which clones provide a good match for a particular process platform. The proposed approach also provides a mechanistic link between observed clone phenotype, process setup, and feeding regimes, and thereby offers concrete starting points for subsequent process optimization. Biotechnol. Bioeng. 2016;113: 2005-2019. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts
Lent, R.M.; Waldron, M.C.; Rader, J.C.
1998-01-01
A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.
Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen
2016-04-01
Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular moieties correlated to variability in the temperature response of organic matter decomposition, as assessed by Q10. Thus, 2D NMR methods, and their combination with multivariate analysis, can greatly improve analysis of litter and SOM composition, thereby facilitating elucidation of their roles in biogeochemical and ecological processes that are so critical to foresee associated feedback mechanisms on SOM turnover as a result of global environmental change.
Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F
2017-02-08
The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.
Impact of Gender on 30-Day Complications After Primary Total Joint Arthroplasty.
Robinson, Jonathan; Shin, John I; Dowdell, James E; Moucha, Calin S; Chen, Darwin D
2017-08-01
Impact of gender on 30-day complications has been investigated in other surgical procedures but has not yet been studied in total hip arthroplasty (THA) or total knee arthroplasty (TKA). Patients who received THA or TKA from 2012 to 2014 were identified in the National Surgical Quality Improvement Program database. Patients were divided into 2 groups based on gender. Bivariate and multivariate analyses were performed to assess associations between gender and patient factors and complications after THA or TKA and to assess whether gender was an independent risk factor. THA patients consisted of 45.1% male and 54.9% female. In a multivariate analysis, female gender was found to be a protective factor for mortality, sepsis, cardiovascular complications, unplanned reintubation, and renal complications and as an independent risk factor for urinary tract infection, blood transfusion, and nonhome discharge after THA. TKA patients consisted of 36.7% male and 62.3% female. Multivariate analysis revealed female gender as a protective factor for sepsis, cardiovascular complications, and renal complications and as an independent risk factor for urinary tract infection, blood transfusion, and nonhome discharge after TKA. There are discrepancies in the THA or TKA complications based on gender, and the multivariate analyses confirmed gender as an independent risk factor for certain complications. Physicians should be mindful of patient's gender for better risk stratification and informed consent. Copyright © 2017 Elsevier Inc. All rights reserved.
Gao, Wen; Yang, Hua; Qi, Lian-Wen; Liu, E-Hu; Ren, Mei-Ting; Yan, Yu-Ting; Chen, Jun; Li, Ping
2012-07-06
Plant-based medicines become increasingly popular over the world. Authentication of herbal raw materials is important to ensure their safety and efficacy. Some herbs belonging to closely related species but differing in medicinal properties are difficult to be identified because of similar morphological and microscopic characteristics. Chromatographic fingerprinting is an alternative method to distinguish them. Existing approaches do not allow a comprehensive analysis for herbal authentication. We have now developed a strategy consisting of (1) full metabolic profiling of herbal medicines by rapid resolution liquid chromatography (RRLC) combined with quadrupole time-of-flight mass spectrometry (QTOF MS), (2) global analysis of non-targeted compounds by molecular feature extraction algorithm, (3) multivariate statistical analysis for classification and prediction, and (4) marker compounds characterization. This approach has provided a fast and unbiased comparative multivariate analysis of the metabolite composition of 33-batch samples covering seven Lonicera species. Individual metabolic profiles are performed at the level of molecular fragments without prior structural assignment. In the entire set, the obtained classifier for seven Lonicera species flower buds showed good prediction performance and a total of 82 statistically different components were rapidly obtained by the strategy. The elemental compositions of discriminative metabolites were characterized by the accurate mass measurement of the pseudomolecular ions and their chemical types were assigned by the MS/MS spectra. The high-resolution, comprehensive and unbiased strategy for metabolite data analysis presented here is powerful and opens the new direction of authentication in herbal analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Papadia, Andrea; Bellati, Filippo; Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Donfrancesco, Cristina; Gasparri, Maria Luisa; Raspagliesi, Francesco
2015-12-01
The aim of this study was to identify clinical variables that may predict the need for adjuvant radiotherapy after neoadjuvant chemotherapy (NACT) and radical surgery in locally advanced cervical cancer patients. A retrospective series of cervical cancer patients with International Federation of Gynecology and Obstetrics (FIGO) stages IB2-IIB treated with NACT followed by radical surgery was analyzed. Clinical predictors of persistence of intermediate- and/or high-risk factors at final pathological analysis were investigated. Statistical analysis was performed using univariate and multivariate analysis and using a model based on artificial intelligence known as artificial neuronal network (ANN) analysis. Overall, 101 patients were available for the analyses. Fifty-two (51 %) patients were considered at high risk secondary to parametrial, resection margin and/or lymph node involvement. When disease was confined to the cervix, four (4 %) patients were considered at intermediate risk. At univariate analysis, FIGO grade 3, stage IIB disease at diagnosis and the presence of enlarged nodes before NACT predicted the presence of intermediate- and/or high-risk factors at final pathological analysis. At multivariate analysis, only FIGO grade 3 and tumor diameter maintained statistical significance. The specificity of ANN models in evaluating predictive variables was slightly superior to conventional multivariable models. FIGO grade, stage, tumor diameter, and histology are associated with persistence of pathological intermediate- and/or high-risk factors after NACT and radical surgery. This information is useful in counseling patients at the time of treatment planning with regard to the probability of being subjected to pelvic radiotherapy after completion of the initially planned treatment.
Piazza, Matthew; Sharma, Nikhil; Osiemo, Benjamin; McClintock, Scott; Missimer, Emily; Gardiner, Diana; Maloney, Eileen; Callahan, Danielle; Smith, J Lachlan; Welch, William; Schuster, James; Grady, M Sean; Malhotra, Neil R
2018-05-21
Bundled care payments are increasingly being explored for neurosurgical interventions. In this setting, skilled nursing facility (SNF) is less desirable from a cost perspective than discharge to home, underscoring the need for better preoperative prediction of postoperative disposition. To assess the capability of the Risk Assessment and Prediction Tool (RAPT) and other preoperative variables to determine expected disposition prior to surgery in a heterogeneous neurosurgical cohort, through observational study. Patients aged 50 yr or more undergoing elective neurosurgery were enrolled from June 2016 to February 2017 (n = 623). Logistic regression was used to identify preoperative characteristics predictive of discharge disposition. Results from multivariate analysis were used to create novel grading scales for the prediction of discharge disposition that were subsequently compared to the RAPT Score using Receiver Operating Characteristic analysis. Higher RAPT Score significantly predicted home disposition (P < .001). Age 65 and greater, dichotomized RAPT walk score, and spinal surgery below L2 were independent predictors of SNF discharge in multivariate analysis. A grading scale utilizing these variables had superior discriminatory power between SNF and home/rehab discharge when compared with RAPT score alone (P = .004). Our analysis identified age, lower lumbar/lumbosacral surgery, and RAPT walk score as independent predictors of discharge to SNF, and demonstrated superior predictive power compared with the total RAPT Score when combined in a novel grading scale. These tools may identify patients who may benefit from expedited discharge to subacute care facilities and decrease inpatient hospital resource utilization following surgery.
Exavery, Amon; Kanté, Almamy Malick; Njozi, Mustafa; Tani, Kassimu; Doctor, Henry V; Hingora, Ahmed; Phillips, James F
2014-08-08
While unintended pregnancies pose a serious threat to the health and well-being of families globally, characteristics of Tanzanian women who conceive unintentionally are rarely documented. This analysis identifies factors associated with unintended pregnancies-both mistimed and unwanted-in three rural districts of Tanzania. A cross-sectional survey of 2,183 random households was conducted in three Tanzanian districts of Rufiji, Kilombero, and Ulanga in 2011 to assess women's health behavior and service utilization patterns. These households produced 3,127 women age 15+ years from which 2,199 gravid women aged 15-49 were selected for the current analysis. Unintended pregnancies were identified as either mistimed (wanted later) or unwanted (not wanted at all). Correlates of mistimed, and unwanted pregnancies were identified through Chi-squared tests to assess associations and multinomial logistic regression for multivariate analysis. Mean age of the participants was 32.1 years. While 54.1% of the participants reported that their most recent pregnancy was intended, 32.5% indicated their most recent pregnancy as mistimed and 13.4% as unwanted. Multivariate analysis revealed that young age (<20 years), and single marital status were significant predictors of both mistimed and unwanted pregnancies. Lack of inter-partner communication about family planning increased the risk of mistimed pregnancy significantly, and multi-gravidity was shown to significantly increase the risk of unwanted pregnancy. About one half of women in Rufiji, Kilombero, and Ulanga districts of Tanzania conceive unintentionally. Women, especially the most vulnerable should be empowered to avoid pregnancy at their own will and discretion.
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
Ali, Niloufer S; Ali, Farzana N; Khuwaja, Ali K; Nanji, Kashmira
2014-08-01
OBJECTIVES. To assess the proportion of women subjected to intimate partner violence and the associated factors, and to identify the attitudes of women towards the use of violence by their husbands. DESIGN. Cross-sectional study. SETTING. Family practice clinics at a teaching hospital in Karachi, Pakistan. PARTICIPANTS. A total of 520 women aged between 16 and 60 years were consecutively approached to participate in the study and interviewed by trained data collectors. Overall, 401 completed questionnaires were available for analysis. Multivariate logistic regression analysis was used to identify the association of various factors of interest. RESULTS. In all, 35% of the women reported being physically abused by their husbands in the last 12 months. Multivariate analysis showed that experiences of violence were independently associated with women's illiteracy (adjusted odds ratio=5.9; 95% confidence interval, 1.8-19.6), husband's illiteracy (3.9; 1.4-10.7), smoking habit of husbands (3.3; 1.9-5.8), and substance use (3.1; 1.7-5.7). CONCLUSION. It is imperative that intimate partner violence be considered a major public health concern. It can be prevented through comprehensive, multifaceted, and integrated approaches. The role of education is greatly emphasised in changing the perspectives of individuals and societies against intimate partner violence.
Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana
2013-06-01
This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.
Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael
2018-03-27
Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rades, Dirk, E-mail: Rades.Dirk@gmx.net; Setter, Cornelia; Dahl, Olav
2012-01-01
Purpose: The prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients with non-small-cell lung cancer (NSCLC) is unclear. The present study investigated the effect of tumor cell expression of FGF-2 on the outcome of 60 patients irradiated for Stage II-III NSCLC. Methods and Materials: The effect of FGF-2 expression and 13 additional factors on locoregional control (LRC), metastasis-free survival (MFS), and overall survival (OS) were retrospectively evaluated. These additional factors included age, gender, Karnofsky performance status, histologic type, histologic grade, T and N category, American Joint Committee on Cancer stage, surgery, chemotherapy, pack-years,more » smoking during radiotherapy, and hemoglobin during radiotherapy. Locoregional failure was identified by endoscopy or computed tomography. Univariate analyses were performed with the Kaplan-Meier method and the Wilcoxon test and multivariate analyses with the Cox proportional hazard model. Results: On univariate analysis, improved LRC was associated with surgery (p = .017), greater hemoglobin levels (p = .036), and FGF-2 negativity (p <.001). On multivariate analysis of LRC, surgery (relative risk [RR], 2.44; p = .037), and FGF-2 expression (RR, 5.06; p <.001) maintained significance. On univariate analysis, improved MFS was associated with squamous cell carcinoma (p = .020), greater hemoglobin levels (p = .007), and FGF-2 negativity (p = .001). On multivariate analysis of MFS, the hemoglobin levels (RR, 2.65; p = .019) and FGF-2 expression (RR, 3.05; p = .004) were significant. On univariate analysis, improved OS was associated with a lower N category (p = .048), greater hemoglobin levels (p <.001), and FGF-2 negativity (p <.001). On multivariate analysis of OS, greater hemoglobin levels (RR, 4.62; p = .002) and FGF-2 expression (RR, 3.25; p = .002) maintained significance. Conclusions: Tumor cell expression of FGF-2 appeared to be an independent negative predictor of LRC, MFS, and OS.« less
1H NMR Metabolomics Study of Spleen from C57BL/6 Mice Exposed to Gamma Radiation
Xiao, X; Hu, M; Liu, M; Hu, JZ
2016-01-01
Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize to constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. These significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation. PMID:27019763
1H NMR metabolomics study of spleen from C57BL/6 mice exposed to gamma radiation
Xiao, Xiongjie; Hu, M.; Liu, M.; ...
2016-01-27
Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize tomore » constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. As a result, these significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation.« less
Sarker, Swapan Chandra; Parvin, Mst Sonia; Rahman, A K M Anisur; Islam, Md Taohidul
2013-06-01
The purpose of the study was to identify the potential risk factors for subclinical mastitis (SCM) in lactating dairy cows in Bangladesh. A cross-sectional study was carried out on randomly selected 212 smallholder dairy farms of Sadar upazilas of Rangpur, Mymensingh, and Satkhira districts of Bangladesh during January to October 2011. The direct interview using a structured questionnaire and physical examination of the cows were done to collect data on 15 variables. Milk samples collected from study cows were subjected to California Mastitis Test (CMT). The diagnosis of SCM was based on the results of CMT and physical examination of udder and milk. The bivariable followed by multivariable analysis was done using SPSS 17.0. Of the total cows examined, 20.2 % had subclinical mastitis. In bivariable analysis, eight risk factors were identified. However, in the final model of multivariable analysis, four potential risk factors were identified. These were history of previous clinical mastitis (odds ratio (OR) 10.51, p<0.001), pendulous type of udder (OR 2.26, p=0.008), no grass feeding (OR 1.84, p=0.039), and body condition score (BCS) 2.5 or less (OR 7.25, p=0.054). Four different factors were significantly associated with the occurrence of subclinical mastitis, which need to be considered in the control of the disease. However, particular emphasis should be given on grass feeding and BCS because these traits can be modified or improved to allow prevention of SCM.
Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun
2018-03-01
Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, B. P.; Mew, D. A.; DeHope, A.
Attribution of the origin of an illicit drug relies on identification of compounds indicative of its clandestine production and is a key component of many modern forensic investigations. The results of these studies can yield detailed information on method of manufacture, starting material source, and final product - all critical forensic evidence. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods, all previously published fentanyl synthetic routes or hybrid versions thereof, were studied in an effort to identify and classify route-specific signatures. 160 distinct compounds and inorganicmore » species were identified using gas and liquid chromatographies combined with mass spectrometric methods (GC-MS and LCMS/ MS-TOF) in conjunction with inductively coupled plasma mass spectrometry (ICPMS). The complexity of the resultant data matrix urged the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 87 route-specific CAS were classified and a statistical model capable of predicting the method of fentanyl synthesis was validated and tested against CAS profiles from crude fentanyl products deposited and later extracted from two operationally relevant surfaces: stainless steel and vinyl tile. This work provides the most detailed fentanyl CAS investigation to date by using orthogonal mass spectral data to identify CAS of forensic significance for illicit drug detection, profiling, and attribution.« less
A survey of variable selection methods in two Chinese epidemiology journals
2010-01-01
Background Although much has been written on developing better procedures for variable selection, there is little research on how it is practiced in actual studies. This review surveys the variable selection methods reported in two high-ranking Chinese epidemiology journals. Methods Articles published in 2004, 2006, and 2008 in the Chinese Journal of Epidemiology and the Chinese Journal of Preventive Medicine were reviewed. Five categories of methods were identified whereby variables were selected using: A - bivariate analyses; B - multivariable analysis; e.g. stepwise or individual significance testing of model coefficients; C - first bivariate analyses, followed by multivariable analysis; D - bivariate analyses or multivariable analysis; and E - other criteria like prior knowledge or personal judgment. Results Among the 287 articles that reported using variable selection methods, 6%, 26%, 30%, 21%, and 17% were in categories A through E, respectively. One hundred sixty-three studies selected variables using bivariate analyses, 80% (130/163) via multiple significance testing at the 5% alpha-level. Of the 219 multivariable analyses, 97 (44%) used stepwise procedures, 89 (41%) tested individual regression coefficients, but 33 (15%) did not mention how variables were selected. Sixty percent (58/97) of the stepwise routines also did not specify the algorithm and/or significance levels. Conclusions The variable selection methods reported in the two journals were limited in variety, and details were often missing. Many studies still relied on problematic techniques like stepwise procedures and/or multiple testing of bivariate associations at the 0.05 alpha-level. These deficiencies should be rectified to safeguard the scientific validity of articles published in Chinese epidemiology journals. PMID:20920252
Li, Wen-Dong; Yu, Hui-Ying; Qian, Ai-Min; Rong, Jian-Jie; Zhang, Ye-Qing; Li, Xiao-Qiang
2017-03-01
To explore the risk factors for recurrence of inferior vena cava (IVC)-type Budd-Chiari syndrome (BCS) after stenting and evaluate the feasibility and primary outcomes of endovascular therapies for recurrent BCS. A retrospective analysis of 219 patients was performed to identify risk factors for recurrence. The images of the recurrent patients during follow-up duration and interventional surgery were also reviewed to find the possible reasons of recurrence. The outcome of endovascular therapies for recurrent BCS was evaluated by Kaplan-Meier analysis. Among the 219 patients, 172 patients with primary IVC-type BCS underwent stenting and 28 patients experienced recurrence. Multivariate analysis identified age, Child-Pugh score, MELD and total bilirubin as independent recurrent indicators. Possible causes of recurrence include thrombosis in the stent, re-obstruction in or above the stent, and stent-related hepatic vein obstruction. Twenty-five patients with recurrent BCS underwent endovascular therapies with a few complications and achieved a high level of short- and mid-term patency. Age, total bilirubin and severity of liver function are the main risk factors for BCS recurrence. These risks might contribute to thrombosis or subsequent fibrous obstruction. Endovascular therapies are effective and safe management options that yield positive outcomes for recurrent BCS. • Risk factors for recurrent Budd-Chiari syndrome were identified by multivariate analysis. • Causes of recurrent Budd-Chiari syndrome were investigated by assessing radiological images. • There is a correlation between risk factors and causes of recurrence. • Endovascular therapies for recurrent Budd-Chiari syndrome are effective and safe.
Deconstructing multivariate decoding for the study of brain function.
Hebart, Martin N; Baker, Chris I
2017-08-04
Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.
Multivariate methods to visualise colour-space and colour discrimination data.
Hastings, Gareth D; Rubin, Alan
2015-01-01
Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study of colour. Many additional studies using these methods along with the JND and other procedures have been identified and will be reported in future publications. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Evaluation of drinking quality of groundwater through multivariate techniques in urban area.
Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D
2010-07-01
Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.
[Prevalence and determinants of exclusive breastfeeding in the city of Serrana, São Paulo, Brazil].
Queluz, Mariângela Carletti; Pereira, Maria José Bistafa; dos Santos, Claudia Benedita; Leite, Adriana Moraes; Ricco, Rubens Garcia
2012-06-01
The objective of this cross-sectional and quantitative study was to identify the prevalence and determinants of exclusive breastfeeding among infants less than six months of age in the city of Serrana, Sao Paulo, Brazil in 2009. A validated semi-structured questionnaire was administered to the guardians of the children less than six months of age who attended the second phase of a Brazilian vaccination campaign against polio. Univariate and multivariate analysis presented in odds ratios and confidence intervals was accomplished. Of the total of 275 infant participants, only 29.8% were exclusively breastfed. Univariate analysis revealed that mothers who work outside the home without maternity leave, mothers who did not work outside the home, adolescent mothers, and the use of pacifiers have a greater chance of interrupting exclusive breastfeeding. In the multivariate analysis, mothers who work outside the home without maternity leave are three times more likely to wean their children early. Results provide suggestions for the redirection and planning of interventions targeting breastfeeding.
Study of archaeological coins of different dynasties using libs coupled with multivariate analysis
NASA Astrophysics Data System (ADS)
Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.
Taylor, Vivien F; Longerich, Henry P; Greenough, John D
2003-02-12
Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.
Shen, Jian Guo; Cheong, Jae Ho; Hyung, Woo Jin; Kim, Junuk; Choi, Seung Ho; Noh, Sung Hoon
2006-09-01
To investigate the interactions between splenectomy and perioperative transfusion in gastric cancer patients. Medical records of 449 gastric cancer patients who had undergone total gastrectomies for curative intent between 1991 and 1995 were reviewed. The influence of splenectomy on tumor recurrence and survival both in the transfused and nontransfused patients were evaluated by univariate and multivariate analysis. The recurrence rate in the splenectomy group was 48.1% as compared with 22.6% in the spleen-preserved group among transfused patients (P=.001); it was 40.7% compared with 26.5% among nontransfused patients (P=.086). There was no significant difference in the mean survival between the splenectomy group and the spleen-preserved group in a subgroup analysis by stage. Multivariate analysis identified splenectomy as an independent risk factor for recurrence but not as a predictor for survival among transfused patients. Splenectomy does not appear to abrogate the adverse effect of perioperative transfusion on prognosis in gastric cancer patients. Moreover, it may increase postoperative recurrence in transfused patients.
Bourne, Roger; Himmelreich, Uwe; Sharma, Ansuiya; Mountford, Carolyn; Sorrell, Tania
2001-01-01
A new fingerprinting technique with the potential for rapid identification of bacteria was developed by combining proton magnetic resonance spectroscopy (1H MRS) with multivariate statistical analysis. This resulted in an objective identification strategy for common clinical isolates belonging to the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, and the Streptococcus milleri group. Duplicate cultures of 104 different isolates were examined one or more times using 1H MRS. A total of 312 cultures were examined. An optimized classifier was developed using a bootstrapping process and a seven-group linear discriminant analysis to provide objective classification of the spectra. Identification of isolates was based on consistent high-probability classification of spectra from duplicate cultures and achieved 92% agreement with conventional methods of identification. Fewer than 1% of isolates were identified incorrectly. Identification of the remaining 7% of isolates was defined as indeterminate. PMID:11474013
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Montes, Alejandro; Pazos, Gustavo
2016-02-01
Identifying children at risk of failing the National Developmental Screening Test by combining prevalences of children suspected of having inapparent developmental disorders (IDDs) and associated risk factors (RFs) would allow to save resources. 1. To estimate the prevalence of children suspected of having IDDs. 2. To identify associated RFs. 3. To assess three methods developed based on observed RFs and propose a pre-screening procedure. The National Developmental Screening Test was administered to 60 randomly selected children aged between 2 and 4 years old from a socioeconomically disadvantaged area from Puerto Madryn. Twenty-four biological and socioenvironmental outcome measures were assessed in order to identify potential RFs using bivariate and multivariate analyses. The likelihood of failing the screening test was estimated as follows: 1. a multivariate logistic regression model was developed; 2. a relationship was established between the number of RFs present in each child and the percentage of children who failed the test; 3. these two methods were combined. The prevalence of children suspected of having IDDs was 55.0% (95% confidence interval: 42.4%-67.6%). Six RFs were initially identified using the bivariate approach. Three of them (maternal education, number of health checkups and Z scores for height-for-age, and maternal age) were included in the logistic regression model, which has a greater explanatory power. The third method included in the assessment showed greater sensitivity and specificity (85% and 79%, respectively). The estimated prevalence of children suspected of having IDDs was four times higher than the national standards. Seven RFs were identified. Combining the analysis of risk factor accumulation and a multivariate model provides a firm basis for developing a sensitive, specific and practical pre-screening procedure for socioeconomically disadvantaged areas. Sociedad Argentina de Pediatría.
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Sutton, Elie; Miyagaki, Hiromichi; Bellini, Geoffrey; Shantha Kumara, H M C; Yan, Xiaohong; Howe, Brett; Feigel, Amanda; Whelan, Richard L
2017-01-01
Superficial surgical site infection (sSSI) is one of the most common complications after colorectal resection. The goal of this study was to determine the comorbidities and operative characteristics that place patients at risk for sSSI in patients who underwent rectal cancer resection. The American College of Surgeons National Surgical Quality Improvement Program database was queried (via diagnosis and Current Procedural Terminology codes) for patients with rectal cancer who underwent elective resection between 2005 and 2012. Patients for whom data concerning 27 demographic factors, comorbidities, and operative characteristics were available were eligible. A univariate and multivariate analysis was performed to identify possible risk factors for sSSI. A total of 8880 patients met the entry criteria and were included. sSSIs were diagnosed in 861 (9.7%) patients. Univariate analysis found 14 patients statistically significant risk factors for sSSI. Multivariate analysis revealed the following risk factors: male gender, body mass index (BMI) >30, current smoking, history of chronic obstructive pulmonary disease (COPD), American Society of Anesthesiologists III/IV, abdominoperineal resection (APR), stoma formation, open surgery (versus laparoscopic), and operative time >217 min. The greatest difference in sSSI rates was noted in patients with COPD (18.9 versus 9.5%). Of note, 54.2% of sSSIs was noted after hospital discharge. With regard to the timing of presentation, univariate analysis revealed a statistically significant delay in sSSI presentation in patients with the following factors and/or characteristics: BMI <30, previous radiation therapy (RT), APR, minimally invasive surgery, and stoma formation. Multivariate analysis suggested that only laparoscopic surgery (versus open) and preoperative RT were risk factors for delay. Rectal cancer resections are associated with a high incidence of sSSIs, over half of which are noted after discharge. Nine patient and operative characteristics, including smoking, BMI, COPD, APR, and open surgery were found to be significant risk factors for SSI on multivariate analysis. Furthermore, sSSI presentation in patients who had laparoscopic surgery and those who had preoperative RT is significantly delayed for unclear reasons. Copyright © 2016 Elsevier Inc. All rights reserved.
Hwang, Eugene; Shin, Ju Hyun; Lim, Jae Sung; Song, Ki Hak; Sul, Chong Koo; Na, Yong Gil
2012-07-01
This study aims to identify independent risk factors for treatment failure of tension-free vaginal tape TVT-Secur (TVT-S) compared to that of the well-established transobturator tape. Of a total of 175 consecutive patients with urodynamically confirmed stress urinary incontinence (SUI) identified between July 2007 and March 2010, 89 patients underwent TVT-S, and 86 underwent TOT. Cure was defined using the Urogenital Distress Inventory as no urinary leakage during physical activity, coughing, or sneezing as reported by patients during a telephone survey. To identify predictors of treatment failure, multivariable logistic regression models were used, and odds ratios (ORs) were calculated using variables identified during univariate analysis. There were more patients with cystocele ≥ grade 2 in the TVT-S group (p = 0.031); otherwise the groups were well matched. After a median follow-up of 32 months (range, 12-44 months), the overall cure rate was 80.6%; it was 70.8% for those treated with TVT-S and 90.7% for those treated with TOT (p = 0.001). In a multivariate model, previous incontinence surgery (OR 27.1, p = 0.005) and a cystocele ≥ grade 2 (OR 3.0, p = 0.020) were independent risk factors influencing the outcome of TVT-S procedures. For the TOT procedures, detrusor overactivity was an independent risk factor in a multivariate model (OR 8.6, p = 0.033). TVT-S could be performed for selected patients, but conventional TOT procedures are still superior to the novel TVT-S device.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung
2014-05-01
The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.
Smith, Tyler C; Smith, Besa; Corbeil, Thomas E; Riddle, James R; Ryan, Margaret A K
2004-08-01
There is much concern over the potential for short- and long-term adverse mental health effects caused by the terrorist attacks on September 11, 2001. This analysis used data from the Millennium Cohort Study to identify subgroups of US military members who enrolled in the cohort and reported their mental health status before the traumatic events of September 11 and soon after September 11. While adjusting for confounding, multivariable logistic regression, analysis of variance, and multivariate ordinal, or polychotomous logistic regression were used to compare 18 self-reported mental health measures in US military members who enrolled in the cohort before September 11, 2001 with those military personnel who enrolled after September 11, 2001. In contrast to studies of other populations, military respondents reported fewer mental health problems in the months immediately after September 11, 2001.
NASA Astrophysics Data System (ADS)
Yamasaki, Hideki; Morita, Shigeaki
2018-05-01
Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4‧-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the Nsbnd H and Osbnd H stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy.
Yamasaki, Hideki; Morita, Shigeaki
2018-05-15
Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4'-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the NH and OH stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Mallette, Jennifer R; Casale, John F; Jordan, James; Morello, David R; Beyer, Paul M
2016-03-23
Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses ((2)H and (18)O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.
NASA Astrophysics Data System (ADS)
Mallette, Jennifer R.; Casale, John F.; Jordan, James; Morello, David R.; Beyer, Paul M.
2016-03-01
Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.
Horsch, Salome; Kopczynski, Dominik; Kuthe, Elias; Baumbach, Jörg Ingo; Rahmann, Sven
2017-01-01
Motivation Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column—ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process. Method We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios. Results The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology. PMID:28910313
Analysis of Exhaled Breath Volatile Organic Compounds in Inflammatory Bowel Disease: A Pilot Study.
Hicks, Lucy C; Huang, Juzheng; Kumar, Sacheen; Powles, Sam T; Orchard, Timothy R; Hanna, George B; Williams, Horace R T
2015-09-01
Distinguishing between the inflammatory bowel diseases [IBD], Crohn's disease [CD] and ulcerative colitis [UC], is important for determining management and prognosis. Selected ion flow tube mass spectrometry [SIFT-MS] may be used to analyse volatile organic compounds [VOCs] in exhaled breath: these may be altered in disease states, and distinguishing breath VOC profiles can be identified. The aim of this pilot study was to identify, quantify, and analyse VOCs present in the breath of IBD patients and controls, potentially providing insights into disease pathogenesis and complementing current diagnostic algorithms. SIFT-MS breath profiling of 56 individuals [20 UC, 18 CD, and 18 healthy controls] was undertaken. Multivariate analysis included principal components analysis and partial least squares discriminant analysis with orthogonal signal correction [OSC-PLS-DA]. Receiver operating characteristic [ROC] analysis was performed for each comparative analysis using statistically significant VOCs. OSC-PLS-DA modelling was able to distinguish both CD and UC from healthy controls and from one other with good sensitivity and specificity. ROC analysis using combinations of statistically significant VOCs [dimethyl sulphide, hydrogen sulphide, hydrogen cyanide, ammonia, butanal, and nonanal] gave integrated areas under the curve of 0.86 [CD vs healthy controls], 0.74 [UC vs healthy controls], and 0.83 [CD vs UC]. Exhaled breath VOC profiling was able to distinguish IBD patients from controls, as well as to separate UC from CD, using both multivariate and univariate statistical techniques. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka
2018-05-05
To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Stegmaier, Petra; Drendel, Vanessa; Mo, Xiaokui; Ling, Stella; Fabian, Denise; Manring, Isabel; Jilg, Cordula A.; Schultze-Seemann, Wolfgang; McNulty, Maureen; Zynger, Debra L.; Martin, Douglas; White, Julia; Werner, Martin; Grosu, Anca L.; Chakravarti, Arnab
2015-01-01
Purpose To develop a microRNA (miRNA)-based predictive model for prostate cancer patients of 1) time to biochemical recurrence after radical prostatectomy and 2) biochemical recurrence after salvage radiation therapy following documented biochemical disease progression post-radical prostatectomy. Methods Forty three patients who had undergone salvage radiation therapy following biochemical failure after radical prostatectomy with greater than 4 years of follow-up data were identified. Formalin-fixed, paraffin-embedded tissue blocks were collected for all patients and total RNA was isolated from 1mm cores enriched for tumor (>70%). Eight hundred miRNAs were analyzed simultaneously using the nCounter human miRNA v2 assay (NanoString Technologies; Seattle, WA). Univariate and multivariate Cox proportion hazards regression models as well as receiver operating characteristics were used to identify statistically significant miRNAs that were predictive of biochemical recurrence. Results Eighty eight miRNAs were identified to be significantly (p<0.05) associated with biochemical failure post-prostatectomy by multivariate analysis and clustered into two groups that correlated with early (≤ 36 months) versus late recurrence (>36 months). Nine miRNAs were identified to be significantly (p<0.05) associated by multivariate analysis with biochemical failure after salvage radiation therapy. A new predictive model for biochemical recurrence after salvage radiation therapy was developed; this model consisted of miR-4516 and miR-601 together with, Gleason score, and lymph node status. The area under the ROC curve (AUC) was improved to 0.83 compared to that of 0.66 for Gleason score and lymph node status alone. Conclusion miRNA signatures can distinguish patients who fail soon after radical prostatectomy versus late failures, giving insight into which patients may need adjuvant therapy. Notably, two novel miRNAs (miR-4516 and miR-601) were identified that significantly improve prediction of biochemical failure post-salvage radiation therapy compared to clinico-histopathological factors, supporting the use of miRNAs within clinically used predictive models. Both findings warrant further validation studies. PMID:25760964
Spontaneous passage of ureteral stones in patients with indwelling ureteral stents.
Baumgarten, Lee; Desai, Anuj; Shipman, Scott; Eun, Daniel D; Pontari, Michel A; Mydlo, Jack H; Reese, Adam C
2017-10-01
To determine rates of spontaneous ureteral stone passage in patients with indwelling ureteral stents, and to identify factors associated with the spontaneous passage of stones while a ureteral stent is in place. From our institutional database, we identified patients who underwent ureteroscopic procedures for stone disease between January 1, 2013 and March 1, 2015. We compared the rates of spontaneous stone passage between patients who had previously undergone ureteral stent placement and those who had not. In patients with indwelling stents, multivariate logistic regression was performed to identify factors associated with spontaneous stone passage. A total of 194 patients met inclusion criteria. Spontaneous stone passage rates were similar in the stented (17/119, 14%) and non-stented (15/75, 20%) groups (p = 0.30). In bivariate analysis of stented patients, smaller stone size (p < 0.001) and distal stone location (p = 0.01) were significantly associated with spontaneous stone passage. Multivariate logistic regression analysis of stented patients showed that only small stone size was significantly associated with the likelihood of stone passage (p = 0.01), whereas stent duration, stone location, and stone laterality were not. A small, but clinically significant percentage of ureteral stones pass spontaneously with a ureteral stent in place. Small stone size is associated with an increased likelihood of spontaneous passage in patients with indwelling stents. These findings may help to identify patients who can potentially avoid additional surgical procedures for definitive stone removal after ureteral stent placement.
Goldrick, Stephen; Holmes, William; Bond, Nicholas J.; Lewis, Gareth; Kuiper, Marcel; Turner, Richard
2017-01-01
ABSTRACT Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody–peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high‐throughput (HT) micro‐bioreactor system (AmbrTM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on‐line and off‐line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale‐up. Biotechnol. Bioeng. 2017;114: 2222–2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28500668
Montoya, T Ignacio; Leclaire, Edgar L; Oakley, Susan H; Crane, Andrea K; Mcpencow, Alexandra; Cichowski, Sara; Rahn, David D
2014-07-01
The objective of this study was determine the frequency of symptomatic perioperative venous thromboembolism (VTE) and risk factor(s) associated with VTE occurrence in women undergoing elective pelvic reconstructive surgery using only intermittent pneumatic compression (IPC) for VTE prophylaxis. A multi-center case-cohort retrospective review was conducted at six clinical sites over a 66-month period. All sites utilize IPC as standard VTE prophylaxis for urogynecological surgery. VTE cases occurring during the same hospitalization and up to 6 weeks postoperatively were identified by ICD9 code query. Four controls were temporally matched to each case. Information collected included demographics, medical history, route of surgery, operative time, and intraoperative characteristics. Univariate and multivariate backward stepwise logistic regression analyses were performed to identify potential risk factors for VTE. Symptomatic perioperative VTE was diagnosed in 27 subjects from a cohort of 10,627 women who underwent elective urogynecological surgery (0.25 %). Univariate analysis identified surgical route (laparotomy vs others), type of surgery ("major" vs "minor"), history of gynecological cancer, surgery time, and patient age as risk factors for VTE (P < 0.05). Multivariate analysis identified increased frequency of VTE with laparotomy, age ≥ 70, and surgery duration ≥ 5 h. In our study cohort, the frequency of symptomatic perioperative VTE was low. Laparotomy, age ≥ 70 years, and surgery duration ≥ 5 h were associated with VTE occurrence.
Thomassen, Yvonne E; van Sprang, Eric N M; van der Pol, Leo A; Bakker, Wilfried A M
2010-09-01
Historical manufacturing data can potentially harbor a wealth of information for process optimization and enhancement of efficiency and robustness. To extract useful data multivariate data analysis (MVDA) using projection methods is often applied. In this contribution, the results obtained from applying MVDA on data from inactivated polio vaccine (IPV) production runs are described. Data from over 50 batches at two different production scales (700-L and 1,500-L) were available. The explorative analysis performed on single unit operations indicated consistent manufacturing. Known outliers (e.g., rejected batches) were identified using principal component analysis (PCA). The source of operational variation was pinpointed to variation of input such as media. Other relevant process parameters were in control and, using this manufacturing data, could not be correlated to product quality attributes. The gained knowledge of the IPV production process, not only from the MVDA, but also from digitalizing the available historical data, has proven to be useful for troubleshooting, understanding limitations of available data and seeing the opportunity for improvements. 2010 Wiley Periodicals, Inc.
Detecting spatial regimes in ecosystems | Science Inventory ...
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning
Spalletta, Gianfranco; Bria, Pietro; Caltagirone, Carlo
2007-01-01
Patients who use illicit drugs and suffer from comorbid psychiatric illnesses have worse outcomes than drug users without a dual diagnosis. For this reason we aimed at identifying predictors of cannabis use severity using a multivariate model in which different clinical and socio-demographic variables were included. We administered the Temperament and Character Inventory, SCID-P, SCID-II, the Beck Depression Inventory and the State-Trait Anxiety Inventory. Of the 84 subjects included, 25 were occasional users, 37 were abusers, and 22 were dependent on cannabis. A stepwise multiple regression analysis identified increased self-transcendence scores and state anxiety severity as the only predictors of a increased cannabis use severity (F = 6.635; d.f. = 2, 81; p = 0.0021). In particular, in a further multivariate analysis of variance, the transpersonal identification issue of self-transcendence was associated significantly (F = 4.267; d.f. = 2, 81; p = 0.017) with greater severity of cannabis use. Character dimension of self-transcendence and symptoms of state anxiety should be taken into consideration during the assessment procedure of patients with cannabis use as they may be helpful in the discrimination of cannabis use severity.
Machado, Daniella Borges; Brizon, Valéria Silva Cândido; Ambrosano, Gláucia Maria Bovi; Madureira, Davidson Fróis; Gomes, Viviane Elisângela; de Oliveira, Ana Cristina Borges
2014-01-01
INTRODUCTION: The aim of this study was to identify factors associated with the prevalence of anterior open bite among five-year-old Brazilian children. METHODS: A cross-sectional study was undertaken using data from the National Survey of Oral Health (SB Brazil 2010). The outcome variable was anterior open bite classified as present or absent. The independent variables were classified by individual, sociodemographic and clinical factors. Data were analyzed through bivariate and multivariate analysis using SPSS statistical software (version 18.0) with a 95% level of significance. RESULTS: The prevalence of anterior open bite was 12.1%. Multivariate analysis showed that preschool children living in Southern Brazil had an increased chance of 1.8 more times of having anterior open bite (CI 95%: 1.16 - 3.02). Children identified with alterations in overjet had 14.6 times greater chances of having anterior open bite (CI 95%: 8.98 - 24.03). CONCLUSION: There was a significant association between anterior open bite and the region of Brazil where the children lived, the presence of altered overjet and the prevalence of posterior crossbite. PMID:25715723
Evolution of the Max and Mlx networks in animals.
McFerrin, Lisa G; Atchley, William R
2011-01-01
Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.
Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi
2012-06-01
Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis alone.
Domingo-Domènech, Eva; Benavente, Yolanda; González-Barca, Eva; Montalban, Carlos; Gumà, Josep; Bosch, Ramón; Wang, Sophia S; Lan, Qing; Whitby, Denise; Fernández de Sevilla, Alberto; Rothman, Nathaniel; de Sanjosé, Sílvia
2007-11-01
Single-nucleotide polymorphisms (SNP) in interleukin-10 (IL-10) genes can influence immune responses, which may affect the outcome of patients with lymphoid neoplasms. The aim of this study was to explore the association between polymorphisms of IL-10-(1082A>G) and IL-10-(3575T>A) with the overall survival in patients with lymphoid neoplasms. We analyzed two IL-10 SNP (-1082 and -3575) in 472 consecutive cases with lymphoid neoplasms. Genotypes were tested for association with overall survival and classical prognostic factors by multivariate analysis. Haplotype analysis was carried out using the haplostats package implemented in R software. The implications for survival of patients with lymphoma were evaluated using multivariate analysis. Lymphoma patients with the IL-10-(3575T>A) genotype had a better overall survival (p= 0.002), as did the subgroup with non-Hodgkin's lymphoma (NHL) (p=0.05). Patients with the IL10(-1082GG) genotype had a better median overall survival (p=0.05). When both genotypes were included in a multivariate analysis, IL-10(-3575AA) genotype was the only independent prognostic factor for survival (HR=0.20, 95%CI 0.05-0.92). Patients with the IL-10(-1082) and (-3575) G-A/G-A diplotype had a longer overall survival (p=0.003) and this combination appeared to be an independent prognostic factor for survival (HR:0.26; 95%CI 0.08-0.83). The IL-10(-3575A/A) genotype was identified as a marker of favorable survival. Because the IL-10(-1082) and (-3575) G-A/G-A diplotype was also identified as an indicator of longer survival, we cannot exclude the potential additive role of the IL-10(-1082GG) genotype. These results need to be replicated in larger series and examined in different NHL subtypes.
Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E
2015-03-01
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls. Copyright © 2014 Elsevier B.V. All rights reserved.
Basques, Bryce A; Golinvaux, Nicholas S; Bohl, Daniel D; Yacob, Alem; Toy, Jason O; Varthi, Arya G; Grauer, Jonathan N
2014-10-15
Retrospective database review. To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. The American College of Surgeons National Surgical Quality Improvement Program database, which includes data from more than 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without the use of an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. A total of 23,670 elective spine procedures were identified, of which 2226 (9.4%) used an operating microscope. The average patient age was 55.1±14.4 years. The average operative time (incision to closure) was 125.7±82.0 minutes.Microscope use was associated with minor increases in preoperative room time (+2.9 min, P=0.013), operative time (+13.2 min, P<0.001), and total room time (+18.6 min, P<0.001) on multivariate analysis.A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and nonmicroscope groups for occurrence of any infection, superficial surgical site infection, deep surgical site infection, organ space infection, or sepsis/septic shock, regardless of surgery type. We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. 3.
Basques, Bryce A.; Golinvaux, Nicholas S.; Bohl, Daniel D.; Yacob, Alem; Toy, Jason O.; Varthi, Arya G.; Grauer, Jonathan N.
2014-01-01
Study Design Retrospective database review. Objective To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Summary of Background Data Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. Methods The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database, which includes data from over 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. Results A total of 23,670 elective spine procedures were identified, of which 2,226 (9.4%) used an operating microscope. The average patient age was 55.1 ± 14.4 years. The average operative time (incision to closure) was 125.7 ± 82.0 minutes. Microscope use was associated with minor increases in preoperative room time (+2.9 minutes, p=0.013), operative time (+13.2 minutes, p<0.001), and total room time (+18.6 minutes, p<0.001) on multivariate analysis. A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and non-microscope groups for occurrence of any infection, superficial surgical site infection (SSI), deep SSI, organ space infection, or sepsis/septic shock, regardless of surgery type. Conclusions We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. PMID:25188600
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Marques, Pedro; Leite, Valeriano; Bugalho, Maria João
2014-01-01
Background Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. The widespread use of neck ultrasound (US) and US-guided fine-needle aspiration cytology is triggering an overdiagnosis of PTC. Objective To evaluate clinical behavior and outcomes of patients with PTCs ≤2 cm, seeking for possible prognostic factors. Methods Clinical records of cases with histological diagnosis of PTC ≤2 cm followed at the Endocrine Department of Instituto Português de Oncologia, Lisbon between 2002 and 2006 were analyzed retrospectively. Results We identified 255 PTCs, 111 were microcarcinomas. Most patients underwent near-total thyroidectomy, with lymph node dissections in 55 cases (21.6%). Radioiodine therapy was administered in 184 patients. At the last evaluation, 38 (14.9%) had evidence of disease. Two deaths were attributed to PTC. Median (±SD) follow-up was 74 (±23) months. Multivariate analysis identified vascular invasion, lymph node and systemic metastases significantly associated with recurrence/persistence of disease. In addition, lymph node involvement was significantly associated with extrathyroidal extension and angioinvasion. Median (±SD) disease-free survival (DFS) was estimated as 106 (±3) months and the 5-year DFS rate was 87.5%. Univariate Cox analysis identified some relevant parameters for DFS, but multivariate regression only identified lymph node and systemic metastases as significant independent factors. The median DFS estimated for lymph node and systemic metastases was 75 and 0 months, respectively. Conclusions In the setting of small PTCs, vascular invasion, extrathyroidal extension and lymph node and/or systemic metastases may confer worse prognosis, perhaps justifying more aggressive therapeutic and follow-up approaches in such cases. PMID:25759803
Predictors of rapid spontaneous resolution of acute subdural hematoma.
Fujimoto, Kenji; Otsuka, Tadahiro; Yoshizato, Kimio; Kuratsu, Jun-ichi
2014-03-01
Acute subdural hematoma (ASDH) usually requires emergency surgical decompression, but rare cases exhibit rapid spontaneous resolution. The aim of this retrospective study was to identify factors predictive of spontaneous ASDH resolution. A total of 366 consecutive patients with ASDH treated between January 2006 and September 2012 were identified in our hospital database. Patients with ASDH clot thickness >10mm in the frontoparietotemporal region and showing a midline shift >10mm on the initial computed tomography (CT) scan were divided into two groups according to subsequent spontaneous resolution. Univariate and multivariate logistic regression analyses were used to identify factors predictive of rapid spontaneous ASDH resolution. Fifty-six ASDH patients met study criteria and 18 demonstrated rapid spontaneous resolution (32%). Majority of these patients were not operated because of poor prognosis/condition and in accordance to family wishes. Univariate analysis revealed significant differences in use of antiplatelet agents before head injury and in the incidence of a low-density band between the hematoma and inner wall of the skull bone on the initial CT. Use of antiplatelet agents before head injury (OR 19.6, 95% CI 1.5-260.1, p=0.02) and the low-density band on CT images (OR 40.3, 95% CI 3.1-520.2, p=0.005) were identified as independent predictive factors by multivariate analysis. Our analysis suggested that use of antiplatelet agents before head injury and a low-density band between the hematoma and inner skull bone on CT images (indicative of cerebrospinal fluid infusion into the subdural space) increase the probability of rapid spontaneous resolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Gu, Xiaobin; Gao, Xianshu; Cui, Ming; Xie, Mu; Ma, Mingwei; Qin, Shangbin; Li, Xiaoying; Qi, Xin; Bai, Yun; Wang, Dian
2018-01-01
Objective This study was aimed to compare survival outcomes in high-risk prostate cancer (PCa) patients receiving external beam radiotherapy (EBRT) or radical prostatectomy (RP). Materials and methods The Surveillance, Epidemiology, and End Results (SEER) database was used to identify PCa patients with high-risk features who received RP alone or EBRT alone from 2004 to 2008. Propensity-score matching (PSM) was performed. Kaplan–Meier survival analysis was used to compare cancer-specific survival (CSS) and overall survival (OS). Multivariate Cox regression analysis was used to identify independent prognostic factors. Results A total of 24,293 patients were identified, 14,460 patients receiving RP and 9833 patients receiving EBRT. Through PSM, 3828 patients were identified in each group. The mean CSS was 128.6 and 126.7 months for RP and EBRT groups, respectively (P<0.001). The subgroup analyses showed that CSS of the RP group was better than that of the EBRT group for patients aged <65 years (P<0.001), White race (P<0.001), and married status (P<0.001). However, there was no significant difference in CSS for patients aged ≥65 years, Black race, other race, and unmarried status. Similar trends were observed for OS. Multivariate analysis showed that EBRT treatment modality, T3–T4 stage, Gleason score 8–10, and prostate-specific antigen >20 ng/mL were significant risk factors for both CSS and OS. Conclusion This study suggested that survival outcomes might be better with RP than EBRT in high-risk PCa patients aged <65 years; however, RP and EBRT provided equivalent survival outcomes in older patients, which argues for primary radiotherapy in this older cohort.
Factors associated with fecal incontinence in women with lower urinary tract symptoms.
Chang, Ting-Chen; Chang, Shiow-Ru; Hsiao, Sheng-Mou; Hsiao, Chin-Fen; Chen, Chi-Hau; Lin, Ho-Hsiung
2013-01-01
The aim of this study was to identify the factors associated with fecal incontinence in female patients with lower urinary tract symptoms. Data regarding clinical and urodynamic parameters and history of fecal incontinence of 1334 women with lower urinary tract symptoms who had previously undergone urodynamic evaluation were collected and subjected to univariate, multivariate, and receiver-operator characteristic curve analysis to identify significant associations between these parameters and fecal incontinence. Multivariate analysis identified age (odds ratio [OR]=1.03, 95% confidence interval [CI]=1.01-1.05, P=0.005), presence of diabetes (OR=2.10, 95%CI=1.22-3.61, P=0.007), presence of urodynamic stress incontinence (OR=1.90, 95%CI=1.24-2.91, P=0.003), pad weight (OR=1.01, 95%CI=1.00-1.01, P=0.04), and detrusor pressure at maximum flow (OR=1.02, 95%CI=1.01-1.03, P=0.003) as independent risk factors for fecal incontinence. Receiver-operator characteristic curve analysis identified age≥55years, detrusor pressure at maximum flow≥35 cmH(2) O, and pad weight≥15g as having positive predictive values of 11.4%, 11.5%, and 12.4%, respectively, thus indicating that they are the most predictive values in concomitant fecal incontinence. Detrusor pressure at maximum flow and pad weight may be associated with fecal incontinence in female patients with lower urinary tract symptoms, but require confirmation as indicators by further study before their use as screening tools. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.
Shim, Heejung; Chasman, Daniel I.; Smith, Joshua D.; Mora, Samia; Ridker, Paul M.; Nickerson, Deborah A.; Krauss, Ronald M.; Stephens, Matthew
2015-01-01
We conducted a genome-wide association analysis of 7 subfractions of low density lipoproteins (LDLs) and 3 subfractions of intermediate density lipoproteins (IDLs) measured by gradient gel electrophoresis, and their response to statin treatment, in 1868 individuals of European ancestry from the Pharmacogenomics and Risk of Cardiovascular Disease study. Our analyses identified four previously-implicated loci (SORT1, APOE, LPA, and CETP) as containing variants that are very strongly associated with lipoprotein subfractions (log10Bayes Factor > 15). Subsequent conditional analyses suggest that three of these (APOE, LPA and CETP) likely harbor multiple independently associated SNPs. Further, while different variants typically showed different characteristic patterns of association with combinations of subfractions, the two SNPs in CETP show strikingly similar patterns - both in our original data and in a replication cohort - consistent with a common underlying molecular mechanism. Notably, the CETP variants are very strongly associated with LDL subfractions, despite showing no association with total LDLs in our study, illustrating the potential value of the more detailed phenotypic measurements. In contrast with these strong subfraction associations, genetic association analysis of subfraction response to statins showed much weaker signals (none exceeding log10Bayes Factor of 6). However, two SNPs (in APOE and LPA) previously-reported to be associated with LDL statin response do show some modest evidence for association in our data, and the subfraction response proles at the LPA SNP are consistent with the LPA association, with response likely being due primarily to resistance of Lp(a) particles to statin therapy. An additional important feature of our analysis is that, unlike most previous analyses of multiple related phenotypes, we analyzed the subfractions jointly, rather than one at a time. Comparisons of our multivariate analyses with standard univariate analyses demonstrate that multivariate analyses can substantially increase power to detect associations. Software implementing our multivariate analysis methods is available at http://stephenslab.uchicago.edu/software.html. PMID:25898129
NASA Astrophysics Data System (ADS)
Guillen, George; Rainey, Gail; Morin, Michelle
2004-04-01
Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.
Factors associated with seasonal influenza vaccination in pregnant women.
Henninger, Michelle L; Irving, Stephanie A; Thompson, Mark; Avalos, Lyndsay Ammon; Ball, Sarah W; Shifflett, Pat; Naleway, Allison L
2015-05-01
This observational study followed a cohort of pregnant women during the 2010-2011 influenza season to determine factors associated with vaccination. Participants were 1105 pregnant women who completed a survey assessing health beliefs related to vaccination upon enrollment and were then followed to determine vaccination status by the end of the 2010-2011 influenza season. We conducted univariate and multivariate analyses to explore factors associated with vaccination status and a factor analysis of survey items to identify health beliefs associated with vaccination. Sixty-three percent (n=701) of the participants were vaccinated. In the univariate analyses, multiple factors were associated with vaccination status, including maternal age, race, marital status, educational level, and gravidity. Factor analysis identified two health belief factors associated with vaccination: participant's positive views (factor 1) and negative views (factor 2) of influenza vaccination. In a multivariate logistic regression model, factor 1 was associated with increased likelihood of vaccination (adjusted odds ratio [aOR]=2.18; 95% confidence interval [CI]=1.72-2.78), whereas factor 2 was associated with decreased likelihood of vaccination (aOR=0.36; 95% CI=0.28-0.46). After controlling for the two health belief factors in multivariate analyses, demographic factors significant in univariate analyses were no longer significant. Women who received a provider recommendation were about three times more likely to be vaccinated (aOR=3.14; 95% CI=1.99-4.96). Pregnant women's health beliefs about vaccination appear to be more important than demographic and maternal factors previously associated with vaccination status. Provider recommendation remains one of the most critical factors influencing vaccination during pregnancy.
Mentorship Programs in Radiation Oncology Residency Training Programs: A Critical Unmet Need
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhami, Gurleen; Gao, Wendy; Gensheimer, Michael F.
Purpose: To conduct a nationwide survey to evaluate the current status of resident mentorship in radiation oncology. Methods and Materials: An anonymous electronic questionnaire was sent to all residents and recent graduates at US Accreditation Council for Graduate Medical Education–accredited radiation oncology residency programs, identified in the member directory of the Association of Residents in Radiation Oncology. Factors predictive of having a mentor and satisfaction with the mentorship experience were identified using univariate and multivariate analyses. Results: The survey response rate was 25%, with 85% of respondents reporting that mentorship plays a critical role in residency training, whereas only 53%more » had a current mentor. Larger programs (≥10 faculty, P=.004; and ≥10 residents, P<.001) were more likely to offer a formal mentorship program, which makes it more likely for residents to have an active mentor (88% vs 44%). Residents in a formal mentoring program reported being more satisfied with the overall mentorship experience (univariate odds ratio 8.77, P<.001; multivariate odds ratio 5, P<.001). On multivariate analysis, women were less likely to be satisfied with the mentorship experience. Conclusions: This is the first survey focusing on the status of residency mentorship in radiation oncology. Our survey highlights the unmet need for mentorship in residency programs.« less
Pariyani, Raghunath; Ismail, Intan Safinar; Ahmad Azam, Amalina; Abas, Faridah; Shaari, Khozirah
2017-09-01
Java tea is a well-known herbal infusion prepared from the leaves of Orthosiphon stamineus (OS). The biological properties of tea are in direct correlation with the primary and secondary metabolite composition, which in turn largely depends on the choice of drying method. Herein, the impact of three commonly used drying methods, i.e. shade, microwave and freeze drying, on the metabolite composition and antioxidant activity of OS leaves was investigated using proton nuclear magnetic resonance ( 1 H NMR) spectroscopy combined with multivariate classification and regression analysis tools. A total of 31 constituents comprising primary and secondary metabolites belonging to the chemical classes of fatty acids, amino acids, sugars, terpenoids and phenolic compounds were identified. Shade-dried leaves were identified to possess the highest concentrations of bioactive secondary metabolites such as chlorogenic acid, caffeic acid, luteolin, orthosiphol and apigenin, followed by microwave-dried samples. Freeze-dried leaves had higher concentrations of choline, amino acids leucine, alanine and glutamine and sugars such as fructose and α-glucose, but contained the lowest levels of secondary metabolites. Metabolite profiling coupled with multivariate analysis identified shade drying as the best method to prepare OS leaves as Java tea or to include in traditional medicine preparation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Risk factors for progression to invasive carcinoma in patients with borderline ovarian tumors.
Song, Taejong; Lee, Yoo-Young; Choi, Chel Hun; Kim, Tae-Joong; Lee, Jeong-Won; Bae, Duk-Soo; Kim, Byoung-Gie
2014-09-01
The aim of this study was to identify risk factors for progression to invasive carcinoma in patients with borderline ovarian tumors (BOTs). We performed a retrospective review of all patients treated and followed for BOTs between 1996 and 2011. Multivariate Cox proportional hazards model analysis was performed to identify independent risk factors for progression to invasive carcinoma. A total of 364 patients were identified. During the median follow-up of 53.8 months, 31 patients (8.5%) developed recurrent disease: 12 (3.3%) had recurrent disease with progression to invasive carcinoma, and 19 (5.2%) had recurrent disease with borderline histology. Disease-related deaths (7/364; 1.7%) were observed only in patients with progression to invasive carcinoma. The multivariate analysis showed that independent risk factors for progression to invasive carcinoma were advanced disease stage (hazard ratio [HR], 5.59; P = 0.005), age 65 years or older (HR, 5.13; P = 0.037), and the presence of microinvasion (HR, 3.71; P = 0.047). These 3 factors were also independently related to overall survival. Although patients with BOTs have an excellent prognosis, the risk of progression to invasive carcinoma and thereby death remains. Therefore, physicians should pay closer attention to BOT patients with these risk factors (ie, advanced disease stage, old age, and microinvasion), and more careful surveillance for progression to invasive carcinoma is needed.
Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.
2017-01-01
Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569
The contribution of antiphospholipid antibodies to organ damage in systemic lupus erythematosus.
Taraborelli, M; Leuenberger, L; Lazzaroni, M G; Martinazzi, N; Zhang, W; Franceschini, F; Salmon, J; Tincani, A; Erkan, D
2016-10-01
The objective of this study was to assess the contribution of clinically significant antiphospholipid antibodies (aPL) to organ damage in systemic lupus erythematosus (SLE). Patients with disease duration of less than 10 years and at least 5 years of follow-up were identified from two SLE registries. A clinically significant antiphospholipid antibody (aPL) profile was defined as: positive lupus anticoagulant, anticardiolipin IgG/M ≥ 40 G phospholipid units (GPL)/M phospholipid units (MPL), and/or anti-β2-glycoprotein-I IgG/M ≥ 99th percentile on two or more occasions, at least 12 weeks apart. Organ damage was assessed by the Systemic Lupus International Collaborating Clinics Damage Index (SDI). Univariate and multivariate analysis compared SLE patients with and without SDI increase during a 15-year follow-up. Among 262 SLE patients, 33% had a clinically significant aPL profile, which was associated with an increased risk of organ damage accrual during a 5-year follow-up in univariate analysis, and during a 15-year follow-up in the multivariate analysis adjusting for age, gender, race, disease duration at registry entry, and time. In the multivariate analysis, older age at diagnosis and male gender were also associated with SDI increase at each time point. A clinically significant aPL profile is associated with an increased risk of organ damage accrual during a 15-year follow-up in SLE patients. © The Author(s) 2016.
Spatial modeling of cutaneous leishmaniasis in the Andean region of Colombia
Pérez-Flórez, Mauricio; Ocampo, Clara Beatriz; Valderrama-Ardila, Carlos; Alexander, Neal
2016-01-01
The objective of this research was to identify environmental risk factors for cutaneous leishmaniasis (CL) in Colombia and map high-risk municipalities. The study area was the Colombian Andean region, comprising 715 rural and urban municipalities. We used 10 years of CL surveillance: 2000-2009. We used spatial-temporal analysis - conditional autoregressive Poisson random effects modelling - in a Bayesian framework to model the dependence of municipality-level incidence on land use, climate, elevation and population density. Bivariable spatial analysis identified rainforests, forests and secondary vegetation, temperature, and annual precipitation as positively associated with CL incidence. By contrast, livestock agroecosystems and temperature seasonality were negatively associated. Multivariable analysis identified land use - rainforests and agro-livestock - and climate - temperature, rainfall and temperature seasonality - as best predictors of CL. We conclude that climate and land use can be used to identify areas at high risk of CL and that this approach is potentially applicable elsewhere in Latin America. PMID:27355214
Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan
2014-09-01
Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Prognostic factors for return to work in patients with sciatica.
Grøvle, Lars; Haugen, Anne J; Keller, Anne; Ntvig, Bård; Brox, Jens I; Grotle, Margreth
2013-12-01
Little is known about the prognostic factors for work-related outcomes of sciatica caused by disc herniation. To identify the prognostic factors for return to work (RTW) during a 2-year follow-up among sciatica patients referred to secondary care. Multicenter prospective cohort study including 466 patients. Administrative data from the National Sickness Benefit Register were accessed for 227 patients. Two samples were used. Sample A comprised patients who at the time of inclusion in the cohort reported being on partial sick leave or complete sick leave or were undergoing rehabilitation because of back pain/sciatica. Sample B comprised patients who, according to the sickness benefit register, at the time of inclusion received sickness benefits or rehabilitation allowances because of back pain/sciatica. In Sample A, the outcome was self-reported return to full-time work at the 2-year follow-up. In Sample B, the outcome was time to first sustained RTW, defined as the first period of more than 60 days without receiving benefits from the register. Significant baseline predictors of self-reported RTW at 2 years (Analysis A) were identified by multivariate logistic regression. Significant predictors of time to sustained RTW (Analysis B) were identified by multivariate Cox proportional hazard modeling. Both analyses included adjustment for age and sex. To assess the effect of surgery on the probability of RTW, analyses similar to A and B were performed, including the variable surgery (yes/no). One-fourth of the patients were still out of work at the 2-year follow-up. In Sample A (n=237), younger age, better general health, lower baseline sciatica bothersomeness, less fear-avoidance work, and a negative straight-leg-raising test result were significantly associated with a higher probability of RTW at the 2-year follow-up. Surgery was not significantly associated with the outcome. In Sample B (n=125), history of sciatica, duration of the current sciatica episode more than 3 months, greater sciatica bothersomeness, fear-avoidance work, and back pain were significantly associated with a longer time to sustained RTW. Surgery was significantly negatively associated with time to sustained RTW both in univariate (hazard ratio [HR] 0.60; 95% confidence interval [CI] 0.39, 0.93; p=.02) and in multivariate (HR 0.49; 95% CI 0.31, 0.79; p=.003) analyses. The baseline factors associated with RTW identified in multivariate analysis were age, general health, history of sciatica, duration of the current episode, baseline sciatica bothersomeness, fear-avoidance work, back pain, and the straight-leg-raising test result. Surgical treatment was associated with slower RTW, but surgical patients were more severely affected than patients treated without surgery; so, this finding should be interpreted with caution. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.
2018-06-01
The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
NASA Astrophysics Data System (ADS)
Valder, J.; Kenner, S.; Long, A.
2008-12-01
Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.
2014-01-01
Background While unintended pregnancies pose a serious threat to the health and well-being of families globally, characteristics of Tanzanian women who conceive unintentionally are rarely documented. This analysis identifies factors associated with unintended pregnancies—both mistimed and unwanted—in three rural districts of Tanzania. Methods A cross-sectional survey of 2,183 random households was conducted in three Tanzanian districts of Rufiji, Kilombero, and Ulanga in 2011 to assess women’s health behavior and service utilization patterns. These households produced 3,127 women age 15+ years from which 2,199 gravid women aged 15–49 were selected for the current analysis. Unintended pregnancies were identified as either mistimed (wanted later) or unwanted (not wanted at all). Correlates of mistimed, and unwanted pregnancies were identified through Chi-squared tests to assess associations and multinomial logistic regression for multivariate analysis. Results Mean age of the participants was 32.1 years. While 54.1% of the participants reported that their most recent pregnancy was intended, 32.5% indicated their most recent pregnancy as mistimed and 13.4% as unwanted. Multivariate analysis revealed that young age (<20 years), and single marital status were significant predictors of both mistimed and unwanted pregnancies. Lack of inter-partner communication about family planning increased the risk of mistimed pregnancy significantly, and multi-gravidity was shown to significantly increase the risk of unwanted pregnancy. Conclusions About one half of women in Rufiji, Kilombero, and Ulanga districts of Tanzania conceive unintentionally. Women, especially the most vulnerable should be empowered to avoid pregnancy at their own will and discretion. PMID:25102924
Influence of intravenous opioid dose on postoperative ileus.
Barletta, Jeffrey F; Asgeirsson, Theodor; Senagore, Anthony J
2011-07-01
Intravenous opioids represent a major component in the pathophysiology of postoperative ileus (POI). However, the most appropriate measure and threshold to quantify the association between opioid dose (eg, average daily, cumulative, maximum daily) and POI remains unknown. To evaluate the relationship between opioid dose, POI, and length of stay (LOS) and identify the opioid measure that was most strongly associated with POI. Consecutive patients admitted to a community teaching hospital who underwent elective colorectal surgery by any technique with an enhanced-recovery protocol postoperatively were retrospectively identified. Patients were excluded if they received epidural analgesia, developed a major intraabdominal complication or medical complication, or had a prolonged workup prior to surgery. Intravenous opioid doses were quantified and converted to hydromorphone equivalents. Classification and regression tree (CART) analysis was used to determine the dosing threshold for the opioid measure most associated with POI and define high versus low use of opioids. Risk factors for POI and prolonged LOS were determined through multivariate analysis. The incidence of POI in 279 patients was 8.6%. CART analysis identified a maximum daily intravenous hydromorphone dose of 2 mg or more as the opioid measure most associated with POI. Multivariate analysis revealed maximum daily hydromorphone dose of 2 mg or more (p = 0.034), open surgical technique (p = 0.045), and days of intravenous narcotic therapy (p = 0.003) as significant risk factors for POI. Variables associated with increased LOS were POI (p < 0.001), maximum daily hydromorphone dose of 2 mg or more (p < 0.001), and age (p = 0.005); laparoscopy (p < 0.001) was associated with a decreased LOS. Intravenous opioid therapy is significantly associated with POI and prolonged LOS, particularly when the maximum hydromorphone dose per day exceeds 2 mg. Clinicians should consider alternative, nonopioid-based pain management options when this occurs.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Maciejewski, Conrad C; Haines, Trevor; Rourke, Keith F
2017-05-01
To identify factors that predict patient satisfaction after urethroplasty by prospectively examining patient-reported quality of life scores using 3 validated instruments. A 3-part prospective survey consisting of the International Prostate Symptom Score (IPSS), the International Index of Erectile Function (IIEF) score, and a urethroplasty quality of life survey was completed by patients who underwent urethroplasty preoperatively and at 6 months postoperatively. The quality of life score included questions on genitourinary pain, urinary tract infection (UTI), postvoid dribbling, chordee, shortening, overall satisfaction, and overall health. Data were analyzed using descriptive statistics, paired t test, univariate and multivariate logistic regression analyses, and Wilcoxon signed-rank analysis. Patients were enrolled in the study from February 2011 to December 2014, and a total of 94 patients who underwent a total of 102 urethroplasties completed the study. Patients reported statistically significant improvements in IPSS (P < .001). Ordinal linear regression analysis revealed no association between age, IPSS, or IIEF score and patient satisfaction. Wilcoxon signed-rank analysis revealed significant improvements in pain scores (P = .02), UTI (P < .001), perceived overall health (P = .01), and satisfaction (P < .001). Univariate logistic regression identified a length >4 cm and the absence of UTI, pain, shortening, and chordee as predictors of patient satisfaction. Multivariate analysis of quality of life domain scores identified absence of shortening and absence of chordee as independent predictors of patient satisfaction following urethroplasty (P < .01). Patient voiding function and quality of life improve significantly following urethroplasty, but improvement in voiding function is not associated with patient satisfaction. Chordee status and perceived penile shortening impact patient satisfaction, and should be included in patient-reported outcome measures. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K
2017-01-01
The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.
2011-01-01
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586
Keithley, Richard B; Wightman, R Mark
2011-06-07
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
Predictive model for falling in Parkinson disease patients.
Custodio, Nilton; Lira, David; Herrera-Perez, Eder; Montesinos, Rosa; Castro-Suarez, Sheila; Cuenca-Alfaro, Jose; Cortijo, Patricia
2016-12-01
Falls are a common complication of advancing Parkinson's disease (PD). Although numerous risk factors are known, reliable predictors of future falls are still lacking. The aim of this study was to develop a multivariate model to predict falling in PD patients. Prospective cohort with forty-nine PD patients. The area under the receiver-operating characteristic curve (AUC) was calculated to evaluate predictive performance of the purposed multivariate model. The median of PD duration and UPDRS-III score in the cohort was 6 years and 24 points, respectively. Falls occurred in 18 PD patients (30%). Predictive factors for falling identified by univariate analysis were age, PD duration, physical activity, and scores of UPDRS motor, FOG, ACE, IFS, PFAQ and GDS ( p -value < 0.001), as well as fear of falling score ( p -value = 0.04). The final multivariate model (PD duration, FOG, ACE, and physical activity) showed an AUC = 0.9282 (correctly classified = 89.83%; sensitivity = 92.68%; specificity = 83.33%). This study showed that our multivariate model have a high performance to predict falling in a sample of PD patients.
Identification of the isomers using principal component analysis (PCA) method
NASA Astrophysics Data System (ADS)
Kepceoǧlu, Abdullah; Gündoǧdu, Yasemin; Ledingham, Kenneth William David; Kilic, Hamdi Sukur
2016-03-01
In this work, we have carried out a detailed statistical analysis for experimental data of mass spectra from xylene isomers. Principle Component Analysis (PCA) was used to identify the isomers which cannot be distinguished using conventional statistical methods for interpretation of their mass spectra. Experiments have been carried out using a linear TOF-MS coupled to a femtosecond laser system as an energy source for the ionisation processes. We have performed experiments and collected data which has been analysed and interpreted using PCA as a multivariate analysis of these spectra. This demonstrates the strength of the method to get an insight for distinguishing the isomers which cannot be identified using conventional mass analysis obtained through dissociative ionisation processes on these molecules. The PCA results dependending on the laser pulse energy and the background pressure in the spectrometers have been presented in this work.
Levine, Matthew E; Albers, David J; Hripcsak, George
2016-01-01
Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
Multivariate Cluster Analysis.
ERIC Educational Resources Information Center
McRae, Douglas J.
Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…
Knowledge of Abortion Laws and Services Among Low-Income Women in Three United States Cities.
Lara, Diana; Holt, Kelsey; Peña, Melanie; Grossman, Daniel
2015-12-01
Low-income women and women of color are disproportionately affected by unintended pregnancy. Lack of knowledge of abortion laws and services is one of several factors likely to hinder access to services, though little research has documented knowledge in this population. Survey with convenience sample of 1,262 women attending primary care or full-scope Ob/Gyn clinics serving low-income populations in three large cities and multivariable analyses with four knowledge outcomes. Among all participants, 53% were first-generation immigrants, 25% identified the correct gestational age limit, 41% identified state parental consent laws, 67% knew partner consent is not required, and 55% knew where to obtain abortion services. In multivariable analysis, first-generation immigrants and primarily Spanish speakers were significantly less likely than higher-generation or primarily English speakers to display correct knowledge. Design and evaluation of strategies to improve knowledge about abortion, particularly among migrant women and non-primary English speakers, is needed.
The impact of moderate wine consumption on the risk of developing prostate cancer
Ferro, Matteo; Foerster, Beat; Abufaraj, Mohammad; Briganti, Alberto; Karakiewicz, Pierre I; Shariat, Shahrokh F
2018-01-01
Objective To investigate the impact of moderate wine consumption on the risk of prostate cancer (PCa). We focused on the differential effect of moderate consumption of red versus white wine. Design This study was a meta-analysis that includes data from case–control and cohort studies. Materials and methods A systematic search of Web of Science, Medline/PubMed, and Cochrane library was performed on December 1, 2017. Studies were deemed eligible if they assessed the risk of PCa due to red, white, or any wine using multivariable logistic regression analysis. We performed a formal meta-analysis for the risk of PCa according to moderate wine and wine type consumption (white or red). Heterogeneity between studies was assessed using Cochrane’s Q test and I2 statistics. Publication bias was assessed using Egger’s regression test. Results A total of 930 abstracts and titles were initially identified. After removal of duplicates, reviews, and conference abstracts, 83 full-text original articles were screened. Seventeen studies (611,169 subjects) were included for final evaluation and fulfilled the inclusion criteria. In the case of moderate wine consumption: the pooled risk ratio (RR) for the risk of PCa was 0.98 (95% CI 0.92–1.05, p=0.57) in the multivariable analysis. Moderate white wine consumption increased the risk of PCa with a pooled RR of 1.26 (95% CI 1.10–1.43, p=0.001) in the multi-variable analysis. Meanwhile, moderate red wine consumption had a protective role reducing the risk by 12% (RR 0.88, 95% CI 0.78–0.999, p=0.047) in the multivariable analysis that comprised 222,447 subjects. Conclusions In this meta-analysis, moderate wine consumption did not impact the risk of PCa. Interestingly, regarding the type of wine, moderate consumption of white wine increased the risk of PCa, whereas moderate consumption of red wine had a protective effect. Further analyses are needed to assess the differential molecular effect of white and red wine conferring their impact on PCa risk. PMID:29713200
Minia, Egypt: Principal Component Analysis
Abdelrehim, Marwa G; Mahfouz, Eman M; Ewis, Ashraf A; Seedhom, Amany E; Afifi, Hassan M; Shebl, Fatma M
2018-02-26
Background: Pancreatic cancer (PC) is a serious and rapidly progressing malignancy. Identifying risk factors including dietary elements is important to develop preventive strategies. This study focused on possible links between diet and PC. Methods: We conducted a case-control study including all PC patients diagnosed at Minia Cancer Center and controls from general population from June 2014 to December 2015. Dietary data were collected directly through personal interviews. Principal component analysis (PCA) was performed to identify dietary groups. The data were analyzed using crude odds ratios (ORs) and multivariable logistic regression with adjusted ORs and 95% confidence intervals (CIs). Results: A total of 75 cases and 149 controls were included in the study. PCA identified six dietary groups, labeled as cereals and grains, vegetables, proteins, dairy products, fruits, and sugars. Bivariate analysis showed that consumption of vegetables, fruits, sugars, and total energy intake were associated with change in PC risk. In multivariable-adjusted models comparing highest versus lowest levels of intake, we observed significant lower odds of PC in association with vegetable intake (OR 0.24; 95% CI, 0.07-0.85, P=0.012) and a higher likelihood with the total energy intake (OR 9.88; 95% CI, 2.56-38.09, P<0.0001). There was also a suggested link between high fruit consumption and reduced odds of PC. Conclusions: The study supports the association between dietary factors and the odds of PC development in Egypt. It was found that higher energy intake is associated with an increase in likelihood of PC, while increased vegetable consumption is associated with a lower odds ratio. Creative Commons Attribution License
Jones, G Morgan; Roe, Neil A; Louden, Les; Tubbs, Crystal R
2017-12-01
Background: In health care, burnout has been defined as a psychological process whereby human service professionals attempting to positively impact the lives of others become overwhelmed and frustrated by unforeseen job stressors. Burnout among various physician groups who primarily practice in the hospital setting has been extensively studied; however, no evidence exists regarding burnout among hospital clinical pharmacists. Objective: The aim of this study was to characterize the level of and identify factors independently associated with burnout among clinical pharmacists practicing in an inpatient hospital setting within the United States. Methods: We conducted a prospective, cross-sectional pilot study utilizing an online, Qualtrics survey. Univariate analysis related to burnout was conducted, with multivariable logistic regression analysis used to identify factors independently associated with the burnout. Results: A total of 974 responses were analyzed (11.4% response rate). The majority were females who had practiced pharmacy for a median of 8 years. The burnout rate was high (61.2%) and largely driven by high emotional exhaustion. On multivariable analysis, we identified several subjective factors as being predictors of burnout, including inadequate administrative and teaching time, uncertainty of health care reform, too many nonclinical duties, difficult pharmacist colleagues, and feeling that contributions are underappreciated. Conclusions: The burnout rate of hospital clinical pharmacy providers was very high in this pilot survey. However, the overall response rate was low at 11.4%. The negative effects of burnout require further study and intervention to determine the influence of burnout on the lives of clinical pharmacists and on other health care-related outcomes.
Serum CA125 predicts extrauterine disease and survival in uterine carcinosarcoma
Huang, Gloria S.; Chiu, Lydia G.; Gebb, Juliana S.; Gunter, Marc J.; Sukumvanich, Paniti; Goldberg, Gary L.; Einstein, Mark H.
2009-01-01
Objective The purpose of this study was to determine the clinical utility of CA125 measurement in patients with uterine carcinosarcoma (CS). Methods Ninety-five consecutive patients treated for CS at a single institution were identified. All 54 patients who underwent preoperative CA125 measurement were included in the study. Data were abstracted from the medical records. Tests of association between preoperative CA125 and previously identified clinicopathologic prognostic factors were performed using Fisher’s exact test and Pearson chi-square test. To evaluate relationship of CA125 elevation and survival, a Cox proportional hazard model was used for multivariate analysis, incorporating all of prognostic factors identified by univariate analysis. Results Preoperative CA125 was significantly associated with the presence of extrauterine disease (P<0.001), deep myometrial invasion (P<0.001), and serous histology of the epithelial component (P=0.005). Using univariate survival analysis, stage (HR=1.808, P=0.004), postoperative CA125 level (HR=9.855, P<0.001), and estrogen receptor positivity (HR=0.314, P=0.029) were significantly associated with survival. In the multivariate model, only postoperative CA125 level remained significantly associated with poor survival (HR=5.725, P=0.009). Conclusion Preoperative CA125 elevation is a marker of extrauterine disease and deep myometrial invasion in patients with uterine CS. Postoperative CA125 elevation is an independent prognostic factor for poor survival. These findings indicate that CA125 may be a clinically useful serum marker in the management of patients with CS. PMID:17935762
Mayer, Brian P.; DeHope, Alan J.; Mew, Daniel A.; ...
2016-03-24
Attribution of the origin of an illicit drug relies on identification of compounds indicative of its clandestine production and is a key component of many modern forensic investigations. Here, the results of these studies can yield detailed information on method of manufacture, starting material source, and final product, all critical forensic evidence. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods, all previously published fentanyl synthetic routes or hybrid versions thereof, were studied in an effort to identify and classify route-specific signatures. A total of 160 distinctmore » compounds and inorganic species were identified using gas and liquid chromatographies combined with mass spectrometric methods (gas chromatography/mass spectrometry (GC/MS) and liquid chromatography–tandem mass spectrometry-time of-flight (LC–MS/MS-TOF)) in conjunction with inductively coupled plasma mass spectrometry (ICPMS). The complexity of the resultant data matrix urged the use of multivariate statistical analysis. Using partial least-squares-discriminant analysis (PLS-DA), 87 route-specific CAS were classified and a statistical model capable of predicting the method of fentanyl synthesis was validated and tested against CAS profiles from crude fentanyl products deposited and later extracted from two operationally relevant surfaces: stainless steel and vinyl tile. Finally, this work provides the most detailed fentanyl CAS investigation to date by using orthogonal mass spectral data to identify CAS of forensic significance for illicit drug detection, profiling, and attribution.« less
Primary Surgery vs Radiotherapy for Early Stage Oral Cavity Cancer.
Ellis, Mark A; Graboyes, Evan M; Wahlquist, Amy E; Neskey, David M; Kaczmar, John M; Schopper, Heather K; Sharma, Anand K; Morgan, Patrick F; Nguyen, Shaun A; Day, Terry A
2018-04-01
Objective The goal of this study is to determine the effect of primary surgery vs radiotherapy (RT) on overall survival (OS) in patients with early stage oral cavity squamous cell carcinoma (OCSCC). In addition, this study attempts to identify factors associated with receiving primary RT. Study Design Retrospective cohort study. Setting National Cancer Database (NCDB, 2004-2013). Subjects and Methods Reviewing the NCDB from 2004 to 2013, patients with early stage I to II OCSCC were identified. Kaplan-Meier estimates of survival, Cox regression analysis, and propensity score matching were used to examine differences in OS between primary surgery and primary RT. Multivariable logistic regression analysis was performed to identify factors associated with primary RT. Results Of the 20,779 patients included in the study, 95.4% (19,823 patients) underwent primary surgery and 4.6% (956 patients) underwent primary RT. After adjusting for covariates, primary RT was associated with an increased risk of mortality (adjusted hazard ratio [aHR], 1.97; 99% confidence interval [CI], 1.74-2.22). On multivariable analysis, factors associated with primary RT included age ≥70 years, black race, Medicaid or Medicare insurance, no insurance, oral cavity subsite other than tongue, clinical stage II disease, low-volume treatment facilities, and earlier treatment year. Conclusion Primary RT for early stage OCSCC is associated with increased mortality. Approximately 5% of patients receive primary RT; however, this percentage is decreasing. Patients at highest risk for receiving primary RT include those who are elderly, black, with public insurance, and treated at low-volume facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Brian P.; DeHope, Alan J.; Mew, Daniel A.
Attribution of the origin of an illicit drug relies on identification of compounds indicative of its clandestine production and is a key component of many modern forensic investigations. Here, the results of these studies can yield detailed information on method of manufacture, starting material source, and final product, all critical forensic evidence. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods, all previously published fentanyl synthetic routes or hybrid versions thereof, were studied in an effort to identify and classify route-specific signatures. A total of 160 distinctmore » compounds and inorganic species were identified using gas and liquid chromatographies combined with mass spectrometric methods (gas chromatography/mass spectrometry (GC/MS) and liquid chromatography–tandem mass spectrometry-time of-flight (LC–MS/MS-TOF)) in conjunction with inductively coupled plasma mass spectrometry (ICPMS). The complexity of the resultant data matrix urged the use of multivariate statistical analysis. Using partial least-squares-discriminant analysis (PLS-DA), 87 route-specific CAS were classified and a statistical model capable of predicting the method of fentanyl synthesis was validated and tested against CAS profiles from crude fentanyl products deposited and later extracted from two operationally relevant surfaces: stainless steel and vinyl tile. Finally, this work provides the most detailed fentanyl CAS investigation to date by using orthogonal mass spectral data to identify CAS of forensic significance for illicit drug detection, profiling, and attribution.« less
Determinants of survival after liver resection for metastatic colorectal carcinoma.
Parau, Angela; Todor, Nicolae; Vlad, Liviu
2015-01-01
Prognostic factors for survival after liver resection for metastatic colorectal cancer identified up to date are quite inconsistent with a great inter-study variability. In this study we aimed to identify predictors of outcome in our patient population. A series of 70 consecutive patients from the oncological hepatobiliary database, who had undergone curative hepatic surgical resection for hepatic metastases of colorectal origin, operated between 2006 and 2011, were identified. At 44.6 months (range 13.7-73), 30 of 70 patients (42.85%) were alive. Patient demographics, primary tumor and liver tumor factors, operative factors, pathologic findings, recurrence patterns, disease-free survival (DFS), overall survival (OS) and cancer-specific survival (CSS) were analyzed. Clinicopathologic variables were tested using univariate and multivariate analyses. The 3-year CSS after first hepatic resection was 54%. Median CSS survival after first hepatic resection was 40.2 months. Median CSS after second hepatic resection was 24.2 months. The 3-year DFS after first hepatic resection was 14%. Median disease free survival after first hepatic resection was 18 months. The 3-year DFS after second hepatic resection was 27% and median DFS after second hepatic resection 12 months. The 30-day mortality and morbidity rate after first hepatic resection was 5.71% and 12.78%, respectively. In univariate analysis CSS was significantly reduced for the following factors: age >53 years, advanced T stage of primary tumor, moderately- poorly differentiated tumor, positive and narrow resection margin, preoperative CEA level >30 ng/ml, DFS <18 months. Perioperative chemotherapy related to metastasectomy showed a trend in improving CSS (p=0.07). Perioperative chemotherapy improved DFS in a statistically significant way (p=0.03). Perioperative chemotherapy and achievement of resection margins beyond 1 mm were the major determinants of both CSS and DFS after first liver resection in multivariate analysis. In our series predictors of outcome in multivariate analysis were resection margins beyond 1mm and perioperative chemotherapy. Studies on larger population and analyses of additional clinicopathologic factors like genetic markers could contribute to development of clinical scoring models to assess the risk of relapse and survival.
A simple ergonomic measure reduces fluoroscopy time during ERCP: A multivariate analysis.
Jowhari, Fahd; Hopman, Wilma M; Hookey, Lawrence
2017-03-01
Background and study aims Endoscopic retrograde cholangiopancreatgraphy (ERCP) carries a radiation risk to patients undergoing the procedure and the team performing it. Fluoroscopy time (FT) has been shown to have a linear relationship with radiation exposure during ERCP. Recent modifications to our ERCP suite design were felt to impact fluoroscopy time and ergonomics. This multivariate analysis was therefore undertaken to investigate these effects, and to identify and validate various clinical, procedural and ergonomic factors influencing the total fluoroscopy time during ERCP. This would better assist clinicians with predicting prolonged fluoroscopic durations and to undertake relevant precautions accordingly. Patients and methods A retrospective analysis of 299 ERCPs performed by 4 endoscopists over an 18-month period, at a single tertiary care center was conducted. All inpatients/outpatients (121 males, 178 females) undergoing ERCP for any clinical indication from January 2012 to June 2013 in the chosen ERCP suite were included in the study. Various predetermined clinical, procedural and ergonomic factors were obtained via chart review. Univariate analyses identified factors to be included in the multivariate regression model with FT as the dependent variable. Results Bringing the endoscopy and fluoroscopy screens next to each other was associated with a significantly lesser FT than when the screens were separated further (-1.4 min, P = 0.026). Other significant factors associated with a prolonged FT included having a prior ERCP (+ 1.4 min, P = 0.031), and more difficult procedures (+ 4.2 min for each level of difficulty, P < 0.001). ERCPs performed by high-volume endoscopists used lesser FT vs. low-volume endoscopists (-1.82, P = 0.015). Conclusions Our study has identified and validated various factors that affect the total fluoroscopy time during ERCP. This is the first study to show that decreasing the distance between the endoscopy and fluoroscopy screens in the ERCP suite significantly reduces the total fluoroscopy time, and therefore radiation exposure to patients and staff involved in the procedure.
NASA Astrophysics Data System (ADS)
Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua
2016-06-01
Two multivariate statistical technologies, factor analysis (FA) and discriminant analysis (DA), are applied to study the river and groundwater hydrochemistry and its controlling processes in the Sanjiang Plain of the northeast China. Factor analysis identifies five factors which account for 79.65 % of the total variance in the dataset. Four factors bearing specific meanings as the river and groundwater hydrochemistry controlling processes are divided into two groups, the "natural hydrochemistry evolution" group and the "pollution" group. The "natural hydrochemistry evolution" group includes the salinity factor (factor 1) caused by rock weathering and the residence time factor (factor 2) reflecting the groundwater traveling time. The "pollution" group represents the groundwater quality deterioration due to geogenic pollution caused by elevated Fe and Mn (factor 3) and elevated nitrate (NO3 -) introduced by human activities such as agriculture exploitations (factor 5). The hydrochemical difference and hydraulic connection among rivers (surface water, SW), shallow groundwater (SG) and deep groundwater (DG) group are evaluated by the factor scores obtained from FA and DA (Fisher's method). It is showed that the river water is characterized as low salinity and slight pollution, and the shallow groundwater has the highest salinity and severe pollution. The SW is well separated from SG and DG by Fisher's discriminant function, but the SG and DG can not be well separated showing their hydrochemical similarities, and emphasize hydraulic connections between SG and DG.
DiMagno, Matthew J; Spaete, Joshua P; Ballard, Darren D; Wamsteker, Erik-Jan; Saini, Sameer D
2013-08-01
We investigated which variables independently associated with protection against or development of postendoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) and severity of PEP. Subsequently, we derived predictive risk models for PEP. In a case-control design, 6505 patients had 8264 ERCPs, 211 patients had PEP, and 22 patients had severe PEP. We randomly selected 348 non-PEP controls. We examined 7 established- and 9 investigational variables. In univariate analysis, 7 variables predicted PEP: younger age, female sex, suspected sphincter of Oddi dysfunction (SOD), pancreatic sphincterotomy, moderate-difficult cannulation (MDC), pancreatic stent placement, and lower Charlson score. Protective variables were current smoking, former drinking, diabetes, and chronic liver disease (CLD, biliary/transplant complications). Multivariate analysis identified seven independent variables for PEP, three protective (current smoking, CLD-biliary, CLD-transplant/hepatectomy complications) and 4 predictive (younger age, suspected SOD, pancreatic sphincterotomy, MDC). Pre- and post-ERCP risk models of 7 variables have a C-statistic of 0.74. Removing age (seventh variable) did not significantly affect the predictive value (C-statistic of 0.73) and reduced model complexity. Severity of PEP did not associate with any variables by multivariate analysis. By using the newly identified protective variables with 3 predictive variables, we derived 2 risk models with a higher predictive value for PEP compared to prior studies.
Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia.
Basile, Claudia; Della-Morte, David; Cacciatore, Francesco; Gargiulo, Gaetano; Galizia, Gianluigi; Roselli, Mario; Curcio, Francesco; Bonaduce, Domenico; Abete, Pasquale
2014-10-01
Several markers have been associated with sarcopenia in the elderly, including bioelectrical indices. Phase angle (PhA) is an impedance parameter and it has been suggested as an indicator of cellular death. Thus, the relationship between PhA and muscle mass and strength was investigated in 207 consecutively elderly participants (mean age 76.2±6.7years) admitted for multidimensional geriatric evaluation. Muscle strength by grip strength using a hand-held dynamometer and muscle mass was measured by bioimpedentiometer. PhA was calculated directly with its arctangent (resistance/reactance×180°/π). Linear relationship among muscular mass and strength and with clinical and biochemical parameters, including PhA at uni- and multivariate analysis were performed. Linear regression analysis demonstrated that lower level of PhA is associated with reduction in grip strength (y=3.16+0.08x; r=0.49; p<0.001), and even more, with muscle mass (y=3.04+0.25x; r=0.60; p<0001). Multivariate analysis confirms these relationships (grip strength β=0.245, p=0.031; muscular mass β=0.623, p<0.01). Thus, PhA is inversely related to muscle mass and strength in elderly subjects and it may be considered a good bioelectrical marker to identify elderly patients at risk of sarcopenia. Copyright © 2014 Elsevier Inc. All rights reserved.
Javadi, Neda; Abas, Faridah; Abd Hamid, Azizah; Simoh, Sanimah; Shaari, Khozirah; Ismail, Intan Safinar; Mediani, Ahmed; Khatib, Alfi
2014-06-01
Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb. GC-MS and multivariate data analysis was applied to discriminate Cosmos caudatus samples extracted with water and different ratio of ethanol. Orthogonal partial least-squares (OPLS) model developed was used to determine the major metabolites contributed to α-glucosidase inhibitory activity. This approach also has the ability to predict the bioactivity of a new set of extracts based on a developed validated regression model that is important for quality control of the herb preparation. © 2014 Institute of Food Technologists®
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Kann, Benjamin H; Park, Henry S; Lester-Coll, Nataniel H; Yeboa, Debra N; Benitez, Viviana; Khan, Atif J; Bindra, Ranjit S; Marks, Asher M; Roberts, Kenneth B
2016-12-01
Postoperative radiotherapy to the craniospinal axis is standard-of-care for pediatric medulloblastoma but is associated with long-term morbidity, particularly in young children. With the advent of modern adjuvant chemotherapy strategies, postoperative radiotherapy deferral has gained acceptance in children younger than 3 years, although it remains controversial in older children. To analyze recent postoperative radiotherapy national treatment patterns and implications for overall survival in patients with medulloblastoma ages 3 to 8 years. Using the National Cancer Data Base, patients ages 3 to 8 years diagnosed as having histologically confirmed medulloblastoma in 2004 to 2012, without distant metastases, who underwent surgery and adjuvant chemotherapy with or without postoperative radiotherapy at facilities nationwide accredited by the Commission on Cancer were identified. Patients were designated as having "postoperative radiotherapy upfront" if they received radiotherapy within 90 days of surgery or "postoperative radiotherapy deferred" otherwise. Factors associated with postoperative radiotherapy deferral were identified using multivariable logistic regression. Overall survival (OS) was compared using Kaplan-Meier analysis with log-rank tests and multivariable Cox regression. Statistical tests were 2-sided. Postoperative radiotherapy utilization and overall survival. Among 816 patients, 123 (15.1%) had postoperative radiotherapy deferred, and 693 (84.9%) had postoperative radiotherapy upfront; 36.8% of 3-year-olds and 4.1% of 8-year-olds had postoperative radiotherapy deferred (P < .001). On multivariable logistic regression, variables associated with postoperative radiotherapy deferral were age (odds ratio [OR], 0.57 per year; 95% CI, 0.49-0.67 per year) and year of diagnosis (OR, 1.18 per year; 95% CI, 1.08-1.29 per year). On survival analysis, with median follow-up of 4.8 years, OS was improved for those receiving postoperative radiotherapy upfront vs postoperative radiotherapy deferred (5-year OS: 82.0% vs 63.4%; P < .001). On multivariable analysis, variables associated with poorer OS were postoperative radiotherapy deferral (hazards ratio [HR], 1.95; 95% CI, 1.15-3.31); stage M1-3 disease (HR, 1.86; 95% CI, 1.10-3.16), and low facility volume (HR, 1.75; 95% CI, 1.04-2.94). Our national database analysis reveals a higher-than-expected and increasing rate of postoperative radiotherapy deferral in children with medulloblastoma ages 3 to 8 years. The analysis suggests that postoperative radiotherapy deferral is associated with worse survival in this age group, even in the modern era of chemotherapy.
Quantifying the impact of between-study heterogeneity in multivariate meta-analyses
Jackson, Dan; White, Ian R; Riley, Richard D
2012-01-01
Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950
Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models
Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.
2014-01-01
Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071
Pérez, Concepción; Navarro, Ana; Saldaña, María T; Wilson, Koo; Rejas, Javier
2015-03-01
The aim of the present analysis was to model the association and predictive value of pain intensity on cost and resource utilization in patients with chronic peripheral neuropathic pain (PNP) treated in routine clinical practice settings in Spain. We performed a secondary economic analysis based on data from a multicenter, observational, and prospective cost-of-illness study in patients with chronic PNP that is refractory to prior treatment. Pain intensity was measured using the Short-Form McGill Pain Questionnaire. Univariate and multivariate linear regression models were fitted to identify independent predictors of cost and health care/non-health care resource utilization. A total of 1703 patients were included in the current analysis. Pain intensity was an independent predictor of total costs ([total costs]=35.6 [pain intensity]+214.5; coefficient of determination [R(2)]=0.19, P<0.001), direct costs ([direct costs]=10.8 [pain intensity]+257.7; R=0.06, P<0.001), and indirect costs ([indirect costs]=24.8 [pain intensity]-43.4; R(2)=0.20, P<0.001) related to chronic PNP in the univariate analysis. Pain intensity remains significantly associated with total costs, direct costs, and indirect costs after adjustment by other covariates in the multivariate analysis (P<0.001). None of the other variables considered in the multivariate analysis were predictors of resource utilization. Pain intensity predicts the health care and non-health care resource utilization, and costs related to chronic PNP. Management of patients with drugs associated with a higher reduction of pain intensity may have a greater impact on the economic burden of that condition.
NASA Astrophysics Data System (ADS)
Yokota, Miyo; Berglund, Larry G.; Bathalon, Gaston P.
2012-03-01
The use of thermoregulatory models for assessing physiological responses of workers in thermally stressful situations has been increasing because of the risks and costs related to human studies. In a previous study (Yokota et al. Eur J Appl Physiol 104:297-302, 2008), the effects of anthropometric variability on predicted physiological responses to heat stress in U.S. Army male soldiers were evaluated. Five somatotypes were identified in U.S. Army male multivariate anthropometric distribution. The simulated heat responses, using a thermoregulatory model, were different between somatotypes. The present study further extends this line of research to female soldiers. Anthropometric somatotypes were identified using multivariate analysis [height, weight, percent body fat (%BF)] and the predicted physiological responses to simulated exercise and heat stress using a thermoregulatory model were evaluated. The simulated conditions included walking at ~3 mph (4.8 km/h) for 300 min and wearing battle dress uniform and body armor in a 30°C, 25% relative humidity (RH) environment without solar radiation. Five major somatotypes (tall-fat, tall-lean, average, short-lean, and short-fat), identified through multivariate analysis of anthropometric distributions, showed different tolerance levels to simulated heat stress: lean women were predicted to maintain their core temperatures (Tc) lower than short-fat or tall-fat women. The measured Tc of female subjects obtained from two heat studies (data1: 30°C, 32% RH, protective garments, ~225 w·m-2 walk for 90 min; data2: 32°C, 75% RH, hot weather battle dress uniform, ~378 ± 32 w·m-2 for 30 min walk/30 min rest cycles for 120 min) were utilized for validation. Validation results agreed with the findings in this study: fat subjects tended to have higher core temperatures than medium individuals (data2) and lean subjects maintained lower core temperatures than medium subjects (data1).
Yokota, Miyo; Berglund, Larry G; Bathalon, Gaston P
2012-03-01
The use of thermoregulatory models for assessing physiological responses of workers in thermally stressful situations has been increasing because of the risks and costs related to human studies. In a previous study (Yokota et al. Eur J Appl Physiol 104:297-302, 2008), the effects of anthropometric variability on predicted physiological responses to heat stress in U.S. Army male soldiers were evaluated. Five somatotypes were identified in U.S. Army male multivariate anthropometric distribution. The simulated heat responses, using a thermoregulatory model, were different between somatotypes. The present study further extends this line of research to female soldiers. Anthropometric somatotypes were identified using multivariate analysis [height, weight, percent body fat (%BF)] and the predicted physiological responses to simulated exercise and heat stress using a thermoregulatory model were evaluated. The simulated conditions included walking at ~3 mph (4.8 km/h) for 300 min and wearing battle dress uniform and body armor in a 30°C, 25% relative humidity (RH) environment without solar radiation. Five major somatotypes (tall-fat, tall-lean, average, short-lean, and short-fat), identified through multivariate analysis of anthropometric distributions, showed different tolerance levels to simulated heat stress: lean women were predicted to maintain their core temperatures (T(c)) lower than short-fat or tall-fat women. The measured T(c) of female subjects obtained from two heat studies (data1: 30°C, 32% RH, protective garments, ~225 w·m(-2) walk for 90 min; data2: 32°C, 75% RH, hot weather battle dress uniform, ~378 ± 32 w·m(-2) for 30 min walk/30 min rest cycles for 120 min) were utilized for validation. Validation results agreed with the findings in this study: fat subjects tended to have higher core temperatures than medium individuals (data2) and lean subjects maintained lower core temperatures than medium subjects (data1).
Chalmet, Kristen; Staelens, Delfien; Blot, Stijn; Dinakis, Sylvie; Pelgrom, Jolanda; Plum, Jean; Vogelaers, Dirk; Vandekerckhove, Linos; Verhofstede, Chris
2010-09-07
The number of HIV-1 infected individuals in the Western world continues to rise. More in-depth understanding of regional HIV-1 epidemics is necessary for the optimal design and adequate use of future prevention strategies. The use of a combination of phylogenetic analysis of HIV sequences, with data on patients' demographics, infection route, clinical information and laboratory results, will allow a better characterization of individuals responsible for local transmission. Baseline HIV-1 pol sequences, obtained through routine drug-resistance testing, from 506 patients, newly diagnosed between 2001 and 2009, were used to construct phylogenetic trees and identify transmission-clusters. Patients' demographics, laboratory and clinical data, were retrieved anonymously. Statistical analysis was performed to identify subtype-specific and transmission-cluster-specific characteristics. Multivariate analysis showed significant differences between the 59.7% of individuals with subtype B infection and the 40.3% non-B infected individuals, with regard to route of transmission, origin, infection with Chlamydia (p = 0.01) and infection with Hepatitis C virus (p = 0.017). More and larger transmission-clusters were identified among the subtype B infections (p < 0.001). Overall, in multivariate analysis, clustering was significantly associated with Caucasian origin, infection through homosexual contact and younger age (all p < 0.001). Bivariate analysis additionally showed a correlation between clustering and syphilis (p < 0.001), higher CD4 counts (p = 0.002), Chlamydia infection (p = 0.013) and primary HIV (p = 0.017). Combination of phylogenetics with demographic information, laboratory and clinical data, revealed that HIV-1 subtype B infected Caucasian men-who-have-sex-with-men with high prevalence of sexually transmitted diseases, account for the majority of local HIV-transmissions. This finding elucidates observed epidemiological trends through molecular analysis, and justifies sustained focus in prevention on this high risk group.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653
Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun
2017-06-01
Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.
Predictors of radio-cephalic arteriovenous fistulae patency in an Asian population.
Joseph Lo, Zhiwen; Tay, Wee Ming; Lee, Qinyi; Chua, Jia Long; Tan, Glenn Wei Leong; Chandrasekar, Sadhana; Narayanan, Sriram
2016-09-21
To identify predictors of arteriovenous fistula (AVF) patency in Asian patients with autogenous radio-cephalic arteriovenous fistula (RCAVF). Retrospective review of 436 RCAVFs created between 2009 and 2013. Predictors of patency were identified with univariate and multivariate analysis. Kaplan-Meier survival analysis and log-rank test were used to calculate patency rates. Overall secondary patency rate was 72% at 12 months, 69% at 24 months, 58% at 36 months, 57% at 48 months, 56% at 60 months and 54% at 72 months. Univariate analysis showed that factors which predict for patency include male gender (p = 0.003), good diabetic control (p = 0.025), aspirin use (p = 0.031), pre-dialysis status (p = 0.037), radial artery diameter (p = 0.029) and non-calcified radial arteries (p = 0.002). Age (p = 0.866), cephalic vein diameter (p = 0.630) and surgeon grade (p = 0.472) did not predict for primary AVF failure. Multivariate analysis revealed the male gender to be an independent predictor for patency (odds ratio 1.99, p = 0.01). Subset analysis showed a significantly larger average radial artery diameter of 2.3 mm amongst males, as compared to 1.9 mm amongst females (p = 0.001) and no statistical difference in the average cephalic vein diameter. Within our Asian study population, 12-month patency rate of RCAVF is 72%, 69% at 24 months, 58% at 36 months, 57% at 48 months, 56% at 60 months and 54% at 72 months. Male gender is an independent predictor for RCAVF patency. In females or patients with calcified radial arteries, a more proximal AVF should be considered.
A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J.
Wang, Xiaoyu; Zhou, Defang; Wang, Guihua; Huang, Libo; Zheng, Qiankun; Li, Chengui; Cheng, Ziqiang
2017-12-04
The hypervariable antigenicity and immunosuppressive features of avian leukosis virus subgroup J (ALV-J) has led to great challenges to develop effective vaccines. Epitope vaccine will be a perspective trend. Previously, we identified a variant antigenic neutralizing epitope in hypervariable region 1 (hr1) of ALV-J, N-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-C. BLAST analysis showed that the mutation of A, E, T and H in this epitope cover 79% of all ALV-J strains. Base on this data, we designed a multi-variant epitope ensemble vaccine comprising the four mutation variants linked with glycine and serine. The recombinant multi-variant epitope gene was expressed in Escherichia coli BL21. The expressed protein of the variant multi-variant epitope gene can react with positive sera and monoclonal antibodies of ALV-J, while cannot react with ALV-J negative sera. The multi-variant epitope vaccine that conjugated Freund's adjuvant complete/incomplete showed high immunogenicity that reached the titer of 1:64,000 at 42 days post immunization and maintained the immune period for at least 126 days in SPF chickens. Further, we demonstrated that the antibody induced by the variant multi-variant ensemble epitope vaccine recognized and neutralized different ALV-J strains (NX0101, TA1, WS1, BZ1224 and BZ4). Protection experiment that was evaluated by clinical symptom, viral shedding, weight gain, gross and histopathology showed 100% chickens that inoculated the multi-epitope vaccine were well protected against ALV-J challenge. The result shows a promising multi-variant epitope ensemble vaccine against hypervariable viruses in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.
Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.
Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice
Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study. PMID:24415945
Lu, Jimmy C; Lowery, Ray; Yu, Sunkyung; Ghadimi Mahani, Maryam; Agarwal, Prachi P; Dorfman, Adam L
2017-07-01
Congenital cardiac magnetic resonance is a limited resource because of scanner and physician availability. Missed appointments decrease scheduling efficiency, have financial implications and represent missed care opportunities. To characterize the rate of missed appointments and identify modifiable predictors. This single-center retrospective study included all patients with outpatient congenital or pediatric cardiac MR appointments from Jan. 1, 2014, through Dec. 31, 2015. We identified missed appointments (no-shows or same-day cancellations) from the electronic medical record. We obtained demographic and clinical factors from the medical record and assessed socioeconomic factors by U.S. Census block data by patient ZIP code. Statistically significant variables (P<0.05) were included into a multivariable analysis. Of 795 outpatients (median age 18.5 years, interquartile range 13.4-27.1 years) referred for congenital cardiac MR, a total of 91 patients (11.4%) missed appointments; 28 (3.5%) missed multiple appointments. Reason for missed appointment could be identified in only 38 patients (42%), but of these, 28 (74%) were preventable or could have been identified prior to the appointment. In multivariable analysis, independent predictors of missed appointments were referral by a non-cardiologist (adjusted odds ratio [AOR] 5.8, P=0.0002), referral for research (AOR 3.6, P=0.01), having public insurance (AOR 2.1, P=0.004), and having scheduled cardiac MR from November to April (AOR 1.8, P=0.01). Demographic factors can identify patients at higher risk for missing appointments. These data may inform initiatives to limit missed appointments, such as targeted education of referring providers and patients. Further data are needed to evaluate the efficacy of potential interventions.
Coupling GIS and multivariate approaches to reference site selection for wadeable stream monitoring.
Collier, Kevin J; Haigh, Andy; Kelly, Johlene
2007-04-01
Geographic Information System (GIS) was used to identify potential reference sites for wadeable stream monitoring, and multivariate analyses were applied to test whether invertebrate communities reflected a priori spatial and stream type classifications. We identified potential reference sites in segments with unmodified vegetation cover adjacent to the stream and in >85% of the upstream catchment. We then used various landcover, amenity and environmental impact databases to eliminate sites that had potential anthropogenic influences upstream and that fell into a range of access classes. Each site identified by this process was coded by four dominant stream classes and seven zones, and 119 candidate sites were randomly selected for follow-up assessment. This process yielded 16 sites conforming to reference site criteria using a conditional-probabilistic design, and these were augmented by an additional 14 existing or special interest reference sites. Non-metric multidimensional scaling (NMS) analysis of percent abundance invertebrate data indicated significant differences in community composition among some of the zones and stream classes identified a priori providing qualified support for this framework in reference site selection. NMS analysis of a range standardised condition and diversity metrics derived from the invertebrate data indicated a core set of 26 closely related sites, and four outliers that were considered atypical of reference site conditions and subsequently dropped from the network. Use of GIS linked to stream typology, available spatial databases and aerial photography greatly enhanced the objectivity and efficiency of reference site selection. The multi-metric ordination approach reduced variability among stream types and bias associated with non-random site selection, and provided an effective way to identify representative reference sites.
Plis, Sergey M; Sui, Jing; Lane, Terran; Roy, Sushmita; Clark, Vincent P; Potluru, Vamsi K; Huster, Rene J; Michael, Andrew; Sponheim, Scott R; Weisend, Michael P; Calhoun, Vince D
2013-01-01
Identifying the complex activity relationships present in rich, modern neuroimaging data sets remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven by numerous latent factors. Further, modern experiments often produce data sets containing multiple stimulus contexts or tasks processed by the same subjects. Fusing such multi-session data sets may reveal additional structure, but raises further statistical challenges. We present a novel analysis method for extracting complex activity networks from such multifaceted imaging data sets. Compared to previous methods, we choose a new point in the trade-off space, sacrificing detailed generative probability models and explicit latent variable inference in order to achieve robust estimation of multivariate, nonlinear group factors (“network clusters”). We apply our method to identify relationships of task-specific intrinsic networks in schizophrenia patients and control subjects from a large fMRI study. After identifying network-clusters characterized by within- and between-task interactions, we find significant differences between patient and control groups in interaction strength among networks. Our results are consistent with known findings of brain regions exhibiting deviations in schizophrenic patients. However, we also find high-order, nonlinear interactions that discriminate groups but that are not detected by linear, pair-wise methods. We additionally identify high-order relationships that provide new insights into schizophrenia but that have not been found by traditional univariate or second-order methods. Overall, our approach can identify key relationships that are missed by existing analysis methods, without losing the ability to find relationships that are known to be important. PMID:23876245
Identifying patients with cost-related medication non-adherence: a big-data approach.
Zhang, James X; Meltzer, David O
2016-08-01
Millions of Americans encounter access barriers to medication due to cost; however, to date, there is no effective screening tool that identifies patients at risk of cost-related medication non-adherence (CRN). By utilizing a big-data approach to combining the survey data and electronic health records (EHRs), this study aimed to develop a method of identifying patients at risk of CRN. CRN data were collected by surveying patients about CRN behaviors in the past 3 months. By matching the dates of patients' receipt of monthly Social Security (SS) payments and the dates of prescription orders for 559 Medicare beneficiaries who were primary SS claimants at high risk of hospitalization in an urban academic medical center, this study identified patients who ordered their outpatient prescription within 2 days of receipt of monthly SS payments in 2014. The predictive power of this information on CRN was assessed using multivariate logistic regression analysis. Among the 559 Medicare patients at high risk of hospitalization, 137 (25%) reported CRN. Among those with CRN, 96 (70%) had ordered prescriptions on receipt of SS payments one or more times in 2014. The area under the Receiver Operating Curve was 0.70 using the predictive model in multivariate logistic regression analysis. With a new approach to combining the survey data and EHR data, patients' behavior in delaying filling of prescription until funds from SS checks become available can be measured, providing some predictive value for cost-related medication non-adherence. The big-data approach is a valuable tool to identify patients at risk of CRN and can be further expanded to the general population and sub-populations, providing a meaningful risk-stratification for CRN and facilitating physician-patient communication to reduce CRN.
[The unnecessary application of central venous catheterization in surgical patients].
Uemura, Keiko; Inoue, Satoki; Kawaguchi, Masahiko
2018-04-06
Perioperative physicians occasionally encounter situations where central venous catheters placed preoperatively turn out to be unnecessary. The purpose of this retrospective study is to identify the unnecessary application of central venous catheter placement and determine the factors associated with the unnecessary application of central venous catheter placement. Using data from institutional perioperative central venous catheter surveillance, we analysed data from 1,141 patients who underwent central venous catheter placement. We reviewed the central venous catheter registry and medical charts and allocated registered patients into those with the proper or with unnecessary application of central venous catheter according to standard indications. Multivariate analysis was used to identify factors associated with the unnecessary application of central venous catheter placement. In 107 patients, representing 9.38% of the overall population, we identified the unnecessary application of central venous catheter placement. Multivariate analysis identified emergencies at night or on holidays (odds ratio [OR] 2.109, 95% confidence interval [95% CI] 1.021-4.359), low surgical risk (OR=1.729, 95% CI 1.038-2.881), short duration of anesthesia (OR=0.961/10min increase, 95% CI 0.945-0.979), and postoperative care outside of the intensive care unit (OR=2.197, 95% CI 1.402-3.441) all to be independently associated with the unnecessary application of catheterization. Complications related to central venous catheter placement when the procedure consequently turned out to be unnecessary were frequently observed (9/107) compared with when the procedure was necessary (40/1034) (p=0.032, OR=2.282, 95% CI 1.076-4.842). However, the subsequent multivariate logistic model did not hold this significant difference (p=0.0536, OR=2.115, 95% CI 0.988-4.526). More careful consideration for the application of central venous catheter is required in cases of emergency surgery at night or on holidays, during low risk surgery, with a short duration of anesthesia, or in cases that do not require postoperative intensive care. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Plasma neutrophil gelatinase-associated lipocalin: a marker of acute pyelonephritis in children.
Kim, Byung Kwan; Yim, Hyung Eun; Yoo, Kee Hwan
2017-03-01
This study was designed to compare the diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin (NGAL) with procalcitonin (PCT), C-reactive protein (CRP), and white blood cells (WBCs) for predicting acute pyelonephritis (APN) in children with febrile urinary tract infections (UTIs). In total, 138 children with febrile UTIs (APN 59, lower UTI 79) were reviewed retrospectively. Levels of NGAL, PCT, CRP, and WBCs in blood were measured on admission. The diagnostic accuracy of the biomarkers was investigated. Independent predictors of APN were identified by multivariate logistic regression analysis. Receiver operating curve (ROC) analyses showed good diagnostic profiles of NGAL, PCT, CRP, and WBCs for identifying APN [area under the curve (AUC) 0.893, 0.855, 0.879, and 0.654, respectively]. However, multivariate analysis revealed only plasma NGAL level was an independent predictor of APN (P = 0.006). At the best cutoff values of all examined biomarkers for identifying APN, sensitivity (86 %), specificity (85 %), positive predictive value (81 %), and negative predictive value (89 %) of plasma NGAL levels were the highest. The optimal NGAL cutoff value was 117 ng/ml. The positive likelihood ratio [odds ratio (OR) 5.69, 95 % confidence interval (CI) 3.56-8.78], and negative likelihood ratio (OR 0.16, 95 % CI 0.08-0.29) of plasma NGAL for APN diagnosis also showed it seemed to be more accurate than serum PCT, CRP, and WBCs. Plasma NGAL can be more useful than serum PCT, CRP, and WBC levels for identifying APN in children with febrile UTIs.
Goldrick, Stephen; Holmes, William; Bond, Nicholas J; Lewis, Gareth; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S
2017-10-01
Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody-peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high-throughput (HT) micro-bioreactor system (Ambr TM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on-line and off-line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale-up. Biotechnol. Bioeng. 2017;114: 2222-2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Karamzadeh, Nader; Amyot, Franck; Kenney, Kimbra; Anderson, Afrouz; Chowdhry, Fatima; Dashtestani, Hadis; Wassermann, Eric M; Chernomordik, Victor; Boccara, Claude; Wegman, Edward; Diaz-Arrastia, Ramon; Gandjbakhche, Amir H
2016-11-01
We have explored the potential prefrontal hemodynamic biomarkers to characterize subjects with Traumatic Brain Injury (TBI) by employing the multivariate machine learning approach and introducing a novel task-related hemodynamic response detection followed by a heuristic search for optimum set of hemodynamic features. To achieve this goal, the hemodynamic response from a group of 31 healthy controls and 30 chronic TBI subjects were recorded as they performed a complexity task. To determine the optimum hemodynamic features, we considered 11 features and their combinations in characterizing TBI subjects. We investigated the significance of the features by utilizing a machine learning classification algorithm to score all the possible combinations of features according to their predictive power. The identified optimum feature elements resulted in classification accuracy, sensitivity, and specificity of 85%, 85%, and 84%, respectively. Classification improvement was achieved for TBI subject classification through feature combination. It signified the major advantage of the multivariate analysis over the commonly used univariate analysis suggesting that the features that are individually irrelevant in characterizing the data may become relevant when used in combination. We also conducted a spatio-temporal classification to identify regions within the prefrontal cortex (PFC) that contribute in distinguishing between TBI and healthy subjects. As expected, Brodmann areas (BA) 10 within the PFC were isolated as the region that healthy subjects (unlike subjects with TBI), showed major hemodynamic activity in response to the High Complexity task. Overall, our results indicate that identified temporal and spatio-temporal features from PFC's hemodynamic activity are promising biomarkers in classifying subjects with TBI.
Low creatinine clearance is a risk factor for D2 gastrectomy after neoadjuvant chemotherapy.
Hayashi, Tsutomu; Aoyama, Toru; Tanabe, Kazuaki; Nishikawa, Kazuhiro; Ito, Yuichi; Ogata, Takashi; Cho, Haruhiko; Morita, Satoshi; Miyashita, Yumi; Tsuburaya, Akira; Sakamoto, Junichi; Yoshikawa, Takaki
2014-09-01
The feasibility and safety of D2 surgery following neoadjuvant chemotherapy (NAC) has not been fully evaluated in patients with gastric cancer. Moreover, risk factor for surgical complications after D2 gastrectomy following NAC is also unknown. The purpose of the present study was to identify risk factors of postoperative complications after D2 surgery following NAC. This study was conducted as an exploratory analysis of a prospective, randomized Phase II trial of NAC. The surgical complications were assessed and classified according to the Clavien-Dindo classification. A uni- and multivariate logistic regression analyses were performed to identify risk factors for morbidity. Among 83 patients who were registered to the Phase II trial, 69 patients received the NAC and D2 gastrectomy. Postoperative complications were identified in 18 patients and the overall morbidity rate was 26.1 %. The results of univariate and multivariate analyses of various factors for overall operative morbidity, creatinine clearance (CCr) ≤ 60 ml/min (P = 0.016) was identified as sole significant independent risk factor for overall morbidity. Occurrence of pancreatic fistula was significantly higher in the patients with a low CCr than in those with a high CCr. Low CCr was a significant risk factor for surgical complications in D2 gastrectomy after NAC. Careful attention is required for these patients.
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
Methods for presentation and display of multivariate data
NASA Technical Reports Server (NTRS)
Myers, R. H.
1981-01-01
Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.
A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists
ERIC Educational Resources Information Center
Warne, Russell T.
2014-01-01
Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…
Meltzer, Andrew J; Graham, Ashley; Connolly, Peter H; Karwowski, John K; Bush, Harry L; Frazier, Peter I; Schneider, Darren B
2013-01-01
We apply an innovative and novel analytic approach, based on reliability engineering (RE) principles frequently used to characterize the behavior of manufactured products, to examine outcomes after peripheral endovascular intervention. We hypothesized that this would allow for improved prediction of outcome after peripheral endovascular intervention, specifically with regard to identification of risk factors for early failure. Patients undergoing infrainguinal endovascular intervention for chronic lower-extremity ischemia from 2005 to 2010 were identified in a prospectively maintained database. The primary outcome of failure was defined as patency loss detected by duplex ultrasonography, with or without clinical failure. Analysis included univariate and multivariate Cox regression models, as well as RE-based analysis including product life-cycle models and Weibull failure plots. Early failures were distinguished using the RE principle of "basic rating life," and multivariate models identified independent risk factors for early failure. From 2005 to 2010, 434 primary endovascular peripheral interventions were performed for claudication (51.8%), rest pain (16.8%), or tissue loss (31.3%). Fifty-five percent of patients were aged ≥75 years; 57% were men. Failure was noted after 159 (36.6%) interventions during a mean follow-up of 18 months (range, 0-71 months). Using multivariate (Cox) regression analysis, rest pain and tissue loss were independent predictors of patency loss, with hazard ratios of 2.5 (95% confidence interval, 1.6-4.1; P < 0.001) and 3.2 (95% confidence interval, 2.0-5.2, P < 0.001), respectively. The distribution of failure times for both claudication and critical limb ischemia fit distinct Weibull plots, with different characteristics: interventions for claudication demonstrated an increasing failure rate (β = 1.22, θ = 13.46, mean time to failure = 12.603 months, index of fit = 0.99037, R(2) = 0.98084), whereas interventions for critical limb ischemia demonstrated a decreasing failure rate, suggesting the predominance of early failures (β = 0.7395, θ = 6.8, mean time to failure = 8.2, index of fit = 0.99391, R(2) = 0.98786). By 3.1 months, 10% of interventions failed. This point (90% reliability) was identified as the basic rating life. Using multivariate analysis of failure data, independent predictors of early failure (before 3.1 months) included tissue loss, long lesion length, chronic total occlusions, heart failure, and end-stage renal disease. Application of a RE framework to the assessment of clinical outcomes after peripheral interventions is feasible, and potentially more informative than traditional techniques. Conceptualization of interventions as "products" permits application of product life-cycle models that allow for empiric definition of "early failure" may facilitate comparative effectiveness analysis and enable the development of individualized surveillance programs after endovascular interventions. Copyright © 2013 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.
Marro, M; Nieva, C; Sanz-Pamplona, R; Sierra, A
2014-09-01
In breast cancer the presence of cells undergoing the epithelial-to-mesenchymal transition is indicative of metastasis progression. Since metabolic features of breast tumour cells are critical in cancer progression and drug resistance, we hypothesized that the lipid content of malignant cells might be a useful indirect measure of cancer progression. In this study Multivariate Curve Resolution was applied to cellular Raman spectra to assess the metabolic composition of breast cancer cells undergoing the epithelial to mesenchymal transition. Multivariate Curve Resolution analysis led to the conclusion that this transition affects the lipid profile of cells, increasing tryptophan but maintaining a low fatty acid content in comparison with highly metastatic cells. Supporting those results, a Partial Least Square-Discriminant analysis was performed to test the ability of Raman spectroscopy to discriminate the initial steps of epithelial to mesenchymal transition in breast cancer cells. We achieved a high level of sensitivity and specificity, 94% and 100%, respectively. In conclusion, Raman microspectroscopy coupled with Multivariate Curve Resolution enables deconvolution and tracking of the molecular content of cancer cells during a biochemical process, being a powerful, rapid, reagent-free and non-invasive tool for identifying metabolic features of breast cancer cell aggressiveness at first stages of malignancy. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gagné, Jonathan; Mamajek, Eric E.; Malo, Lison; Riedel, Adric; Rodriguez, David; Lafrenière, David; Faherty, Jacqueline K.; Roy-Loubier, Olivier; Pueyo, Laurent; Robin, Annie C.; Doyon, René
2018-03-01
BANYAN Σ is a new Bayesian algorithm to identify members of young stellar associations within 150 pc of the Sun. It includes 27 young associations with ages in the range ∼1–800 Myr, modeled with multivariate Gaussians in six-dimensional (6D) XYZUVW space. It is the first such multi-association classification tool to include the nearest sub-groups of the Sco-Cen OB star-forming region, the IC 2602, IC 2391, Pleiades and Platais 8 clusters, and the ρ Ophiuchi, Corona Australis, and Taurus star formation regions. A model of field stars is built from a mixture of multivariate Gaussians based on the Besançon Galactic model. The algorithm can derive membership probabilities for objects with only sky coordinates and proper motion, but can also include parallax and radial velocity measurements, as well as spectrophotometric distance constraints from sequences in color–magnitude or spectral type–magnitude diagrams. BANYAN Σ benefits from an analytical solution to the Bayesian marginalization integrals over unknown radial velocities and distances that makes it more accurate and significantly faster than its predecessor BANYAN II. A contamination versus hit rate analysis is presented and demonstrates that BANYAN Σ achieves a better classification performance than other moving group tools available in the literature, especially in terms of cross-contamination between young associations. An updated list of bona fide members in the 27 young associations, augmented by the Gaia-DR1 release, as well as all parameters for the 6D multivariate Gaussian models for each association and the Galactic field neighborhood within 300 pc are presented. This new tool will make it possible to analyze large data sets such as the upcoming Gaia-DR2 to identify new young stars. IDL and Python versions of BANYAN Σ are made available with this publication, and a more limited online web tool is available at http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php.
Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing
2016-01-01
Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.
Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D
2015-11-01
Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox-Gastaut phenotype. Abnormal function of these areas is likely to be important in explaining the intellectual problems characteristic of this disorder. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Maier, C; Dickhaus, H
2010-01-01
This study examines the suitability of recurrence plot analysis for the problem of central sleep apnea (CSA) detection and delineation from ECG-derived respiratory (EDR) signals. A parameter describing the average length of vertical line structures in recurrence plots is calculated at a time resolution of 1 s as 'instantaneous trapping time'. Threshold comparison of this parameter is used to detect ongoing CSA. In data from 26 patients (duration 208 h) we assessed sensitivity for detection of CSA and mixed apnea (MSA) events by comparing the results obtained from 8-channel Holter ECGs to the annotations (860 CSA, 480 MSA) of simultaneously registered polysomnograms. Multivariate combination of the EDR from different ECG leads improved the detection accuracy significantly. When all eight leads were considered, an average instantaneous vertical line length above 5 correctly identified 1126 of the 1340 events (sensitivity 84%) with a total number of 1881 positive detections. We conclude that recurrence plot analysis is a promising tool for detection and delineation of CSA epochs from EDR signals with high time resolution. Moreover, the approach is likewise applicable to directly measured respiratory signals.
Patient Safety Incidents and Nursing Workload 1
Carlesi, Katya Cuadros; Padilha, Kátia Grillo; Toffoletto, Maria Cecília; Henriquez-Roldán, Carlos; Juan, Monica Andrea Canales
2017-01-01
ABSTRACT Objective: to identify the relationship between the workload of the nursing team and the occurrence of patient safety incidents linked to nursing care in a public hospital in Chile. Method: quantitative, analytical, cross-sectional research through review of medical records. The estimation of workload in Intensive Care Units (ICUs) was performed using the Therapeutic Interventions Scoring System (TISS-28) and for the other services, we used the nurse/patient and nursing assistant/patient ratios. Descriptive univariate and multivariate analysis were performed. For the multivariate analysis we used principal component analysis and Pearson correlation. Results: 879 post-discharge clinical records and the workload of 85 nurses and 157 nursing assistants were analyzed. The overall incident rate was 71.1%. It was found a high positive correlation between variables workload (r = 0.9611 to r = 0.9919) and rate of falls (r = 0.8770). The medication error rates, mechanical containment incidents and self-removal of invasive devices were not correlated with the workload. Conclusions: the workload was high in all units except the intermediate care unit. Only the rate of falls was associated with the workload. PMID:28403334
Finding structure in data using multivariate tree boosting
Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.
2016-01-01
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183
Housing Instability Among Current and Former Welfare Recipients
Phinney, Robin; Danziger, Sheldon; Pollack, Harold A.; Seefeldt, Kristin
2007-01-01
Objectives. We examined correlates of eviction and homelessness among current and former welfare recipients from 1997 to 2003 in an urban Michigan community. Methods. Longitudinal cohort data were drawn from the Women’s Employment Study, a representative panel study of mothers who were receiving cash welfare in February 1997. We used logistic regression analysis to identify risk factors for both eviction and homelessness over the survey period. Results. Twenty percent (95% confidence interval [CI]=16%, 23%) of respondents were evicted and 12% (95% CI=10%, 15%) experienced homelessness at least once between fall 1997 and fall 2003. Multivariate analyses indicated 2 consistent risk factors: having less than a high school education and having used illicit drugs other than marijuana. Mental and physical health problems were significantly associated with homelessness but not evictions. A multivariate screening algorithm achieved 75% sensitivity and 67% specificity in identifying individuals at risk for homelessness. A corresponding algorithm for eviction achieved 75% sensitivity and 50% specificity. Conclusions. The high prevalence of housing instability among our respondents suggests the need to better target housing assistance and other social services to current and former welfare recipients with identifiable personal problems. PMID:17267717
Multivariate inference of pathway activity in host immunity and response to therapeutics
Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.
2014-01-01
Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207
Yu, Qiyao; Bai, Yaling; Zhang, Junxia; Cui, Liwen; Zhang, Huiran; Xu, Jinsheng; Gao, Chao
2013-01-01
Chronic kidney disease related mineral and bone disease (CKD-MBD) is a worldwide challenge in hemodialysis patients. In china, the number of dialysis patients is growing but few data are available about their bone disorders. In the current study, we aimed to evaluate the effect of clinical factors on the serum phosphorus clearance in the 80 maintenance hemodialysis (MHD) patients. Six clinical factors were identified for their association with the serum phosphorus clearance using the analysis of Spearman's single linear correlation, including predialysis serum phosphate level, CRR, membrane surface area of the dialyzer, effective blood flow rate, the blood chamber volume, and hematocrit. In an overall multivariate analysis, pre-P, CRR, membrane SA, and Qb were identified as independent risk factors associated with the serum phosphorus clearance. In conclusion, HD could effectively clear serum phosphorus. The analysis of CRR might help to estimate serum phosphorus reduction ratio. PMID:24454542
Yang, Jing; Mei, Ying; Hook, Andrew L.; Taylor, Michael; Urquhart, Andrew J.; Bogatyrev, Said R.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.
2010-01-01
High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterisation (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), x-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability of identifying surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis. PMID:20832108
Identifying environmental features for land management decisions
NASA Technical Reports Server (NTRS)
1981-01-01
The benefits of changes in management organization and facilities for the Center for Remote Sensing and Cartography in Utah are reported as well as interactions with and outreach to state and local agencies. Completed projects are described which studied (1) Unita Basin wetland/land use; (2) Davis County foothill development; (3) Farmington Bay shoreline fluctuation; (4) irrigation detection; and (5) satellite investigation of snow cover/mule deer relationships. Techniques developed for composite computer mapping, contrast enhancement, U-2 CIR/LANDSAT digital interface; factor analysis, and multivariate statistical analysis are described.
Rare Variant Association Test with Multiple Phenotypes
Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung
2016-01-01
Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multi-variant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability. PMID:28039885
Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder
2009-12-01
To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.
Neuropsychological Testing Predicts Cerebrospinal Fluid Aβ in Mild Cognitive Impairment (MCI)
Kandel, Benjamin M.; Avants, Brian B.; Gee, James C.; Arnold, Steven E.; Wolk, David A.
2015-01-01
Background Psychometric tests predict conversion of Mild Cognitive Impairment (MCI) to probable Alzheimer's Disease (AD). Because the definition of clinical AD relies on those same psychometric tests, the ability of these tests to identify underlying AD pathology remains unclear. Objective To determine the degree to which psychometric testing predicts molecular evidence of AD amyloid pathology, as indicated by CSF Aβ1–42, in patients with MCI, as compared to neuroimaging biomarkers. Methods We identified 408 MCI subjects with CSF Aβ levels, psychometric test data, FDG-PET scans, and acceptable volumetric MR scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We used psychometric tests and imaging biomarkers in univariate and multivariate models to predict Aβ status. Results The 30-minute delayed recall score of the Rey Auditory Verbal Learning Test (AVLT) was the best predictor of Aβ status among the psychometric tests, achieving an AUC of 0.67±0.02 and odds ratio of 2.5±0.4. FDG-PET was the best imaging-based biomarker (AUC 0.67±0.03, OR 3.2±1.2), followed by hippocampal volume (AUC 0.64±0.02,,OR 2.4±0.3). A multivariate analysis based on the psychometric tests improved on the univariate predictors, achieving an AUC of 0.68±0.03 (OR 3.38±1.2). Adding imaging biomarkers to the multivariate analysis did not improve the AUC. Conclusion Psychometric tests perform as well as imaging biomarkers to predict presence of molecular markers of AD pathology in MCI patients and should be considered in the determination of the likelihood that MCI is due to AD. PMID:25881908
Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J
2014-01-01
HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.
Hayman, Jonathan; Phillips, Ryan; Chen, Di; Perin, Jamie; Narang, Amol K; Trieu, Janson; Radwan, Noura; Greco, Stephen; Deville, Curtiland; McNutt, Todd; Song, Daniel Y; DeWeese, Theodore L; Tran, Phuoc T
2018-06-01
Undetectable End of Radiation PSA (EOR-PSA) has been shown to predict improved survival in prostate cancer (PCa). While validating the unfavorable intermediate-risk (UIR) and favorable intermediate-risk (FIR) stratifications among Johns Hopkins PCa patients treated with radiotherapy, we examined whether EOR-PSA could further risk stratify UIR men for survival. A total of 302 IR patients were identified in the Johns Hopkins PCa database (178 UIR, 124 FIR). Kaplan-Meier curves and multivariable analysis was performed via Cox regression for biochemical recurrence free survival (bRFS), distant metastasis free survival (DMFS), and overall survival (OS), while a competing risks model was used for PCa specific survival (PCSS). Among the 235 patients with known EOR-PSA values, we then stratified by EOR-PSA and performed the aforementioned analysis. The median follow-up time was 11.5 years (138 months). UIR was predictive of worse DMFS and PCSS (P = 0.008 and P = 0.023) on multivariable analysis (MVA). Increased radiation dose was significant for improved DMFS (P = 0.016) on MVA. EOR-PSA was excluded from the models because it did not trend towards significance as a continuous or binary variable due to interaction with UIR, and we were unable to converge a multivariable model with a variable to control for this interaction. However, when stratifying by detectable versus undetectable EOR-PSA, UIR had worse DMFS and PCSS among detectable EOR-PSA patients, but not undetectable patients. UIR was significant on MVA among detectable EOR-PSA patients for DMFS (P = 0.021) and PCSS (P = 0.033), while RT dose also predicted PCSS (P = 0.013). EOR-PSA can assist in predicting DMFS and PCSS among UIR patients, suggesting a clinically meaningful time point for considering intensification of treatment in clinical trials of intermediate-risk men. © 2018 Wiley Periodicals, Inc.
Ekat, M H; Courpotin, C; Diafouka, M; Akolbout, M; Mahambou-Nsonde, D; Bitsindou, P R; Nzounza, P; Simon, B
2013-05-01
The aim of this study was to determine the prevalence of kidney disease in patients newly diagnosed as HIV-positive in Brazzaville and to identify the associated risk factors. Descriptive and analytical study of patients diagnosed with HIV infection at the Ambulatory Treatment Center in Brazzaville, Republic of Congo, from January 1, 2009, through December 31, 2010. Estimated glomerular filtration rate (eGFR) was assessed with the Modification of Diet in Renal Disease equation (MDRD-GFR), and kidney disease was defined by an eGFR less than 60 mL/min/1.73 m(2). We conducted a univariate and then a multivariate logistic regression analysis to determine the factors associated with kidney disease in this population. The study included 562 patients newly identified as HIV-infected, 66.13% of whom were women. Their median age was 38.84 years interquartile range (IQR): 33.18-46.23) and their median body mass index (BMI) 20.31 kg/m(2) (IQR: 17.97-22.89). Their median CD4 count was 192 cells/mm(3) (IQR: 81-350), and 70.8% were at WHO stage III/IV. Finally, the median MDRD-GFR was 95.59 (IQR: 78.76-114.92) mL/min/1.73 m(2) and 8.5% had a GFR less than 60 mL/min/1.73 m(2), that is, moderate impairment of kidney function. The only factor associated with kidney disease in the multivariate analysis was a BMI less than 18.5 kg/m(2) (adjusted odds ratio: 2.54, 95% confidence interval: 1.25-5.15, p = 0.01). The prevalence of kidney disease in patients newly diagnosed with HIV in Brazzaville is relatively high. The only factor associated with it in the multivariate analysis was a BMI less than 18.5 kg/m(2).
Continuation of measurement of hydrologic soil-cover complex with airborne scatterometers. [Texas
NASA Technical Reports Server (NTRS)
Blanchard, B. J.; Nieber, J. L.; Blanchard, A. J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Analysis of radar scatterometry data obtained over five flight lines in Texas by NASA C-130 aircraft demonstrated that multivariant radar data can be used to distinguish difference in land use, and hence be an indicator of surface runoff characteristics. The capability of using microwave sensors to detect flood inundation of timbered land was also determined.
Hongthong, Donnapa; Somrongthong, Ratana; Wongchaiya, Pimpimon; Kumar, Ramesh
2016-01-01
Alcohol consumption is recognized as a public health issue. Study objectives were to identify factors predictive of alcohol consumption among elderly people in Phayao province Thailand, where there was high prevalence of alcohol consumption. This was a cross-sectional study. Four hundred elderly people participated in a survey. Data was collected by face-to-face interviews. Chi-square and multivariate logistic regression were used to determine the factors predictive of alcohol consumption among the study subjects. One thirds of elderly (31.7%) had consumed alcohol in their lifetime, and (15.7%) of them were current drinkers. Following univariate analysis, seven factors included gender, working, sickness, smoking, quality of life (QOL), daily activities and economic recession - were identified as being significantly associated with drinking (p<0.05). Multivariate analysis revealed four factors to be predictive of alcohol among elderly people: gender (OR=6.02, 95% CI=3.58-10.13), smoking (OR=4.34, 95% CI=2.57-7.34), economic recession (OR=2.79, 95%, CI=1.66-4.71), and QOL (OR=1.86, 95%, CI=1.09-3.16). Gender (male) and smoking were strongly predictive factors of elderly alcohol consumption. Hence, an effort to reduce alcohol consumption should be placed on male elderly and those who smoke.
NASA Astrophysics Data System (ADS)
Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey
2018-04-01
Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.
Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit
2017-04-01
Rapid urbanization in China has been causing dramatic deterioration in the water quality of rivers and threatening aquatic ecosystem health. In this paper, multivariate techniques, such as factor analysis (FA) and cluster analysis (CA), were applied to analyze the water quality datasets for 19 rivers in Liangjiang New Area (LJNA), China, collected in April (dry season) and September (wet season) of 2014 and 2015. In most sampling rivers, total phosphorus, total nitrogen, and fecal coliform exceeded the Class V guideline (GB3838-2002), which could thereby threaten the water quality in Yangtze and Jialing Rivers. FA clearly identified the five groups of water quality variables, which explain majority of the experimental data. Nutritious pollution, seasonal changes, and construction activities were three key factors influencing rivers' water quality in LJNA. CA grouped 19 sampling sites into two clusters, which located at sub-catchments with high- and low-level urbanization, respectively. One-way ANOVA showed the nutrients (total phosphorus, soluble reactive phosphorus, total nitrogen, ammonium nitrogen, and nitrite), fecal coliform, and conductivity in cluster 1 were significantly greater than in cluster 2. Thus, catchment urbanization degraded rivers' water quality in Liangjiang New Area. Identifying effective buffer zones at riparian scale to weaken the negative impacts of catchment urbanization was recommended.
A Review of Multivariate Methods for Multimodal Fusion of Brain Imaging Data
Adali, Tülay; Yu, Qingbao; Calhoun, Vince D.
2011-01-01
The development of various neuroimaging techniques is rapidly improving the measurements of brain function/structure. However, despite improvements in individual modalities, it is becoming increasingly clear that the most effective research approaches will utilize multi-modal fusion, which takes advantage of the fact that each modality provides a limited view of the brain. The goal of multimodal fusion is to capitalize on the strength of each modality in a joint analysis, rather than a separate analysis of each. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions from high dimensional data with a limited number of subjects. Numerous research efforts have been reported in the field based on various statistical approaches, e.g. independent component analysis (ICA), canonical correlation analysis (CCA) and partial least squares (PLS). In this review paper, we survey a number of multivariate methods appearing in previous reports, which are performed with or without prior information and may have utility for identifying potential brain illness biomarkers. We also discuss the possible strengths and limitations of each method, and review their applications to brain imaging data. PMID:22108139
Gao, Boyan; Qin, Fang; Ding, Tingting; Chen, Yineng; Lu, Weiying; Yu, Liangli Lucy
2014-08-13
Ultraperformance liquid chromatography mass spectrometry (UPLC-MS), flow injection mass spectrometry (FIMS), and headspace gas chromatography (headspace-GC) combined with multivariate data analysis techniques were examined and compared in differentiating organically grown oregano from that grown conventionally. It is the first time that headspace-GC fingerprinting technology is reported in differentiating organically and conventionally grown spice samples. The results also indicated that UPLC-MS, FIMS, and headspace-GC-FID fingerprints with OPLS-DA were able to effectively distinguish oreganos under different growing conditions, whereas with PCA, only FIMS fingerprint could differentiate the organically and conventionally grown oregano samples. UPLC fingerprinting provided detailed information about the chemical composition of oregano with a longer analysis time, whereas FIMS finished a sample analysis within 1 min. On the other hand, headspace GC-FID fingerprinting required no sample pretreatment, suggesting its potential as a high-throughput method in distinguishing organically and conventionally grown oregano samples. In addition, chemical components in oregano were identified by their molecular weight using QTOF-MS and headspace-GC-MS.
Daigre, Constanza; Roncero, Carlos; Grau-López, Lara; Martínez-Luna, Nieves; Prat, Gemma; Valero, Sergi; Tejedor, Rosa; Ramos-Quiroga, Josep A; Casas, Miguel
2013-01-01
Attention deficit hyperactivity disorder (ADHD) is highly prevalent among drug abusers. We studied the psychiatric comorbidity and characteristics of cocaine use in relation to the presence of ADHD among patients with cocaine dependence. A total of 200 cocaine-dependent patients attending an Outpatient Drug Clinic participated in the study. A systematic evaluation of ADHD (CAADID-II), the severity of addiction (EuropASI) and other axes I and II psychiatric disorders was made (SCID-I and SCID-II). A descriptive, bivariate, and multivariate analysis of the data was performed. In the multivariate analysis, the identified risk factors for the development of ADHD were a history of behavioral disorder in childhood (OR: 3.04), a lifetime history of cannabis dependence in the course of life (OR: 2.68), and age at the start of treatment (OR: 1.08). The bivariate analysis showed ADHD to be associated with other factors such as male gender, age at start of cocaine use and dependence, the amount of cocaine consumed weekly, increased occupational alteration, alcohol consumption, general psychological discomfort, depressive disorder, and antisocial personality disorder. We conclude that ADHD is associated with increased psychiatric comorbidity and greater severity of addiction. Copyright © American Academy of Addiction Psychiatry.
NASA Astrophysics Data System (ADS)
Candefjord, Stefan; Nyberg, Morgan; Jalkanen, Ville; Ramser, Kerstin; Lindahl, Olof A.
2010-12-01
Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard--histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization.
Regression analysis for LED color detection of visual-MIMO system
NASA Astrophysics Data System (ADS)
Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo
2018-04-01
Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.
Chen, Ping; Harrington, Peter B
2008-02-01
A new method coupling multivariate self-modeling mixture analysis and pattern recognition has been developed to identify toxic industrial chemicals using fused positive and negative ion mobility spectra (dual scan spectra). A Smiths lightweight chemical detector (LCD), which can measure positive and negative ion mobility spectra simultaneously, was used to acquire the data. Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) was used to separate the analytical peaks in the ion mobility spectra from the background reactant ion peaks (RIP). The SIMPLSIMA analytical components of the positive and negative ion peaks were combined together in a butterfly representation (i.e., negative spectra are reported with negative drift times and reflected with respect to the ordinate and juxtaposed with the positive ion mobility spectra). Temperature constrained cascade-correlation neural network (TCCCN) models were built to classify the toxic industrial chemicals. Seven common toxic industrial chemicals were used in this project to evaluate the performance of the algorithm. Ten bootstrapped Latin partitions demonstrated that the classification of neural networks using the SIMPLISMA components was statistically better than neural network models trained with fused ion mobility spectra (IMS).
NASA Astrophysics Data System (ADS)
Rachmawati; Rohaeti, E.; Rafi, M.
2017-05-01
Taro flour on the market is usually sold at higher price than wheat and sago flour. This situation could be a cause for adulteration of taro flour from wheat and sago flour. For this reason, we will need an identification and authentication. Combination of near infrared (NIR) spectrum with multivariate analysis was used in this study to identify and authenticate taro flour from wheat and sago flour. The authentication model of taro flour was developed by using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and sago flour. Before subjected to multivariate analysis, an initial preprocessing signal was used namely normalization and standard normal variate to the NIR spectrum. We used principal component analysis followed by discriminant analysis to make an identification and authentication model of taro flour. From the result obtained, about 90.48% of the taro flour mixed with wheat flour and 85% of taro flour mixed with sago flour were successfully classified into their groups. So the combination of NIR spectrum with chemometrics could be used for identification and authentication of taro flour from wheat and sago flour.
Multivariate Meta-Analysis of Preference-Based Quality of Life Values in Coronary Heart Disease.
Stevanović, Jelena; Pechlivanoglou, Petros; Kampinga, Marthe A; Krabbe, Paul F M; Postma, Maarten J
2016-01-01
There are numerous health-related quality of life (HRQol) measurements used in coronary heart disease (CHD) in the literature. However, only values assessed with preference-based instruments can be directly applied in a cost-utility analysis (CUA). To summarize and synthesize instrument-specific preference-based values in CHD and the underlying disease-subgroups, stable angina and post-acute coronary syndrome (post-ACS), for developed countries, while accounting for study-level characteristics, and within- and between-study correlation. A systematic review was conducted to identify studies reporting preference-based values in CHD. A multivariate meta-analysis was applied to synthesize the HRQoL values. Meta-regression analyses examined the effect of study level covariates age, publication year, prevalence of diabetes and gender. A total of 40 studies providing preference-based values were detected. Synthesized estimates of HRQoL in post-ACS ranged from 0.64 (Quality of Well-Being) to 0.92 (EuroQol European"tariff"), while in stable angina they ranged from 0.64 (Short form 6D) to 0.89 (Standard Gamble). Similar findings were observed in estimates applying to general CHD. No significant improvement in model fit was found after adjusting for study-level covariates. Large between-study heterogeneity was observed in all the models investigated. The main finding of our study is the presence of large heterogeneity both within and between instrument-specific HRQoL values. Current economic models in CHD ignore this between-study heterogeneity. Multivariate meta-analysis can quantify this heterogeneity and offers the means for uncertainty around HRQoL values to be translated to uncertainty in CUAs.
Barton, Mitch; Yeatts, Paul E; Henson, Robin K; Martin, Scott B
2016-12-01
There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent variables. However, this univariate approach decreases power, increases the risk for Type 1 error, and contradicts the rationale for conducting multivariate tests in the first place. The purpose of this study was to provide a user-friendly primer on conducting descriptive discriminant analysis (DDA), which is a post-hoc strategy to MANOVA that takes into account the complex relationships among multiple dependent variables. A real-world example using the Statistical Package for the Social Sciences syntax and data from 1,095 middle school students on their body composition and body image are provided to explain and interpret the results from DDA. While univariate post hocs increased the risk for Type 1 error to 76%, the DDA identified which dependent variables contributed to group differences and which groups were different from each other. For example, students in the very lean and Healthy Fitness Zone categories for body mass index experienced less pressure to lose weight, more satisfaction with their body, and higher physical self-concept than the Needs Improvement Zone groups. However, perceived pressure to gain weight did not contribute to group differences because it was a suppressor variable. Researchers are encouraged to use DDA when investigating group differences on multiple correlated dependent variables to determine which variables contributed to group differences.
Differential use of fresh water environments by wintering waterfowl of coastal Texas
White, D.H.; James, D.
1978-01-01
A comparative study of the environmental relationships among 14 species of wintering waterfowl was conducted at the Welder Wildlife Foundation, San Patricia County, near Sinton, Texas during the fall and early winter of 1973. Measurements of 20 environmental factors (social, vegetational, physical, and chemical) were subjected to multivariate statistical methods to determine certain niche characteristics and environmental relationships of waterfowl wintering in the aquatic community.....Each waterfowl species occupied a unique realized niche by responding to distinct combinations of environmental factors identified by principal component analysis. One percent confidence ellipses circumscribing the mean scores plotted for the first and second principal components gave an indication of relative niche width for each species. The waterfowl environments were significantly different interspecifically and water depth at feeding site and % emergent vegetation were most important in the separation. This was shown by subjecting the transformed data to multivariate analysis of variance with an associated step-down procedure. The species were distributed along a community cline extending from shallow water with abundant emergent vegetation to open deep water with little emergent vegetation of any kind. Four waterfowl subgroups were significantly separated along the cline, as indicated by one-way analysis of variance with Duncan?s multiple range test. Clumping of the bird species toward the middle of the available habitat hyperspace was shown in a plot of the principal component scores for the random samples and individual species.....Naturally occurring relationships among waterfowl were clarified using principal comcomponent analysis and related multivariate procedures. These techniques may prove useful in wetland management for particular groups of waterfowl based on habitat preferences.
NASA Astrophysics Data System (ADS)
DSouza, Adora M.; Abidin, Anas Z.; Leistritz, Lutz; Wismüller, Axel
2017-02-01
We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.
Heunis, Tosca-Marie; Aldrich, Chris; de Vries, Petrus J
2016-08-01
Electroencephalography (EEG) has been used for almost a century to identify seizure-related disorders in humans, typically through expert interpretation of multichannel recordings. Attempts have been made to quantify EEG through frequency analyses and graphic representations. These "traditional" quantitative EEG analysis methods were limited in their ability to analyze complex and multivariate data and have not been generally accepted in clinical settings. There has been growing interest in identification of novel EEG biomarkers to detect early risk of autism spectrum disorder, to identify clinically meaningful subgroups, and to monitor targeted intervention strategies. Most studies to date have, however, used quantitative EEG approaches, and little is known about the emerging multivariate analytical methods or the robustness of candidate biomarkers in the context of the variability of autism spectrum disorder. Here, we present a targeted review of methodological and clinical challenges in the search for novel resting-state EEG biomarkers for autism spectrum disorder. Three primary novel methodologies are discussed: (1) modified multiscale entropy, (2) coherence analysis, and (3) recurrence quantification analysis. Results suggest that these methods may be able to classify resting-state EEG as "autism spectrum disorder" or "typically developing", but many signal processing questions remain unanswered. We suggest that the move to novel EEG analysis methods is akin to the progress in neuroimaging from visual inspection, through region-of-interest analysis, to whole-brain computational analysis. Novel resting-state EEG biomarkers will have to evaluate a range of potential demographic, clinical, and technical confounders including age, gender, intellectual ability, comorbidity, and medication, before these approaches can be translated into the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.
Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran
2014-01-01
Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691
Mallette, Jennifer R.; Casale, John F.; Jordan, James; Morello, David R.; Beyer, Paul M.
2016-01-01
Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions. PMID:27006288
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
ERIC Educational Resources Information Center
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Ishihara, Kanako; Saito, Mieko; Shimokubo, Natsumi; Muramatsu, Yasukazu; Maetani, Shigeki; Tamura, Yutaka
2014-12-01
Veterinary staff carrying methicillin-resistant Staphylococcus aureus(MRSA) can be a source of MRSA infection in animals. To identify risk factors of MRSA carriage among veterinary staff, MRSA carriage and epidemiological information (sex, career, contact with MRSA-identified animal patients and others) were analyzed from 96 veterinarians and 70 veterinary technicians working at 71 private veterinary clinics in Japan. Univariate analysis determined sex (percentage of MRSA carriage, male (29.2%) vs. female (10%); P=0.002) and career (veterinarians (22.9%) vs. veterinary technicians (10%); P=0.030) as risk factors. Multivariable analysis revealed that sex was independently associated with MRSA carriage (adjusted odds ratio, 3.717; 95% confidence interval, 1.555-8.889; P=0.003). Therefore, male veterinary staff had a higher risk of MRSA carriage than female staff.
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M
2009-06-01
In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.
Rowe, A Shaun; Rinehart, Derrick R; Lezatte, Stephanie; Langdon, J Russell
2018-03-07
The objective of this study was to evaluate and identify the risk factors for developing a new or enlarged intracranial hemorrhage (ICH) after the placement of an external ventricular drain. A single center, nested case-control study of individuals who received an external ventricular drain from June 1, 2011 to June 30, 2014 was conducted at a large academic medical center. A bivariate analysis was conducted to compare those individuals who experienced a post-procedural intracranial hemorrhage to those who did not experience a new bleed. The variables identified as having a p-value less than 0.15 in the bivariate analysis were then evaluated using a multivariate logistic regression model. Twenty-seven of the eighty-one study participants experienced a new or enlarged intracranial hemorrhage after the placement of an external ventricular drain. Of these twenty-seven patients, 6 individuals received an antiplatelet within ninety-six hours of external ventricular drain placement (p = 0.024). The multivariate logistic regression model identified antiplatelet use within 96 h of external ventricular drain insertion as an independent risk factor for post-EVD ICH (OR 13.1; 95% CI 1.95-88.6; p = 0.008). Compared to those study participants who did not receive an antiplatelet within 96 h of external ventricular drain placement, those participants who did receive an antiplatelet were 13.1 times more likely to exhibit a new or enlarged intracranial hemorrhage.
Incidence and timing of presentation of necrotizing enterocolitis in preterm infants.
Yee, Wendy H; Soraisham, Amuchou Singh; Shah, Vibhuti S; Aziz, Khalid; Yoon, Woojin; Lee, Shoo K
2012-02-01
To examine the variation in the incidence and to identify the timing of the presentation of necrotizing enterocolitis (NEC) in a cohort of preterm infants within the Canadian Neonatal Network (CNN). This was a population-based cohort of 16 669 infants with gestational age (GA) <33 weeks, admitted to 25 NICUs participating in the CNN between January 1, 2003, and December 31(,) 2008. Variations in NEC incidence among the participating NICUs for the study period were examined. We categorized early-onset NEC as occurring at <14 days of age and late-onset NEC occurring at ≥14 days. Multivariate logistic regression analysis was performed to identify risk factors for early-onset NEC. The overall incidence of NEC was 5.1%, with significant variation in the risk adjusted incidence among the participating NICUs in the CNN. Early-onset NEC occurred at a mean of 7 days compared with 32 days for late-onset NEC. Early-onset NEC infants had lower incidence of respiratory distress syndrome, patent ductus treated with indomethacin, less use of postnatal steroids, and shorter duration of ventilation days. Multivariate logistic regression analysis identified that greater GA and vaginal delivery were associated with increased risk of early-onset NEC. Among infants <33 weeks' gestation, NEC appears to present at mean age of 7 days in more mature infants, whereas onset of NEC is delayed to 32 days of age in smaller, lower GA infants. Further studies are required to understand the etiology of this disease process.
Jayamanne, Shaluka F.; Jayasinghe, Chamilka Y.
2017-01-01
Background Acute poisoning in children is a major preventable cause of morbidity and mortality in both developed and developing countries. However, there is a wide variation in patterns of poisoning and related risk factors across different geographic regions globally. This hospital based case-control study identifies the risk factors of acute unintentional poisoning among children aged 1−5 years of the rural community in a developing Asian country. Methods This hospital based case-control study included 600 children. Each group comprised three hundred children and all children were recruited at Anuradhapura Teaching Hospital, Sri Lanka, over two years (from February 2012 to January 2014). The two groups were compared to identify the effect of 23 proposed risk factors for unintentional poisoning using multivariate analysis in a binary logistic regression model. Results Multivariate analysis identified eight risk factors which were significantly associated with unintentional poisoning. The strongest risk factors were inadequate supervision (95% CI: 15.4–52.6), employed mother (95% CI: 2.9–17.5), parental concern of lack of family support (95% CI: 3.65–83.3), and unsafe storage of household poisons (95% CI: 1.5–4.9). Conclusions Since inadequate supervision, unsafe storage, and unsafe environment are the strongest risk factors for childhood unintentional poisoning, the effect of community education to enhance vigilance, safe storage, and assurance of safe environment should be evaluated. PMID:28932247
Cunningham, Michael E A; Donofrio, Mary T; Peer, Syed Murfad; Zurakowski, David; Jonas, Richard A; Sinha, Pranava
2017-03-01
We have previously demonstrated that early primary repair of tetralogy of Fallot with pulmonary stenosis (TOF) can be safely performed without increase in hospital resource utilization or compromise to surgical technical performance scores (TPS). We sought to identify the optimal timing for elective early primary repair of TOF with respect to intermediate-term reintervention. Retrospective review of all patients with TOF undergoing elective primary repair between September 2004 and December 2013 was performed. Patients were stratified into reintervention group or no reintervention group. Multivariable Cox regression analysis identified independent predictors of reintervention. Youden's J-index in receiver operating characteristic analysis identified optimal age cutoff predictive of reintervention. Kaplan-Meier analysis with the log-rank test compared reintervention rates stratified by age and TPS. A total of 129 patients with median (interquartile range) age and weight of 78 days (56 to 111) and 5 kg (4.1 to 5.7), respectively, underwent primary repair. After a median (interquartile range) follow-up of 2.3 years (0.1 to 4.6), 18 patients (14%) required a total of 22 reinterventions. Youden's J-index revealed significantly lower risk of intermediate-term reintervention when repaired after 55 days of age (8% for >55 days old versus 31% for ≤55 days of age). Multivariable Cox regression identified age 55 days and younger (hazard ratio [HR] 4.5, 95% confidence interval [CI] 1.6 to 12.8, p = 0.004), valve sparing repair (HR 15.3, 95% CI 1.8 to 128.5, p < 0.001), residual right ventricular outflow tract (RVOT) gradient (HR 1.11, 95% CI 1.1 to 1.2, p < 0.001), and inadequate TPS (HR 21.5, 95% CI 7.4 to 63, p < 0.001) as independent predictors of overall intermediate-term reintervention. Elective repair in patients greater than 55 days of age, irrespective of size of the patient, can be safely performed without any increase in reintervention rates. Both residual peak RVOT gradient and TPS are effective in identifying patients at increased risk of reintervention. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
Yu, Marcia M L; Sandercock, P Mark L
2012-01-01
During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.
Hayes, Don; Kopp, Benjamin T; Tobias, Joseph D; Woodley, Frederick W; Mansour, Heidi M; Tumin, Dmitry; Kirkby, Stephen E
2015-12-01
Survival in non-cystic fibrosis (CF) bronchiectasis is not well studied. The United Network for Organ Sharing database was queried from 1987 to 2013 to compare survival in adult patients with non-CF bronchiectasis to patients with CF listed for lung transplantation (LTx). Each subject was tracked from waitlist entry date until death or censoring to determine survival differences between the two groups. Of 2112 listed lung transplant candidates with bronchiectasis (180 non-CF, 1932 CF), 1617 were used for univariate Cox and Kaplan-Meier survival function analysis, 1173 for multivariate Cox models, and 182 for matched-pairs analysis based on propensity scores. Compared to CF, patients with non-CF bronchiectasis had a significantly lower mortality by univariate Cox analysis (HR 0.565; 95 % CI 0.424, 0.754; p < 0.001). Adjusting for potential confounders, multivariate Cox models identified a significant reduction in risk for death associated with non-CF bronchiectasis who were lung transplant candidates (HR 0.684; 95 % CI 0.475, 0.985; p = 0.041). Results were consistent in multivariate models adjusting for pulmonary hypertension and forced expiratory volume in one second. Non-CF bronchiectasis with advanced lung disease was associated with significantly lower mortality hazard compared to CF bronchiectasis on the waitlist for LTx. Separate referral and listing criteria for LTx in non-CF and CF populations should be considered.
Large-scale Granger causality analysis on resting-state functional MRI
NASA Astrophysics Data System (ADS)
D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel
2016-03-01
We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.
Hasegawa, Takumi; Tachibana, Akira; Takeda, Daisuke; Iwata, Eiji; Arimoto, Satomi; Sakakibara, Akiko; Akashi, Masaya; Komori, Takahide
2016-12-01
The relationship between radiographic findings and the occurrence of oroantral perforation is controversial. Few studies have quantitatively analyzed the risk factors contributing to oroantral perforation, and no study has reported multivariate analysis of the relationship(s) between these various factors. This retrospective study aims to fill this void. Various risk factors for oroantral perforation during maxillary third molar extraction were investigated by univariate and multivariate analysis. The proximity of the roots to the maxillary sinus floor (root-sinus [RS] classification) was assessed using panoramic radiography and classified as types 1-5. The relationship between the maxillary second and third molars was classified according to a modified version of the Archer classification. The relative depth of the maxillary third molar in the bone was classified as class A-C, and its angulation relative to the long axis of the second molar was also recorded. Performance of an incision (OR 5.16), mesioangular tooth angulation (OR 6.05), and type 3 RS classification (i.e., significant superimposition of the roots of all posterior maxillary teeth with the sinus floor; OR 10.18) were all identified as risk factors with significant association to an outcome of oroantral perforation. To our knowledge, this is the first multivariate analysis of the risk factors for oroantral perforation during surgical extraction of the maxillary third molar. This RS classification may offer a new predictive parameter for estimating the risk of oroantral perforation.
Jamadar, Sharna D; Egan, Gary F; Calhoun, Vince D; Johnson, Beth; Fielding, Joanne
2016-07-01
Intrinsic brain activity provides the functional framework for the brain's full repertoire of behavioral responses; that is, a common mechanism underlies intrinsic and extrinsic neural activity, with extrinsic activity building upon the underlying baseline intrinsic activity. The generation of a motor movement in response to sensory stimulation is one of the most fundamental functions of the central nervous system. Since saccadic eye movements are among our most stereotyped motor responses, we hypothesized that individual variability in the ability to inhibit a prepotent saccade and make a voluntary antisaccade would be related to individual variability in intrinsic connectivity. Twenty-three individuals completed the antisaccade task and resting-state functional magnetic resonance imaging (fMRI). A multivariate analysis of covariance identified relationships between fMRI oscillations (0.01-0.2 Hz) of resting-state networks determined using high-dimensional independent component analysis and antisaccade performance (latency, error rate). Significant multivariate relationships between antisaccade latency and directional error rate were obtained in independent components across the entire brain. Some of the relationships were obtained in components that overlapped substantially with the task; however, many were obtained in components that showed little overlap with the task. The current results demonstrate that even in the absence of a task, spectral power in regions showing little overlap with task activity predicts an individual's performance on a saccade task.
Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology.
Walker, Steven M; Knight, Laura A; McCavigan, Andrena M; Logan, Gemma E; Berge, Viktor; Sherif, Amir; Pandha, Hardev; Warren, Anne Y; Davidson, Catherine; Uprichard, Adam; Blayney, Jaine K; Price, Bethanie; Jellema, Gera L; Steele, Christopher J; Svindland, Aud; McDade, Simon S; Eden, Christopher G; Foster, Chris; Mills, Ian G; Neal, David E; Mason, Malcolm D; Kay, Elaine W; Waugh, David J; Harkin, D Paul; Watson, R William; Clarke, Noel W; Kennedy, Richard D
2017-10-01
Approximately 4-25% of patients with early prostate cancer develop disease recurrence following radical prostatectomy. To identify a molecular subgroup of prostate cancers with metastatic potential at presentation resulting in a high risk of recurrence following radical prostatectomy. Unsupervised hierarchical clustering was performed using gene expression data from 70 primary resections, 31 metastatic lymph nodes, and 25 normal prostate samples. Independent assay validation was performed using 322 radical prostatectomy samples from four sites with a mean follow-up of 50.3 months. Molecular subgroups were identified using unsupervised hierarchical clustering. A partial least squares approach was used to generate a gene expression assay. Relationships with outcome (time to biochemical and metastatic recurrence) were analysed using multivariable Cox regression and log-rank analysis. A molecular subgroup of primary prostate cancer with biology similar to metastatic disease was identified. A 70-transcript signature (metastatic assay) was developed and independently validated in the radical prostatectomy samples. Metastatic assay positive patients had increased risk of biochemical recurrence (multivariable hazard ratio [HR] 1.62 [1.13-2.33]; p=0.0092) and metastatic recurrence (multivariable HR=3.20 [1.76-5.80]; p=0.0001). A combined model with Cancer of the Prostate Risk Assessment post surgical (CAPRA-S) identified patients at an increased risk of biochemical and metastatic recurrence superior to either model alone (HR=2.67 [1.90-3.75]; p<0.0001 and HR=7.53 [4.13-13.73]; p<0.0001, respectively). The retrospective nature of the study is acknowledged as a potential limitation. The metastatic assay may identify a molecular subgroup of primary prostate cancers with metastatic potential. The metastatic assay may improve the ability to detect patients at risk of metastatic recurrence following radical prostatectomy. The impact of adjuvant therapies should be assessed in this higher-risk population. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Can P wave wavelet analysis predict atrial fibrillation after coronary artery bypass grafting?
Vassilikos, Vassilios; Dakos, George; Chouvarda, Ioanna; Karagounis, Labros; Karvounis, Haralambos; Maglaveras, Nikolaos; Mochlas, Sotirios; Spanos, Panagiotis; Louridas, George
2003-01-01
The purpose of this study was the evaluation of Morlet wavelet analysis of the P wave as a means of predicting the development of atrial fibrillation (AF) in patients who undergo coronary artery bypass grafting (CABG). The P wave was analyzed using the Morlet wavelet in 50 patients who underwent successful CABG. Group A consisted of 17 patients, 12 men and 5 women, of mean age 66.9 +/- 5.9 years, who developed AF postoperatively. Group B consisted of 33 patients, 29 men and 4 women, mean age 62.4 +/- 7.8 years, who remained arrhythmid-free. Using custom-designed software, P wave duration and wavelet parameters expressing the mean and maximum energy of the P wave were calculated from 3-channel digital recordings derived from orthogonal ECG leads (X, Y, and Z), and the vector magnitude (VM) was determined in each of 3 frequency bands (200-160 Hz, 150-100 Hz and 90-50 Hz). Univariate logistic-regression analysis identified a history of hypertension, the mean and maximum energies in all frequency bands along the Z axis, the mean and maximum energies (expressed by the VM) in the 200-160 Hz frequency band, and the mean energy in the 150-100 Hz frequency band along the Y axis as predictors for post-CABG AF. Multivariate analysis identified hypertension, ejection fraction, and the maximum energies in the 90-50 Hz frequency band along the Z and composite-vector axes as independent predictors. This multivariate model had a sensitivity of 91% and a specificity of 65%. We conclude that the Morlet wavelet analysis of the P wave is a very sensitive method of identifying patients who are likely to develop AF after CABG. The occurrence of post-CABG AF can be explained by a different activation pattern along the Z axis.
[Factors affecting how long exclusive breastfeeding lasts].
Rodríguez-García, Jesús; Acosta-Ramírez, Naydú
2008-01-01
Identifying factors associated with exclusive breastfeeding by poor urban women in Colombia . A random sample of women living in poor neighborhoods from four Colombian cities ( Cali , Cartagena , Medellín and Ibague ) was made (survey method), using a cross-sectional design; survival analysis techniques were applied. Bivariate analysis identified hospital bottle use, the women's marital status, and relationship with the head of household as having had a significant effect on the duration of exclusive breastfeeding. Multivariate analysis identified the non-use of bottles in hospital as favoring a longer breast feeding period. Reducing hospital bottle use is readily achievable by health system action; increasing the time mothers spend with their infants is more difficult. A relevant finding was that more mothers were unaware of breastfeeding's maternal benefits than those who were unaware of its benefits for the baby. If mothers were made more aware of the maternal benefits, an increasing number might insist on being the main caregiver and take care of their children for longer periods of time.
Shi, Wenhao; Zhang, Silin; Zhao, Wanqiu; Xia, Xue; Wang, Min; Wang, Hui; Bai, Haiyan; Shi, Juanzi
2013-07-01
What factors does multivariate logistic regression show to be significantly associated with the likelihood of clinical pregnancy in vitrified-warmed embryo transfer (VET) cycles? Assisted hatching (AH) and if the reason to freeze embryos was to avoid the risk of ovarian hyperstimulation syndrome (OHSS) were significantly positively associated with a greater likelihood of clinical pregnancy. Single factor analysis has shown AH, number of embryos transferred and the reason of freezing for OHSS to be positively and damaged blastomere to be negatively significantly associated with the chance of clinical pregnancy after VET. It remains unclear what factors would be significant after multivariate analysis. The study was a retrospective analysis of 2313 VET cycles from 1481 patients performed between January 2008 and April 2012. A multivariate logistic regression analysis was performed to identify the factors to affect clinical pregnancy outcome of VET. There were 22 candidate variables selected based on clinical experiences and the literature. With the thresholds of α entry = α removal= 0.05 for both variable entry and variable removal, eight variables were chosen to contribute the multivariable model by the bootstrap stepwise variable selection algorithm (n = 1000). Eight variables were age at controlled ovarian hyperstimulation (COH), reason for freezing, AH, endometrial thickness, damaged blastomere, number of embryos transferred, number of good-quality embryos, and blood presence on transfer catheter. A descriptive comparison of the relative importance was accomplished by the proportion of explained variation (PEV). Among the reasons for freezing, the OHSS group showed a higher OR than the surplus embryo group when compared with other reasons for VET groups (OHSS versus Other, OR: 2.145; CI: 1.4-3.286; Surplus embryos versus Other, OR: 1.152; CI: 0.761-1.743) and high PEV (marginal 2.77%, P = 0.2911; partial 1.68%; CI of area under receptor operator characteristic curve (ROC): 0.5576-0.6000). AH also showed a high OR (OR: 2.105, CI: 1.554-2.85) and high PEV (marginal 1.97%; partial 1.02%; CI of area under ROC: 0.5344-0.5647). The number of good-quality embryos showed the highest marginal PEV and partial PEV (marginal 3.91%, partial 2.28%; CI of area under ROC: 0.5886-0.6343). This was a retrospective multivariate analysis of the data obtained in 5 years from a single IVF center. Repeated cycles in the same woman were treated as independent observations, which could introduce bias. Results are based on clinical pregnancy and not live births. Prospective analysis of a larger data set from a multicenter study based on live births is necessary to confirm the findings. Paying attention to the quality of embryos, the number of good embryos, AH and the reasons for freezing that are associated with clinical pregnancy after VET will assist the improvement of success rates.
Rate, Andrew W
2018-06-15
Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.
Ford, Jon J; Richards BPhysio, Matt C; Surkitt BPhysio, Luke D; Chan BPhysio, Alexander Yp; Slater, Sarah L; Taylor, Nicholas F; Hahne, Andrew J
2018-05-28
To identify predictors for back pain, leg pain and activity limitation in patients with early persistent low back disorders. Prospective inception cohort study; Setting: primary care private physiotherapy clinics in Melbourne, Australia. 300 adults aged 18-65 years with low back and/or referred leg pain of ≥6-weeks and ≤6-months duration. Not applicable. Numerical rating scales for back pain and leg pain as well as the Oswestry Disability Scale. Prognostic factors included sociodemographics, treatment related factors, subjective/physical examination, subgrouping factors and standardized questionnaires. Univariate analysis followed by generalized estimating equations were used to develop a multivariate prognostic model for back pain, leg pain and activity limitation. Fifty-eight prognostic factors progressed to the multivariate stage where 15 showed significant (p<0.05) associations with at least one of the three outcomes. There were five indicators of positive outcome (two types of low back disorder subgroups, paresthesia below waist, walking as an easing factor and low transversus abdominis tone) and 10 indicators of negative outcome (both parents born overseas, deep leg symptoms, longer sick leave duration, high multifidus tone, clinically determined inflammation, higher back and leg pain severity, lower lifting capacity, lower work capacity and higher pain drawing percentage coverage). The preliminary model identifying predictors of low back disorders explained up to 37% of the variance in outcome. This study evaluated a comprehensive range of prognostic factors reflective of both the biomedical and psychosocial domains of low back disorders. The preliminary multivariate model requires further validation before being considered for clinical use. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie
Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). Conclusion: Quantitative analysis identified novel {sup 18}F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.« less
Eisenbeis, Lisa; Gao, Zhiwei; Heffernan, Courtney; Yacoub, Wadieh; Long, Richard; Verma, Geetika
2016-06-27
Contact investigations are a critical component of tuberculosis control in high-income countries. However, the relative success of conventional methods by population group and place of residence is unknown. This study compares outcomes of contact investigations of Canadian-born Indigenous tuberculosis cases living on- and off-reserve with other Canadian-born cases. In a retrospective analysis, Canadian-born adult culture-positive pulmonary TB cases (2001-2010) were identified. Characteristics of source cases and their contacts were compared by population group. Outcomes of contact investigations, including completion of recommended investigations and preventive therapy, were compared in multivariable analysis. Of 171 cases of tuberculosis identified, 49 (29%) were Indigenous on-reserve, 62 (36%) Indigenous off-reserve, and 60 (35%) non-Indigenous or Canadian-born, "other". Indigenous people had more contacts identified per case compared to non-Indigenous patients. Case population group and smear status were the main predictors of the success of contact investigations. Of those recommended preventive therapy, close contacts of Indigenous cases on-reserve had the highest rate of completion, at 54%, vs. 41% and 37% for close contacts of Indigenous living off-reserve and Canadian-born "other" respectively (p = 0.02). Contacts of Indigenous cases living off-reserve had the greatest delay in assessment and the lowest rates of completion of assessment and preventive therapy. In multivariable analysis, population group, smear status of source case and proximity of contact were predictors of preventive therapy acceptance and/or completion. Significant differences in outcomes of contact investigations were observed between population groups. The higher priority of contacts of smear-positive cases appears to influence efficiency of service delivery, regardless of population group. Jurisdictional differences in program delivery, resource availability and perceived risk of transmission likely influence outcomes of contact investigations.
Mitsui, Takahiko; Kira, Satoru; Ihara, Tatsuya; Sawada, Norifumi; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Shimura, Hiroshi; Yokomichi, Hiroshi; Takeda, Masayuki
2018-05-01
We identified metabolites using a metabolomics approach and investigated the association between these metabolites and lower urinary tract symptoms. We used a 24-hour bladder diary and I-PSS (International Prostate Symptom Score) to assess micturition behavior and lower urinary tract symptoms in 58 male patients without apparent neurological disease. Lower urinary tract symptoms were defined as a total I-PSS score of 8 or greater. Patients with a score of 7 or less were placed in the control group. A comprehensive study of plasma metabolites was also performed by capillary electrophoresis time-of-flight mass spectrometry. Metabolites were compared between the lower urinary tract symptoms and control groups using the Mann-Whitney U test. Biomarkers of male lower urinary tract symptoms from the metabolites were analyzed using multivariable logistic regression analysis to determine the OR. Of the 58 men 32 were in the lower urinary tract symptoms group and the remaining 26 were in the control group. The 24-hour bladder diary showed that nocturnal urine volume, 24-hour micturition frequency, nocturnal micturition frequency and the nocturia index were significantly higher in the lower urinary tract symptoms group. Metabolomics analysis identified 60 metabolites from patient plasma. Multivariate analysis revealed that increased glutamate and decreased arginine, asparagine and inosine monophosphate were significantly associated with lower urinary tract symptoms in males. Decreases in citrulline and glutamine could also be associated with male lower urinary tract symptoms. Male lower urinary tract symptoms may develop due to abnormal metabolic processes in some pathways. Potential new treatments for lower urinary tract symptoms can be developed by identifying changes in the amino acid profiles. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Colorectal Specialization Increases Lymph Node Yield: Evidence from a National Database.
Jeganathan, Arjun N; Shanmugan, Skandan; Bleier, Joshua I S; Hall, Glenn M; Paulson, Emily C
2016-07-01
Current guidelines recommend the evaluation of at least 12 lymph nodes (LNs) in the pathologic specimen following surgery for colorectal cancer (CRC). We sought to examine the role of colorectal specialization on nodal identification. We conducted a retrospective cohort study using SEER-Medicare data to examine the association between colorectal specialization and LN identification following surgery for colon and rectal adenocarcinoma between 2001 and 2009. Our dataset included patients >65 years who underwent surgical resection for CRC. We excluded patients with rectal cancer who had received neoadjuvant therapy. The primary outcome measure was the number of LNs identified in the pathologic specimen following surgery for CRC. Multivariate analysis was used to identify the association between surgical specialization and LN identification in the pathologic specimen. In multivariate analysis, odds of an adequate lymphadenectomy following surgery with a colorectal specialist were 1.32 and 1.41 times greater for colon and rectal cancer, respectively, than following surgery by a general surgeon (p < 0.001). These odds increased to 1.36 and 1.58, respectively, when analysis was limited to board-certified colorectal surgeons. Hospital factors associated with ≥12 LNs identified included high-volume CRC surgery (colon OR 1.84, p < 0.001; rectal OR 1.78, p < 0.001) and NCI-designated Cancer Centers (colon OR 1.75, p < 0.001; rectal OR 1.64; p = 0.007). Colorectal specialization and, in particular, board-certification in colorectal surgery, is significantly associated with increased LN identification following surgery for colon and rectal adenocarcinoma since the adoption of the 12-LN guideline in 2001.
Reichman, Orna; Gal, Micahel; Sela, Hen Y; Khayyat, Izzat; Emanuel, Michael; Samueloff, Arnon
2016-10-01
Objective We aimed to create a clinical classification to better identify parturients at risk for postpartum hemorrhage (PPH). Method A retrospective cohort, including all women who delivered at a single tertiary care medical center, between 2006 and 2014. Parturients were grouped by parity and history of cesarean delivery (CD): primiparas, multipara, and multipara with previous CD. Each were further subgrouped by mode of delivery (spontaneous vaginal delivery [SVD], operative vaginal delivery [OVD], emergency or elective CD). In all, 12 subgroups, based on parity, previous cesarean, and mode of delivery, formed the P-C-MoD classification. PPH was defined as a decrease of ≥3 gram% hemoglobin from admission and/or transfusion of blood products. Univariate analysis followed by multivariate analysis was performed to assess risk for PPH, controlling for confounders. Results The crude rate of PPH among 126,693 parturients was 7%. The prevalence differed significantly among independent risk factors: primiparity, 14%; multiparity, 4%; OVD, 22%; and CD, 15%. The P-C-MoD classification, segregated better between parturients at risk for PPH. The prevalence of PPH was highest for primiparous undergoing OVD (27%) compared with multiparous with SVD (3%), odds ratio [OR] = 12.8 (95% confidence interval [CI],11.9-13.9). These finding were consistent in the multivariate analysis OR = 13.1 (95% CI,12.1-14.3). Conclusion Employing the P-C-MoD classification more readily identifies parturients at risk for PPH and is superior to estimations based on single risk factors. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Current clinical presentation and treatment of localized prostate cancer in the United States.
Mahmood, Usama; Levy, Lawrence B; Nguyen, Paul L; Lee, Andrew K; Kuban, Deborah A; Hoffman, Karen E
2014-12-01
SEER recently released patient Gleason scores at biopsy/transurethral resection of the prostate. For the first time this permits accurate assessment of prostate cancer presentation and treatment according to clinical factors at diagnosis. We used the SEER database to identify men diagnosed with localized prostate cancer in 2010 who were assigned NCCN(®) risk based on clinical factors. We identified sociodemographic factors associated with high risk disease and analyzed the impact of these factors along with NCCN risk on local treatment. Of the 42,403 men identified disease was high, intermediate and low risk in 38%, 40% and 22%, respectively. On multivariate analysis patients who were older, nonwhite, unmarried or living in a county with a higher poverty rate were more likely to be diagnosed with high risk disease (each p <0.05). Of the 38,634 men in whom prostate cancer was the first malignancy 23% underwent no local treatment, 40% were treated with prostatectomy, 36% received radiation therapy and 1% underwent local tumor destruction, predominantly cryotherapy. On multivariate analysis patients who were older, black, unmarried or living in a county with a higher poverty rate, or who had low risk disease were less likely to receive local treatment (each p <0.05). Our analysis provides information on the current clinical presentation and treatment of localized prostate cancer in the United States. Nonwhite and older men living in a county with a higher poverty rate were more likely to be diagnosed with high risk disease and less likely to receive local treatment. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Zhang, Ruixing; Wang, Rui; Zhang, Fengbin; Wu, Chensi; Fan, Haiyan; Li, Yan; Wang, Cuiju; Guo, Zhanjun
2010-11-26
Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers and might be associated with cancer risk and disease outcome. We used a population-based series of esophageal squamous cell carcinoma (ESCC) patients for investigating the prediction power of SNPs in mitochondrial D-loop. The D-loop region of mtDNA was sequenced for 60 ESCC patients recorded in the Fourth Hospital of Hebei Medical University between 2003 and 2004. The 5 year survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. The SNP sites of nucleotides 16274G/A, 16278C/T and 16399A/G were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16278 and 16399 alleles were identified as independent predictors of ESCC outcome. The length of survival of patients with the minor allele 16278T genotype was significantly shorter than that of patients with 16278C at the 16278 site (relative risk, 3.001; 95% CI, 1.029 - 8.756; p = 0.044). The length of survival of patients with the minor allele 16399G genotype was significantly shorter than that of patients with the more frequent allele 16399A at the 16399 site in ESCC patients (relative risk, 3.483; 95% CI, 1.068 - 11.359; p = 0.039). Genetic polymorphisms in the D-loop are independent prognostic markers for patients with ESCC. Accordingly, the analysis of genetic polymorphisms in the mitochondrial D-loop can help identify patient subgroups at high risk of a poor disease outcome.
Predictors of response to cardiac resynchronization therapy: A prospective cohort study.
Abreu, Ana; Oliveira, Mário; Silva Cunha, Pedro; Santa Clara, Helena; Santos, Vanessa; Portugal, Guilherme; Rio, Pedro; Soares, Rui; Moura Branco, Luísa; Alves, Marta; Papoila, Ana Luísa; Ferreira, Rui; Mota Carmo, Miguel
2017-06-01
Cardiac resynchronization therapy (CRT) has modified the prognosis of chronic heart failure (HF) with left ventricular systolic dysfunction. However, 30% of patients do not have a favorable response. The big question is how to determine predictors of response. To identify baseline characteristics that might influence echocardiographic response to CRT. We performed a prospective single-center hospital-based cohort study of consecutive HF patients selected to CRT (NYHA class II-IV, left ventricular ejection fraction (LVEF) <35% and QRS complex ≥120 ms). Responders were defined as those with a ≥5% absolute increase in LVEF at six months. Clinical, electrocardiographic, laboratory, echocardiographic, autonomic, endothelial and cardiopulmonary function parameters were assessed before CRT device implantation. Logistic regression models were used. Seventy-nine patients were included, 54 male (68.4%), age 68.1 years (standard deviation 10.2), 19 with ischemic etiology (24%). At six months, 51 patients (64.6%) were considered responders. Although by univariate analysis baseline tricuspid annular plane systolic excursion (TAPSE) and serum creatinine were significantly different in responders, on multivariate analysis only TAPSE was independently associated with response, with higher values predicting a positive response to CRT (OR=1.13; 95% CI: 1.02-1.26; p=0.020). TAPSE ≥15 mm was strongly associated with response, and TAPSE <15 mm with non-response (p=0.005). Responders had no TAPSE values below 10 mm. From a range of clinical and technical baseline characteristics, multivariate analysis only identified TAPSE as an independent predictor of CRT response, with TAPSE <15 mm associated with non-response. This study highlights the importance of right ventricular dysfunction in CRT response. ClinicalTrials.gov identifier: NCT02413151. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
[Nutritional status, nutritional self-perception, and use of licit drugs in adolescents].
Garcia, Denise Máximo; Mekitarian Filho, Eduardo; Gilio, Alfredo Elias; Lotufo, João Paulo Becker; Lo, Denise Swei
2015-01-01
To associate the nutritional status and the self-perception of nutritional status with the use of licit drugs among adolescents. Cross-sectional study in which 210 adolescents answered a questionnaire on alcohol and tobacco experimentation and self-perceptions about their nutritional status. The correspondence between the adolescents' perception of their own nutritional status and actual nutritional status was analyzed, as well as associations between nutritional status, self-perception of nutritional status, gender, age, and presence of smokers at home with alcohol and tobacco use. The variables were analyzed separately in a bivariate analysis and, subsequently, a multivariate analysis determined the factors associated with drug use. The study included 210 adolescents with a median age of 148 months; 56.6% were females. Of the total sample, 6.6% have tried cigarettes, and 20% have tried alcohol; 32.3% had BMI Z-Score≥1, 12.85% had BMI Z-Score≥2, and 50.7% had a correct perception of his/her weight. After a multivariate analysis, only the self-perception about weight statistically influenced experimentation of tobacco, and patients who identified themselves as having very high weight were more likely to experiment tobacco (odds ratio (OR) 13.57; confidence interval (95% CI) 2.05-89.8; p=0.007); regarding alcohol use, adolescents who identified themselves as having high weight were 2.4 times more likely to experiment with alcohol than adolescents that identified themselves as having normal weight (95% CI 1.08-5.32, p=0.031). Adolescents with self-perception of excess weight may constitute a risk group for alcohol and tobacco use. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Predictors of decompressive hemicraniectomy in malignant middle cerebral artery stroke.
Kamran, Saadat; Salam, Abdul; Akhtar, Naveed; D'soza, Atlantic; Shuaib, Ashfaq
2018-04-12
Identification of factors in malignant middle cerebral artery (MMCA) stroke patients that may be useful in selecting patients for DHC. This study was a retrospective multicenter study of patients referred for DHC based on the criteria of the randomized control trials of DHC in MMCA stroke. Demographic, clinical, and radiology data were analyzed. Patients who underwent DHC were compared to those who survived without surgery. Two hundred three patients with MMCA strokes were identified: 137 underwent DHC, 47 survived without DHC, and 19 refused surgery and died. Multivariate analysis identified the following factors determining DHC in MMCA stroke: age < 55 years (OR 8.5, 95% CI 3.3-22.1, P < 0.001), MCA with involvement of additional vascular territories (anterior cerebral artery, posterior cerebral artery (OR 4.8, 95% CI 1.5-14.9, P = 0.007), septum pellucidum displacement ≥ 7.5 mm (OR 4.8, 95% CI 1.9-11.7, P = 0.001), diabetes (OR 3.7, 95% CI 1.3-10.6, P = 0.012), infarct growth rate (IGR) ml/h (OR 1.11, 95% CI 1.02-1.2, P = 0.015), and temporal lobe involvement (OR 2.5, 95% CI 1.01-6.1, P = 0.048). The internal validation of the multivariate logistic regression model using bootstrapping analysis showed marginal bias. Among patients with MMCA infarctions, an increased possibility of DHC is associated with younger age, MCA with additional infarction, septum pellucidum deviation of > 7.5 mm, diabetes, IGR, and temporal lobe involvement. The presence of these risk factors identifies those MMCA stroke patients who may require DHC. Bootstrapping analysis indicated the model is good enough to predict the outcome in general population.
Nutritional status, nutritional self-perception, and use of licit drugs in adolescents
Garcia, Denise Máximo; Mekitarian, Eduardo; Gilio, Alfredo Elias; Lotufo, João Paulo Becker; Lo, Denise Swei
2015-01-01
Objective: To associate the nutritional status and the self-perception of nutritional status with the use of licit drugs among adolescents. Methods: A cross-sectional study was conducted in which 210 adolescents answered a questionnaire on alcohol and tobacco experimentation and self-perceptions about their nutritional status. The correspondence between the adolescents' perception of their own nutritional status and actual nutritional status was analyzed, as well as associations between nutritional status, self-perception of nutritional status, gender, age, and presence of smokers at home with alcohol and tobacco use. The variables were analyzed separately in a bivariate analysis and, subsequently, a multivariate analysis determined the factors associated with drug use. Results: The study included 210 adolescents with a median age of 148 months; 56.6% were females. Of the total sample, 6.6% have tried cigarettes, and 20% have tried alcohol; 32.3% had BMI Z-Score ≥1, 12.85% had BMI Z-Score ≥2, and 50.7% had a correct perception of his/her weight. After a multivariate analysis, only the self-perception about weight statistically influenced experimentation of tobacco, and patients who identified themselves as having very high weight were more likely to experiment tobacco (odds ratio (OR) 13.57; confidence interval (95% CI) 2.05-89.8; p=0.007); regarding alcohol use, adolescents who identified themselves as having high weight were 2.4 times more likely to experiment with alcohol than adolescents that identified themselves as having normal weight (95% CI 1.08-5.32, p=0.031). Conclusions: Adolescents with self-perception of excess weight may constitute a risk group for alcohol and tobacco use. PMID:25765447
Diculescu, Mircea; Iacob, Răzvan; Iacob, Speranţa; Croitoru, Adina; Becheanu, Gabriel; Popeneciu, Valentin
2002-09-01
It has been a consensus that prognostic factors should always be taken into account before planning treatment in colorectal cancer. A 5 year prospective study was conducted, in order to assess the importance of several histopathological and clinical prognostic variables in the prediction of evolution in colon cancer. Some of the factors included in the analysis are still subject to dispute by different authors. 46 of 53 screened patients qualified to enter the study and underwent a potentially curative resection of the tumor, followed, when necessary, by adjuvant chemotherapy. Univariate and multivariate analyses were carried out in order to identify independent prognostic indicators. The endpoint of the study was considered the recurrence of the tumor or the detection of metastases. 65.2% of the patients had a good evolution during the follow up period. Multivariate survival analysis performed by Cox proportional hazard model identified 3 independent prognostic factors: Dukes stage (p = 0.00002), the grade of differentiation (p = 0.0009) and the weight loss index, representing the weight loss of the patient divided by the number of months when it was actually lost (p = 0.02). Age under 40 years, sex, microscopic aspect of the tumor, tumor location, anemia degree were not identified by our analysis as having prognostic importance. Histopathological factors continue to be the most valuable source of information regarding the possible evolution of patients with colorectal cancer. Individual clinical symptoms or biological parameters such as erytrocyte sedimentation rate or hemoglobin level are of little or no prognostic value. More research is required relating to the impact of a performance status index (which could include also weight loss index) as another reliable prognostic variable.
Raychev, Radoslav; Tateshima, Satoshi; Vinuela, Fernando; Sayre, Jim; Jahan, Reza; Gonzalez, Nestor; Szeder, Viktor; Duckwiler, Gary
2016-02-01
The mechanisms leading to delayed rupture, distal emboli and intraparenchymal hemorrhage in relation to pipeline embolization device (PED) placement remain debatable and poorly understood. The aim of this study was to identify clinical and procedural predictors of these perioperative complications. We conducted a retrospective review of consecutive patients who underwent PED placement. We utilized a non-commercial platelet aggregation method measuring adenosine diphosphate (ADP)% inhibition for evaluation of clopidogrel response. To our knowledge, this is the first study to test ADP in neurovascular procedures. Multivariable regression analysis was used to identify the strongest predictor of three separate outcomes: (1) thrombotic complications, (2) hemorrhagic complications, and (3) aneurysm mass effect exacerbation Permanent complication-related morbidity and mortality at 3 months was 6% (3/48). No specific predictors of hemorrhagic complications were identified. In the univariate analysis, the strongest predictors of thrombotic complications were: ADP% inhibition<49 (p=0.01), aneurysm size (p=0.04) and fluoroscopy time (p=0.002). In the final multivariate analysis, among all baseline variables, fluoroscopy time exceeding 52 min was the only factor associated with thrombotic complications (p=0.007). Aneurysm size≥18 mm was the single predictor of mass effect exacerbation (p=0.039). Procedural complexity, reflected by fluoroscopy time, is the strongest predictor of thrombotic complications in this study. ADP% inhibition is a reliable method of testing clopidogrel response in neurovascular procedures and values of <50% may predict thrombotic complications. Interval mass effect exacerbation after PED placement may be anticipated in large aneurysms exceeding 18 mm. © The Author(s) 2015.
Zhao, Fu; Zhang, Jing; Li, Peng; Zhou, Qiangyi; Zhang, Shun; Zhao, Chi; Wang, Bo; Yang, Zhijun; Li, Chunde; Liu, Pinan
2018-04-23
Medulloblastoma (MB) is a rare primary brain tumor in adults. We previously evaluated that combining both clinical and molecular classification could improve current risk stratification for adult MB. In this study, we aimed to identify the prognostic value of Ki-67 index in adult MB. Ki-67 index of 51 primary adult MBs was reassessed using a computer-based image analysis (Image-Pro Plus). All patients were followed up ranging from 12 months up to 15 years. Gene expression profiling and immunochemistry were used to establish the molecular subgroups in adult MB. Combined risk stratification models were designed based on clinical characteristics, molecular classification and Ki-67 index, and identified by multivariable Cox proportional hazards analysis. In our cohort, the mean Ki-67 value was 30.0 ± 11.3% (range 6.56-63.55%). The average Ki-67 value was significantly higher in LC/AMB than in CMB and DNMB (P = .001). Among three molecular subgroups, Group 4-tumors had the highest average Ki-67 value compared with WNT- and SHH-tumors (P = .004). Patients with Ki-67 index large than 30% displayed poorer overall survival (OS) and progression free survival (PFS) than those with Ki-67 less than 30% (OS: P = .001; PFS: P = .006). Ki-67 index (i.e. > 30%, < 30%) was identified as an independent significant prognostic factor (OS: P = .017; PFS: P = .024) by using multivariate Cox proportional hazards model. In conclusion, Ki-67 index can be considered as a valuable independent prognostic biomarker for adult patients with MB.
Novel risk score of contrast-induced nephropathy after percutaneous coronary intervention.
Ji, Ling; Su, XiaoFeng; Qin, Wei; Mi, XuHua; Liu, Fei; Tang, XiaoHong; Li, Zi; Yang, LiChuan
2015-08-01
Contrast-induced nephropathy (CIN) post-percutaneous coronary intervention (PCI) is a major cause of acute kidney injury. In this study, we established a comprehensive risk score model to assess risk of CIN after PCI procedure, which could be easily used in a clinical environment. A total of 805 PCI patients, divided into analysis cohort (70%) and validation cohort (30%), were enrolled retrospectively in this study. Risk factors for CIN were identified using univariate analysis and multivariate logistic regression in the analysis cohort. Risk score model was developed based on multiple regression coefficients. Sensitivity and specificity of the new risk score system was validated in the validation cohort. Comparisons between the new risk score model and previous reported models were applied. The incidence of post-PCI CIN in the analysis cohort (n = 565) was 12%. Considerably high CIN incidence (50%) was observed in patients with chronic kidney disease (CKD). Age >75, body mass index (BMI) >25, myoglobin level, cardiac function level, hypoalbuminaemia, history of chronic kidney disease (CKD), Intra-aortic balloon pump (IABP) and peripheral vascular disease (PVD) were identified as independent risk factors of post-PCI CIN. A novel risk score model was established using multivariate regression coefficients, which showed highest sensitivity and specificity (0.917, 95%CI 0.877-0.957) compared with previous models. A new post-PCI CIN risk score model was developed based on a retrospective study of 805 patients. Application of this model might be helpful to predict CIN in patients undergoing PCI procedure. © 2015 Asian Pacific Society of Nephrology.
Ciampi, Antonio; Dyachenko, Alina; Cole, Martin; McCusker, Jane
2011-12-01
The study of mental disorders in the elderly presents substantial challenges due to population heterogeneity, coexistence of different mental disorders, and diagnostic uncertainty. While reliable tools have been developed to collect relevant data, new approaches to study design and analysis are needed. We focus on a new analytic approach. Our framework is based on latent class analysis and hidden Markov chains. From repeated measurements of a multivariate disease index, we extract the notion of underlying state of a patient at a time point. The course of the disorder is then a sequence of transitions among states. States and transitions are not observable; however, the probability of being in a state at a time point, and the transition probabilities from one state to another over time can be estimated. Data from 444 patients with and without diagnosis of delirium and dementia were available from a previous study. The Delirium Index was measured at diagnosis, and at 2 and 6 months from diagnosis. Four latent classes were identified: fairly healthy, moderately ill, clearly sick, and very sick. Dementia and delirium could not be separated on the basis of these data alone. Indeed, as the probability of delirium increased, so did the probability of decline of mental functions. Eight most probable courses were identified, including good and poor stable courses, and courses exhibiting various patterns of improvement. Latent class analysis and hidden Markov chains offer a promising tool for studying mental disorders in the elderly. Its use may show its full potential as new data become available.
Chen, Wenxue; Lu, Shaohua; Wang, Guifang; Chen, Fener; Bai, Chunxue
2017-10-01
High-resolution magic-angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy technique was employed to analyze the metabonomic characterizations of lung cancer tissues in hope to identify potential diagnostic biomarkers for malignancy detection and staging research of lung tissues. HRMAS 1 H NMR spectroscopy technique can rapidly provide important information for accurate diagnosis and staging of cancer tissues owing to its noninvasive nature and limited requirement for the samples, and thus has been acknowledged as an excellent tool to investigate tissue metabolism and provide a more realistic insight into the metabonomics of tissues when combined with multivariate data analysis (MVDA) such as component analysis and orthogonal partial least squares-discriminant analysis in particular. HRMAS 1 H NMR spectra displayed the metabonomic differences of 32 lung cancer tissues at the different stages from 32 patients. The significant changes (P < 0.05) of some important metabolites such as lipids, aspartate and choline-containing compounds in cancer tissues at the different stages had been identified. Furthermore, the combination of HRMAS 1 H NMR spectroscopy and MVDA might potentially and precisely provided for a high sensitivity, specificity, prediction accuracy in the positive identification of the staging for the cancer tissues in contrast with the pathological data in clinic. This study highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for the diagnosis and staging prediction of lung cancer in future. © 2016 John Wiley & Sons Australia, Ltd.
Hori, Masatsugu; Matsumoto, Masayasu; Tanahashi, Norio; Momomura, Shin-Ichi; Uchiyama, Shinichiro; Goto, Shinya; Izumi, Tohru; Koretsune, Yukihiro; Kajikawa, Mariko; Kato, Masaharu; Cavaliere, Mary; Iekushi, Kazuma; Yamanaka, Satoshi
2016-12-01
Results from the J-ROCKET AF study revealed that rivaroxaban was non-inferior to warfarin with respect to the principal safety outcomes in patients with non-valvular atrial fibrillation. This subgroup analysis evaluated whether non-major clinically relevant bleeding (NMCRB) could be a predictive factor for major bleeding (MB). Other predictive factors for MB were also obtained in both rivaroxaban and warfarin treatment groups. The temporal incidence of MB was compared between the rivaroxaban and warfarin treatment groups. Assessment was made whether MB events were often preceded by NMCRB. Univariate and multivariate analyses were carried out to identify any independent predictive factors for MB in both treatment groups. The incidences of MB and NMCRB were 18.04% (138/639 patients) in the rivaroxaban arm, and 16.42% in the warfarin arm (124/639 patients). NMCRB preceded MB in only four patients in each treatment group (rivaroxaban: 4/117 and warfarin: 4/98). Multivariate analysis identified predictive factors for bleeding events: anemia with warfarin treatment and concomitant use of antiplatelet agents with rivaroxaban treatment. Results from this subgroup analysis, particularly the fact that there was no repeated or sequential pattern between NMCRB and MB occurrences in both treatment groups, suggests that NMCRB might not be a predictive factor for MB. On the contrary, anemia and concomitant use of antiplatelet therapy were likely predictive factors for bleeding with warfarin and rivaroxaban treatment, respectively. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Wang, Jian; Zhu, Jinmao; Huang, RuZhu; Yang, YuSheng
2012-07-01
We explored the rapid qualitative analysis of wheat cultivars with good lodging resistances by Fourier transform infrared resonance (FTIR) spectroscopy and multivariate statistical analysis. FTIR imaging showing that wheat stem cell walls were mainly composed of cellulose, pectin, protein, and lignin. Principal components analysis (PCA) was used to eliminate multicollinearity among multiple peak absorptions. PCA revealed the developmental internodes of wheat stems could be distributed from low to high along the load of the second principal component, which was consistent with the corresponding bands of cellulose in the FTIR spectra of the cell walls. Furthermore, four distinct stem populations could also be identified by spectral features related to their corresponding mechanical properties via PCA and cluster analysis. Histochemical staining of four types of wheat stems with various abilities to resist lodging revealed that cellulose contributed more than lignin to the ability to resist lodging. These results strongly suggested that the main cell wall component responsible for these differences was cellulose. Therefore, the combination of multivariate analysis and FTIR could rapidly screen wheat cultivars with good lodging resistance. Furthermore, the application of these methods to a much wider range of cultivars of unknown mechanical properties promises to be of interest.
NASA Astrophysics Data System (ADS)
Liu, Yue; Zhang, Ying; Zhang, Jing; Fan, Gang; Tu, Ya; Sun, Suqin; Shen, Xudong; Li, Qingzhu; Zhang, Yi
2018-03-01
As an important ethnic medicine, sea buckthorn was widely used to prevent and treat various diseases due to its nutritional and medicinal properties. According to the Chinese Pharmacopoeia, sea buckthorn was originated from H. rhamnoides, which includes five subspecies distributed in China. Confusion and misidentification usually occurred due to their similar morphology, especially in dried and powdered forms. Additionally, these five subspecies have vital differences in quality and physiological efficacy. This paper focused on the quick classification and identification method of sea buckthorn berry powders from five H. rhamnoides subspecies using multi-step IR spectroscopy coupled with multivariate data analysis. The holistic chemical compositions revealed by the FT-IR spectra demonstrated that flavonoids, fatty acids and sugars were the main chemical components. Further, the differences in FT-IR spectra regarding their peaks, positions and intensities were used to identify H. rhamnoides subspecies samples. The discrimination was achieved using principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). The results showed that the combination of multi-step IR spectroscopy and chemometric analysis offered a simple, fast and reliable method for the classification and identification of the sea buckthorn berry powders from different H. rhamnoides subspecies.
Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang
2018-01-01
In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.
Lei, Tianli; Chen, Shifeng; Wang, Kai; Zhang, Dandan; Dong, Lin; Lv, Chongning; Wang, Jing; Lu, Jincai
2018-02-01
Bupleuri Radix is a commonly used herb in clinic, and raw and vinegar-baked Bupleuri Radix are both documented in the Pharmacopoeia of People's Republic of China. According to the theories of traditional Chinese medicine, Bupleuri Radix possesses different therapeutic effects before and after processing. However, the chemical mechanism of this processing is still unknown. In this study, ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry coupled with multivariate statistical analysis including principal component analysis and orthogonal partial least square-discriminant analysis was developed to holistically compare the difference between raw and vinegar-baked Bupleuri Radix for the first time. As a result, 50 peaks in raw and processed Bupleuri Radix were detected, respectively, and a total of 49 peak chemical compounds were identified. Saikosaponin a, saikosaponin d, saikosaponin b 3 , saikosaponin e, saikosaponin c, saikosaponin b 2 , saikosaponin b 1 , 4''-O-acetyl-saikosaponin d, hyperoside and 3',4'-dimethoxy quercetin were explored as potential markers of raw and vinegar-baked Bupleuri Radix. This study has been successfully applied for global analysis of raw and vinegar-processed samples. Furthermore, the underlying hepatoprotective mechanism of Bupleuri Radix was predicted, which was related to the changes of chemical profiling. Copyright © 2017 John Wiley & Sons, Ltd.
Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang
2018-01-01
In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties. PMID:29494626
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
Carbon financial markets: A time-frequency analysis of CO2 prices
NASA Astrophysics Data System (ADS)
Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana
2014-11-01
We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.
Multivariate pattern dependence
Saxe, Rebecca
2017-01-01
When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809
Predictors of recurrence of prolapse after procedure for prolapse and haemorrhoids.
Festen, S; Molthof, H; van Geloven, A A W; Luchters, S; Gerhards, M F
2012-08-01
The procedure for prolapse and haemorrhoids (PPH) is an effective surgical therapy for symptomatic haemorrhoids. Compared with haemorrhoidectomy, meta-analysis has shown PPH to be less painful, with higher patient satisfaction and a quicker return to work, but at the cost of higher prolapse recurrence rates. This is the first report describing predictors of prolapse recurrence after PPH. A cohort of patients with symptomatic haemorrhoids, treated with PPH in our hospital between 2002 and 2009, was retrospectively analysed. Multivariate analysis was performed to identify patient-related and perioperative predictors associated with persisting prolapse and prolapse recurrence. In total, 159 consecutively enrolled patients were analysed. Persistence and recurrence of prolapse was observed in 16% of the patients. Increased surgical experience showed a trend towards lower recurrence rates. Multivariate analysis identified female gender, long duration of PPH surgery and the absence of muscle tissue in the resected specimen as independent predictors of postoperative persistence of prolapse of haemorrhoids. The absence of prior treatment with rubber band ligation (RBL) as well as increased PPH experience at the hospital showed a trend towards a higher rate of prolapse recurrence. In order to reduce recurrence of prolapse, PPH should be performed by a surgeon with adequate PPH experience, patients should be treated with RBL prior to PPH and a resection of mucosa with underlying muscle fibres should be strived for. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, B. P.; Valdez, C. A.; DeHope, A. J.
Critical to many modern forensic investigations is the chemical attribution of the origin of an illegal drug. This process greatly relies on identification of compounds indicative of its clandestine or commercial production. The results of these studies can yield detailed information on method of manufacture, sophistication of the synthesis operation, starting material source, and final product. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3- methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods were studied in an effort to identify and classify route-specific signatures. These methods were chosen to minimize the use of scheduledmore » precursors, complicated laboratory equipment, number of overall steps, and demanding reaction conditions. Using gas and liquid chromatographies combined with mass spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductivelycoupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements were monitored. As seen in our previous work with CAS of fentanyl synthesis the complexity of the resultant data matrix necessitated the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically significant, route-specific CAS were identified. Statistical classification models using a variety of machine learning techniques were then developed with the ability to predict the method of 3-methylfentanyl synthesis from three blind crude samples generated by synthetic chemists without prior experience with these methods.« less
Bellomo, Rinaldo; Cass, Alan; Cole, Louise; Finfer, Simon; Gallagher, Martin; Kim, Inbyung; Lee, Joanne; Lo, Serigne; McArthur, Colin; McGuinness, Shay; McGuiness, Shay; Norton, Robyn; Myburgh, John; Scheinkestel, Carlos
2014-03-01
To identify risk factors for development of hypophosphataemia in patients treated with two different intensities of continuous renal replacement therapy (CRRT) and to assess the independent association of hypophosphataemia with major clinical outcomes. We performed secondary analysis of data collected from 1441 patients during a large, multicentre randomised controlled trial of CRRT intensity. We allocated patients to two different intensities of CRRT (25mL/kg/hour vs 40 mL/kg/hour of effluent generation) and obtained daily measurement of serum phosphate levels. We obtained 14 115 phosphate measurements and identified 462 patients (32.1%) with hypophosphataemia, with peak incidence on Day 2 and Day 3. With lower intensity CRRT, there were 58 episodes of hypophosphataemia/1000 patient days, compared with 112 episodes/1000 patient days with higher intensity CRRT (P < 0.001). On multivariable logistic regression analysis, higher intensity CRRT, female sex, higher Acute Physiology and Chronic Health Evaluation score and hypokalaemia were independently associated with an increased odds ratio (OR) for hypophosphataemia. On multivariable models, hypophosphataemia was associated with better clinical outcomes, but when analysis was confined to patients alive at 96 hours, hypophosphataemia was not independently associated with clinical outcomes. Hypophosphataemia is common during CRRT and its incidence increases with greater CRRT intensity. Hypophosphataemia is not a robust independent predictor of mortality. Its greater incidence in the higher intensity CRRT arm of the Randomised Evaluation of Normal vs Augmented Level trial does not explain the lack of improved outcomes with such treatment.
Outcome analysis of donor gender in heart transplantation.
Al-Khaldi, Abdulaziz; Oyer, Phillip E; Robbins, Robert C
2006-04-01
Several studies have shown a detrimental effect of female donor gender on the survival of solid-organ transplant recipients, including heart, kidney and liver. We evaluated our own experience in heart transplantation in the cyclosporine era, since 1980, to determine the effect of donor gender on survival. We retrospectively reviewed 869 consecutive patients who underwent primary heart transplantation at Stanford University Medical Center between December 1980 and March 2004. Actuarial life-table data were calculated for survival and freedom from rejection and compared between groups. Multivariate Cox proportional hazard analysis was used to identify predictors of reduced long-term survival. One-year mortality in male recipients who received a female donor heart (24%) was higher than in male recipients who received male donor heart (13%) (p = 0.009). Actuarial survival rates for male recipients at 1, 5 and 10 years were 86%, 69% and 50% (with male donor), and 76%, 59% and 45% (with female donor) (p = 0.01), respectively. Donor gender had no effect on long-term survival in male recipients < 45 years of age and female recipients. Female donor gender was identified as an independent risk factor for death by multivariate analysis, with an odds ratio of 2.3 (95% confidence interval 1.5 to 3.4, p < 0.001). In heart transplantation the detrimental effect of female donor gender on recipient survival is significant but limited to male recipients > 45 years of age. These findings should be considered in the process of donor-recipient matching.
Disparities in the surgical treatment of colorectal liver metastases.
Munene, Gitonga; Parker, Robyn D; Shaheen, Abdel Aziz; Myers, Robert P; Quan, May Lynn; Ball, Chad G; Dixon, Elijah
2013-01-01
Hepatectomy is an accepted standard of care for patients with resectable colorectal liver metastases (CLM). Given that it is unclear whether disparities exist between different patient populations, a population-based analysis was performed to analyze this issue with regards to resection rates and surgical mortality in patients with CLM. Using the Nationwide Inpatient Sample, characteristics and outcomes of adult patients with a diagnosis of colorectal cancer and colorectal metastases that subsequently underwent a liver resection during the years 1993-2007 were identified. Multivariate analysis was used to determine the effects of demographic and clinical covariables on resection rates and in-hospital mortality. Incident colorectal and liver metastases were identified in 138,565 patients; 3,528 patients (2.6%) underwent subsequent resection. African American and Hispanic race were associated with lower resection rates compared to Caucasian patients (adjusted OR 0.61 (0.52 - 0.71) and 0.81 (0.68 - 0.96) respectively). Medicaid insurance was associated with decreased resection rates compared to private insurance (AOR 0.47 (0.40 - 0.56)). The overall inpatient mortality rate was 3.1%. Multivariate analysis determined that mortality rate was correlated to both insurance status and geographic region. The national resection rate is significantly lower than has been reported by most case series. Race and insurance status appear to be correlated to the likelihood of surgical resection. In-hospital mortality is equivalent to the rates reported elsewhere, but is correlated to insurance status and region.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
NASA Astrophysics Data System (ADS)
Harris, C. D.; Profeta, Luisa T. M.; Akpovo, Codjo A.; Johnson, Lewis; Stowe, Ashley C.
2017-05-01
A calibration model was created to illustrate the detection capabilities of laser ablation molecular isotopic spectroscopy (LAMIS) discrimination in isotopic analysis. The sample set contained boric acid pellets that varied in isotopic concentrations of 10B and 11B. Each sample set was interrogated with a Q-switched Nd:YAG ablation laser operating at 532 nm. A minimum of four band heads of the β system B2∑ -> Χ2∑transitions were identified and verified with previous literature on BO molecular emission lines. Isotopic shifts were observed in the spectra for each transition and used as the predictors in the calibration model. The spectra along with their respective 10/11B isotopic ratios were analyzed using Partial Least Squares Regression (PLSR). An IUPAC novel approach for determining a multivariate Limit of Detection (LOD) interval was used to predict the detection of the desired isotopic ratios. The predicted multivariate LOD is dependent on the variation of the instrumental signal and other composites in the calibration model space.
2007-08-01
primary somatotypes , which were identified by multivariate analysis, had no significant effect on the simulated thermo-physiological responses ...population. Anthropometric values for each somatotype applied to a thermal regulatory model resulted into physiological response comparisons of Figure 2 and...Public report ing burden for this collect ion of information is est imated to average 1 hour per response , including the time for review ing instruct ions
Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students
ERIC Educational Resources Information Center
Valero-Mora, Pedro M.; Ledesma, Ruben D.
2011-01-01
This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…
Figueira, José; Câmara, Hugo; Pereira, Jorge; Câmara, José S
2014-02-15
To gain insights on the effects of cultivar on the volatile metabolomic expression of different tomato (Lycopersicon esculentum L.) cultivars--Plum, Campari, Grape, Cherry and Regional, cultivated under similar edafoclimatic conditions, and to identify the most discriminate volatile marker metabolites related to the cultivar, the chromatographic profiles resulting from headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-qMS) analysis, combined with multivariate analysis were investigated. The data set composed by the 77 volatile metabolites identified in the target tomato cultivars, 5 of which (2,2,6-trimethylcyclohexanone, 2-methyl-6-methyleneoctan-2-ol, 4-octadecyl-morpholine, (Z)-methyl-3-hexenoate and 3-octanone) are reported for the first time in tomato volatile metabolomic composition, was evaluated by chemometrics. Firstly, principal component analysis was carried out in order to visualise data trends and clusters, and then, linear discriminant analysis in order to detect the set of volatile metabolites able to differentiate groups according to tomato cultivars. The results obtained revealed a perfect discrimination between the different Lycopersicon esculentum L. cultivars considered. The assignment success rate was 100% in classification and 80% in prediction ability by using "leave-one-out" cross-validation procedure. The volatile profile was able to differentiate all five cultivars and revealed complex interactions between them including the participation in the same biosynthetic pathway. The volatile metabolomic platform for tomato samples obtained by HS-SPME/GC-qMS here described, and the interrelationship detected among the volatile metabolites can be used as a roadmap for biotechnological applications, namely to improve tomato aroma and their acceptance in the final consumer, and for traceability studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia
2014-03-01
Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Antibody-Mediated Rejection of the Kidney after Simultaneous Pancreas-Kidney Transplantation
Pascual, Julio; Samaniego, Milagros D.; Torrealba, José R.; Odorico, Jon S.; Djamali, Arjang; Becker, Yolanda T.; Voss, Barbara; Leverson, Glen E.; Knechtle, Stuart J.; Sollinger, Hans W.; Pirsch, John D.
2008-01-01
The prevalence, risk factors, and outcome of antibody-mediated rejection (AMR) of the kidney after simultaneous pancreas-kidney transplantation are unknown. In 136 simultaneous pancreas-kidney recipients who were followed for an average of 3.1 yr, 21 episodes of AMR of the kidney allograft were identified. Eight episodes occurred early (≤90 d) after transplantation, and 13 occurred later. Histologic evidence of concomitant acute cellular rejection was noted in 12 cases; the other nine had evidence only of humoral rejection. In 13 cases, clinical rejection of the pancreas was diagnosed simultaneously, and two of these were biopsy proven and were positive for C4d immunostaining. Multivariate analysis identified only one significant risk factor: Female patients were three times more likely to experience AMR. Nearly all early episodes resolved with treatment and did not predict graft loss, but multivariate Cox models revealed that late AMR episodes more than tripled the risk for kidney and pancreas graft loss; therefore, new strategies are needed to prevent and to treat late AMR in simultaneous pancreas-kidney transplant recipients. PMID:18235091
A power analysis for multivariate tests of temporal trend in species composition.
Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel
2011-10-01
Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.
Zhang, Zhe-qing; Deng, Juan; He, Li-ping; Ling, Wen-hua; Su, Yi-xiang; Chen, Yu-ming
2013-01-01
Background Although many adiposity indices may be used to predict obesity-related health risks, uncertainty remains over which of them performs best. Objective This study compared the predictive capability of direct and indirect adiposity measures in identifying people at higher risk of metabolic abnormalities. Methods This population-based cross-sectional study recruited 2780 women and 1160 men. Body weight and height, waist circumference (WC), and hip circumference (HC) were measured and body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were calculated. Body fat (and percentage of fat) over the whole body and the trunk were determined by bioelectrical impedance analysis (BIA). Blood pressure, fasting lipid profiles, and glucose and urine acid levels were assessed. Results In women, the ROC and the multivariate logistic regression analyses both showed that WHtR consistently had the best performance in identifying hypertension, dyslipidemia, hyperuricemia, diabetes/IFG, and metabolic syndrome (MetS). In men, the ROC analysis showed that WHtR was the best predictor of hypertension, WHtR and WC were equally good predictors of dyslipidemia and MetS, and WHtR was the second-best predictor of hyperuricemia and diabetes/IFG. The multivariate logistic regression also found WHtR to be superior in discriminating between MetS, diabetes/IFG, and dyslipidemia while BMI performed better in predicting hypertension and hyperuricemia in men. The BIA-derived indices were the second-worst predictors for all of the endpoints, and HC was the worst. Conclusion WHtR was the best predictor of various metabolic abnormalities. BMI may be used as an alternative measure of obesity for identifying hypertension in both sexes. PMID:23951031
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
Freeman, R; Moore, L S P; Charlett, A; Donaldson, H; Holmes, A H
2015-04-01
The objective of this study was to identify carbapenem-resistant organisms using routinely collected local microbiology data and describe the epidemiology of carbapenem resistance in two London teaching hospitals. Data on inpatients infected or colonized with Gram-negative organisms between March 2009 and February 2012 were extracted. A computer algorithm was developed incorporating internationally recognized criteria to distinguish carbapenem-resistant organisms. Multivariable analysis was conducted to identify factors associated with infection or colonization with carbapenem-resistant organisms. Binomial regression was performed to detect changes in resistance trends over time. Yearly incidence of carbapenem resistance was observed to be increasing, with significant increasing trends in Acinetobacter baumannii (47.1% in 2009-10 to 77.2% in 2011-12; P<0.001) and Enterobacter spp. (2.2% in 2009-10 to 11.5% in 2011-12; P<0.001). Single-variable and multivariable analysis demonstrated differences in the proportion of carbapenem-resistant isolates across all variables investigated, including age, sex and clinical specialty; in the latter organism-specific niches were identified. Patients in the youngest age group (16-24 years old) had the highest odds of being infected or colonized with carbapenem-resistant isolates of Escherichia coli, Klebsiella spp. or Pseudomonas aeruginosa. Furthermore, proportions of carbapenem-resistant organisms differed between the hospitals. Carbapenem resistance is an emerging problem within the UK inpatient healthcare setting. This is not an issue confined to the Enterobacteriaceae and fine-resolution surveillance is needed to identify at-risk groups. Regular analysis of routinely collected data can provide insight into the evolving carbapenem-resistance threat, with the ability to inform efforts to prevent the spread of resistance. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Huang, Nai-Si; Si, Jing; Yang, Ben-Long; Quan, Chen-Lian; Chen, Jia-Jian; Wu, Jiong
2018-01-01
The aim of this study was to investigate the trends of axillary lymph node evaluation in ductal carcinoma in situ (DCIS) patients treated with breast-conserving therapy (BCT) and to identify the clinicopathological predictors of axillary evaluation. DCIS patients treated with BCT in 2006-2015 at our institute were retrospectively included in the analysis. Patients were categorized into three groups: sentinel lymph node biopsy (SLNB), axillary lymph node dissection (ALND), and non-evaluation. Univariate and multivariate logistic regression analyses were performed to identify factors that predicted axillary evaluation. A total of 315 patients were identified, among whom 135 underwent SLNB, and 15 underwent ALND. The proportion of patients who underwent axillary evaluation increased from 33.0% in 2006-2010 to 53.8% in 2011-2015 (P < 0.001), however, no patients had lymph node metastasis based on final pathology. In multivariate analysis, high-grade tumor favored axillary evaluation (OR = 4.376, 95% CI:1.410-13.586, P = 0.011); while excision biopsy favored no axillary evaluation compared with other biopsy methods (OR = 0.418, 95% CI: 0.192-0.909, P = 0.028). Subgroup analysis of patients treated in 2011-2015 revealed that high-grade tumor (OR = 5.898, 95% CI: 1.626-21.390, P = 0.007) and palpable breast lump (OR = 2.497, 95% CI: 1.037-6.011, P = 0.041) were independent predictors of axillary lymph node evaluation. Despite the significant decrease in ALND and a concerning overuse of SLNB, we identified no axillary lymph node metastasis, which justified omitting axillary evaluation in these patients. High-grade tumor, palpable lump, and biopsy method were independent predictors of axillary evaluations. Excision biopsy of suspicious DCIS lesions may potentially preclude the invasive component of the disease and help to avoid axillary surgery. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
O'Connell, Emer; Brennan, Wendy; Cormican, Martin; Glacken, Marita; O'Donovan, Diarmuid; Vellinga, Akke; Cahill, Niall; Lysaght, Fionnguala; O'Donnell, Joan
2009-01-01
Background There are no prevalence data on Chlamydia trachomatis relating to female students attending higher education available for the Republic of Ireland. This information is required to guide on the necessity for Chlamydia screening programmes in higher education settings. This research aimed to determine the prevalence of and predictive risk factors for Chlamydia trachomatis genital infection among female higher education students in Ireland. Methods All females presenting during one-day periods at Student Health Units in three higher education institutions in two cities in the Republic of Ireland were invited to participate. Participants completed a questionnaire on lifestyle and socio-demographic factors and provided a urine sample. Samples were tested for C. trachomatis DNA by a PCR based technique (Cobas Amplicor, Roche). To examine possible associations between a positive test and demographic and lifestyle risk factors, a univariate analysis was performed. All associations with a p value < 0.05 were included in a multivariate logistic regression analysis. Results Of the 460 sexually active participants 22 tested positive (prevalence 4.8%; 95% CI 3.0 to 7.1%). Variables associated with significantly increased risk were current suggestive symptoms, two or more one-night stands and three or more lifetime sexual partners. The students displayed high-risk sexual behaviour. Conclusion The prevalence of C. trachomatis infection and the lack of awareness of the significance of suggestive symptoms among sexually experienced female students demonstrate the need for a programme to test asymptomatic or non-presenting higher education students. The risk factors identified by multivariate analysis may be useful in identifying those who are most likely to benefit from screening. Alcohol abuse, condom use, sexual behaviour (at home and abroad) and, knowledge of sexually transmitted infections (STIs) (including asymptomatic nature or relevant symptoms) were identified as target areas for health promotion strategies. These strategies are needed in view of the high-risk sexual activity identified. PMID:19874584
Socioeconomic Factors Are Associated With Readmission After Lobectomy for Early Stage Lung Cancer.
Medbery, Rachel L; Gillespie, Theresa W; Liu, Yuan; Nickleach, Dana C; Lipscomb, Joseph; Sancheti, Manu S; Pickens, Allan; Force, Seth D; Fernandez, Felix G
2016-11-01
Data regarding risk factors for readmissions after surgical resection for lung cancer are limited and largely focus on postoperative outcomes, including complications and hospital length of stay. The current study aims to identify preoperative risk factors for postoperative readmission in early stage lung cancer patients. The National Cancer Data Base was queried for all early stage lung cancer patients with clinical stage T2N0M0 or less who underwent lobectomy in 2010 and 2011. Patients with unplanned readmission within 30 days of hospital discharge were identified. Univariate analysis was utilized to identify preoperative differences between readmitted and not readmitted cohorts; multivariable logistic regression was used to identify risk factors resulting in readmission. In all, 840 of 19,711 patients (4.3%) were readmitted postoperatively. Male patients were more likely to be readmitted than female patients (4.9% versus 3.8%, p < 0.001), as were patients who received surgery at a nonacademic rather than an academic facility (4.6% versus 3.6%; p = 0.001) and had underlying medical comorbidities (Charlson/Deyo score 1+ versus 0; 4.8% versus 3.7%; p < 0.001). Readmitted patients had a longer median hospital length of stay (6 days versus 5; p < 0.001) and were more likely to have undergone a minimally invasive approach (5.1% video-assisted thoracic surgery versus 3.9% open; p < 0.001). In addition to those variables, multivariable logistic regression analysis identified that median household income level, insurance status (government versus private), and geographic residence (metropolitan versus urban versus rural) had significant influence on readmission. The socioeconomic factors identified significantly influence hospital readmission and should be considered during preoperative and postoperative discharge planning for patients with early stage lung cancer. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Job insecurity and risk of diabetes: a meta-analysis of individual participant data.
Ferrie, Jane E; Virtanen, Marianna; Jokela, Markus; Madsen, Ida E H; Heikkilä, Katriina; Alfredsson, Lars; Batty, G David; Bjorner, Jakob B; Borritz, Marianne; Burr, Hermann; Dragano, Nico; Elovainio, Marko; Fransson, Eleonor I; Knutsson, Anders; Koskenvuo, Markku; Koskinen, Aki; Kouvonen, Anne; Kumari, Meena; Nielsen, Martin L; Nordin, Maria; Oksanen, Tuula; Pahkin, Krista; Pejtersen, Jan H; Pentti, Jaana; Salo, Paula; Shipley, Martin J; Suominen, Sakari B; Tabák, Adam; Theorell, Töres; Väänänen, Ari; Vahtera, Jussi; Westerholm, Peter J M; Westerlund, Hugo; Rugulies, Reiner; Nyberg, Solja T; Kivimäki, Mika
2016-12-06
Job insecurity has been associated with certain health outcomes. We examined the role of job insecurity as a risk factor for incident diabetes. We used individual participant data from 8 cohort studies identified in 2 open-access data archives and 11 cohort studies participating in the Individual-Participant-Data Meta-analysis in Working Populations Consortium. We calculated study-specific estimates of the association between job insecurity reported at baseline and incident diabetes over the follow-up period. We pooled the estimates in a meta-analysis to produce a summary risk estimate. The 19 studies involved 140 825 participants from Australia, Europe and the United States, with a mean follow-up of 9.4 years and 3954 incident cases of diabetes. In the preliminary analysis adjusted for age and sex, high job insecurity was associated with an increased risk of incident diabetes compared with low job insecurity (adjusted odds ratio [OR] 1.19, 95% confidence interval [CI] 1.09-1.30). In the multivariable-adjusted analysis restricted to 15 studies with baseline data for all covariates (age, sex, socioeconomic status, obesity, physical activity, alcohol and smoking), the association was slightly attenuated (adjusted OR 1.12, 95% CI 1.01-1.24). Heterogeneity between the studies was low to moderate (age- and sex-adjusted model: I 2 = 24%, p = 0.2; multivariable-adjusted model: I 2 = 27%, p = 0.2). In the multivariable-adjusted analysis restricted to high-quality studies, in which the diabetes diagnosis was ascertained from electronic medical records or clinical examination, the association was similar to that in the main analysis (adjusted OR 1.19, 95% CI 1.04-1.35). Our findings suggest that self-reported job insecurity is associated with a modest increased risk of incident diabetes. Health care personnel should be aware of this association among workers reporting job insecurity. © 2016 Canadian Medical Association or its licensors.
The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects
ERIC Educational Resources Information Center
Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle
2011-01-01
Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…
Two-sample tests and one-way MANOVA for multivariate biomarker data with nondetects.
Thulin, M
2016-09-10
Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A non-iterative extension of the multivariate random effects meta-analysis.
Makambi, Kepher H; Seung, Hyunuk
2015-01-01
Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.
Self-referrals versus physician referrals: What new patient visit yields an actual surgical case?
Herring, Eric Z; Peck, Matthew R; Vonck, Caroline E; Smith, Gabriel A; Mroz, Thomas E; Steinmetz, Michael P
2018-06-15
OBJECTIVE Spine surgeons in the United States continue to be overwhelmed by an aging population, and patients are waiting weeks to months for appointments. With a finite number of clinic visits per surgeon, analysis of referral sources needs to be explored. In this study, the authors evaluated patient referrals and their yield for surgical volume at a tertiary care center. METHODS This is a retrospective study of new patient visits by the spine surgery group at the Cleveland Clinic Center for Spine Health from 2011 to 2016. Data on all new or consultation visits for 5 identified spinal surgeons at the Center for Spine Health were collected. Patients with an identifiable referral source and who were at least 18 years of age at initial visit were included in this study. Univariate analysis was used to identify demographic differences among referral groups, and then multivariate analysis was used to evaluate those referral groups as significant predictors of surgical yield. RESULTS After adjusting for demographic differences across all referrals, multivariate analysis identified physician referrals as more likely (OR 1.48, 95% CI 1.04-2.10, p = 0.0293) to yield a surgical case than self-referrals. General practitioner referrals (OR 0.5616, 95% CI 0.3809-0.8278, p = 0.0036) were identified as less likely to yield surgical cases than referrals from interventionalists (OR 1.5296, p = 0.058) or neurologists (OR 1.7498, 95% CI 1.0057-3.0446, p = 0.0477). Additionally, 2 demographic factors, including distance from home and age, were identified as predictors of surgery. Local patients (OR 1.21, 95% CI 1.13-1.29, p = 0.018) and those 65 years of age or older (OR 0.80, 95% CI 0.72-0.87, p = 0.0023) were both more likely to need surgery after establishing care with a spine surgeon. CONCLUSIONS In conclusion, referrals from general practitioners and self-referrals are important areas where focused triaging may be necessary. Further research into midlevel providers and nonsurgical spine provider's role in these referrals for spine pathology is needed. Patients from outside of the state or younger than 65 years could benefit from pre-visit screening as well to optimize a surgeon's clinic time use and streamline patient care.
Pekey, Hakan; Karakaş, Duran; Bakoğlu, Mithat
2004-11-01
Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.
Cacciatore, Francesco; Della-Morte, David; Basile, Claudia; Curcio, Francesco; Liguori, Ilaria; Roselli, Mario; Gargiulo, Gaetano; Galizia, Gianluigi; Bonaduce, Domenico; Abete, Pasquale
2015-01-01
To determine the relationship between Butyryl-cholinesterase (α-glycoprotein synthesized in the liver, b-CHE) and muscle mass and strength. Muscle mass by bioimpedentiometer and muscle strength by grip strength were evaluated in 337 elderly subjects (mean age: 76.2 ± 6.7 years) admitted to comprehensive geriatric assessment. b-CHE levels were lower in sarcopenic than in nonsarcopenic elderly subjects (p < 0.01). Linear regression analysis demonstrated that b-CHE is linearly related with grip strength and muscular mass both in men and women (r = 0.45 and r = 0.33, p < 0.01; r = 0.55 and r = 0.39, p < 0.01; respectively). Multivariate analysis confirms this analysis. b-CHE is related to muscle mass and strength in elderly subjects. Thus, b-CHE may be considered to be a fair biomarker for identifying elderly subjects at risk of sarcopenia.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
A refined method for multivariate meta-analysis and meta-regression.
Jackson, Daniel; Riley, Richard D
2014-02-20
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.
Wang, Kevin Yuqi; Vankov, Emilian R; Lin, Doris Da May
2018-02-01
OBJECTIVE Oligodendroglioma is a rare primary CNS neoplasm in the pediatric population, and only a limited number of studies in the literature have characterized this entity. Existing studies are limited by small sample sizes and discrepant interstudy findings in identified prognostic factors. In the present study, the authors aimed to increase the statistical power in evaluating for potential prognostic factors of pediatric oligodendrogliomas and sought to reconcile the discrepant findings present among existing studies by performing an individual-patient-data (IPD) meta-analysis and using multiple imputation to address data not directly available from existing studies. METHODS A systematic search was performed, and all studies found to be related to pediatric oligodendrogliomas and associated outcomes were screened for inclusion. Each study was searched for specific demographic and clinical characteristics of each patient and the duration of event-free survival (EFS) and overall survival (OS). Given that certain demographic and clinical information of each patient was not available within all studies, a multivariable imputation via chained equations model was used to impute missing data after the mechanism of missing data was determined. The primary end points of interest were hazard ratios for EFS and OS, as calculated by the Cox proportional-hazards model. Both univariate and multivariate analyses were performed. The multivariate model was adjusted for age, sex, tumor grade, mixed pathologies, extent of resection, chemotherapy, radiation therapy, tumor location, and initial presentation. A p value of less than 0.05 was considered statistically significant. RESULTS A systematic search identified 24 studies with both time-to-event and IPD characteristics available, and a total of 237 individual cases were available for analysis. A median of 19.4% of the values among clinical, demographic, and outcome variables in the compiled 237 cases were missing. Multivariate Cox regression analysis revealed subtotal resection (p = 0.007 [EFS] and 0.043 [OS]), initial presentation of headache (p = 0.006 [EFS] and 0.004 [OS]), mixed pathologies (p = 0.005 [EFS] and 0.049 [OS]), and location of the tumor in the parietal lobe (p = 0.044 [EFS] and 0.030 [OS]) to be significant predictors of tumor progression or recurrence and death. CONCLUSIONS The use of IPD meta-analysis provides a valuable means for increasing statistical power in investigations of disease entities with a very low incidence. Missing data are common in research, and multiple imputation is a flexible and valid approach for addressing this issue, when it is used conscientiously. Undergoing subtotal resection, having a parietal tumor, having tumors with mixed pathologies, and suffering headaches at the time of diagnosis portended a poorer prognosis in pediatric patients with oligodendroglioma.
Prediction of concurrent endometrial carcinoma in women with endometrial hyperplasia.
Matsuo, Koji; Ramzan, Amin A; Gualtieri, Marc R; Mhawech-Fauceglia, Paulette; Machida, Hiroko; Moeini, Aida; Dancz, Christina E; Ueda, Yutaka; Roman, Lynda D
2015-11-01
Although a fraction of endometrial hyperplasia cases have concurrent endometrial carcinoma, patient characteristics associated with concurrent malignancy are not well described. The aim of our study was to identify predictive clinico-pathologic factors for concurrent endometrial carcinoma among patients with endometrial hyperplasia. A case-control study was conducted to compare endometrial hyperplasia in both preoperative endometrial biopsy and hysterectomy specimens (n=168) and endometrial carcinoma in hysterectomy specimen but endometrial hyperplasia in preoperative endometrial biopsy (n=43). Clinico-pathologic factors were examined to identify independent risk factors of concurrent endometrial carcinoma in a multivariate logistic regression model. The most common histologic subtype in preoperative endometrial biopsy was complex hyperplasia with atypia [CAH] (n=129) followed by complex hyperplasia without atypia (n=58) and simple hyperplasia with or without atypia (n=24). The majority of endometrial carcinomas were grade 1 (86.0%) and stage I (83.7%). In multivariate analysis, age 40-59 (odds ratio [OR] 3.07, p=0.021), age≥60 (OR 6.65, p=0.005), BMI≥35kg/m(2) (OR 2.32, p=0.029), diabetes mellitus (OR 2.51, p=0.019), and CAH (OR 9.01, p=0.042) were independent predictors of concurrent endometrial carcinoma. The risk of concurrent endometrial carcinoma rose dramatically with increasing number of risk factors identified in multivariate model (none 0%, 1 risk factor 7.0%, 2 risk factors 17.6%, 3 risk factors 35.8%, and 4 risk factors 45.5%, p<0.001). Hormonal treatment was associated with decreased risk of concurrent endometrial cancer in those with ≥3 risk factors. Older age, obesity, diabetes mellitus, and CAH are predictive of concurrent endometrial carcinoma in endometrial hyperplasia patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Classification of white wine aromas with an electronic nose.
Lozano, J; Santos, J P; Horrillo, M C
2005-09-15
This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine. Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to the wine with a minimum accuracy of 97.2%.
Particle analysis using laser ablation mass spectroscopy
Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.
2003-09-09
The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.
Multivariate missing data in hydrology - Review and applications
NASA Astrophysics Data System (ADS)
Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.
2017-12-01
Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.
Gamage, I H; Jonker, A; Zhang, X; Yu, P
2014-01-24
The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products. Copyright © 2013 Elsevier B.V. All rights reserved.
Wan, Wei; Lou, Yan; Hu, Zhiqi; Wang, Ting; Li, Jinsong; Tang, Yu; Wu, Zhipeng; Xu, Leqin; Yang, Xinghai; Song, Dianwen; Xiao, Jianru
2017-01-01
Little information has been published in the literature regarding survival outcomes of patients with Ewing's sarcoma family tumors (ESFTs) of the spine. The purpose of this study is to explore factors that may affect the prognosis of patients with non-metastatic spinal ESFTs. A retrospective analysis of survival outcomes was performed in patients with non-metastatic spinal ESFTs. Univariate and multivariate analyses were employed to identify prognostic factors for recurrence and survival. Recurrence-free survival (RFS) and overall survival (OS) were defined as the date of surgery to the date of local relapse and death. Kaplan-Meier methods were applied to estimate RFS and OS. Log-rank test was used to analyze single factors for RFS and OS. Factors with p values ≤0.1 were subjected to multivariate analysis. A total of 63 patients with non-metastatic spinal ESFTs were included in this study. The mean follow-up period was 35.1 months (range 1-155). Postoperative recurrence was detected in 25 patients, and distant metastasis and death occurred in 22 and 36 patients respectively. The result of multivariate analysis suggested that age older than 25 years and neoadjuvant chemotherapy were favorable independent prognostic factors for RFS and OS. In addition, total en-bloc resection, postoperative chemotherapy, radiotherapy and non-distant metastasis were favorable independent prognostic factors for OS. Age older than 25 years and neoadjuvant chemotherapy are favorable prognostic factors for both RFS and OS. In addition, total en-bloc resection, postoperative chemotherapy, radiotherapy and non-distant metastasis are closely associated with favorable survival.
Teixeira, Pedro Gr; Woo, Karen; Beck, Adam W; Scali, Salvatore T; Weaver, Fred A
2017-12-01
Objectives Investigate the impact of left subclavian artery coverage without revascularization on spinal cord ischemia development in patients undergoing thoracic endovascular aortic repair. Methods The Vascular Quality Initiative thoracic endovascular aortic repair module (April 2011-July 2014) was analyzed. Patients undergoing left subclavian artery coverage were divided into two groups according to revascularization status. The association between left subclavian artery revascularization with the primary outcome of spinal cord ischemia and the secondary outcome of stroke was assessed with multivariable analysis adjusting for between-group baseline differences. Results The left subclavian artery was covered in 508 (24.6%) of the 2063 thoracic endovascular aortic repairs performed. Among patients with left subclavian artery coverage, 58.9% underwent revascularization. Spinal cord ischemia incidence was 12.1% in the group without revascularization compared to 8.5% in the group undergoing left subclavian artery revascularization (odds ratio (95%CI): 1.48(0.82-2.68), P = 0.189). Multivariable analysis adjustment identified an independent association between left subclavian artery coverage without revascularization and the incidence of spinal cord ischemia (adjusted odds ratio (95%CI): 2.29(1.03-5.14), P = 0.043). Although the incidence of stroke was also higher for the group with a covered and nonrevascularized left subclavian artery (12.1% versus 8.5%), this difference was not statistically significant after multivariable analysis (adjusted odds ratio (95%CI): 1.55(0.74-3.26), P = 0.244). Conclusion For patients undergoing left subclavian artery coverage during thoracic endovascular aortic repair, the addition of a revascularization procedure was associated with a significantly lower incidence of spinal cord ischemia.
Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi
2018-01-01
To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.
NASA Astrophysics Data System (ADS)
Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.
2014-01-01
The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products.
Ni, Ting; Shang, Xiao-Sha; Wang, Wen-Tao; Hu, Xin-Xing; Zeng, Meng-Su; Rao, Sheng-Xiang
2018-06-05
To identify reliable magnetic resonance (MR) features for distinguishing mass-forming type of intrahepatic cholangiocarcinoma (IMCC) from hepatocellular carcinoma (HCC) based on tumor size. This retrospective study included 395 patients with pathologically confirmed IMCCs (n = 180) and HCCs (n = 215) who underwent pre-operative contrast-enhanced MRI including diffusion-weighted imaging (DWI). MR features were evaluated and clinical data were also recorded. All the characteristics were compared in small (≤3 cm) and large tumor (>3 cm) groups by univariate analysis and subsequently calculated by multivariable logistic regression analysis. Multivariable analysis revealed that rim arterial phase hyperenhancement [odds ratios (ORs) = 13.16], biliary dilation (OR = 23.42) and CA19-9 (OR = 21.45) were significant predictors of large IMCCs (n = 138), and washout appearance (OR = 0.036), enhancing capsule appearance (OR = 0.039), fat in mass (OR = 0.057), chronic liver disease (OR = 0.088) and alpha fetoprotein (OR = 0.019) were more frequently found in large HCCs (n = 143). For small IMCCs (n = 42) and HCCs (n = 72), rim arterial phase hyperenhancement (OR = 9.68), target appearance at DWI (OR = 12.51), alpha fetoprotein (OR = 0.12) and sex (OR = 0.20) were independent predictors in multivariate analysis. Valuable MR features and clinical factors varied for differential diagnosis of IMCCs and HCCs according to tumor size. Advances in knowledge: MR features for differential diagnosis of large IMCC and HCC (>3 cm) are in keeping with that recommended by LI-RADS. However, for small IMCCs and HCCs (≤3 cm), only rim enhancement on arterial phase and target appearance at DWI are reliable predictors.
Sato, Masashi; Yamashita, Okito; Sato, Masa-aki
2018-01-01
To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968
1993-06-18
the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991
Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E
2018-03-15
Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to care at HV facilities. Copyright © 2017 Elsevier Inc. All rights reserved.
Krige, Jake E J; Kotze, Urda K; Distiller, Greg; Shaw, John M; Bornman, Philippus C
2009-10-01
Bleeding from esophageal varices is a leading cause of death in alcoholic cirrhotic patients. The aim of the present single-center study was to identify risk factors predictive of variceal rebleeding and death within 6 weeks of initial treatment. Univariate and multivariate analyses were performed on 310 prospectively documented alcoholic cirrhotic patients with acute variceal hemorrhage (AVH) who underwent 786 endoscopic variceal injection treatments between January 1984 and December 2006. All injections were administered during the first 6 weeks after the patients were treated for their first variceal bleed. Seventy-five (24.2%) patients experienced a rebleed, 38 within 5 days of the initial treatment and 37 within 6 weeks of their initial treatment. Of the 15 variables studied and included in a multivariate analysis using a logistic regression model, a bilirubin level >51 mmol/l and transfusion of >6 units of blood during the initial hospital admission were predictors of variceal rebleeding within the first 6 weeks. Seventy-seven (24.8%) patients died, 29 (9.3%) within 5 days and 48 (15.4%) between 6 and 42 days after the initial treatment. Stepwise multivariate logistic regression analysis showed that six variables were predictors of death within the first 6 weeks: encephalopathy, ascites, bilirubin level >51 mmol/l, international normalized ratio (INR) >2.3, albumin <25 g/l, and the need for balloon tube tamponade. Survival was influenced by the severity of liver failure, with most deaths occurring in Child-Pugh grade C patients. Patients with AVH and encephalopathy, ascites, bilirubin levels >51 mmol/l, INR >2.3, albumin <25 g/l and who require balloon tube tamponade are at increased risk of dying within the first 6 weeks. Bilirubin levels >51 mmol/l and transfusion of >6 units of blood were predictors of variceal rebleeding.
Zhu, Feng; Shen, Yi Bin; Li, Fu Qiang; Fang, Yun; Hu, Liang; Wu, Yi Jun
2016-01-01
Abstract The purpose of this study was to investigate the risk factors for central and lateral neck lymph node metastases in papillary thyroid carcinoma (PTC) and multifocal papillary thyroid carcinoma (MPTC), particularly when associated with Hashimoto thyroiditis (HT). A retrospective analysis of 763 consecutive patients who underwent total thyroidectomy with bilateral central neck dissection in the First Affiliated Hospital, College of Medicine, Zhejiang University between October 2011 and October 2014 was conducted. All patients had formal histological diagnoses of HT. Multivariable logistic regression analysis was performed to identify risk factors of neck lymph node metastases. Our study identified 277 PTC patients with HT and showed comparatively low rates of central lymph node metastases (CLNM) compared with the PTC patients without HT (37.2% versus 54.7%, P < 0.001). There were no statistically significant differences in lateral lymph node metastases (LLNM) (P = 0.656). Neck lymph node metastases were histologically proven in 127 (45.8%) patients with PTC with HT, including 103 CLNM and 24 LLNM. There were no significant differences in LLNM between the MPTC-associated HT and classic MPTC cases; however, a significantly reduced risk of CLNM was observed in the MPTC-associated HT compared with the MPTC cases (35.7% versus 72.4%, respectively, P < 0.001). In the multivariate analysis, HT was identified as an independent alleviating factor for CLNM in all PTC patients (odds ratio, 0.369; 95% confidence interval (CI), 0.261 to 0.521; P < 0.001) and in MPTC patients (odds ratio, 0.227; 95% CI, 0.126–0.406; P < 0.001). A cut-off of thyroid peroxidase antibody >140 IU/mL was established as the most sensitive and specific level for the prediction of MPTC based on receiver operating characteristic curve analyses. Thyroid peroxidase antibody, age, tumor size, and multifocality exhibited the ability to predict CLNM in PTC with HT patients with an area under the curve of 81.1% based on a multivariate model. Hashimoto thyroiditis was associated with increased prevalences of multifocality and capsular invasion. In contrast, HT was associated with a reduced risk of CLNM in PTC and MPTC patients, which indicated a potential protective effect. We found that the prognostic prediction model was applicable for predicting multifocality and CLNM in PTC patients with HT. PMID:26871795
Zhu, Feng; Shen, Yi Bin; Li, Fu Qiang; Fang, Yun; Hu, Liang; Wu, Yi Jun
2016-02-01
The purpose of this study was to investigate the risk factors for central and lateral neck lymph node metastases in papillary thyroid carcinoma (PTC) and multifocal papillary thyroid carcinoma (MPTC), particularly when associated with Hashimoto thyroiditis (HT).A retrospective analysis of 763 consecutive patients who underwent total thyroidectomy with bilateral central neck dissection in the First Affiliated Hospital, College of Medicine, Zhejiang University between October 2011 and October 2014 was conducted. All patients had formal histological diagnoses of HT. Multivariable logistic regression analysis was performed to identify risk factors of neck lymph node metastases.Our study identified 277 PTC patients with HT and showed comparatively low rates of central lymph node metastases (CLNM) compared with the PTC patients without HT (37.2% versus 54.7%, P < 0.001). There were no statistically significant differences in lateral lymph node metastases (LLNM) (P = 0.656). Neck lymph node metastases were histologically proven in 127 (45.8%) patients with PTC with HT, including 103 CLNM and 24 LLNM. There were no significant differences in LLNM between the MPTC-associated HT and classic MPTC cases; however, a significantly reduced risk of CLNM was observed in the MPTC-associated HT compared with the MPTC cases (35.7% versus 72.4%, respectively, P < 0.001). In the multivariate analysis, HT was identified as an independent alleviating factor for CLNM in all PTC patients (odds ratio, 0.369; 95% confidence interval (CI), 0.261 to 0.521; P < 0.001) and in MPTC patients (odds ratio, 0.227; 95% CI, 0.126-0.406; P < 0.001). A cut-off of thyroid peroxidase antibody >140 IU/mL was established as the most sensitive and specific level for the prediction of MPTC based on receiver operating characteristic curve analyses. Thyroid peroxidase antibody, age, tumor size, and multifocality exhibited the ability to predict CLNM in PTC with HT patients with an area under the curve of 81.1% based on a multivariate model.Hashimoto thyroiditis was associated with increased prevalences of multifocality and capsular invasion. In contrast, HT was associated with a reduced risk of CLNM in PTC and MPTC patients, which indicated a potential protective effect. We found that the prognostic prediction model was applicable for predicting multifocality and CLNM in PTC patients with HT.
Multivariate analysis for scanning tunneling spectroscopy data
NASA Astrophysics Data System (ADS)
Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke
2018-01-01
We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.
Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016
Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.
Jalali-Heravi, Mehdi; Moazeni-Pourasil, Roudabeh Sadat; Sereshti, Hassan
2015-03-01
In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The proposed methodology was applied to the GC-MS analysis of Iranian Lavender essential oil, which resulted in extending the number of identified constituents from 56 to 143 components. It was found that the most abundant constituents of the Iranian Lavender essential oil are α-pinene (16.51%), camphor (10.20%), 1,8-cineole (9.50%), bornyl acetate (8.11%) and camphene (6.50%). This indicates that the Iranian type Lavender contains a relatively high percentage of α-pinene. Comparison of different types of Lavender essential oils showed the composition similarity between Iranian and Italian (Sardinia Island) Lavenders. Published by Elsevier B.V.
Backes, Dirce Stein; Zanatta, Fabrício Batistin; Costenaro, Regina Santini; Rangel, Rosiane Filipin; Vidal, Janice; Kruel, Cristina Saling; de Mattos, Karen Mallo
2014-03-01
This study sought to identify the risk indicators associated with the consumption of illicit drugs by schoolchildren in public schools in a community in the south of Brazil. This is a non-experimental cross-sectional study conducted with 535 students of primary schoolchildren from six public schools. Data were collected using a questionnaire between October 2011 and March 2012. The results were presented by simple and relative distribution of frequency and odds ratio (OR) and the 95% reliability intervals were calculated to verify the association between the dependent and independent variables. Multivariate analysis was also performed using the question "have you ever used illicit drugs?" Univariate analysis revealed an association between family income, color, period in which the child studied, failure to pass annual tests, use of methods of prevention, smoking habit and knowing someone who uses drugs with the fact of having experimented with the use of illicit drugs. After multivariate analysis, the smoking habit was the only indicator significantly associated with the question of having made use of illicit drugs. The results indicate that the smoking habit is an important indicator of the predictive risk for the use of illicit drugs.
Farhat, Mirna H; Shamseddine, Ali I; Tawil, Ayman N; Berjawi, Ghina; Sidani, Charif; Shamseddeen, Wael; Barada, Kassem A
2008-01-01
AIM: To study the factors that may affect survival of cholangiocarcinoma in Lebanon. METHODS: A retrospective review of the medical records of 55 patients diagnosed with cholangio-carcinoma at the American University of Beirut between 1990 and 2005 was conducted. Univariate and multivariate analyses were performed to determine the impact of surgery, chemotherapy, body mass index, bilirubin level and other factors on survival. RESULTS: The median survival of all patients was 8.57 mo (0.03-105.2). Univariate analysis showed that low bilirubin level (< 10 mg/dL), radical surgery and chemotherapy administration were significantly associated with better survival (P = 0.012, 0.038 and 0.038, respectively). In subgroup analysis on patients who had no surgery, chemotherapy administration prolonged median survival significantly (17.0 mo vs 3.5 mo, P = 0.001). Multivariate analysis identified only low bilirubin level < 10 mg/dL and chemotherapy administration as independent predictors associated with better survival (P < 0.05). CONCLUSION: Our data show that palliative and postoperative chemotherapy as well as a bilirubin level < 10 mg/dL are independent predictors of a significant increase in survival in patients with cholangiocarcinoma. PMID:18506930
Determinants of children's use of and time spent in fast-food and full-service restaurants.
McIntosh, Alex; Kubena, Karen S; Tolle, Glen; Dean, Wesley; Kim, Mi-Jeong; Jan, Jie-Sheng; Anding, Jenna
2011-01-01
Identify parental and children's determinants of children's use of and time spent in fast-food (FF) and full-service (FS) restaurants. Analysis of cross-sectional data. Parents were interviewed by phone; children were interviewed in their homes. Parents and children ages 9-11 or 13-15 from 312 families were obtained via random-digit dialing. Dependent variables were the use of and the time spent in FF and FS restaurants by children. Determinants included parental work schedules, parenting style, and family meal ritual perceptions. Logistic regression was used for multivariate analysis of use of restaurants. Least squares regression was used for multivariate analysis of time spent in restaurants. Significance set at P < .05. Factors related to use of and time spent in FF and FS restaurants included parental work schedules, fathers' use of such restaurants, and children's time spent in the family automobile. Parenting style, parental work, parental eating habits and perceptions of family meals, and children's other uses of their time influence children's use of and time spent in FF and FS restaurants. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.
Complex codon usage pattern and compositional features of retroviruses.
RoyChoudhury, Sourav; Mukherjee, Debaprasad
2013-01-01
Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.
Sheela, A M; Sarun, S; Justus, J; Vineetha, P; Sheeja, R V
2015-04-01
Vector borne diseases are a threat to human health. Little attention has been paid to the prevention of these diseases. We attempted to identify the significant wetland characteristics associated with the spread of chikungunya, dengue fever and malaria in Kerala, a tropical region of South West India using multivariate analyses (hierarchical cluster analysis, factor analysis and multiple regression). High/medium turbid coastal lagoons and inland water-logged wetlands with aquatic vegetation have significant effect on the incidence of chikungunya while dengue influenced by high turbid coastal beaches and malaria by medium turbid coastal beaches. The high turbidity in water is due to the urban waste discharge namely sewage, sullage and garbage from the densely populated cities and towns. The large extent of wetland is low land area favours the occurrence of vector borne diseases. Hence the provision of pollution control measures at source including soil erosion control measures is vital. The identification of vulnerable zones favouring the vector borne diseases will help the authorities to control pollution especially from urban areas and prevent these vector borne diseases. Future research should cover land use cover changes, climatic factors, seasonal variations in weather and pollution factors favouring the occurrence of vector borne diseases.
Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China
NASA Astrophysics Data System (ADS)
Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin
2018-05-01
Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.
D'Ovidio, Valeria; Meo, Donatella; Viscido, Angelo; Bresci, Giampaolo; Vernia, Piero; Caprilli, Renzo
2011-01-01
AIM: To identify factors predicting the clinical response of ulcerative colitis patients to granulocyte-monocyte apheresis (GMA). METHODS: Sixty-nine ulcerative colitis patients (39 F, 30 M) dependent upon/refractory to steroids were treated with GMA. Steroid dependency, clinical activity index (CAI), C reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), values at baseline, use of immunosuppressant, duration of disease, and age and extent of disease were considered for statistical analysis as predictive factors of clinical response. Univariate and multivariate logistic regression models were used. RESULTS: In the univariate analysis, CAI (P = 0.039) and ESR (P = 0.017) levels at baseline were singled out as predictive of clinical remission. In the multivariate analysis steroid dependency [Odds ratio (OR) = 0.390, 95% Confidence interval (CI): 0.176-0.865, Wald 5.361, P = 0.0160] and low CAI levels at baseline (4 < CAI < 7) (OR = 0.770, 95% CI: 0.425-1.394, Wald 3.747, P = 0.028) proved to be effective as factors predicting clinical response. CONCLUSION: GMA may be a valid therapeutic option for steroid-dependent ulcerative colitis patients with mild-moderate disease and its clinical efficacy seems to persist for 12 mo. PMID:21528055
Saqib, Hafiz Sohaib Ahmed; You, Minsheng
2017-01-01
Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies. PMID:29085741
Bryan, Craig J; Kanzler, Kathryn E; Grieser, Emily; Martinez, Annette; Allison, Sybil; McGeary, Donald
2017-03-01
Research in psychiatric outpatient and inpatient populations supports the utility of the Suicide Cognitions Scale (SCS) as an indicator of current and future risk for suicidal thoughts and behaviors. Designed to assess suicide-specific thoughts and beliefs, the SCS has yet to be evaluated among chronic pain patients, a group with elevated risk for suicide. The purpose of the present study was to develop and test a shortened version of the SCS (the SCS-S). A total of 228 chronic pain patients completed a battery of self-report surveys before or after a scheduled appointment. Three outpatient medical clinics (pain medicine, orofacial pain, and clinical health psychology). Confirmatory factor analysis, multivariate regression, and graded item response theory model analyses. Results of the CFAs suggested that a 3-factor solution was optimal. A shortened 9-item scale was identified based on the results of graded item response theory model analyses. Correlation and multivariate analyses supported the construct and incremental validity of the SCS-S. Results support the reliability and validity of the SCS-S among chronic pain patients, and suggest the scale may be a useful method for identifying high-risk patients in medical settings. © 2016 World Institute of Pain.
Multivariate Analysis of Schools and Educational Policy.
ERIC Educational Resources Information Center
Kiesling, Herbert J.
This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…
Measles case fatality rate in Bihar, India, 2011-12.
Murhekar, Manoj V; Ahmad, Mohammad; Shukla, Hemant; Abhishek, Kunwar; Perry, Robert T; Bose, Anindya S; Shimpi, Rahul; Kumar, Arun; Kaliaperumal, Kanagasabai; Sethi, Raman; Selvaraj, Vadivoo; Kamaraj, Pattabi; Routray, Satyabrata; Das, Vidya Nand; Menabde, Nata; Bahl, Sunil
2014-01-01
Updated estimates of measles case fatality rates (CFR) are critical for monitoring progress towards measles elimination goals. India accounted for 36% of total measles deaths occurred globally in 2011. We conducted a retrospective cohort study to estimate measles CFR and identify the risk factors for measles death in Bihar-one of the north Indian states historically known for its low vaccination coverage. We systematically selected 16 of the 31 laboratory-confirmed measles outbreaks occurring in Bihar during 1 October 2011 to 30 April 2012. All households of the villages/urban localities affected by these outbreaks were visited to identify measles cases and deaths. We calculated CFR and used multivariate analysis to identify risk factors for measles death. The survey found 3670 measles cases and 28 deaths (CFR: 0.78, 95% confidence interval: 0.47-1.30). CFR was higher among under-five children (1.22%) and children belonging to scheduled castes/tribes (SC/ST, 1.72%). On multivariate analysis, independent risk factors associated with measles death were age <5 years, SC/ST status and non-administration of vitamin A during illness. Outbreaks with longer interval between the occurrence of first case and notification of the outbreak also had a higher rate of deaths. Measles CFR in Bihar was low. To further reduce case fatality, health authorities need to ensure that SC/ST are targeted by the immunization programme and that outbreak investigations target for vitamin A treatment of cases in high risk groups such as SC/ST and young children and ensure regular visits by health-workers in affected villages to administer vitamin A to new cases.