Sample records for multivariable control systems

  1. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  2. Stability and Performance Robustness Assessment of Multivariable Control Systems

    DTIC Science & Technology

    1993-04-01

    00- STABILITY AND PERFORMANCE ROBUSTNESS ASSESSMENT OF MULTIVARIABLE CONTROL SYSTEMS Asok Ray , Jenny I. Shen, and Chen-Kuo Weng Mechanical...Office of Naval Research Assessment of Multivariable Control Systems Grant No. N00014-90-J- 1513 6. AUTHOR(S) (Extension) Professor Asok Ray , Dr...20 The Pennsylvania State University University Park, PA 16802 (20 for Professor Asok Ray ) Naval Postgraduate School

  3. Design of multivariable feedback control systems via spectral assignment. [as applied to aircraft flight control

    NASA Technical Reports Server (NTRS)

    Liberty, S. R.; Mielke, R. R.; Tung, L. J.

    1981-01-01

    Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.

  4. Implementation Challenges for Multivariable Control: What You Did Not Learn in School

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2008-01-01

    Multivariable control allows controller designs that can provide decoupled command tracking and robust performance in the presence of modeling uncertainties. Although the last two decades have seen extensive development of multivariable control theory and example applications to complex systems in software/hardware simulations, there are no production flying systems aircraft or spacecraft, that use multivariable control. This is because of the tremendous challenges associated with implementation of such multivariable control designs. Unfortunately, the curriculum in schools does not provide sufficient time to be able to provide an exposure to the students in such implementation challenges. The objective of this paper is to share the lessons learned by a practitioner of multivariable control in the process of applying some of the modern control theory to the Integrated Flight Propulsion Control (IFPC) design for an advanced Short Take-Off Vertical Landing (STOVL) aircraft simulation.

  5. Non-fragile multivariable PID controller design via system augmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan

    2017-07-01

    In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.

  6. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  7. Structural analysis and design of multivariable control systems: An algebraic approach

    NASA Technical Reports Server (NTRS)

    Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen

    1988-01-01

    The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.

  8. An Improved Method to Control the Critical Parameters of a Multivariable Control System

    NASA Astrophysics Data System (ADS)

    Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John

    2017-10-01

    The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.

  9. Centralized PI control for high dimensional multivariable systems based on equivalent transfer function.

    PubMed

    Luan, Xiaoli; Chen, Qiang; Liu, Fei

    2014-09-01

    This article presents a new scheme to design full matrix controller for high dimensional multivariable processes based on equivalent transfer function (ETF). Differing from existing ETF method, the proposed ETF is derived directly by exploiting the relationship between the equivalent closed-loop transfer function and the inverse of open-loop transfer function. Based on the obtained ETF, the full matrix controller is designed utilizing the existing PI tuning rules. The new proposed ETF model can more accurately represent the original processes. Furthermore, the full matrix centralized controller design method proposed in this paper is applicable to high dimensional multivariable systems with satisfactory performance. Comparison with other multivariable controllers shows that the designed ETF based controller is superior with respect to design-complexity and obtained performance. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. New multivariable capabilities of the INCA program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1989-01-01

    The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.

  11. Multivariable control of a twin lift helicopter system using the LQG/LTR design methodology

    NASA Technical Reports Server (NTRS)

    Rodriguez, A. A.; Athans, M.

    1986-01-01

    Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.

  12. Gain-scheduling multivariable LPV control of an irrigation canal system.

    PubMed

    Bolea, Yolanda; Puig, Vicenç

    2016-07-01

    The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  14. Multivariable control altitude demonstration on the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.

    1979-01-01

    The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.

  15. Application of the MNA design method to a nonlinear turbofan engine. [multivariable Nyquist array method

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1981-01-01

    Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.

  16. Model transformations for state-space self-tuning control of multivariable stochastic systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.

    1988-01-01

    The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.

  17. Practical robustness measures in multivariable control system analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.

    1981-01-01

    The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.

  18. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  19. Practical Methods for the Compensation and Control of Multivariable Systems.

    DTIC Science & Technology

    1982-04-01

    a constant gain element gji . To be more specific, let us consider a linear multivariable system whose dynamical behavior is specified by a (pxm...controllable via uk if Yi is fed back to uj via an arbitrary gain gji , as depicted in the figure below? It might be noted that only the outputs and inputs...modes controllable via uk(s) before feedback will remain -19- controllable via uk(s) irrespective of gji (although certain of these uk controllable

  20. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  1. Solution of nonlinear multivariable constrained systems using a gradient projection digital algorithm that is insensitive to the initial state

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1982-01-01

    Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.

  2. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  3. A mathematical theory of learning control for linear discrete multivariable systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Longman, Richard W.

    1988-01-01

    When tracking control systems are used in repetitive operations such as robots in various manufacturing processes, the controller will make the same errors repeatedly. Here consideration is given to learning controllers that look at the tracking errors in each repetition of the process and adjust the control to decrease these errors in the next repetition. A general formalism is developed for learning control of discrete-time (time-varying or time-invariant) linear multivariable systems. Methods of specifying a desired trajectory (such that the trajectory can actually be performed by the discrete system) are discussed, and learning controllers are developed. Stability criteria are obtained which are relatively easy to use to insure convergence of the learning process, and proper gain settings are discussed in light of measurement noise and system uncertainties.

  4. Output Feedback Stabilization for a Class of Multi-Variable Bilinear Stochastic Systems with Stochastic Coupling Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qichun; Zhou, Jinglin; Wang, Hong

    In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.

  5. A Method for Exploiting Redundancy to Accommodate Actuator Limits in Multivariable Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Roulette, Greg

    1995-01-01

    This paper introduces a new method for accommodating actuator saturation in a multivariable system with actuator redundancy. Actuator saturation can cause significant deterioration in control system performance because unmet demand may result in sluggish transients and oscillations in response to setpoint changes. To help compensate for this problem, a technique has been developed which takes advantage of redundancy in multivariable systems to redistribute the unmet control demand over the remaining useful effectors. This method is not a redesign procedure, rather it modifies commands to the unlimited effectors to compensate for those which are limited, thereby exploiting the built-in redundancy. The original commands are modified by the increments due to unmet demand, but when a saturated effector comes off its limit, the incremental commands disappear and the original unmodified controller remains intact. This scheme provides a smooth transition between saturated and unsaturated modes as it divides up the unmet requirement over any available actuators. This way, if there is sufficiently redundant control authority, performance can be maintained.

  6. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  7. A general program to compute the multivariable stability margin for systems with parametric uncertainty

    NASA Technical Reports Server (NTRS)

    Sanchez Pena, Ricardo S.; Sideris, Athanasios

    1988-01-01

    A computer program implementing an algorithm for computing the multivariable stability margin to check the robust stability of feedback systems with real parametric uncertainty is proposed. The authors present in some detail important aspects of the program. An example is presented using lateral directional control system.

  8. Optimal Stochastic Modeling and Control of Flexible Structures

    DTIC Science & Technology

    1988-09-01

    1.37] and McLane [1.18] considered multivariable systems and derived their optimal control characteristics. Kleinman, Gorman and Zaborsky considered...Leondes [1.72,1.73] studied various aspects of multivariable linear stochastic, discrete-time systems that are partly deterministic, and partly stochastic...June 1966. 1.8. A.V. Balaknishnan, Applied Functional Analaysis , 2nd ed., New York, N.Y.: Springer-Verlag, 1981 1.9. Peter S. Maybeck, Stochastic

  9. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  10. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  11. State-space self-tuner for on-line adaptive control

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.

    1994-01-01

    Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.

  12. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  13. Multivariate interactive digital analysis system /MIDAS/ - A new fast multispectral recognition system

    NASA Technical Reports Server (NTRS)

    Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.

    1973-01-01

    The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.

  14. Diagonal dominance for the multivariable Nyquist array using function minimization

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1977-01-01

    A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.

  15. Multivariable PID controller design tuning using bat algorithm for activated sludge process

    NASA Astrophysics Data System (ADS)

    Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan

    2018-04-01

    The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.

  16. FREQ: A computational package for multivariable system loop-shaping procedures

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  17. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  18. Remote Multivariable Control Design Using a Competition Game

    ERIC Educational Resources Information Center

    Atanasijevic-Kunc, M.; Logar, V.; Karba, R.; Papic, M.; Kos, A.

    2011-01-01

    In this paper, some approaches to teaching multivariable control design are discussed, with special attention being devoted to a step-by-step transition to e-learning. The approach put into practice and presented here is developed through design projects, from which one is chosen as a competition game and is realized using the E-CHO system,…

  19. Multivariable control theory applied to hierarchial attitude control for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Russell, D. W.

    1972-01-01

    Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.

  20. Fixed order dynamic compensation for multivariable linear systems

    NASA Technical Reports Server (NTRS)

    Kramer, F. S.; Calise, A. J.

    1986-01-01

    This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.

  1. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  2. Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain

    NASA Astrophysics Data System (ADS)

    Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.

    2013-03-01

    In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.

  3. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  4. Proceedings of the Workshop on Multivariable Control Systems Held at Wright-Patterson AFB, OH, on 3 December 1982.

    DTIC Science & Technology

    1983-09-01

    promising method of af- craft multivariable flight controller design. Like any ne.! design technique, there is still more to learn about the r.~ cd...M4atix - Feedback Gain Ma trix - Fandom ’htrix Z - Number of Outputs L1 - Roll Moment • : ’ - 7oll Moment with Inertia TrML 523 a.. Symbols m - Number of

  5. Nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Athans, Michael

    1989-01-01

    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.

  6. Minimization of transmission cost in decentralized control systems

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1978-01-01

    This paper considers the problem of stabilizing a linear time-invariant multivariable system by using local feedback controllers and some limited information exchange among local stations. The problem of achieving a given degree of stability with minimum transmission cost is solved.

  7. The Galileo scan platform pointing control system - A modern control theoretic viewpoint

    NASA Technical Reports Server (NTRS)

    Sevaston, G. E.; Macala, G. A.; Man, G. K.

    1985-01-01

    The current Galileo scan platform pointing control system (SPPCS) is described, and ways in which modern control concepts could serve to enhance it are considered. Of particular interest are: the multi-variable design model and overall control system architecture, command input filtering, feedback compensator and command input design, stability robustness constraint for both continuous time control systems and for sampled data control systems, and digital implementation of the control system. The proposed approach leads to the design of a system that is similar to current Galileo SPPCS configuration, but promises to be more systematic.

  8. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.

    PubMed

    Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing

    2011-12-01

    For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.

  9. A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Grunberg, D. B.

    1986-01-01

    A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.

  10. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  11. Load compensation in a lean burn natural gas vehicle

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Anupam

    A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.

  12. MIDAS, prototype Multivariate Interactive Digital Analysis System, phase 1. Volume 1: System description

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.

    1974-01-01

    The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.

  13. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  14. Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    NASA Technical Reports Server (NTRS)

    Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob

    1994-01-01

    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented as a method for analyzing robust performance and the mu-synthesis method will be presented as a method for synthesizing a robust control system. The paper concludes with the author's expectations regarding future applications of robust nonlinear multivariable controls.

  15. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  16. Integrated control-system design via generalized LQG (GLQG) theory

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.

    1989-01-01

    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.

  17. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  18. Equicontrollability and the model following problem

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    Equicontrollability and its application to the linear time-invariant model-following problem are discussed. The problem is presented in the form of two systems, the plant and the model. The requirement is to find a controller to apply to the plant so that the resultant compensated plant behaves, in an input-output sense, the same as the model. All systems are assumed to be linear and time-invariant. The basic approach is to find suitable equicontrollable realizations of the plant and model and to utilize feedback so as to produce a controller of minimal state dimension. The concept of equicontrollability is a generalization of control canonical (phase variable) form applied to multivariable systems. It allows one to visualize clearly the effects of feedback and to pinpoint the parameters of a multivariable system which are invariant under feedback. The basic contributions are the development of equicontrollable form; solution of the model-following problem in an entirely algorithmic way, suitable for computer programming; and resolution of questions on system decoupling.

  19. Tuning algorithms for fractional order internal model controllers for time delay processes

    NASA Astrophysics Data System (ADS)

    Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.

    2016-03-01

    This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.

  20. MIDAS, prototype Multivariate Interactive Digital Analysis System, Phase 1. Volume 2: Diagnostic system

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.

    1974-01-01

    The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.

  1. On the stabilization of decentralized control systems.

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1973-01-01

    This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.

  2. An application of modern control theory to jet propulsion systems. [considering onboard computer

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1975-01-01

    The control of an airbreathing turbojet engine by an onboard digital computer is studied. The approach taken is to model the turbojet engine as a linear, multivariable system whose parameters vary with engine operating environment. From this model adaptive closed-loop or feedback control laws are designed and applied to the acceleration of the turbojet engine.

  3. MIDAS, prototype Multivariate Interactive Digital Analysis System, phase 1. Volume 3: Wiring diagrams

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.

    1974-01-01

    The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.

  4. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  5. An experimental study of pilots' control characteristics for flight of an STOL aircraft in backside of drag curve at approach and landing.

    PubMed

    Ema, T

    1992-01-01

    In general, most vehicles can be modelled by a multi-variable system which has interactive variables. It can be clearly shown that there is an interactive response in an aircraft's velocity and altitude obtained by stick control and/or throttle control. In particular, if the flight conditions fall to backside of drag curve in the flight of an STOL aircraft at approach and landing then the ratio of drag variation to velocity change has a negative value (delta D/delta u less than 0) and the system of motion presents a non-minimum phase. Therefore, the interaction between velocity and altitude response becomes so complicated that it affects to pilot's control actions and it may be difficult to control the STOL aircraft at approach and landing. In this paper, experimental results of a pilot's ability to control the STOL aircraft are presented for a multi-variable manual control system using a fixed ground base simulator and the pilot's control ability is discussed for the flight of an STOL aircraft at backside of drag curve at approach and landing.

  6. Hybrid suboptimal control of multi-rate multi-loop sampled-data systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.

    1992-01-01

    A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.

  7. Return Difference Feedback Design for Robust Uncertainty Tolerance in Stochastic Multivariable Control Systems.

    DTIC Science & Technology

    1982-11-01

    D- R136 495 RETURN DIFFERENCE FEEDBACK DESIGN FOR ROBUSTj/ UNCERTAINTY TOLERANCE IN STO..(U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF...State and ZIP Code) 7. b6 ADORESS (City. Staft and ZIP Code) Department of Electrical Engineering -’M Directorate of Mathematical & Information Systems ...13. SUBJECT TERMS Continur on rverse ineeesaty and identify by block nmber) FIELD GROUP SUE. GR. Systems theory; control; feedback; automatic control

  8. Modeling a multivariable reactor and on-line model predictive control.

    PubMed

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  9. Input-output oriented computation algorithms for the control of large flexible structures

    NASA Technical Reports Server (NTRS)

    Minto, K. D.

    1989-01-01

    An overview is given of work in progress aimed at developing computational algorithms addressing two important aspects in the control of large flexible space structures; namely, the selection and placement of sensors and actuators, and the resulting multivariable control law design problem. The issue of sensor/actuator set selection is particularly crucial to obtaining a satisfactory control design, as clearly a poor choice will inherently limit the degree to which good control can be achieved. With regard to control law design, the researchers are driven by concerns stemming from the practical issues associated with eventual implementation of multivariable control laws, such as reliability, limit protection, multimode operation, sampling rate selection, processor throughput, etc. Naturally, the burden imposed by dealing with these aspects of the problem can be reduced by ensuring that the complexity of the compensator is minimized. Our approach to these problems is based on extensions to input/output oriented techniques that have proven useful in the design of multivariable control systems for aircraft engines. In particular, researchers are exploring the use of relative gain analysis and the condition number as a means of quantifying the process of sensor/actuator selection and placement for shape control of a large space platform.

  10. Multivariable manual control with simultaneous visual and auditory presentation of information. [for improved compensatory tracking performance of human operator

    NASA Technical Reports Server (NTRS)

    Uhlemann, H.; Geiser, G.

    1975-01-01

    Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.

  11. Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System

    PubMed Central

    Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés

    2016-01-01

    This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338

  12. Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.

    PubMed

    Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés

    2016-07-27

    This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.

  13. The MIDAS processor. [Multivariate Interactive Digital Analysis System for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.

    1975-01-01

    The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.

  14. MIDAS, prototype Multivariate Interactive Digital Analysis System for large area earth resources surveys. Volume 1: System description

    NASA Technical Reports Server (NTRS)

    Christenson, D.; Gordon, M.; Kistler, R.; Kriegler, F.; Lampert, S.; Marshall, R.; Mclaughlin, R.

    1977-01-01

    A third-generation, fast, low cost, multispectral recognition system (MIDAS) able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensots is described. The program can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principle objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in the overall program is described. The system contains a midi-computer to control the various high speed processing elements in the data path, a preprocessor to condition data, and a classifier which implements an all digital prototype multivariate Gaussian maximum likelihood or a Bayesian decision algorithm. Sufficient software was developed to perform signature extraction, control the preprocessor, compute classifier coefficients, control the classifier operation, operate the color display and printer, and diagnose operation.

  15. Bellman Continuum (3rd) International Workshop (13-14 June 1988)

    DTIC Science & Technology

    1988-06-01

    Modelling Uncertain Problem ................. 53 David Bensoussan ,---,>Asymptotic Linearization of Uncertain Multivariable Systems by Sliding Modes...K. Ghosh .-. Robust Model Tracking for a Class of Singularly Perturbed Nonlinear Systems via Composite Control ....... 93 F. Garofalo and L. Glielmo...MODELISATION ET COMMANDE EN ECONOMIE MODELS AND CONTROL POLICIES IN ECONOMICS Qualitative Differential Games : A Viability Approach ............. 117

  16. Using Statistical Process Control for detecting anomalies in multivariate spatiotemporal Earth Observations

    NASA Astrophysics Data System (ADS)

    Flach, Milan; Mahecha, Miguel; Gans, Fabian; Rodner, Erik; Bodesheim, Paul; Guanche-Garcia, Yanira; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus

    2016-04-01

    The number of available Earth observations (EOs) is currently substantially increasing. Detecting anomalous patterns in these multivariate time series is an important step in identifying changes in the underlying dynamical system. Likewise, data quality issues might result in anomalous multivariate data constellations and have to be identified before corrupting subsequent analyses. In industrial application a common strategy is to monitor production chains with several sensors coupled to some statistical process control (SPC) algorithm. The basic idea is to raise an alarm when these sensor data depict some anomalous pattern according to the SPC, i.e. the production chain is considered 'out of control'. In fact, the industrial applications are conceptually similar to the on-line monitoring of EOs. However, algorithms used in the context of SPC or process monitoring are rarely considered for supervising multivariate spatio-temporal Earth observations. The objective of this study is to exploit the potential and transferability of SPC concepts to Earth system applications. We compare a range of different algorithms typically applied by SPC systems and evaluate their capability to detect e.g. known extreme events in land surface processes. Specifically two main issues are addressed: (1) identifying the most suitable combination of data pre-processing and detection algorithm for a specific type of event and (2) analyzing the limits of the individual approaches with respect to the magnitude, spatio-temporal size of the event as well as the data's signal to noise ratio. Extensive artificial data sets that represent the typical properties of Earth observations are used in this study. Our results show that the majority of the algorithms used can be considered for the detection of multivariate spatiotemporal events and directly transferred to real Earth observation data as currently assembled in different projects at the European scale, e.g. http://baci-h2020.eu/index.php/ and http://earthsystemdatacube.net/. Known anomalies such as the Russian heatwave are detected as well as anomalies which are not detectable with univariate methods.

  17. Estimation and Control for Linear Systems with Additive Cauchy Noise

    DTIC Science & Technology

    2013-12-17

    man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The

  18. Basic Research in Digital Stochastic Model Algorithmic Control.

    DTIC Science & Technology

    1980-11-01

    IDCOM Description 115 8.2 Basic Control Computation 117 8.3 Gradient Algorithm 119 8.4 Simulation Model 119 8.5 Model Modifications 123 8.6 Summary 124...constraints, and 3) control traJectorv comouta- tion. 2.1.1 Internal Model of the System The multivariable system to be controlled is represented by a...more flexible and adaptive, since the model , criteria, and sampling rates can be adjusted on-line. This flexibility comes from the use of the impulse

  19. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    PubMed

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A tensor approach to modeling of nonhomogeneous nonlinear systems

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Sain, M.

    1980-01-01

    Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.

  1. Metric Selection for Evaluation of Human Supervisory Control Systems

    DTIC Science & Technology

    2009-12-01

    finding a significant effect when there is none becomes more likely. The inflation of type I error due to multiple dependent variables can be handled...with multivariate analysis techniques, such as Multivariate Analysis of Variance (MANOVA) (Johnson & Wichern, 2002). However, it should be noted that...the few significant differences among many insignificant ones. The best way to avoid failure to identify significant differences is to design an

  2. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  3. F100 multivariable control synthesis program: Evaluation of a multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.

    1977-01-01

    The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.

  4. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  5. A systems theoretic approach to analysis and control of mammalian circadian dynamics

    PubMed Central

    Abel, John H.; Doyle, Francis J.

    2016-01-01

    The mammalian circadian clock is a complex multi-scale, multivariable biological control system. In the past two decades, methods from systems engineering have led to numerous insights into the architecture and functionality of this system. In this review, we examine the mammalian circadian system through a process systems lens. We present a mathematical framework for examining the cellular circadian oscillator, and show recent extensions for understanding population-scale dynamics. We provide an overview of the routes by which the circadian system can be systemically manipulated, and present in silico proof of concept results for phase resetting of the clock via model predictive control. PMID:28496287

  6. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  7. Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    NASA Technical Reports Server (NTRS)

    Anderson, B. D. O.; Brockett, R. W.; Byrnes, C. I.; Ghosh, B. K.; Stevens, P. K.

    1983-01-01

    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined.

  8. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  9. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  10. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  11. Robust Control of Multivariable and Large Scale Systems.

    DTIC Science & Technology

    1986-03-14

    AD-A175 $5B ROBUST CONTROL OF MULTIVRRIALE AND LARG SCALE SYSTEMS V2 R75 (U) HONEYWELL SYSTEMS AND RESEARCH CENTER MINNEAPOLIS MN J C DOYLE ET AL...ONIJQ 86 R alFS ja ,.AMIECFOEPF:ORMING ORGANIZATION So OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATI ON jonevwell Systems & Research If 4000c" Air...Force Office of Scientific Research .~ C :AE S C.rv. Stare arma ZIP Code) 7C ADDRESS (Crty. Stare. am ZIP Code, *3660 Marshall Street NE Building 410

  12. Microcomputer-based classification of environmental data in municipal areas

    NASA Astrophysics Data System (ADS)

    Thiergärtner, H.

    1995-10-01

    Multivariate data-processing methods used in mineral resource identification can be used to classify urban regions. Using elements of expert systems, geographical information systems, as well as known classification and prognosis systems, it is possible to outline a single model that consists of resistant and of temporary parts of a knowledge base including graphical input and output treatment and of resistant and temporary elements of a bank of methods and algorithms. Whereas decision rules created by experts will be stored in expert systems directly, powerful classification rules in form of resistant but latent (implicit) decision algorithms may be implemented in the suggested model. The latent functions will be transformed into temporary explicit decision rules by learning processes depending on the actual task(s), parameter set(s), pixels selection(s), and expert control(s). This takes place both at supervised and nonsupervised classification of multivariately described pixel sets representing municipal subareas. The model is outlined briefly and illustrated by results obtained in a target area covering a part of the city of Berlin (Germany).

  13. Theoretical constraints in the design of multivariable control systems

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Mook, D. J.

    1993-01-01

    The theoretical constraints inherent in the design of multivariable control systems were defined and investigated. These constraints are manifested by the system transmission zeros that limit or bound the areas in which closed loop poles and individual transfer function zeros may be placed. These constraints were investigated primarily in the context of system decoupling or non-interaction. It was proven that decoupling requires the placement of closed loop poles at the system transmission zeros. Therefore, the system transmission zeros must be minimum phase to guarantee a stable decoupled system. Once decoupling has been accomplished, the remaining part of the system exhibits transmission zeros at infinity, so nearly complete design freedom is possible in terms of placing both poles and zeros of individual closed loop transfer functions. A general, dynamic inversion model following system architecture was developed that encompasses both the implicit and explicit configuration. Robustness properties are developed along with other attributes of this type of system. Finally, a direct design is developed for the longitudinal-vertical degrees of freedom of aircraft motion to show how a direct lift flap can be used to improve the pitch-heave maneuvering coordination for enhanced flying qualities.

  14. Robustness results in LQG based multivariable control designs

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.; Sandell, N. R., Jr.; Athans, M.

    1980-01-01

    The robustness of control systems with respect to model uncertainty is considered using simple frequency domain criteria. Results are derived under a common framework in which the minimum singular value of the return difference transfer matrix is the key quantity. In particular, the LQ and LQG robustness results are discussed.

  15. F100 Multivariable Control Synthesis Program. Computer Implementation of the F100 Multivariable Control Algorithm

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1983-01-01

    As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.

  16. Systems and Cascades in Cognitive Development and Academic Achievement

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Hahn, Chun-Shin; Wolke, Dieter

    2013-01-01

    A large-scale ("N" = 552) controlled multivariate prospective 14-year longitudinal study of a developmental cascade embedded in a developmental system showed that information-processing efficiency in infancy (4 months), general mental development in toddlerhood (18 months), behavior difficulties in early childhood (36 months),…

  17. Output feedback regulator design for jet engine control systems

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on the output feedback regulator formulation is described and applied to turbofan engine model. Full order model dynamics, were incorporated in the example design. The effect of actuator dynamics on closed loop performance was investigaged. Also, the importance of turbine inlet temperature as an element of the dynamic feedback was studied. Step responses were given to indicate the improvement in system performance with this control. Calculation times for all experiments are given in CPU seconds for comparison purposes.

  18. Space construction base control system

    NASA Technical Reports Server (NTRS)

    Kaczynski, R. F.

    1979-01-01

    Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.

  19. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    PubMed

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  1. Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems

    NASA Astrophysics Data System (ADS)

    Ataei, Mohammad; Enshaee, Ali

    2011-12-01

    In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.

  2. A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research.

    PubMed

    Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila

    2015-11-01

    Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  3. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    PubMed

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Evaluation of an F100 multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Skira, C.; Soeder, J. F.

    1977-01-01

    A multivariable control design for the F100 turbofan engine was evaluated, as part of the F100 multivariable control synthesis (MVCS) program. The evaluation utilized a real-time, hybrid computer simulation of the engine and a digital computer implementation of the control. Significant results of the evaluation are presented and recommendations concerning future engine testing of the control are made.

  5. Design Of Feedforward Controllers For Multivariable Plants

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Controllers based on simple low-order transfer functions. Mathematical criteria derived for design of feedforward controllers for class of multiple-input/multiple-output linear plants. Represented by simple low-order transfer functions, obtained without reconstruction of states of commands and disturbances. Enables plant to track command while remaining unresponsive to disturbance in steady state. Feedback controller added independently to stabilize plant or to make control system less susceptible to variations in parameters of plant.

  6. Multivariable control of a forward swept wing aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Quinn, W. W.

    1986-01-01

    The impact of independent canard and flaperon control of the longitudinal axis of a generic forward swept wing aircraft is examined. The Linear Quadratic Gaussian (LQG)/Loop Transfer Recovery (LTR) method is used to design three compensators: two single-input-single-output (SISO) systems, one with angle of attack as output and canard as control, the other with pitch attitude as output and canard as control, and a two-input-two-output system with both canard and flaperon controlling both the pitch attitude and angle of attack. The performances of the three systems are compared showing the addition of flaperon control allows the aircraft to perform in the precision control modes with very little loss of command following accuracy.

  7. Real-time quality assurance testing using photonic techniques: Application to iodine water system

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Hatcher, Richard; Garlington, Yadilett; Harwell, Jack; Everett, Tracey

    1990-01-01

    A feasibility study of the use of inspection systems incorporating photonic sensors and multivariate analyses to provide an instrumentation system that in real-time assures quality and that the system in control has been conducted. A system is in control when the near future of the product quality is predictable. Off-line chemical analyses can be used for a chemical process when slow kinetics allows time to take a sample to the laboratory and the system provides a recovery mechanism that returns the system to statistical control without intervention of the operator. The objective for this study has been the implementation of do-it-right-the-first-time and just-in-time philosophies. The Environment Control and Life Support Systems (ECLSS) water reclamation system that adds iodine for biocidal control is an ideal candidate for the study and implementation of do-it-right-the-first-time technologies.

  8. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  9. Simulation analysis of adaptive cruise prediction control

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Cui, Sheng Min

    2017-09-01

    Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.

  10. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1973-01-01

    A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.

  11. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  12. Classification of Physical Activity: Information to Artificial Pancreas Control Systems in Real Time.

    PubMed

    Turksoy, Kamuran; Paulino, Thiago Marques Luz; Zaharieva, Dessi P; Yavelberg, Loren; Jamnik, Veronica; Riddell, Michael C; Cinar, Ali

    2015-10-06

    Physical activity has a wide range of effects on glucose concentrations in type 1 diabetes (T1D) depending on the type (ie, aerobic, anaerobic, mixed) and duration of activity performed. This variability in glucose responses to physical activity makes the development of artificial pancreas (AP) systems challenging. Automatic detection of exercise type and intensity, and its classification as aerobic or anaerobic would provide valuable information to AP control algorithms. This can be achieved by using a multivariable AP approach where biometric variables are measured and reported to the AP at high frequency. We developed a classification system that identifies, in real time, the exercise intensity and its reliance on aerobic or anaerobic metabolism and tested this approach using clinical data collected from 5 persons with T1D and 3 individuals without T1D in a controlled laboratory setting using a variety of common types of physical activity. The classifier had an average sensitivity of 98.7% for physiological data collected over a range of exercise modalities and intensities in these subjects. The classifier will be added as a new module to the integrated multivariable adaptive AP system to enable the detection of aerobic and anaerobic exercise for enhancing the accuracy of insulin infusion strategies during and after exercise. © 2015 Diabetes Technology Society.

  13. Non-parametric identification of multivariable systems: A local rational modeling approach with application to a vibration isolation benchmark

    NASA Astrophysics Data System (ADS)

    Voorhoeve, Robbert; van der Maas, Annemiek; Oomen, Tom

    2018-05-01

    Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF identification of lightly damped mechanical systems with improved speed and accuracy. The proposed method is based on local rational models, which can efficiently handle the lightly-damped resonant dynamics. A key aspect herein is the freedom in the multivariable rational model parametrizations. Several choices for such multivariable rational model parametrizations are proposed and investigated. For systems with many inputs and outputs the required number of model parameters can rapidly increase, adversely affecting the performance of the local modeling approach. Therefore, low-order model structures are investigated. The structure of these low-order parametrizations leads to an undesired directionality in the identification problem. To address this, an iterative local rational modeling algorithm is proposed. As a special case recently developed SISO algorithms are recovered. The proposed approach is successfully demonstrated on simulations and on an active vibration isolation system benchmark, confirming good performance of the method using significantly less parameters compared with alternative approaches.

  14. Sensitivity analysis of automatic flight control systems using singular value concepts

    NASA Technical Reports Server (NTRS)

    Herrera-Vaillard, A.; Paduano, J.; Downing, D.

    1985-01-01

    A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.

  15. A Course in... Multivariable Control Methods.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.

    1988-01-01

    Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)

  16. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    PubMed

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  17. Mother-Child Interaction and Prosocial Development in Toddlers: A Multivariate Study Using the Living Systems Framework.

    ERIC Educational Resources Information Center

    Bergin, Christi A. C.

    The Living Systems Framework was used to generate four categories of parent behaviors that might affect processes responsible for eliciting prosocial behavior in children: (1) teaching values, rules, and standards; (2) providing opportunities for rehearsal and mastery; (3) providing opportunities for self-regulation and self-control; and (4)…

  18. Multivariable control of a rapid thermal processor using ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Dankoski, Paul C. P.

    The semiconductor manufacturing industry faces the need for tighter control of thermal budget and process variations as circuit feature sizes decrease. Strategies to meet this need include supervisory control, run-to-run control, and real-time feedback control. Typically, the level of control chosen depends upon the actuation and sensing available. Rapid Thermal Processing (RTP) is one step of the manufacturing cycle requiring precise temperature control and hence real-time feedback control. At the outset of this research, the primary ingredient lacking from in-situ RTP temperature control was a suitable sensor. This research looks at an alternative to the traditional approach of pyrometry, which is limited by the unknown and possibly time-varying wafer emissivity. The technique is based upon the temperature dependence of the propagation time of an acoustic wave in the wafer. The aim of this thesis is to evaluate the ultrasonic sensors as a potentially viable sensor for control in RTP. To do this, an experimental implementation was developed at the Center for Integrated Systems. Because of the difficulty in applying a known temperature standard in an RTP environment, calibration to absolute temperature is nontrivial. Given reference propagation delays, multivariable model-based feedback control is applied to the system. The modelling and implementation details are described. The control techniques have been applied to a number of research processes including rapid thermal annealing and rapid thermal crystallization of thin silicon films on quartz/glass substrates.

  19. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0037: Prognosis-Based Control Reconfiguration for an Aircraft with Faulty Actuator to Enable Performance in a Degraded State

    DTIC Science & Technology

    2010-12-01

    computers in 1953. HIL motion simulators were also built for the dynamic testing of vehicle com- ponents (e.g. suspensions, bodies ) with hydraulic or...complex, comprehensive mechanical systems can be simulated in real-time by parallel computers; examples include multi- body sys- tems, brake systems...hard constraints in a multivariable control framework. And the third aspect is the ability to perform online optimization. These aspects results in

  20. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  1. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  2. Enhanced pid vs model predictive control applied to bldc motor

    NASA Astrophysics Data System (ADS)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  3. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena

    1993-01-01

    This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.

  4. Sensor failure and multivariable control for airbreathing propulsion systems. Ph.D. Thesis - Dec. 1979 Final Report

    NASA Technical Reports Server (NTRS)

    Behbehani, K.

    1980-01-01

    A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.

  5. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  6. A modified case-control study of cryptosporidiosis (using non-Cryptosporidium-infected enteric cases as controls) in a community setting.

    PubMed

    Pintar, K D M; Pollari, F; Waltner-Toews, D; Charron, D F; McEwen, S A; Fazil, A; Nesbitt, A

    2009-12-01

    Data from the first sentinel site (Waterloo Region, Ontario) of the Canadian Integrated Enteric Disease Surveillance System (C-EnterNet) were used in a secondary-based case-control study of laboratory-confirmed Cryptosporidium infections to study the role of various exposure factors. The incidence of cryptosporidiosis in Waterloo Region was almost double both the provincial and national rates. Persons ill with one of nine other enteric infections (amoebiasis, campylobacteriosis, cyclosporiasis, giardiasis, listeriosis, salmonellosis, shigellosis, verotoxigenic E. coli infections, yersiniosis) captured by the surveillance system were used as the control group. Of 1204 cases of enteric illness in the sentinel area between April 2005 and December 2007, 36 cases and 803 controls were selected after excluding outbreak and international travel-related cases. Univariable analyses (Pearson chi2 and Fisher's exact tests) and multivariable logistic regression were performed. Results of the multivariable analysis found that cryptosporidiosis was associated with swimming in a lake or river (OR 2.9, 95% CI 1.2-7.4), drinking municipal water (a potential surrogate for urban respondents vs. rural) (OR 2.4, 95% CI 1.04-5.7), and having a family member with a diarrhoeal illness (OR 2.9, 95% CI 1.3-6.4).

  7. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Markiewicz, Przemysław; Pabjańczyk, Wiesława

    2018-04-01

    The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.

  9. Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1982-01-01

    A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.

  10. An experimental study of human pilot's scanning behavior

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Osawa, T.

    1982-01-01

    The scanning behavior and the control behavior of the pilot who manually controls the two-variable system, which is the most basic one of multi-variable systems are investigated. Two control tasks which simulate the actual airplane attitude and airspeed control were set up. In order to simulate the change of the situation where the pilot is placed, such as changes of flight phase, mission and others, the subject was requested to vary the weightings, as his control strategy, upon each task. Changes of human control dynamics and his canning properties caused by the modification of the situation were investigated. By making use of the experimental results, the optimal model of the control behavior and the scanning behavior of the pilot in the two-variable system is proposed from the standpoint of making the performance index minimal.

  11. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

    PubMed Central

    Tang, Yongchuan; Zhou, Deyun

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  12. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.

  13. Thermal signature identification system (TheSIS): a spread spectrum temperature cycling method

    NASA Astrophysics Data System (ADS)

    Merritt, Scott

    2015-03-01

    NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.

  14. A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1986-01-01

    In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.

  15. Meal Detection in Patients With Type 1 Diabetes: A New Module for the Multivariable Adaptive Artificial Pancreas Control System.

    PubMed

    Turksoy, Kamuran; Samadi, Sediqeh; Feng, Jianyuan; Littlejohn, Elizabeth; Quinn, Laurie; Cinar, Ali

    2016-01-01

    A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman's minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(±9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of postprandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia.

  16. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Alex; Banta, Larry; Tucker, David

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant componentsmore » is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.« less

  17. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  18. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  19. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, François; Bonnay, Patrick; Alamir, Mazen

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less

  20. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin

    2014-01-01

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  1. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  2. Trends in modern system theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1976-01-01

    The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.

  3. Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei

    1991-01-01

    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.

  4. On the use of multi-agent systems for the monitoring of industrial systems

    NASA Astrophysics Data System (ADS)

    Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil

    2016-03-01

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

  5. Autonomic Dysregulation during Sensory Stimulation in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Schaaf, Roseann C.; Benevides, Teal W.; Leiby, Benjamin E.; Sendecki, Jocelyn A.

    2015-01-01

    Autonomic nervous system (ANS) activity during sensory stimulation was measured in 59 children with autism spectrum disorder (ASD) ages 6-9 in comparison to 30 typically developing controls. Multivariate comparisons revealed significant differences between groups in the respiratory sinus arrhythmia (parasympathetic measure) vector of means across…

  6. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  7. Multivariate normative comparisons using an aggregated database

    PubMed Central

    Murre, Jaap M. J.; Huizenga, Hilde M.

    2017-01-01

    In multivariate normative comparisons, a patient’s profile of test scores is compared to those in a normative sample. Recently, it has been shown that these multivariate normative comparisons enhance the sensitivity of neuropsychological assessment. However, multivariate normative comparisons require multivariate normative data, which are often unavailable. In this paper, we show how a multivariate normative database can be constructed by combining healthy control group data from published neuropsychological studies. We show that three issues should be addressed to construct a multivariate normative database. First, the database may have a multilevel structure, with participants nested within studies. Second, not all tests are administered in every study, so many data may be missing. Third, a patient should be compared to controls of similar age, gender and educational background rather than to the entire normative sample. To address these issues, we propose a multilevel approach for multivariate normative comparisons that accounts for missing data and includes covariates for age, gender and educational background. Simulations show that this approach controls the number of false positives and has high sensitivity to detect genuine deviations from the norm. An empirical example is provided. Implications for other domains than neuropsychology are also discussed. To facilitate broader adoption of these methods, we provide code implementing the entire analysis in the open source software package R. PMID:28267796

  8. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  9. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.

  10. Experimental comparison of conventional and nonlinear model-based control of a mixing tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeggblom, K.E.

    1993-11-01

    In this case study concerning control of a laboratory-scale mixing tank, conventional multiloop single-input single-output (SISO) control is compared with model-based'' control where the nonlinearity and multivariable characteristics of the process are explicitly taken into account. It is shown, especially if the operating range of the process is large, that the two outputs (level and temperature) cannot be adequately controlled by multiloop SISO control even if gain scheduling is used. By nonlinear multiple-input multiple-output (MIMO) control, on the other hand, very good control performance is obtained. The basic approach to nonlinear control used in this study is first to transformmore » the process into a globally linear and decoupled system, and then to design controllers for this system. Because of the properties of the resulting MIMO system, the controller design is very easy. Two nonlinear control system designs based on a steady-state and a dynamic model, respectively, are considered. In the dynamic case, both setpoint tracking and disturbance rejection can be addressed separately.« less

  11. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  12. Multicoordination Control Strategy Performance in Hybrid Power Systems

    DOE PAGES

    Pezzini, Paolo; Bryden, Kenneth M.; Tucker, David

    2018-04-11

    This paper evaluates a state-space methodology of a multi-input multi-output (MIMO) control strategy using a 2 × 2 tightly coupled scenario applied to a physical gas turbine fuel cell hybrid power system. A centralized MIMO controller was preferred compared to a decentralized control approach because previous simulation studies showed that the coupling effect identified during the simultaneous control of the turbine speed and cathode airflow was better minimized. The MIMO controller was developed using a state-space dynamic model of the system that was derived using first-order transfer functions empirically obtained through experimental tests. The controller performance was evaluated in termsmore » of disturbance rejection through perturbations in the gas turbine operation, and setpoint tracking maneuver through turbine speed and cathode airflow steps. The experimental results illustrate that a multicoordination control strategy was able to mitigate the coupling of each actuator to each output during the simultaneous control of the system, and improved the overall system performance during transient conditions. On the other hand, the controller showed different performance during validation in simulation environment compared to validation in the physical facility, which will require a better dynamic modeling of the system for the implementation of future multivariable control strategies.« less

  13. Return Difference Feedback Design for Robust Uncertainty Tolerance in Stochastic Multivariable Control Systems.

    DTIC Science & Technology

    1984-07-01

    34robustness" analysis for multiloop feedback systems. Reference [55] describes a simple method based on the Perron - Frobenius Theory of non-negative...Viewpoint, " Operator Theory : Advances and Applications, 12, pp. 277-302, 1984. - E. A. Jonckheere, "New Bound on the Sensitivity -- of the Solution of...Reidel, Dordrecht, Holland, 1984. M. G. Safonov, "Comments on Singular Value Theory in Uncertain Feedback Systems, " to appear IEEE Trans. on Automatic

  14. On reliable control system designs. Ph.D. Thesis; [actuators

    NASA Technical Reports Server (NTRS)

    Birdwell, J. D.

    1978-01-01

    A mathematical model for use in the design of reliable multivariable control systems is discussed with special emphasis on actuator failures and necessary actuator redundancy levels. The model consists of a linear time invariant discrete time dynamical system. Configuration changes in the system dynamics are governed by a Markov chain that includes transition probabilities from one configuration state to another. The performance index is a standard quadratic cost functional, over an infinite time interval. The actual system configuration can be deduced with a one step delay. The calculation of the optimal control law requires the solution of a set of highly coupled Riccati-like matrix difference equations. Results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.

  15. Robustness analysis of an air heating plant and control law by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less

  16. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1972-01-01

    A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.

  17. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  18. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  19. Modeling and control for closed environment plant production systems

    NASA Technical Reports Server (NTRS)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  20. Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines Through Field-Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, P. A.; Van Wingerden, J. W.; Wright, A. D.

    2012-01-01

    In this paper we present results from an ongoing controller comparison study at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is,more » to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less

  1. Hyperthyroidism association with SLE, lessons from real-life data--A case-control study.

    PubMed

    Watad, Abdulla; Cohen, Arnon D; Comaneshter, Doron; Tekes-Manova, Dorit; Amital, Howard

    2016-01-01

    Despite the frequently encountered association between thyroid disease and systemic lupus erythematosus (SLE) is well known, it is of surprise that only several reports compromised of small population size support this observation. To investigate the association of comorbid SLE and hyperthyroidism. Using the database of the largest health maintenance organization (HMO) in Israel, the Clalit Health Services, we searched for the co-existence of SLE and hyperthyroidism. Patients with SLE were compared with age- and sex-matched controls regarding the prevalence of hyperthyroidism in a case-control study. Chi-square and t-tests were used for univariate analysis and a logistic regression model was used for multivariate analysis. The study included 5018 patients with SLE and 25,090 age- and sex- matched controls. The prevalence of hyperthyroidism in patients with SLE was increased compared with the prevalence in controls (2.59% and 0.91%, respectively, p < 0.001). In a multivariate analysis, SLE was associated with hyperthyroidism (odds ratio 2.52, 95% confidence interval 2.028-3.137). Patients with SLE have a greater prevalence of hyperthyroidism than matched controls. Therefore, physicians treating patients with SLE should be aware of this possibility of this thyroid dysfunction.

  2. Computerized design of controllers using data models

    NASA Technical Reports Server (NTRS)

    Irwin, Dennis; Mitchell, Jerrel; Medina, Enrique; Allwine, Dan; Frazier, Garth; Duncan, Mark

    1995-01-01

    The major contributions of the grant effort have been the enhancement of the Compensator Improvement Program (CIP), which resulted in the Ohio University CIP (OUCIP) package, and the development of the Model and Data-Oriented Computer Aided Design System (MADCADS). Incorporation of direct z-domain designs into CIP was tested and determined to be numerically ill-conditioned for the type of lightly damped problems for which the development was intended. Therefore, it was decided to pursue the development of z-plane designs in the w-plane, and to make this conversion transparent to the user. The analytical development needed for this feature, as well as that needed for including compensator damping ratios and DC gain specifications, closed loop stability requirements, and closed loop disturbance rejection specifications into OUCIP are all contained in Section 3. OUCIP was successfully tested with several example systems to verify proper operation of existing and new features. The extension of the CIP philosophy and algorithmic approach to handle modern multivariable controller design criteria was implemented and tested. Several new algorithms for implementing the search approach to modern multivariable control system design were developed and tested. This analytical development, most of which was incorporated into the MADCADS software package, is described in Section 4, which also includes results of the application of MADCADS to the MSFC ACES facility and the Hubble Space Telescope.

  3. Self-tuning multivariable pole placement control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1992-01-01

    This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.

  4. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  5. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  6. Design of feedback control systems for stable plants with saturating actuators

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros; Athans, Michael; Stein, Gunter

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft.

  7. Enhancing vehicle cornering limit through sideslip and yaw rate control

    NASA Astrophysics Data System (ADS)

    Lu, Qian; Gentile, Pierangelo; Tota, Antonio; Sorniotti, Aldo; Gruber, Patrick; Costamagna, Fabio; De Smet, Jasper

    2016-06-01

    Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.

  8. Application of precomputed control laws in a reconfigurable aircraft flight control system

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.

    1989-01-01

    A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.

  9. A comparison of two multi-variable integrator windup protection schemes

    NASA Technical Reports Server (NTRS)

    Mattern, Duane

    1993-01-01

    Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.

  10. Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems.

    PubMed

    Khebbache, Hicham; Tadjine, Mohamed; Labiod, Salim; Boulkroune, Abdesselem

    2015-03-01

    This paper deals with the active fault tolerant control (AFTC) problem for a class of multiple-input multiple-output (MIMO) uncertain nonlinear systems subject to sensor faults and external disturbances. The proposed AFTC method can tolerate three additive (bias, drift and loss of accuracy) and one multiplicative (loss of effectiveness) sensor faults. By employing backstepping technique, a novel adaptive backstepping-based AFTC scheme is developed using the fact that sensor faults and system uncertainties (including external disturbances and unexpected nonlinear functions caused by sensor faults) can be on-line estimated and compensated via robust adaptive schemes. The stability analysis of the closed-loop system is rigorously proven using a Lyapunov approach. The effectiveness of the proposed controller is illustrated by two simulation examples. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Validation of a new modal performance measure for flexible controllers design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simo, J.B.; Tahan, S.A.; Kamwa, I.

    1996-05-01

    A new modal performance measure for power system stabilizer (PSS) optimization is proposed in this paper. The new method is based on modifying the square envelopes of oscillating modes, in order to take into account their damping ratios while minimizing the performance index. This criteria is applied to flexible controllers optimal design, on a multi-input-multi-output (MIMO) reduced-order model of a prototype power system. The multivariable model includes four generators, each having one input and one output. Linear time-response simulation and transient stability analysis with a nonlinear package confirm the superiority of the proposed criteria and illustrate its effectiveness in decentralizedmore » control.« less

  12. A demonstration of an intelligent control system for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.

    1992-01-01

    An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.

  13. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  14. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  15. Design for performance enhancement in feedback control systems with multiple saturating nonlinearities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output systems with multiple saturations. The methodology can be applied to stable and unstable open loop plants with magnitude and/or rate control saturations and to systems in which state limitations are desired. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated by numerous simulations, including the multivariable longitudinal control of modified models of the F-8 (stable) and F-16 (unstable) aircraft.

  16. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  17. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Yurkovich, S.; Hill, J. P.; Kingler, T. A.

    1983-01-01

    The development of models of tensor type for a digital simulation of the quiet, clean safe engine (QCSE) gas turbine engine; the extension, to nonlinear multivariate control system design, of the concepts of total synthesis which trace their roots back to certain early investigations under this grant; the role of series descriptions as they relate to questions of scheduling in the control of gas turbine engines; the development of computer-aided design software for tensor modeling calculations; further enhancement of the softwares for linear total synthesis, mentioned above; and calculation of the first known examples using tensors for nonlinear feedback control are discussed.

  18. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  19. Robust control of integrated motor-transmission powertrain system over controller area network for automotive applications

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde

    2015-06-01

    Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.

  20. Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

    2011-12-01

    This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiplemore » single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less

  1. Overview of computational control research at UT Austin

    NASA Technical Reports Server (NTRS)

    Bong, Wie

    1989-01-01

    An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.

  2. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, A; Rowbottom, C

    Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less

  3. Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Peczkowski, J. L.

    1982-01-01

    The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.

  4. "L"-Bivariate and "L"-Multivariate Association Coefficients. Research Report. ETS RR-08-40

    ERIC Educational Resources Information Center

    Kong, Nan; Lewis, Charles

    2008-01-01

    Given a system of multiple random variables, a new measure called the "L"-multivariate association coefficient is defined using (conditional) entropy. Unlike traditional correlation measures, the L-multivariate association coefficient measures the multiassociations or multirelations among the multiple variables in the given system; that…

  5. Classification of Physical Activity

    PubMed Central

    Turksoy, Kamuran; Paulino, Thiago Marques Luz; Zaharieva, Dessi P.; Yavelberg, Loren; Jamnik, Veronica; Riddell, Michael C.; Cinar, Ali

    2015-01-01

    Physical activity has a wide range of effects on glucose concentrations in type 1 diabetes (T1D) depending on the type (ie, aerobic, anaerobic, mixed) and duration of activity performed. This variability in glucose responses to physical activity makes the development of artificial pancreas (AP) systems challenging. Automatic detection of exercise type and intensity, and its classification as aerobic or anaerobic would provide valuable information to AP control algorithms. This can be achieved by using a multivariable AP approach where biometric variables are measured and reported to the AP at high frequency. We developed a classification system that identifies, in real time, the exercise intensity and its reliance on aerobic or anaerobic metabolism and tested this approach using clinical data collected from 5 persons with T1D and 3 individuals without T1D in a controlled laboratory setting using a variety of common types of physical activity. The classifier had an average sensitivity of 98.7% for physiological data collected over a range of exercise modalities and intensities in these subjects. The classifier will be added as a new module to the integrated multivariable adaptive AP system to enable the detection of aerobic and anaerobic exercise for enhancing the accuracy of insulin infusion strategies during and after exercise. PMID:26443291

  6. Data mining for water resource management part 2 - methods and approaches to solving contemporary problems

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2010-01-01

    This is the second of two papers that describe how data mining can aid natural-resource managers with the difficult problem of controlling the interactions between hydrologic and man-made systems. Data mining is a new science that assists scientists in converting large databases into knowledge, and is uniquely able to leverage the large amounts of real-time, multivariate data now being collected for hydrologic systems. Part 1 gives a high-level overview of data mining, and describes several applications that have addressed major water resource issues in South Carolina. This Part 2 paper describes how various data mining methods are integrated to produce predictive models for controlling surface- and groundwater hydraulics and quality. The methods include: - signal processing to remove noise and decompose complex signals into simpler components; - time series clustering that optimally groups hundreds of signals into "classes" that behave similarly for data reduction and (or) divide-and-conquer problem solving; - classification which optimally matches new data to behavioral classes; - artificial neural networks which optimally fit multivariate data to create predictive models; - model response surface visualization that greatly aids in understanding data and physical processes; and, - decision support systems that integrate data, models, and graphics into a single package that is easy to use.

  7. Applications of numerical optimization methods to helicopter design problems: A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  8. Applications of numerical optimization methods to helicopter design problems - A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1985-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  9. Applications of numerical optimization methods to helicopter design problems - A survey

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.

  10. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  11. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  12. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Instruments speak global language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nudo, L.

    1993-07-01

    If all goes as planned, companies that use instruments for measurement and control will get more complete, reliable and repeatable information about their processes with advanced digital devices that speak a global language. That language, in technical terms, is known as international fieldbus. But it's not much different from English's role as the international language of business. Companies that use a remote measurement device for environmental applications, such as pH control and fugitive emissions control, are candidates for fieldbus devices, which are much faster and measure more process variables than their counterpart analog devices. With the advent of a globalmore » fieldbus, users will see digital valves, solenoids and multivariable transmitters. Fieldbus technology redefines the roles of the control system and field devices. The control system still serves as a central clearinghouse, but field devices will handle more control and reporting functions and generate data that can be used for trending and preventive maintenance.« less

  14. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1993-01-01

    A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.

  15. Transparent multi-zone crystal growth furnace and method for controlling the same

    NASA Technical Reports Server (NTRS)

    Batur, Celal (Inventor); Bennett, Robert J. (Inventor); Duval, Walter (Inventor)

    2000-01-01

    A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.

  16. Transparent multi-zone crystal growth furnace and method for controlling the same

    NASA Technical Reports Server (NTRS)

    Batur, Celal (Inventor); Duval, Walter (Inventor); Bennett, Robert J. (Inventor)

    2001-01-01

    A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.

  17. Multivariable control of a rolling spider drone

    NASA Astrophysics Data System (ADS)

    Lyu, Haifeng

    The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.

  18. Multivariable control of vapor compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.D.; Liu, S.; Asada, H.H.

    1999-07-01

    This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less

  19. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  20. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

    PubMed

    Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

    2005-07-01

    This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

  1. Supporting inquiry learning by promoting normative understanding of multivariable causality

    NASA Astrophysics Data System (ADS)

    Keselman, Alla

    2003-11-01

    Early adolescents may lack the cognitive and metacognitive skills necessary for effective inquiry learning. In particular, they are likely to have a nonnormative mental model of multivariable causality in which effects of individual variables are neither additive nor consistent. Described here is a software-based intervention designed to facilitate students' metalevel and performance-level inquiry skills by enhancing their understanding of multivariable causality. Relative to an exploration-only group, sixth graders who practiced predicting an outcome (earthquake risk) based on multiple factors demonstrated increased attention to evidence, improved metalevel appreciation of effective strategies, and a trend toward consistent use of a controlled comparison strategy. Sixth graders who also received explicit instruction in making predictions based on multiple factors showed additional improvement in their ability to compare multiple instances as a basis for inferences and constructed the most accurate knowledge of the system. Gains were maintained in transfer tasks. The cognitive skills and metalevel understanding examined here are essential to inquiry learning.

  2. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  3. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI

    PubMed Central

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-01-01

    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490

  4. Vectored Thrust Digital Flight Control for Crew Escape. Volume 2.

    DTIC Science & Technology

    1985-12-01

    no. 24. Lecrique, J., A. Rault, M. Tessier and J.L. Testud (1978), - "Multivariable Regulation of a Thermal Power Plant Steam Generator," presented...and Extended Kalman Observers," presented at the Conf. Decision and Control, San Diego, CA. Testud , J.L. (1977), Commande Numerique Multivariable du

  5. An AD100 implementation of a real-time STOVL aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Drummond, Colin K.

    1990-01-01

    A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.

  6. Power and sample size for multivariate logistic modeling of unmatched case-control studies.

    PubMed

    Gail, Mitchell H; Haneuse, Sebastien

    2017-01-01

    Sample size calculations are needed to design and assess the feasibility of case-control studies. Although such calculations are readily available for simple case-control designs and univariate analyses, there is limited theory and software for multivariate unconditional logistic analysis of case-control data. Here we outline the theory needed to detect scalar exposure effects or scalar interactions while controlling for other covariates in logistic regression. Both analytical and simulation methods are presented, together with links to the corresponding software.

  7. The use of experimental design to find the operating maximum power point of PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  8. A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering

    NASA Technical Reports Server (NTRS)

    Carroll, R. L.; Lindorff, D. P.

    1973-01-01

    An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.

  9. A novel technique for optimal integration of active steering and differential braking with estimation to improve vehicle directional stability.

    PubMed

    Mirzaeinejad, Hossein; Mirzaei, Mehdi; Rafatnia, Sadra

    2018-06-11

    This study deals with the enhancement of directional stability of vehicle which turns with high speeds on various road conditions using integrated active steering and differential braking systems. In this respect, the minimum usage of intentional asymmetric braking force to compensate the drawbacks of active steering control with small reduction of vehicle longitudinal speed is desired. To this aim, a new optimal multivariable controller is analytically developed for integrated steering and braking systems based on the prediction of vehicle nonlinear responses. A fuzzy programming extracted from the nonlinear phase plane analysis is also used for managing the two control inputs in various driving conditions. With the proposed fuzzy programming, the weight factors of the control inputs are automatically tuned and softly changed. In order to simulate a real-world control system, some required information about the system states and parameters which cannot be directly measured, are estimated using the Unscented Kalman Filter (UKF). Finally, simulations studies are carried out using a validated vehicle model to show the effectiveness of the proposed integrated control system in the presence of model uncertainties and estimation errors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A Bayesian approach to multivariate measurement system assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Michael Scott

    This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.

  11. A Bayesian approach to multivariate measurement system assessment

    DOE PAGES

    Hamada, Michael Scott

    2016-07-01

    This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.

  12. Algorithms for Robust Identification and Control of Large Space Structures. Phase 1.

    DTIC Science & Technology

    1988-05-14

    Variate Analysis," Proc. Amer. Control Conf., San Francisco, * pp. 445-451. LECTIQUE, J., Rault, A., Tessier, M., and Testud , J.L. (1978), "Multivariable...Rault, J.L. Testud , and J. Papon (1978), "Model Predictive Heuris- tic Control: Applications to Industrial Processes," Automatica, Vol. 14, pp. 413...Control ’. Conference, Minneapolis, MN, June. TESTUD , J.L. (1979), "Commande Numerique Multivariable du Ballon de Recupera- tion de Vapeur," Adersa/Gerbios

  13. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  14. [Temporary employment and health: a multivariate analysis of occupational injury risk by job tenure].

    PubMed

    Bena, Antonella; Giraudo, Massimiliano

    2013-01-01

    To study the relationship between job tenure and injury risk, controlling for individual factors and company characteristics. Analysis of incidence and injury risk by job tenure, controlling for gender, age, nationality, economic activity, firm size. Sample of 7% of Italian workers registered in the INPS (National Institute of Social Insurance) database. Private sector employees who worked as blue collars or apprentices. First-time occupational injuries, all occupational injuries, serious occupational injuries. Our findings show an increase in injury risk among those who start a new job and an inverse relationship between job tenure and injury risk. Multivariate analysis confirm these results. Recommendations for improving this situation include the adoption of organizational models that provide periods of mentoring from colleagues already in the company and the assignment to simple and not much hazardous tasks. The economic crisis may exacerbate this problem: it is important for Italy to improve the systems of monitoring relations between temporary employment and health.

  15. Controlled Multivariate Evaluation of Open Education: Application of a Critical Model.

    ERIC Educational Resources Information Center

    Sewell, Alan F.; And Others

    This paper continues previous reports of a controlled multivariate evaluation of a junior high school open-education program. A new method of estimating program objectives and implementation is presented, together with the nature and degree of obtained student outcomes. Open-program students were found to approve more highly of their learning…

  16. A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system.

    PubMed

    Sadala, S P; Patre, B M

    2018-03-01

    The 2-degree of freedom (DOF) helicopter system is a typical higher-order, multi-variable, nonlinear and strong coupled control system. The helicopter dynamics also includes parametric uncertainties and is subject to unknown external disturbances. Such complicated system requires designing a sophisticated control algorithm that can handle these difficulties. This paper presents a new robust control algorithm which is a combination of two continuous control techniques, composite nonlinear feedback (CNF) and super-twisting control (STC) methods. In the existing integral sliding mode (ISM) based CNF control law, the discontinuous term exhibits chattering which is not desirable for many practical applications. As the continuity of well known STC reduces chattering in the system, the proposed strategy is beneficial over the current ISM based CNF control law which has a discontinuous term. Two controllers with integral sliding surface are designed to control the position of the pitch and the yaw angles of the 2- DOF helicopter. The adequacy of this specific combination has been exhibited through general analysis, simulation and experimental results of 2-DOF helicopter setup. The acquired results demonstrate the good execution of the proposed controller regarding stabilization, following reference input without overshoot against actuator saturation and robustness concerning to the limited matched disturbances. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  19. Dual control and prevention of the turn-off phenomenon in a class of mimo systems

    NASA Technical Reports Server (NTRS)

    Mookerjee, P.; Bar-Shalom, Y.; Molusis, J. A.

    1985-01-01

    A recently developed methodology of adaptive dual control based upon sensitivity functions is applied here to a multivariable input-output model. The plant has constant but unknown parameters. It represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. The cautious and the new dual controller are examined. In many instances, the cautious controller is seen to turn off. The new dual controller modifies the cautious control design by numerator and denominator correction terms which depend upon the sensitivity functions of the expected future cost and avoids the turn-off and burst phenomena. Monte Carlo simulations and statistical tests of significance indicate the superiority of the dual controller over the cautious and the heuristic certainity equivalence controllers.

  20. Evaluation of an F100 multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Skira, C.

    1977-01-01

    The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.

  1. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  2. Increased congenital heart defects in children born to women with systemic lupus erythematosus: results from the offspring of Systemic Lupus Erythematosus Mothers Registry Study.

    PubMed

    Vinet, Évelyne; Pineau, Christian A; Scott, Susan; Clarke, Ann E; Platt, Robert W; Bernatsky, Sasha

    2015-01-13

    In a large population-based study, we aimed to determine whether children born to women with systemic lupus erythematosus (SLE) have an increased risk of congenital heart defects (CHDs) in comparison with children born to women without SLE. The Offspring of SLE Mothers Registry (OSLER) includes all women who had ≥1 hospitalization for delivery after SLE diagnosis, identified through Quebec's healthcare databases (1989-2009), and a randomly selected control group of women, matched ≥4:1 for age and year of delivery. We identified children born live to SLE mothers and their matched controls, and ascertained CHD based on ≥1 hospitalization or physician visit with relevant diagnostic codes, within the first 12 months of life. We performed multivariable logistic regression analyses, using the generalized estimating equation method, to adjust for relevant covariates. Five hundred nine women with SLE had 719 children, whereas 5824 matched controls had 8493 children. In comparison with controls, children born to women with SLE experienced more CHD (5.2% [95% confidence interval (CI), 3.7-7.1] versus 1.9% [95% CI, 1.6-2.2], difference 3.3% [95% CI, 1.9-5.2]). In multivariable analyses, children born to women with SLE had a substantially increased risk of CHD (odds ratio, 2.62; 95% CI, 1.77-3.88) in comparison with controls. In addition, in comparison with controls, offspring of SLE mothers had a substantially increased risk of having a CHD repair procedure (odds ratio, 5.82; 95% CI, 1.77-19.09). In comparison with children from the general population, children born to women with SLE have an increased risk of CHD, and an increased risk of having a CHD repair procedure, as well. © 2014 American Heart Association, Inc.

  3. An on-line equivalent system identification scheme for adaptive control. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1984-01-01

    A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.

  4. Sliding Mode Control of a Thermal Mixing Process

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  5. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Risk Factors for Symptomatic Avascular Necrosis in Childhood-onset Systemic Lupus Erythematosus.

    PubMed

    Yang, Yelin; Kumar, Sathish; Lim, Lily Siok Hoon; Silverman, Earl D; Levy, Deborah M

    2015-12-01

    To examine the frequency and risk factors for symptomatic avascular necrosis (AVN) in childhood-onset systemic lupus erythematosus (cSLE). A single-center, nested, matched, case-control design was used. There were 617 patients with cSLE followed at the Hospital for Sick Children (SickKids) Lupus Clinic between July 1982 and June 2013 included in the study. The AVN cohort consisted of 37 patients identified with clinical findings of symptomatic AVN and diagnosis was confirmed by 1 or more imaging modalities. Three controls were matched to each patient with AVN by date and age at diagnosis. Baseline clinical, laboratory, and treatment characteristics were compared between patients with AVN and controls by univariable analyses and if statistically significant, were included in a multivariable logistic regression model. A total of 37/617 patients (6%) developed symptomatic AVN in 91 joints during followup at SickKids. The mean duration to disease was 2.3 years. The hip was the most commonly involved joint (26/37, 70%). Compared with the matched non-AVN cohort, patients with AVN had a higher incidence of central nervous system (CNS) involvement and nephritis, required greater cumulative prednisone (PRED) from cSLE diagnosis to AVN, received a greater maximal daily PRED dose, and had more frequent use of pulse methylprednisolone therapy. Multivariable regression analysis confirmed major organ involvement (CNS disease and/or nephritis) and maximal daily PRED dose as significant predictors of symptomatic AVN development. Patients with cSLE with severe organ involvement including nephritis and CNS disease and higher maximal daily dose of PRED are more likely to develop symptomatic AVN.

  7. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  8. The McMillan and Newton polygons of a feedback system and the construction of root loci

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.; Stevens, P. K.

    1982-01-01

    The local behaviour of root loci around zeros and poles is investigated. This is done by relating the Newton diagrams which arise in the local analysis to the McMillan structure of the open-loop system, by means of what we shall call the McMillan polygon. This geometric construct serves to clarify the precise relationship between the McMillan structure, the principal structure, and the branching patterns of the root loci. In addition, several rules are obtained which are useful in the construction of the root loci of multivariable control systems.

  9. Propulsion system performance resulting from an integrated flight/propulsion control design

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay

    1992-01-01

    Propulsion-system-specific results are presented from the application of the integrated methodology for propulsion and airframe control (IMPAC) design approach to integrated flight/propulsion control design for a 'short takeoff and vertical landing' (STOVL) aircraft in transition flight. The IMPAC method is briefly discussed and the propulsion system specifications for the integrated control design are examined. The structure of a linear engine controller that results from partitioning a linear centralized controller is discussed. The details of a nonlinear propulsion control system are presented, including a scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration schedule that limits the fuel flow. Also, a simple but effective multivariable integrator windup protection scheme is examined. Nonlinear closed-loop simulation results are presented for two typical pilot commands for transition flight: acceleration while maintaining flightpath angle and a change in flightpath angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the integrator windup protection. Satisfactory performance of the total airframe plus engine system for transition flight, as defined by the specifications, was maintained during the limit operation of the closed-loop engine subsystem.

  10. Active Rack Isolation System Program and Technical Status

    NASA Technical Reports Server (NTRS)

    Bushnell, Glenn; Fialho, Ian; Allen, James; Quraishi, Naveed

    2000-01-01

    The Boeing Active Rack Isolation System (ARIS) is one of the means used to isolate acceleration-sensitive scientific experiments from structurally transmitted disturbances aboard the International Space Station. The presentation provides an overview of ARIS and technical issues associated with the development of the active control system. An overview of ARIS analytical models is presented along with recent isolation performance predictions made using these models. Issues associated with commanding and capturing ARIS data are discussed and possible future options based on the ARIS ISS Characterization Experiment (ICE) Payload On-orbit Processor (POP) are outlined. An overview of the ARIS-ICE experiment scheduled to fly on ISS Flight 6A is presented. The presentation concludes with a discussion of recent- developmental work that includes passive rack damping, umbilical redesigns and advanced multivariable control design methods.

  11. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    NASA Astrophysics Data System (ADS)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  12. Design and experiment of data-driven modeling and flutter control of a prototype wing

    NASA Astrophysics Data System (ADS)

    Lum, Kai-Yew; Xu, Cai-Lin; Lu, Zhenbo; Lai, Kwok-Leung; Cui, Yongdong

    2017-06-01

    This paper presents an approach for data-driven modeling of aeroelasticity and its application to flutter control design of a wind-tunnel wing model. Modeling is centered on system identification of unsteady aerodynamic loads using computational fluid dynamics data, and adopts a nonlinear multivariable extension of the Hammerstein-Wiener system. The formulation is in modal coordinates of the elastic structure, and yields a reduced-order model of the aeroelastic feedback loop that is parametrized by airspeed. Flutter suppression is thus cast as a robust stabilization problem over uncertain airspeed, for which a low-order H∞ controller is computed. The paper discusses in detail parameter sensitivity and observability of the model, the former to justify the chosen model structure, and the latter to provide a criterion for physical sensor placement. Wind tunnel experiments confirm the validity of the modeling approach and the effectiveness of the control design.

  13. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.

    PubMed

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-03-31

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.

  14. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply

    PubMed Central

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-01-01

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems. PMID:29614749

  15. Evaluation of a Multivariate Syndromic Surveillance System for West Nile Virus.

    PubMed

    Faverjon, Céline; Andersson, M Gunnar; Decors, Anouk; Tapprest, Jackie; Tritz, Pierre; Sandoz, Alain; Kutasi, Orsolya; Sala, Carole; Leblond, Agnès

    2016-06-01

    Various methods are currently used for the early detection of West Nile virus (WNV) but their outputs are not quantitative and/or do not take into account all available information. Our study aimed to test a multivariate syndromic surveillance system to evaluate if the sensitivity and the specificity of detection of WNV could be improved. Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion. Univariate and multivariate syndromic surveillance systems were tested to gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach. The systems' performances were compared using measures of sensitivity, specificity, and area under receiver operating characteristic curve (AUC). When data sources were considered separately (i.e., univariate systems), the best detection performance was obtained using the data set of nervous symptoms in horses compared to those of bird and horse mortality (AUCs equal to 0.80, 0.75, and 0.50, respectively). A multivariate outbreak detection system that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87). The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks. This is particularly relevant, given that a multivariate surveillance system performed better than a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the possibility of human viral infections. This approach can be also used for other diseases for which multiple sources of evidence are available.

  16. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less

  17. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    DOE PAGES

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; ...

    2017-04-24

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less

  18. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; Gerhardt, S. P.; Menard, J. E.; Poli, F. M.

    2017-06-01

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control scheme that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.

  19. An approach to multivariable control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.

  20. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    PubMed

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  1. Characterizing the Associative Content of Brain Structures Involved in Habitual and Goal-Directed Actions in Humans: A Multivariate fMRI Study

    PubMed Central

    Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P.

    2015-01-01

    While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. PMID:25740507

  2. Transient multivariable sensor evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Heifetz, Alexander

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  3. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems

    PubMed Central

    Du, Zhimin; Domanski, Piotr A.; Payne, W. Vance

    2016-01-01

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms. PMID:26929732

  4. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.

    PubMed

    Du, Zhimin; Domanski, Piotr A; Payne, W Vance

    2016-04-05

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.

  5. Fault tolerant control of multivariable processes using auto-tuning PID controller.

    PubMed

    Yu, Ding-Li; Chang, T K; Yu, Ding-Wen

    2005-02-01

    Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.

  6. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    PubMed

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  7. Effect of sexual steroids on boar kinematic sperm subpopulations.

    PubMed

    Ayala, E M E; Aragón, M A

    2017-11-01

    Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  8. Missed opportunities to improve the health of postpartum women: high rates of untreated hypertension in rural Tanzania

    PubMed Central

    Larson, Elysia; Rabkin, Miriam; Mbaruku, Godfrey M.; Mbatia, Redempta; Kruk, Margaret E.

    2017-01-01

    Objectives To assess the prevalence of high blood pressure amongst postpartum women in rural Tanzania, and to explore factors associated with hypertension prevalence, awareness of their own hypertension, treatment, and control. Methods We conducted a cross-sectional study of 1,849 women in Tanzania’s Pwani Region who delivered a child in the prior year. We measured blood pressure, administered a structured questionnaire, and assessed factors associated with hypertension (HTN) prevalence, women’s awareness of their own HTN, treatment, and control of HTN using bivariable and multivariable logistic regressions. Findings 26.7% of women had high blood pressure and/or were taking antihypertensive medication. Women were on average 27.5 years old (range 15–54). Nearly all women (99.5%) reported contact with the health system during their pregnancy and delivery, with 97.0% reporting at least one antenatal care visit, 81.4% reporting facility delivery, and an overall average of 5.2 visits for their own care in the past year. Only 23.5% of those with HTN were aware of their diagnosis, 17.4% were taking medication, and only 10.5% had controlled blood pressure. In multivariable analysis, facility delivery, health insurance, and increased distance from a hospital were associated with increased likelihood of HTN awareness; facility delivery and hospital distance were associated with current hypertensive treatment; younger age and increased hospital distance were associated with control of HTN. Conclusion The prevalence of high blood pressure in this postpartum population was high, and despite frequent recent contacts with the health system, awareness, treatment and control of HTN were low. These findings highlight an important missed opportunity to improve women’s health during antenatal and postnatal care. PMID:28120288

  9. Risk of infective endocarditis in patients with systemic lupus erythematosus in Taiwan: a nationwide population-based study.

    PubMed

    Chang, Y S; Chang, C C; Chen, Y H; Chen, W S; Chen, J H

    2017-10-01

    Objectives Patients with systemic lupus erythematosus are considered vulnerable to infective endocarditis and prophylactic antibiotics are recommended before an invasive dental procedure. However, the evidence is insufficient. This nationwide population-based study evaluated the risk and related factors of infective endocarditis in systemic lupus erythematosus. Methods We identified 12,102 systemic lupus erythematosus patients from the National Health Insurance research-oriented database, and compared the incidence rate of infective endocarditis with that among 48,408 non-systemic lupus erythematosus controls. A Cox multivariable proportional hazards model was employed to evaluate the risk of infective endocarditis in the systemic lupus erythematosus cohort. Results After a mean follow-up of more than six years, the systemic lupus erythematosus cohort had a significantly higher incidence rate of infective endocarditis (42.58 vs 4.32 per 100,000 person-years, incidence rate ratio = 9.86, p < 0.001) than that of the control cohort. By contrast, the older systemic lupus erythematosus cohort had lower risk (adjusted hazard ratio 11.64) than that of the younger-than-60-years systemic lupus erythematosus cohort (adjusted hazard ratio 15.82). Cox multivariate proportional hazards analysis revealed heart disease (hazard ratio = 5.71, p < 0.001), chronic kidney disease (hazard ratio = 2.98, p = 0.034), receiving a dental procedure within 30 days (hazard ratio = 36.80, p < 0.001), and intravenous steroid therapy within 30 days (hazard ratio = 39.59, p < 0.001) were independent risk factors for infective endocarditis in systemic lupus erythematosus patients. Conclusions A higher risk of infective endocarditis was observed in systemic lupus erythematosus patients. Risk factors for infective endocarditis in the systemic lupus erythematosus cohort included heart disease, chronic kidney disease, steroid pulse therapy within 30 days, and a recent invasive dental procedure within 30 days.

  10. A numerical approach to controller design for the ACES facility

    NASA Technical Reports Server (NTRS)

    Frazier, W. Garth; Irwin, R. Dennis

    1993-01-01

    In recent years the employment of active control techniques for improving the performance of systems involving highly flexible structures has become a topic of considerable research interest. Most of these systems are quite complicated, using multiple actuators and sensors, and possessing high order models. The majority of analytical controller synthesis procedures capable of handling multivariable systems in a systematic way require considerable insight into the underlying mathematical theory to achieve a successful design. This insight is needed in selecting the proper weighting matrices or weighting functions to cast what is naturally a multiple constraint satisfaction problem into an unconstrained optimization problem. Although designers possessing considerable experience with these techniques have a feel for the proper choice of weights, others may spend a significant amount of time attempting to find an acceptable solution. Another disadvantage of such procedures is that the resulting controller has an order greater than or equal to that of the model used for the design. Of course, the order of these controllers can often be reduced, but again this requires a good understanding of the theory involved.

  11. On measures of association among genetic variables

    PubMed Central

    Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner

    2012-01-01

    Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500

  12. Advanced multivariable control of a turboexpander plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altena, D.; Howard, M.; Bullin, K.

    1998-12-31

    This paper describes an application of advanced multivariable control on a natural gas plant and compares its performance to the previous conventional feed-back control. This control algorithm utilizes simple models from existing plant data and/or plant tests to hold the process at the desired operating point in the presence of disturbances and changes in operating conditions. The control software is able to accomplish this due to effective handling of process variable interaction, constraint avoidance and feed-forward of measured disturbances. The economic benefit of improved control lies in operating closer to the process constraints while avoiding significant violations. The South Texasmore » facility where this controller was implemented experienced reduced variability in process conditions which increased liquids recovery because the plant was able to operate much closer to the customer specified impurity constraint. An additional benefit of this implementation of multivariable control is the ability to set performance criteria beyond simple setpoints, including process variable constraints, relative variable merit and optimizing use of manipulated variables. The paper also details the control scheme applied to the complex turboexpander process and some of the safety features included to improve reliability.« less

  13. Detection of no-model input-output pairs in closed-loop systems.

    PubMed

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John; Schmitz, Eric; Hoff, William

    1991-01-01

    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.

  15. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  16. Power independent EMG based gesture recognition for robotics.

    PubMed

    Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P

    2011-01-01

    A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.

  17. Design and implementation of new control room system in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, H.; Zamanian, H.; Gheidi, M.; Kheiri-Fard, M.; Kouhi, A.

    2017-07-01

    The aim of this paper is design and implementation of an up-to-date control room. The previous control room had a lot of constraints and it was not apposite to the sophisticated diagnostic systems as well as to the modern control and multivariable systems. Although it provided the best output for the considered experiments and implementing offline algorithms among all similar plants, it needed to be developed to provide more capability for complex algorithm mechanisms and this work introduces our efforts in this area. Accordingly, four leading systems were designed and implemented, including real-time control system, online Data Acquisition System (DAS), offline DAS, monitoring and data transmission system. In the control system, three real-time control modules were established based on Digital Signal Processor (DSP). Thanks to them, implementation of the classic and linear and nonlinear intelligent controllers was possible to control the plasma position and its elongation. Also, online DAS was constructed in two modules. Using them, voltages and currents of charge for the capacitor banks and pressure of different parts in vacuum vessel were measured and monitored. Likewise, by real-time processing of the online data, the safety protocol of plant performance was accomplished. In addition, the offline DAS was organized in 13 modules based on Field Programmable Gate Array (FPGA). This system can be used for gathering all diagnostic, control, and performance data in 156 channels. Data transmission system and storing mechanism in the server was provided by data transmitting network and MDSplus standard protocol. Moreover, monitoring software was designed so that it could display the required plots for physical analyses. Taking everything into account, this new platform can improve the quality and quantity of research activities in plasma physics for Damavand tokamak.

  18. Control strategies for systems with limited actuators

    NASA Technical Reports Server (NTRS)

    Marcopoli, Vincent R.; Phillips, Stephen M.

    1994-01-01

    This work investigates the effects of actuator saturation in multi-input, multi-output (MIMO) control systems. The adverse system behavior introduced by the saturation nonlinearity is viewed here as resulting from two mechanisms: controller windup - a problem caused by the discrepancy between the limited actuator commands and the corresponding control signals, and directionality - the problem of how to use nonlimited actuators when a limited condition exists. The tracking mode and Hanus methods are two common strategies for dealing with the windup problem. It is seen that while these methods alleviate windup, performance problems remain due to plant directionality. Though high gain conventional antiwindup as well as more general linear methods have the potential to address both windup and directionality, no systematic design method for these schemes has emerged; most approaches used in practice are application driven. An alternative method of addressing the directionality problem is presented which involves the introduction of a control direction preserving nonlinearity to the Hanus antiwindup system. A nonlinearity is subsequently proposed which reduces the conservation inherent in the former direction-preserving approach, improving performance. The concept of multivariable sensitivity is seen to play a key role in the success of the new method.

  19. Sample size calculations for case-control studies

    Cancer.gov

    This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.

  20. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  1. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  2. Estimating the decomposition of predictive information in multivariate systems

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  3. A simplified dynamic model of the T700 turboshaft engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.

    1992-01-01

    A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.

  4. An investigation into the design and performance of an automatic shape control system for a Sendzimir cold rolling mill

    NASA Astrophysics Data System (ADS)

    Dutton, Kenneth

    Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.

  5. LinkWinds: An Approach to Visual Data Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1992-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.

  6. Tuning maps for setpoint changes and load disturbance upsets in a three capacity process under multivariable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Smith, Ira C.

    1991-01-01

    Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.

  7. Integrated Multivariate Health Monitoring System for Helicopters Main Rotor Drives: Development and Validation with In-Service Data

    DTIC Science & Technology

    2014-10-02

    potential advantages of using multi- variate classification/discrimination/ anomaly detection meth- ods on real world accelerometric condition monitoring ...case of false anomaly reports. A possible explanation of this phenomenon could be given 8 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT...of those helicopters. 1. Anomaly detection by means of a self-learning Shewhart control chart. A problem highlighted by the experts of Agusta- Westland

  8. Risk Factors for Sporadic Domestically Acquired Campylobacter Infections in Norway 2010–2011: A National Prospective Case-Control Study

    PubMed Central

    Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line

    2015-01-01

    Background Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. Methods A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. Results A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Conclusions Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to protect and maintain the quality of water from small-scale water supply systems. PMID:26431341

  9. Risk Factors for Sporadic Domestically Acquired Campylobacter Infections in Norway 2010-2011: A National Prospective Case-Control Study.

    PubMed

    MacDonald, Emily; White, Richard; Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line

    2015-01-01

    Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to protect and maintain the quality of water from small-scale water supply systems.

  10. On-line evaluation of multiloop digital controller performance

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.

    1993-01-01

    The purpose of this presentation is to inform the Guidance and Control community of capabilities which were developed by the Aeroservoelasticity Branch to evaluate the performance of multivariable control laws, on-line, during wind-tunnel testing. The capabilities are generic enough to be useful for all kinds of on-line analyses involving multivariable control in experimental testing. Consequently, it was decided to present this material at this workshop even though it has been presented elsewhere. Topics covered include: essential on-line analysis requirements; on-line analysis capabilities; on-line analysis software; frequency domain procedures; controller performance evaluation frequency-domain flutter suppression; and plant determination.

  11. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1994-01-01

    This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

  12. Socio-Demographic and Clinical Characteristics are Not Clinically Useful Predictors of Refill Adherence in Patients with Hypertension

    PubMed Central

    Steiner, John F.; Ho, P. Michael; Beaty, Brenda L.; Dickinson, L. Miriam; Hanratty, Rebecca; Zeng, Chan; Tavel, Heather M.; Havranek, Edward P.; Davidson, Arthur J.; Magid, David J.; Estacio, Raymond O.

    2009-01-01

    Background Although many studies have identified patient characteristics or chronic diseases associated with medication adherence, the clinical utility of such predictors has rarely been assessed. We attempted to develop clinical prediction rules for adherence with antihypertensive medications in two health care delivery systems. Methods and Results Retrospective cohort studies of hypertension registries in an inner-city health care delivery system (N = 17176) and a health maintenance organization (N = 94297) in Denver, Colorado. Adherence was defined by acquisition of 80% or more of antihypertensive medications. A multivariable model in the inner-city system found that adherent patients (36.3% of the total) were more likely than non-adherent patients to be older, white, married, and acculturated in US society, to have diabetes or cerebrovascular disease, not to abuse alcohol or controlled substances, and to be prescribed less than three antihypertensive medications. Although statistically significant, all multivariate odds ratios were 1.7 or less, and the model did not accurately discriminate adherent from non-adherent patients (C-statistic = 0.606). In the health maintenance organization, where 72.1% of patients were adherent, significant but weak associations existed between adherence and older age, white race, the lack of alcohol abuse, and fewer antihypertensive medications. The multivariate model again failed to accurately discriminate adherent from non-adherent individuals (C-statistic = 0.576). Conclusions Although certain socio-demographic characteristics or clinical diagnoses are statistically associated with adherence to refills of antihypertensive medications, a combination of these characteristics is not sufficiently accurate to allow clinicians to predict whether their patients will be adherent with treatment. PMID:20031876

  13. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  14. Modeling and Control for Microgrids

    NASA Astrophysics Data System (ADS)

    Steenis, Joel

    Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.

  15. [Influences of environmental factors and interaction of several chemokines gene-environmental on systemic lupus erythematosus].

    PubMed

    Ye, Dong-qing; Hu, Yi-song; Li, Xiang-pei; Huang, Fen; Yang, Shi-gui; Hao, Jia-hu; Yin, Jing; Zhang, Guo-qing; Liu, Hui-hui

    2004-11-01

    To explore the impact of environmental factors, daily lifestyle, psycho-social factors and the interactions between environmental factors and chemokines genes on systemic lupus erythematosus (SLE). Case-control study was carried out and environmental factors for SLE were analyzed by univariate and multivariate unconditional logistic regression. Interactions between environmental factors and chemokines polymorphism contributing to systemic lupus erythematosus were also analyzed by logistic regression model. There were nineteen factors associated with SLE when univariate unconditional logistic regression was used. However, when multivariate unconditional logistic regression was used, only five factors showed having impacts on the disease, in which drinking well water (OR=0.099) was protective factor for SLE, and multiple drug allergy (OR=8.174), over-exposure to sunshine (OR=18.339), taking antibiotics (OR=9.630) and oral contraceptives were risk factors for SLE. When unconditional logistic regression model was used, results showed that there was interaction between eating irritable food and -2518MCP-1G/G genotype (OR=4.387). No interaction between environmental factors was found that contributing to SLE in this study. Many environmental factors were related to SLE, and there was an interaction between -2518MCP-1G/G genotype and eating irritable food.

  16. Combustion distribution control using the extremum seeking algorithm

    NASA Astrophysics Data System (ADS)

    Marjanovic, A.; Krstic, M.; Djurovic, Z.; Kvascev, G.; Papic, V.

    2014-12-01

    Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia.

  17. Mapping as a visual health communication tool: promises and dilemmas.

    PubMed

    Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene

    2007-01-01

    In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.

  18. A comparative study of multivariable robustness analysis methods as applied to integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Lovell, T. A.; Schmidt, David K.

    1993-01-01

    Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.

  19. Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bodson, M.

    1982-01-01

    The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.

  20. Satellite image collection optimization

    NASA Astrophysics Data System (ADS)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  1. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    PubMed

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  2. Simulation to coating weight control for galvanizing

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  3. Effect of electronic prescribing with formulary decision support on medication use and cost.

    PubMed

    Fischer, Michael A; Vogeli, Christine; Stedman, Margaret; Ferris, Timothy; Brookhart, M Alan; Weissman, Joel S

    2008-12-08

    Electronic prescribing (e-prescribing) with formulary decision support (FDS) prompts prescribers to prescribe lower-cost medications and may help contain health care costs. In April 2004, 2 large Massachusetts insurers began providing an e-prescribing system with FDS to community-based practices. Using 18 months (October 1, 2003, to March 31, 2005) of administrative data, we conducted a pre-post study with concurrent controls. We first compared the change in the proportion of prescriptions for 3 formulary tiers before and after e-prescribing began, then developed multivariate longitudinal models to estimate the specific effect of e-prescribing when controlling for baseline differences between intervention and control prescribers. Potential savings were estimated using average medication costs by formulary tier. More than 1.5 million patients filled 17.4 million prescriptions during the study period. Multivariate models controlling for baseline differences between prescribers and for changes over time estimated that e-prescribing corresponded to a 3.3% increase (95% confidence interval, 2.7%-4.0%) in tier 1 prescribing. The proportion of prescriptions for tiers 2 and 3 (brand-name medications) decreased correspondingly. e-Prescriptions accounted for 20% of filled prescriptions in the intervention group. Based on average costs for private insurers, we estimated that e-prescribing with FDS at this rate could result in savings of $845,000 per 100,000 patients. Higher levels of e-prescribing use would increase these savings. Clinicians using e-prescribing with FDS were significantly more likely to prescribe tier 1 medications, and the potential financial savings were substantial. Widespread use of e-prescribing systems with FDS could result in reduced spending on medications.

  4. Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.

    2005-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.

  5. Availability of tobacco cessation services in substance use disorder treatment programs: Impact of state tobacco control policy.

    PubMed

    Abraham, Amanda J; Bagwell-Adams, Grace; Jayawardhana, Jayani

    2017-08-01

    Given the high prevalence of smoking among substance use disorder (SUD) patients, the specialty SUD treatment system is an important target for adoption and implementation of tobacco cessation (TC) services. While research has addressed the impact of tobacco control on individual tobacco consumption, largely overlooked in the literature is the potential impact of state tobacco control policies on availability of services for tobacco cessation. This paper examines the association between state tobacco control policy and availability of TC services in SUD treatment programs in the United States. State tobacco control and state demographic data (n=51) were merged with treatment program data from the 2012 National Survey of Substance Abuse Treatment Services (n=10.413) to examine availability of TC screening, counseling and pharmacotherapy services in SUD treatment programs using multivariate logistic regression models clustered at the state-level. Approximately 60% of SUD treatment programs offered TC screening services, 41% offered TC counseling services and 26% offered TC pharmacotherapy services. Results of multivariate logistic regression showed the odds of offering TC services were greater for SUD treatment programs located in states with higher cigarette excise taxes and greater spending on tobacco prevention and control. Findings indicate cigarette excise taxes and recommended funding levels may be effective policy tools for increasing access to TC services in SUD treatment programs. Coupled with changes to insurance coverage for TC under the Affordable Care Act, state tobacco control policy tools may further reduce tobacco use in the United States. Published by Elsevier Ltd.

  6. Performance and stability of telemanipulators using bilateral impedance control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Moore, Christopher Lane

    1991-01-01

    A new method of control for telemanipulators called bilateral impedance control is investigated. This new method differs from previous approaches in that interaction forces are used as the communication signals between the master and slave robots. The new control architecture has several advantages: (1) It allows the master robot and the slave robot to be stabilized independently without becoming involved in the overall system dynamics; (2) It permits the system designers to arbitrarily specify desired performance characteristics such as the force and position ratios between the master and slave; (3) The impedance at both ends of the telerobotic system can be modulated to suit the requirements of the task. The main goals of the research are to characterize the performance and stability of the new control architecture. The dynamics of the telerobotic system are described by a bond graph model that illustrates how energy is transformed, stored, and dissipated. Performance can be completely described by a set of three independent parameters. These parameters are fundamentally related to the structure of the H matrix that regulates the communication of force signals within the system. Stability is analyzed with two mathematical techniques: the Small Gain Theorem and the Multivariable Nyquist Criterion. The theoretical predictions for performance and stability are experimentally verified by implementing the new control architecture on a multidegree of freedom telemanipulator.

  7. Extended cooperative control synthesis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1994-01-01

    This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.

  8. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  9. H(2)- and H(infinity)-design tools for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi

    1989-01-01

    Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.

  10. Development, optimization and validation of gas chromatographic fingerprinting of Brazilian commercial diesel fuel for quality control.

    PubMed

    dos Santos, Bruno César Diniz Brito; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2012-10-01

    A three-step development, optimization and validation strategy is described for gas chromatography (GC) fingerprints of Brazilian commercial diesel fuel. A suitable GC-flame ionization detection (FID) system was selected to assay a complex matrix such as diesel. The next step was to improve acceptable chromatographic resolution with reduced analysis time, which is recommended for routine applications. Full three-level factorial designs were performed to improve flow rate, oven ramps, injection volume and split ratio in the GC system. Finally, several validation parameters were performed. The GC fingerprinting can be coupled with pattern recognition and multivariate regressions analyses to determine fuel quality and fuel physicochemical parameters. This strategy can also be applied to develop fingerprints for quality control of other fuel types.

  11. Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.

    PubMed

    Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz

    2014-02-01

    Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.

  12. Design Requirements for a Decision Support System for the Dynamic Retasking of Electronic Combat Assets.

    DTIC Science & Technology

    1988-03-01

    primary mission was not pursued. The question of the *t employment and retasking of EC assets is basically a question of command and control, though...The] primary function of command is deploying and maneuvering forces or other sources of potential power to be in the best possible position to...unstructured, and multivariable problem. Research Objective The primary objective of this research is to develop an initial set requirements for a decision

  13. Robustness enhancement of neurocontroller and state estimator

    NASA Technical Reports Server (NTRS)

    Troudet, Terry

    1993-01-01

    The feasibility of enhancing neurocontrol robustness, through training of the neurocontroller and state estimator in the presence of system uncertainties, is investigated on the example of a multivariable aircraft control problem. The performance and robustness of the newly trained neurocontroller are compared to those for an existing neurocontrol design scheme. The newly designed dynamic neurocontroller exhibits a better trade-off between phase and gain stability margins, and it is significantly more robust to degradations of the plant dynamics.

  14. Reconfigurable multivariable control law for commercial airplane using a direct digital output feedback design

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Hueschen, R. M.

    1984-01-01

    The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition for landing, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot time to make longer range decisions. This paper shows a design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Single control element failures are allowed in three of the four controls. The four controls design and failure cases are analyzed by means of a digital airplane simulation, with regard to tracking capability and ability to overcome severe windshear and turbulence during the aproach and landing phase of flight.

  15. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate FMRI study.

    PubMed

    McNamee, Daniel; Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P

    2015-03-04

    While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. Copyright © 2015 the authors 0270-6474/15/353764-08$15.00/0.

  16. Determinants of elevated healthcare utilization in patients with COPD.

    PubMed

    Simon-Tuval, Tzahit; Scharf, Steven M; Maimon, Nimrod; Bernhard-Scharf, Barbara J; Reuveni, Haim; Tarasiuk, Ariel

    2011-01-13

    Chronic obstructive pulmonary disease (COPD) imparts a substantial economic burden on western health systems. Our objective was to analyze the determinants of elevated healthcare utilization among patients with COPD in a single-payer health system. Three-hundred eighty-nine adults with COPD were matched 1:3 to controls by age, gender and area of residency. Total healthcare cost 5 years prior recruitment and presence of comorbidities were obtained from a computerized database. Health related quality of life (HRQoL) indices were obtained using validated questionnaires among a subsample of 177 patients. Healthcare utilization was 3.4-fold higher among COPD patients compared with controls (p < 0.001). The "most-costly" upper 25% of COPD patients (n = 98) consumed 63% of all costs. Multivariate analysis revealed that independent determinants of being in the "most costly" group were (OR; 95% CI): age-adjusted Charlson Comorbidity Index (1.09; 1.01-1.2), history of: myocardial infarct (2.87; 1.5-5.5), congestive heart failure (3.52; 1.9-6.4), mild liver disease (3.83; 1.3-11.2) and diabetes (2.02; 1.1-3.6). Bivariate analysis revealed that cost increased as HRQoL declined and severity of airflow obstruction increased but these were not independent determinants in a multivariate analysis. Comorbidity burden determines elevated utilization for COPD patients. Decision makers should prioritize scarce health care resources to a better care management of the "most costly" patients.

  17. Epidemiological characteristics of measles from 2000 to 2014: Results of a measles catch-up vaccination campaign in Xianyang, China.

    PubMed

    Zhang, Rong-Qiang; Li, Hong-Bing; Li, Feng-Ying; Han, Li-Xin; Xiong, Yong-Min

    This study was a cross-sectional case-control study aimed at (1) identifying risk factors contributing to the measles epidemic and (2) evaluating the impacts of measles-containing vaccines (MCVs), with the goal of providing evidence-based recommendations for measles elimination strategies in China. Data on measles cases from 2000 to 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang. The effectiveness of MCVs was evaluated in 357 patients with a vaccination history and 503 healthy randomly selected controls. Patient data were subjected to multivariable logistic regression modeling. From 2005 to 2014, the average incidence of measles in Xianyang was 5.42 cases per 100,000 people. The second MCV dose was highly protective in 8-month-old infants. MCVs in general have been highly protective in 8-month-old infants. Multivariable logistic regression modeling indicated that age (≥2 years vs. <2years), MCV dose 2 vaccination, and MV vaccination were each independently associated with measles case status. In conclusions: A MCV should be administered on time to all age-eligible children, reproductive-age women, and migrant populations, to maximize herd immunity to measles. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Fuzzy control for a nonlinear mimo-liquid level problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.

    2001-01-01

    Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid levelmore » control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.« less

  19. V/STOL propulsion control analysis: Phase 2, task 5-9

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.

  20. Multivariate approaches for stability control of the olive oil reference materials for sensory analysis - part II: applications.

    PubMed

    Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis

    2018-02-09

    The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics

    PubMed Central

    Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven

    2011-01-01

    Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957

  2. The impact of the Catholic Jubilee in 2000 on infectious diseases. A case-control study of giardiasis, Rome, Italy 2000-2001.

    PubMed

    Faustini, A; Marinacci, C; Fabrizi, E; Marangi, M; Recchia, O; Pica, R; Giustini, F; La Marca, A; Nacci, A; Panichi, G; Perucci, C A

    2006-06-01

    Mass gatherings are believed to increase the transmission of infectious diseases although surveillance systems have shown a low impact. The Catholic Jubilee was held in Rome, Italy in 2000. We conducted a case-control study to analyse the risk factors of giardiasis among residents. All diseases reported to the laboratory surveillance system from January 2000 to May 2001 were compared with hospital controls concurrently selected in the same season as cases and frequency-matched for age and birth country. Fifty-two cases (44.1%) and 72 controls were enrolled. In the multivariable analysis factors associated with giardiasis among adults were: travelling abroad (OR 24.2, P>0.01), exposure to surface water (OR 4.80, P=0.05), high educational level (OR 3.8, P=0.03). Having a maid from a high-prevalence country was independently associated (OR 2.3) although not statistically significant. This is the only exposure that changed during the Jubilee.

  3. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    PubMed

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mckillip, R. M., Jr.

    1984-01-01

    Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.

  5. Dual adaptive control: Design principles and applications

    NASA Technical Reports Server (NTRS)

    Mookerjee, Purusottam

    1988-01-01

    The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.

  6. Study on initiative vibration absorbing technology of optics in strong disturbed environment

    NASA Astrophysics Data System (ADS)

    Jia, Si-nan; Xiong, Mu-di; Zou, Xiao-jie

    2007-12-01

    Strong disturbed environment is apt to cause irregular vibration, which seriously affects optical collimation. To improve the performance of laser beam, three-point dynamic vibration absorbing method is proposed, and laser beam initiative vibration absorbing system is designed. The maladjustment signal is detected by position sensitive device (PSD), three groups of PZT are driven to adjust optical element in real-time, so the performance of output-beam is improved. The coupling model of the system is presented. Multivariable adaptive closed-loop decoupling arithmetic is used to design three-input-three-output decoupling controller, so that high precision dynamic adjusting is realized. Experiments indicate that the system has good shock absorbing efficiency.

  7. Simulation Exploration through Immersive Parallel Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas J; Bush, Brian W; Gruchalla, Kenny M

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  8. Simulation Exploration through Immersive Parallel Planes: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  9. Extending Inferential Group Analysis in Type 2 Diabetic Patients with Multivariate GLM Implemented in SPM8.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel

    2017-01-01

    Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.

  10. Extending Inferential Group Analysis in Type 2 Diabetic Patients with Multivariate GLM Implemented in SPM8

    PubMed Central

    Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel

    2017-01-01

    Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571

  11. Modular theory of inverse systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.

  12. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.

    PubMed

    Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali

    2013-05-01

    Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.

  13. Shifting chronic disease management from hospitals to primary care in Estonian health system: analysis of national panel data.

    PubMed

    Atun, Rifat; Gurol-Urganci, Ipek; Hone, Thomas; Pell, Lisa; Stokes, Jonathan; Habicht, Triin; Lukka, Kaija; Raaper, Elin; Habicht, Jarno

    2016-12-01

    Following independence from the Soviet Union in 1991, Estonia introduced a national insurance system, consolidated the number of health care providers, and introduced family medicine centred primary health care (PHC) to strengthen the health system. Using routinely collected health billing records for 2005-2012, we examine health system utilisation for seven ambulatory care sensitive conditions (ACSCs) (asthma, chronic obstructive pulmonary disease [COPD], depression, Type 2 diabetes, heart failure, hypertension, and ischemic heart disease [IHD]), and by patient characteristics (gender, age, and number of co-morbidities). The data set contained 552 822 individuals. We use patient level data to test the significance of trends, and employ multivariate regression analysis to evaluate the probability of inpatient admission while controlling for patient characteristics, health system supply-side variables, and PHC use. Over the study period, utilisation of PHC increased, whilst inpatient admissions fell. Service mix in PHC changed with increases in phone, email, nurse, and follow-up (vs initial) consultations. Healthcare utilisation for diabetes, depression, IHD and hypertension shifted to PHC, whilst for COPD, heart failure and asthma utilisation in outpatient and inpatient settings increased. Multivariate regression indicates higher probability of inpatient admission for males, older patient and especially those with multimorbidity, but protective effect for PHC, with significantly lower hospital admission for those utilising PHC services. Our findings suggest health system reforms in Estonia have influenced the shift of ACSCs from secondary to primary care, with PHC having a protective effect in reducing hospital admissions.

  14. A Fundamental Mathematical Model of a Microbial Predenitrification System

    NASA Technical Reports Server (NTRS)

    Hoo, Karlene A.

    2005-01-01

    Space flight beyond Low Earth Orbit requires sophisticated systems to support all aspects of the mission (life support, real-time communications, etc.). A common concern that cuts across all these systems is the selection of information technology (IT) methodology, software and hardware architectures to provide robust monitoring, diagnosis, and control support. Another dimension of the problem space is that different systems must be integrated seamlessly so that communication speed and data handling appear as a continuum (un-interrupted). One such team investigating this problem is the Advanced Integration Matrix (AIM) team whose role is to define the critical requirements expected of software and hardware to support an integrated approach to the command and control of Advanced Life Support (ALS) for future long-duration human space missions, including permanent human presence on the Moon and Mars. A goal of the AIM team is to set the foundation for testing criteria that will assist in specifying tasks, control schemes and test scenarios to validate and verify systems capabilities. This project is to contribute to the goals of the AIM team by assisting with controls planning for ALS. Control for ALS is an enormous problem it involves air revitalization, water recovery, food production, solids processing and crew. In more general terms, these systems can be characterized as involving both continuous and discrete processes, dynamic interactions among the sub-systems, nonlinear behavior due to the complex operations, and a large number of multivariable interactions due to the dimension of the state space. It is imperative that a baseline approach from which to measure performance is established especially when the expectation for the control system is complete autonomous control.

  15. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  16. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  17. Reprint of: Relationship between cataract severity and socioeconomic status.

    PubMed

    Wesolosky, Jason D; Rudnisky, Christopher J

    2015-06-01

    To determine the relationship between cataract severity and socioeconomic status (SES). Retrospective, observational case series. A total of 1350 eyes underwent phacoemulsification cataract extraction by a single surgeon using an Alcon Infiniti system. Cataract severity was measured using phaco time in seconds. SES was measured using area-level aggregate census data: median income, education, proportion of common-law couples, and employment rate. Preoperative best corrected visual acuity was obtained and converted to logarithm of the minimum angle of resolution values. For patients undergoing bilateral surgery, the generalized estimating equation was used to account for the correlation between eyes. Univariate analyses were performed using simple regression, and multivariate analyses were performed to account for variables with significant relationships (p < 0.05) on univariate testing. Sensitivity analyses were performed to assess the effect of including patient age in the controlled analyses. Multivariate analyses demonstrated that cataracts were more severe when the median income was lower (p = 0.001) and the proportion of common-law couples living in a patient's community (p = 0.012) and the unemployment rate (p = 0.002) were higher. These associations persisted even when controlling for patient age. Patients of lower SES have more severe cataracts. Copyright © 2015. Published by Elsevier Inc.

  18. Synthesis and operation of an FFT-decoupled fixed-order reversed-field pinch plasma control system based on identification data

    NASA Astrophysics Data System (ADS)

    Olofsson, K. Erik J.; Brunsell, Per R.; Witrant, Emmanuel; Drake, James R.

    2010-10-01

    Recent developments and applications of system identification methods for the reversed-field pinch (RFP) machine EXTRAP T2R have yielded plasma response parameters for decoupled dynamics. These data sets are fundamental for a real-time implementable fast Fourier transform (FFT) decoupled discrete-time fixed-order strongly stabilizing synthesis as described in this work. Robustness is assessed over the data set by bootstrap calculation of the sensitivity transfer function worst-case H_{\\infty} -gain distribution. Output tracking and magnetohydrodynamic mode m = 1 tracking are considered in the same framework simply as two distinct weighted traces of a performance channel output-covariance matrix as derived from the closed-loop discrete-time Lyapunov equation. The behaviour of the resulting multivariable controller is investigated with dedicated T2R experiments.

  19. Can a bank crisis break your heart?

    PubMed Central

    Stuckler, David; Meissner, Christopher M; King, Lawrence P

    2008-01-01

    Background To assess whether a banking system crisis increases short-term population cardiovascular mortality rates. Methods International, longitudinal multivariate regression analysis of cardiovascular disease mortality data from 1960 to 2002 Results A system-wide banking crisis increases population heart disease mortality rates by 6.4% (95% CI: 2.5% to 10.2%, p < 0.01) in high income countries, after controlling for economic change, macroeconomic instability, and population age and social distribution. The estimated effect is nearly four times as large in low income countries. Conclusion Banking crises are a significant determinant of short-term increases in heart disease mortality rates, and may have more severe consequences for developing countries. PMID:18197979

  20. On the reliability of Shewhart-type control charts for multivariate process variability

    NASA Astrophysics Data System (ADS)

    Djauhari, Maman A.; Salleh, Rohayu Mohd; Zolkeply, Zunnaaim; Li, Lee Siaw

    2017-05-01

    We show that in the current practice of multivariate process variability monitoring, the reliability of Shewhart-type control charts cannot be measured except when the sub-group size n tends to infinity. However, the requirement of large n is meaningless not only in manufacturing industry where n is small but also in service industry where n is moderate. In this paper, we introduce a new definition of control limits in the two most appreciated control charts in the literature, i.e., the improved generalized variance chart (IGV-chart) and vector variance chart (VV-chart). With the new definition of control limits, the reliability of the control charts can be determined. Some important properties of new control limits will be derived and the computational technique of probability of false alarm will be delivered.

  1. Trabecular bone score as an assessment tool to identify the risk of osteoporosis in axial spondyloarthritis: a case-control study.

    PubMed

    Kang, Kwi Young; Goo, Hye Yeon; Park, Sung-Hwan; Hong, Yeon Sik

    2018-03-01

    To compare the trabecular bone score (TBS) between patients with axial spondyloarthritis (axSpA) and matched normal controls and identify risk factors associated with a low TBS. TBS and BMD were assessed in the two groups (axSpA and control) using DXA. Osteoporosis risk factors and inflammatory markers were also assessed. Disease activity and radiographic progression in the sacroiliac joint and spine were evaluated in the axSpA group. Multivariate linear regression analysis was performed to identify risk factors associated with TBS. In the axSpA group, 248 subjects were enrolled; an equal number of age- and sex-matched subjects comprised the control group. The mean TBS was 1.43 (0.08) and 1.38 (0.12) in the control and axSpA groups, respectively (P < 0.001); BMD at the lumbar spine did not differ between the two groups. The TBS was negatively correlated with ESR and CRP levels in the axSpA group only (P < 0.001 and P = 0.007, respectively). Syndesmophytes in the axSpA group was associated with lower TBS (P < 0.001) but higher lumbar BMD (P = 0.021) vs controls. In the multivariate analyses, ESR, CRP and spinal radiographic progression were significantly associated with TBS. TBS assessments revealed poor bone quality in patients with axSpA compared with the matched controls. In axSpA, systemic inflammatory markers were negatively correlated with TBS and spinal radiographic progression and inflammatory markers were independently correlated with low TBS. TBS may, therefore, be a useful clinical tool to identify the risk of osteoporosis in patients with axSpA.

  2. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms.

    PubMed

    Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari

    2013-05-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.

  3. Child and adult outcomes of chronic child maltreatment.

    PubMed

    Jonson-Reid, Melissa; Kohl, Patricia L; Drake, Brett

    2012-05-01

    To describe how child maltreatment chronicity is related to negative outcomes in later childhood and early adulthood. The study included 5994 low-income children from St Louis, including 3521 with child maltreatment reports, who were followed from 1993-1994 through 2009. Children were 1.5 to 11 years of age at sampling. Data include administrative and treatment records indicating substance abuse, mental health treatment, brain injury, sexually transmitted disease, suicide attempts, and violent delinquency before age 18 and child maltreatment perpetration, mental health treatment, or substance abuse in adulthood. Multivariate analysis controlled for potential confounders. Child maltreatment chronicity predicted negative childhood outcomes in a linear fashion (eg, percentage with at least 1 negative outcome: no maltreatment = 29.7%, 1 report = 39.5%, 4 reports = 67.1%). Suicide attempts before age 18 showed the largest proportionate increase with repeated maltreatment (no report versus 4+ reports = +625%, P < .0001). The dose-response relationship was reduced once controls for other adverse child outcomes were added in multivariate models of child maltreatment perpetration and mental health issues. The relationship between adult substance abuse and maltreatment report history disappeared after controlling for adverse child outcomes. Child maltreatment chronicity as measured by official reports is a robust indicator of future negative outcomes across a range of systems, but this relationship may desist for certain adult outcomes once childhood adverse events are controlled. Although primary and secondary prevention remain important approaches, this study suggests that enhanced tertiary prevention may pay high dividends across a range of medical and behavioral domains.

  4. [Association between hip fractures and risk factors for osteoporosis. Multivariate analysis].

    PubMed

    Masoni, Ana; Morosano, Mario; Tomat, María Florencia; Pezzotto, Stella M; Sánchez, Ariel

    2007-01-01

    In this observational, case-control study, 376 inpatients were evaluated in order to determine the association of risk factors (RF) and hip fracture; 151 patients had osteoporotic hip fracture (cases); the remaining were controls. Data were obtained from medical charts, and through a standardized questionnaire about RF. Mean age of the sample (+/- SD) was 80.6 +/- 8.1 years, without statistically significant difference between cases and controls; the female:male ratio was 3:1 in both groups. Fractured women were older than men (82.5 +/- 8.1 vs. 79.7 +/- 7.2 years, respectively; p < 0.01). Physical activity, intake of alcohol and tobacco, and sun exposure were low in all patients. Falls among cases happened predominantly at home (p < 0.001). Among female cases, time spent in household duties was a RF (p = 0.007), which was absent in males. In multivariate analysis, the following RF were significantly more frequent: Cognitive impairment (p = 0.001), and previous falls (p < 0.0001); whereas the following protective factors were significantly different from controls: Calcium intake during youth (p < 0.0001), current calcium intake (p < 0.0001), and mechanical aid for walking (p < 0.0001). Evaluation of RF and protective factors may contribute to diminish the probability of hip fracture, through a modification of personal habits, and measures to prevent falls among elderly adults. Present information can help to develop local and national population-based strategies to diminish the burden of hip fractures for the health system.

  5. Impact angle constrained three-dimensional integrated guidance and control for STT missile in the presence of input saturation.

    PubMed

    Wang, Sen; Wang, Weihong; Xiong, Shaofeng

    2016-09-01

    Considering a class of skid-to-turn (STT) missile with fixed target and constrained terminal impact angles, a novel three-dimensional (3D) integrated guidance and control (IGC) scheme is proposed in this paper. Based on coriolis theorem, the fully nonlinear IGC model without the assumption that the missile flies heading to the target at initial time is established in the three-dimensional space. For this strict-feedback form of multi-variable system, dynamic surface control algorithm is implemented combining with extended observer (ESO) to complete the preliminary design. Then, in order to deal with the problems of the input constraints, a hyperbolic tangent function is introduced to approximate the saturation function and auxiliary system including a Nussbaum function established to compensate for the approximation error. The stability of the closed-loop system is proven based on Lyapunov theory. Numerical simulations results show that the proposed integrated guidance and control algorithm can ensure the accuracy of target interception with initial alignment angle deviation and the input saturation is suppressed with smooth deflection curves. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  7. Experimental study of adaptive pointing and tracking for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Boussalis, D.; Bayard, D. S.; Ih, C.; Wang, S. J.; Ahmed, A.

    1991-01-01

    This paper describes an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used in this study is based on a multivariable direct model reference adaptive control law. Several experimental validation studies were performed earlier using this algorithm for vibration damping and robust regulation, with excellent results. The current work extends previous studies by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error.

  8. Contribution au developpement d'une methode de controle des procedes dans une usine de bouletage

    NASA Astrophysics Data System (ADS)

    Gosselin, Claude

    This thesis, a collaborative effort between Ecole de technologie superieure and ArcelorMittal Company, presents the development of a methodology for monitoring and quality control of multivariable industrial production processes. This innovation research mandate was developed at ArcelorMittal Exploitation Miniere (AMEM) pellet plant in Port-Cartier (Quebec, Canada). With this undertaking, ArcelorMittal is striving to maintain its world class level of excellence and continues to pursue initiatives that can augment its competitive advantage worldwide. The plant's gravimetric classification process was retained as a prototype and development laboratory due to its effect on the company's competitiveness and its impact on subsequent steps leading to final production of iron oxide pellets. Concretely, the development of this expertise in process control and in situ monitoring will establish a firm basic knowledge in the fields of complex system physical modeling, data reconciliation, statistical observers, multivariate command and quality control using real-time monitoring of the desirability function. The hydraulic classifier is mathematically modeled. Using planned disturbances on the production line, an identification procedure was established to provide empirical estimations of the model's structural parameters. A new sampling campaign and a previously unpublished data collection and consolidation policy were implemented plant-wide. Access to these invaluable data sources has enabled the establishment of new thresholds that govern the production process and its control. Finally, as a substitute for the traditional quality control process, we have implemented a new strategy based on the use of the desirability function. Our innovation is not in using this Finally, as a substitute for the traditional quality control process, we have implemented a new strategy based on the use of the desirability function. Our innovation is not in using this function as an indicator of overall (economic) satisfaction in the production process, but rather in proposing it as an "observer" of the system's state. The first implementation steps have already demonstrated the method's feasibility as well as other numerous industrial impacts on production processes within the company. Namely, the emergence of the economical aspect as a strategic variable that assures better governance of production processes where quality variables present strategic issues.

  9. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  10. Project management techniques for highly integrated programs

    NASA Technical Reports Server (NTRS)

    Stewart, J. F.; Bauer, C. A.

    1983-01-01

    The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.

  11. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was deliveredmore » to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.« less

  12. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    PubMed

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.

  13. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  14. Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Ind., June 29-July 1, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented on the applicability of Landsat data to water management and control needs, IBIS, a geographic information system based on digital image processing and image raster datatype, and the Image Data Access Method (IDAM) for the Earth Resources Interactive Processing System. Attention is also given to the Prototype Classification and Mensuration System (PROCAMS) applied to agricultural data, the use of Landsat for water quality monitoring in North Carolina, and the analysis of geophysical remote sensing data using multivariate pattern recognition. The Illinois crop-acreage estimation experiment, the Pacific Northwest Resources Inventory Demonstration, and the effects of spatial misregistration on multispectral recognition are also considered. Individual items are announced in this issue.

  15. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.

    PubMed

    Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia

    2010-07-01

    A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.

  16. Risk Factors for Central Serous Chorioretinopathy: Multivariate Approach in a Case-Control Study.

    PubMed

    Chatziralli, Irini; Kabanarou, Stamatina A; Parikakis, Efstratios; Chatzirallis, Alexandros; Xirou, Tina; Mitropoulos, Panagiotis

    2017-07-01

    The purpose of this prospective study was to investigate the potential risk factors associated independently with central serous retinopathy (CSR) in a Greek population, using multivariate approach. Participants in the study were 183 consecutive patients diagnosed with CSR and 183 controls, matched for age. All participants underwent complete ophthalmological examination and information regarding their sociodemographic, clinical, medical and ophthalmological history were recorded, so as to assess potential risk factors for CSR. Univariate and multivariate analysis was performed. Univariate analysis showed that male sex, high educational status, high income, alcohol consumption, smoking, hypertension, coronary heart disease, obstructive sleep apnea, autoimmune disorders, H. pylori infection, type A personality and stress, steroid use, pregnancy and hyperopia were associated with CSR, while myopia was found to protect from CSR. In multivariate analysis, alcohol consumption, hypertension, coronary heart disease and autoimmune disorders lost their significance, while the remaining factors were all independently associated with CSR. It is important to take into account the various risk factors for CSR, so as to define vulnerable groups and to shed light into the pathogenesis of the disease.

  17. Hydroxychloroquine-induced pigmentation in patients with systemic lupus erythematosus: a case-control study.

    PubMed

    Jallouli, Moez; Francès, Camille; Piette, Jean-Charles; Huong, Du Le Thi; Moguelet, Philippe; Factor, Cecile; Zahr, Noël; Miyara, Makoto; Saadoun, David; Mathian, Alexis; Haroche, Julien; De Gennes, Christian; Leroux, Gaelle; Chapelon, Catherine; Wechsler, Bertrand; Cacoub, Patrice; Amoura, Zahir; Costedoat-Chalumeau, Nathalie

    2013-08-01

    Hydroxychloroquine-induced pigmentation is not a rare adverse effect. Our data support the hypothesis that hydroxychloroquine-induced pigmentation is secondary to ecchymosis or bruising. To describe the clinical features and outcome of hydroxychloroquine (HCQ)-induced pigmentation in patients with systemic lupus erythematosus (SLE). In a case-control study conducted at a French referral center for SLE and antiphospholipid syndrome, 24 patients with SLE, with a diagnosis of HCQ-induced pigmentation, were compared with 517 SLE controls treated with HCQ. The primary outcome was the clinical features of HCQ-induced pigmentation. Skin biopsies were performed on 5 patients, both in healthy skin and in the pigmented lesions. The statistical associations of HCQ-induced pigmentation with several variables were calculated using univariate and multivariate analyses. Among the 24 patients, skin pigmentation appeared after a median HCQ treatment duration of 6.1 years (range, 3 months-22 years). Twenty-two patients (92%) reported that the appearance of pigmented lesions was preceded by the occurrence of ecchymotic areas, which gave way to a localized blue-gray or brown pigmentation that persisted. Twenty-three patients (96%) had at least 1 condition predisposing them to easy bruising. Results from skin biopsies performed on 5 patients showed that the median concentration of iron was significantly higher in biopsy specimens of pigmented lesions compared with normal skin (4115 vs 413 nmol/g; P < .001). Using multivariate logistic regression, we found that HCQ-induced pigmentation was independently associated with previous treatment with oral anticoagulants and/or antiplatelet agents and with higher blood HCQ concentration. Hydroxychloroquine-induced pigmentation is not a rare adverse effect of HCQ. Our data support the hypothesis that HCQ-induced pigmentation is secondary to ecchymosis or bruising.

  18. Relationship of social factors including trust, control over life decisions, problems with transport and safety, to psychological distress in the community.

    PubMed

    Taylor, Anne W; Chittleborough, Catherine; Gill, Tiffany K; Winefield, Helen; Baum, Fran; Hiller, Janet E; Goldney, Robert; Tucker, Graeme; Hugo, Graeme

    2012-03-01

    Psychological distress encompasses anxiety and depression with the previous studies showing that psychological distress is unequally distributed across population groups. This paper explores the mechanisms and processes which may affect the distribution of psychological distress, including a range of individual and community level socioeconomic determinants. Representative cross-sectional data was collected for respondents aged 16+ from July 2008 to June 2009, as a part of the South Australian Monitoring and Surveillance System (SAMSS) using Computer Assisted Telephone Interviews (CATI). Univariate and multivariate analyses (n = 5,763) were conducted to investigate the variables that were associated with psychological distress. The overall prevalence of psychological distress was 8.9%. In the multivariate model, females, those aged 16-49, respondents single with children, unable to work or unemployed, with a poorer family financial situation, earning $20,000 or less, feeling safe in their home some or none of the time, feeling as though they have less then total control over life decisions and sometimes experiencing problems with transport, were significantly more likely to experience psychological distress. This paper has demonstrated the relationship between low-income, financial pressure, less than optimal safety and control, and high-psychological distress. It is important that the groups highlighted as vulnerable be targeted in policy, planning, and health promotion and prevention campaigns.

  19. ABO blood groups, Rhesus factor, and anaphylactic reactions due to Hymenoptera stings.

    PubMed

    Pałgan, Krzysztof; Bartuzi, Zbigniew; Chrzaniecka, Elżbieta

    2017-09-21

    Numerous publications indicate that the prevalence of some infectious, neoplastic and immunological diseases are associated with ABO blood groups. The aim of this study was to verify whether ABO and Rh blood groups are associated with severe anaphylactic reactions after Hymenoptera stings. A study was undertaken of 71,441 Caucasian subjects living in the same geographic area. The study group included 353 patients with diagnosed systemic anaphylaxis to Hymenoptera venom. Control group included 71,088 healthy blood donors. Frequencies of ABO and Rhesus groups in the study and control groups were compared using univariate and multivariate analyses. No statistically significant interactions were observed between the ABO blood group and anaphylactic reactions to Hymenoptera.

  20. Precise control of flexible manipulators

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Bindford, T. O.; Schmitz, E.

    1984-01-01

    The design and experimental testing of end point position controllers for a very flexible one link lightweight manipulator are summarized. The latest upgraded version of the experimental set up, and the basic differences between conventional joint angle feedback and end point position feedback are described. A general procedure for application of modern control methods to the problem is outlined. The relationship between weighting parameters and the bandwidth and control stiffness of the resulting end point position closed loop system is shown. It is found that joint rate angle feedback in addition to the primary end point position sensor is essential for adequate disturbance rejection capability of the closed loop system. The use of a low order multivariable compensator design computer code; called Sandy is documented. A solution to the problem of control mode switching between position sensor sets is outlined. The proof of concept for endpoint position feedback for a one link flexible manipulator was demonstrated. The bandwidth obtained with the experimental end point position controller is about twice as fast as the beam's first natural cantilevered frequency, and comes within a factor of four of the absolute physical speed limit imposed by the wave propagation time of the beam.

  1. Control of maglev vehicles with aerodynamic and guideway disturbances

    NASA Technical Reports Server (NTRS)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

    1994-01-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  2. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.

  3. HYTESS 2: A Hypothetical Turbofan Engine Simplified Simulation with multivariable control and sensor analytical redundancy

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1986-01-01

    A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.

  4. Causality networks from multivariate time series and application to epilepsy.

    PubMed

    Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2015-08-01

    Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.

  5. Development of multivariate exposure and fatal accident involvement rates for 1977

    DOT National Transportation Integrated Search

    1985-10-01

    The need for multivariate accident involvement rates is often encounted in : accident analysis. The FARS (Fatal Accident Reporting System) files contain : records of fatal involvements characterized by many variables while NPTS : (National Personal T...

  6. Theoretical constraints in the design of multivariable control systems

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Mook, D. Joseph; Depena, Juan

    1991-01-01

    The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.

  7. Propulsion Controls, 1979. [air breathing engine control

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art of multivariable engine control is examined in order to determine future needs and problem areas and to establish the appropriate roles of government, industries, and universities in addressing these problems.

  8. Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids using the HILIC-ESI-IT-TOF-MS system.

    PubMed

    Song, Shuang; Cheong, Ling-Zhi; Man, Qing-Qing; Pang, Shao-Jie; Li, Yue-Qi; Ren, Biao; Zhang, Jian

    2018-05-01

    Early diagnosis of neural changes causing cognitive impairment is critical for development of preventive therapies for dementia. Biomarkers currently characterized cannot be extensively applied due to the invasive sampling of cerebrospinal fluid. The other imaging approaches are either expensive or require a high technique. Phospholipids (PLs), which are basic constituents of neurons, might be a key variable in the pathogenesis of cognitive impairment. Changes in plasma PL provide the possibility for development of novel biomarkers with minimal invasion and high patient acceptance. In this work, a HILIC-ESI-IT-TOF-MS system was introduced for untargeted profiling of plasma PLs to investigate the relationship between changes of plasma PL profiles and cognitive impairment. A total of 272 types of PL molecular structures were characterized in human plasma and quantified through the internal standard method. Univariate analysis shows 29 PLs were significantly different between the control (n = 41) and the cognitive impairment (CI) group (n = 41). Multivariate analysis (PCA and OPLS-DA) was conducted based on these 29 potential PL biomarkers. Both univariate and multivariate analyses show abnormality of PL metabolism in the CI group, and the downregulation of ethanolamine plasmalogen (pPE) supply, especially those with PUFAs, in the circulation system should be strongly associated with neurodegeneration. A discriminative model was established with satisfied fit (R2) and prediction (Q2) abilities, and the classification test showed better recognition of the CI group than the control group indicating that this model of PL biomarkers could be used as indicators for screening of CI. Graphical abstract Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids.

  9. Design of a compensation for an ARMA model of a discrete time system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mainemer, C. I.

    1978-01-01

    The design of an optimal dynamic compensator for a multivariable discrete time system is studied. Also the design of compensators to achieve minimum variance control strategies for single input single output systems is analyzed. In the first problem the initial conditions of the plant are random variables with known first and second order moments, and the cost is the expected value of the standard cost, quadratic in the states and controls. The compensator is based on the minimum order Luenberger observer and it is found optimally by minimizing a performance index. Necessary and sufficient conditions for optimality of the compensator are derived. The second problem is solved in three different ways; two of them working directly in the frequency domain and one working in the time domain. The first and second order moments of the initial conditions are irrelevant to the solution. Necessary and sufficient conditions are derived for the compensator to minimize the variance of the output.

  10. EEG-based emergency braking intention prediction for brain-controlled driving considering one electrode falling-off.

    PubMed

    Huikang Wang; Luzheng Bi; Teng Teng

    2017-07-01

    This paper proposes a novel method of electroencephalography (EEG)-based driver emergency braking intention detection system for brain-controlled driving considering one electrode falling-off. First, whether one electrode falls off is discriminated based on EEG potentials. Then, the missing signals are estimated by using the signals collected from other channels based on multivariate linear regression. Finally, a linear decoder is applied to classify driver intentions. Experimental results show that the falling-off discrimination accuracy is 99.63% on average and the correlation coefficient and root mean squared error (RMSE) between the estimated and experimental data are 0.90 and 11.43 μV, respectively, on average. Given one electrode falls off, the system accuracy of the proposed intention prediction method is significantly higher than that of the original method (95.12% VS 79.11%) and is close to that (95.95%) of the original system under normal situations (i. e., no electrode falling-off).

  11. A new method for defining and managing process alarms and for correcting process operation when an alarm occurs.

    PubMed

    Brooks, Robin; Thorpe, Richard; Wilson, John

    2004-11-11

    A new mathematical treatment of alarms that considers them as multi-variable interactions between process variables has provided the first-ever method to calculate values for alarm limits. This has resulted in substantial reductions in false alarms and hence in alarm annunciation rates in field trials. It has also unified alarm management, process control and product quality control into a single mathematical framework so that operations improvement and hence economic benefits are obtained at the same time as increased process safety. Additionally, an algorithm has been developed that advises what changes should be made to Manipulable process variables to clear an alarm. The multi-variable Best Operating Zone at the heart of the method is derived from existing historical data using equation-free methods. It does not require a first-principles process model or an expensive series of process identification experiments. Integral with the method is a new format Process Operator Display that uses only existing variables to fully describe the multi-variable operating space. This combination of features makes it an affordable and maintainable solution for small plants and single items of equipment as well as for the largest plants. In many cases, it also provides the justification for the investments about to be made or already made in process historian systems. Field Trials have been and are being conducted at IneosChlor and Mallinckrodt Chemicals, both in the UK, of the new geometric process control (GPC) method for improving the quality of both process operations and product by providing Process Alarms and Alerts of much high quality than ever before. The paper describes the methods used, including a simple visual method for Alarm Rationalisation that quickly delivers large sets of Consistent Alarm Limits, and the extension to full Alert Management with highlights from the Field Trials to indicate the overall effectiveness of the method in practice.

  12. Multivariate multiscale entropy of financial markets

    NASA Astrophysics Data System (ADS)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  13. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.

    PubMed

    Tang, Yongqiang

    2018-04-30

    The controlled imputation method refers to a class of pattern mixture models that have been commonly used as sensitivity analyses of longitudinal clinical trials with nonignorable dropout in recent years. These pattern mixture models assume that participants in the experimental arm after dropout have similar response profiles to the control participants or have worse outcomes than otherwise similar participants who remain on the experimental treatment. In spite of its popularity, the controlled imputation has not been formally developed for longitudinal binary and ordinal outcomes partially due to the lack of a natural multivariate distribution for such endpoints. In this paper, we propose 2 approaches for implementing the controlled imputation for binary and ordinal data based respectively on the sequential logistic regression and the multivariate probit model. Efficient Markov chain Monte Carlo algorithms are developed for missing data imputation by using the monotone data augmentation technique for the sequential logistic regression and a parameter-expanded monotone data augmentation scheme for the multivariate probit model. We assess the performance of the proposed procedures by simulation and the analysis of a schizophrenia clinical trial and compare them with the fully conditional specification, last observation carried forward, and baseline observation carried forward imputation methods. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Multivariable feedback design - Concepts for a classical/modern synthesis

    NASA Technical Reports Server (NTRS)

    Doyle, J. C.; Stein, G.

    1981-01-01

    This paper presents a practical design perspective on multivariable feedback control problems. It reviews the basic issue - feedback design in the face of uncertainties - and generalizes known single-input, single-output (SISO) statements and constraints of the design problem to multiinput, multioutput (MIMO) cases. Two major MIMO design approaches are then evaluated in the context of these results.

  15. Departure from Normality in Multivariate Normative Comparison: The Cramer Alternative for Hotelling's "T[squared]"

    ERIC Educational Resources Information Center

    Grasman, Raoul P. P. P.; Huizenga, Hilde M.; Geurts, Hilde M.

    2010-01-01

    Crawford and Howell (1998) have pointed out that the common practice of z-score inference on cognitive disability is inappropriate if a patient's performance on a task is compared with relatively few typical control individuals. Appropriate univariate and multivariate statistical tests have been proposed for these studies, but these are only valid…

  16. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    NASA Astrophysics Data System (ADS)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  17. A project management system for the X-29A flight test program

    NASA Technical Reports Server (NTRS)

    Stewart, J. F.; Bauer, C. A.

    1983-01-01

    The project-management system developed for NASA's participation in the X-29A aircraft development program is characterized from a theoretical perspective, as an example of a system appropriate to advanced, highly integrated technology projects. System-control theory is applied to the analysis of classical project-management techniques and structures, which are found to be of closed-loop multivariable type; and the effects of increasing project complexity and integration are evaluated. The importance of information flow, sampling frequency, information holding, and delays is stressed. The X-29A system is developed in four stages: establishment of overall objectives and requirements, determination of information processes (block diagrams) definition of personnel functional roles and relationships, and development of a detailed work-breakdown structure. The resulting system is shown to require a greater information flow to management than conventional methods. Sample block diagrams are provided.

  18. Development of online NIR urine analyzing system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Sun, Zhendong; Li, Xiaoxia

    2006-09-01

    In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.

  19. Shifting chronic disease management from hospitals to primary care in Estonian health system: analysis of national panel data

    PubMed Central

    Atun, Rifat; Gurol–Urganci, Ipek; Hone, Thomas; Pell, Lisa; Stokes, Jonathan; Habicht, Triin; Lukka, Kaija; Raaper, Elin; Habicht, Jarno

    2016-01-01

    Background Following independence from the Soviet Union in 1991, Estonia introduced a national insurance system, consolidated the number of health care providers, and introduced family medicine centred primary health care (PHC) to strengthen the health system. Methods Using routinely collected health billing records for 2005–2012, we examine health system utilisation for seven ambulatory care sensitive conditions (ACSCs) (asthma, chronic obstructive pulmonary disease [COPD], depression, Type 2 diabetes, heart failure, hypertension, and ischemic heart disease [IHD]), and by patient characteristics (gender, age, and number of co–morbidities). The data set contained 552 822 individuals. We use patient level data to test the significance of trends, and employ multivariate regression analysis to evaluate the probability of inpatient admission while controlling for patient characteristics, health system supply–side variables, and PHC use. Findings Over the study period, utilisation of PHC increased, whilst inpatient admissions fell. Service mix in PHC changed with increases in phone, email, nurse, and follow–up (vs initial) consultations. Healthcare utilisation for diabetes, depression, IHD and hypertension shifted to PHC, whilst for COPD, heart failure and asthma utilisation in outpatient and inpatient settings increased. Multivariate regression indicates higher probability of inpatient admission for males, older patient and especially those with multimorbidity, but protective effect for PHC, with significantly lower hospital admission for those utilising PHC services. Interpretation Our findings suggest health system reforms in Estonia have influenced the shift of ACSCs from secondary to primary care, with PHC having a protective effect in reducing hospital admissions. PMID:27648258

  20. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    PubMed

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Epidemiologic methods in clinical trials.

    PubMed

    Rothman, K J

    1977-04-01

    Epidemiologic methods developed to control confounding in non-experimental studies are equally applicable for experiments. In experiments, most confounding is usually controlled by random allocation of subjects to treatment groups, but randomization does not preclude confounding except for extremely large studies, the degree of confounding expected being inversely related to the size of the treatment groups. In experiments, as in non-experimental studies, the extent of confounding for each risk indicator should be assessed, and if sufficiently large, controlled. Confounding is properly assessed by comparing the unconfounded effect estimate to the crude effect estimate; a common error is to assess confounding by statistical tests of significance. Assessment of confounding involves its control as a prerequisite. Control is most readily and cogently achieved by stratification of the data, though with many factors to control simultaneously, multivariate analysis or a combination of multivariate analysis and stratification might be necessary.

  2. Automated Pole Placement Algorithm for Multivariable Optimal Control Synthesis.

    DTIC Science & Technology

    1985-09-01

    set of Q and F The effective Qe and F, after n reassignments are given by .Q, Q Q. .. (eqn 4.11) and Fe =F, + Fa+... Fn (eqn 4.12) The above pole...Inverse transformation and determination of Q, and Fe are identical to the distinct eigenvalue case with M in equation 4.9 replaced by T. 3. System...and F and the augmented plant matrix become, Q -2.998 -149. 0.9994 -49.978 -149.9 7499 -0.00841 0.4211 The effective Q. and Fe required to move both

  3. Edmonton obesity staging system among pediatric patients: a validation and obesogenic risk factor analysis.

    PubMed

    Grammatikopoulou, M G; Chourdakis, M; Gkiouras, K; Roumeli, P; Poulimeneas, D; Apostolidou, E; Chountalas, I; Tirodimos, I; Filippou, O; Papadakou-Lagogianni, S; Dardavessis, T

    2018-01-08

    The Edmonton Obesity Staging System for Pediatrics (EOSS-P) is a useful tool, delineating different obesity severity tiers associated with distinct treatment barriers. The aim of the study was to apply the EOSS-P on a Greek pediatric cohort and assess risk factors associated with each stage, compared to normal weight controls. A total of 361 children (2-14 years old), outpatients of an Athenian hospital, participated in this case-control study by forming two groups: the obese (n = 203) and the normoweight controls (n = 158). Anthropometry, blood pressure, blood and biochemical markers, comorbidities and obesogenic lifestyle parameters were recorded and the EOSS-P was applied. Validation of EOSS-P stages was conducted by juxtaposing them with IOTF-defined weight status. Obesogenic risk factors' analysis was conducted by constructing gender-and-age-adjusted (GA) and multivariate logistic models. The majority of obese children were stratified at stage 1 (46.0%), 17.0% were on stage 0, and 37.0% on stage 2. The validation analysis revealed that EOSS-P stages greater than 0 were associated with diastolic blood pressure and levels of glucose, cholesterol, LDL and ALT. Reduced obesity odds were observed among children playing outdoors and increased odds for every screen time hour, both in the GA and in the multivariate analyses (all P < 0.05). Although participation in sports > 2 times/week was associated with reduced obesity odds in the GA analysis (OR = 0.57, 95% CI = 0.33-0.98, P linear = 0.047), it lost its significance in the multivariate analysis (P linear = 0.145). Analogous results were recorded in the analyses of the abovementioned physical activity risk factors for the EOSS-P stages. Linear relationships were observed for fast-food consumption and IOTF-defined obesity and higher than 0 EOSS-P stages. Parental obesity status was associated with all EOSS-P stages and IOTF-defined obesity status. Few outpatients were healthy obese (stage 0), while the majority exhibited several comorbidities. Since each obesity tier entails different impacts to disease management, the study herein highlights modifiable factors facilitating descend to lower stages, and provides insight for designing tailored approaches tackling the high national pediatric obesity rates.

  4. Kenyan female sex workers' use of female-controlled nonbarrier modern contraception: do they use condoms less consistently?

    PubMed

    Yam, Eileen A; Okal, Jerry; Musyoki, Helgar; Muraguri, Nicholas; Tun, Waimar; Sheehy, Meredith; Geibel, Scott

    2016-03-01

    To examine whether nonbarrier modern contraceptive use is associated with less consistent condom use among Kenyan female sex workers (FSWs). Researchers recruited 579 FSWs using respondent-driven sampling. We conducted multivariate logistic regression to examine the association between consistent condom use and female-controlled nonbarrier modern contraceptive use. A total of 98.8% reported using male condoms in the past month, and 64.6% reported using female-controlled nonbarrier modern contraception. In multivariate analysis, female-controlled nonbarrier modern contraceptive use was not associated with decreased condom use with clients or nonpaying partners. Consistency of condom use is not compromised when FSWs use available female-controlled nonbarrier modern contraception. FSWs should be encouraged to use condoms consistently, whether or not other methods are used simultaneously. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Predictive factors of flares in systemic lupus erythematosus patients: data from a multiethnic Latin American cohort.

    PubMed

    Ugarte-Gil, M F; Wojdyla, D; Pastor-Asurza, C A; Gamboa-Cárdenas, R V; Acevedo-Vásquez, E M; Catoggio, L J; García, M A; Bonfá, E; Sato, E I; Massardo, L; Pascual-Ramos, V; Barile, L A; Reyes-Llerena, G; Iglesias-Gamarra, A; Molina-Restrepo, J F; Chacón-Díaz, R; Alarcón, G S; Pons-Estel, B A

    2018-04-01

    Purpose The purpose of this paper is to determine the factors predictive of flares in systemic lupus erythematosus (SLE) patients. Methods A case-control study nested within the Grupo Latino Americano De Estudio de Lupus (GLADEL) cohort was conducted. Flare was defined as an increase ≥4 points in the SLEDAI. Cases were defined as patients with at least one flare. Controls were selected by matching cases by length of follow-up. Demographic and clinical manifestations were systematically recorded by a common protocol. Glucocorticoid use was recorded as average daily dose of prednisone and antimalarial use as percentage of time on antimalarial and categorized as never (0%), rarely (>0-25%), occasionally (>25%-50%), commonly (˃50%-75%) and frequently (˃75%). Immunosuppressive drugs were recorded as used or not used. The association between demographic, clinical manifestations, therapy and flares was examined using univariable and multivariable conditional logistic regression models. Results A total of 465 cases and controls were included. Mean age at diagnosis among cases and controls was 27.5 vs 29.9 years, p = 0.003; gender and ethnic distributions were comparable among both groups and so was the baseline SLEDAI. Independent factors protective of flares identified by multivariable analysis were older age at diagnosis (OR = 0.929 per every five years, 95% CI 0.869-0.975; p = 0.004) and antimalarial use (frequently vs never, OR = 0.722, 95% CI 0.522-0.998; p = 0.049) whereas azathioprine use (OR = 1.820, 95% CI 1.309-2.531; p < 0.001) and SLEDAI post-baseline were predictive of them (OR = 1.034, 95% CI 1.005-1.064; p = 0.022). Conclusions In this large, longitudinal Latin American cohort, older age at diagnosis and more frequent antimalarial use were protective whereas azathioprine use and higher disease activity were predictive of flares.

  6. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  7. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  8. New Approaches to Minimum-Energy Design of Integer- and Fractional-Order Perfect Control Algorithms

    NASA Astrophysics Data System (ADS)

    Hunek, Wojciech P.; Wach, Łukasz

    2017-10-01

    In this paper the new methods concerning the energy-based minimization of the perfect control inputs is presented. For that reason the multivariable integer- and fractional-order models are applied which can be used for describing a various real world processes. Up to now, the classical approaches have been used in forms of minimum-norm/least squares inverses. Notwithstanding, the above-mentioned tool do not guarantee the optimal control corresponding to optimal input energy. Therefore the new class of inversebased methods has been introduced, in particular the new σ- and H-inverse of nonsquare parameter and polynomial matrices. Thus a proposed solution remarkably outperforms the typical ones in systems where the control runs can be understood in terms of different physical quantities, for example heat and mass transfer, electricity etc. A simulation study performed in Matlab/Simulink environment confirms the big potential of the new energy-based approaches.

  9. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  10. Clinical correlates and outcomes in a group of Puerto Ricans with systemic lupus erythematosus hospitalized due to severe infections

    PubMed Central

    Jordán-González, Patricia; Shum, Lee Ming; González-Sepúlveda, Lorena

    2018-01-01

    Objective: Infections are a major cause of morbidity and mortality in systemic lupus erythematosus. Clinical outcomes of systemic lupus erythematosus patients hospitalized due to infections vary among different ethnic populations. Thus, we determined the outcomes and associated factors in a group of Hispanics from Puerto Rico with systemic lupus erythematosus admitted due to severe infections. Methods: Records of systemic lupus erythematosus patients admitted to the Adult University Hospital, San Juan, Puerto Rico, from January 2006 to December 2014 were examined. Demographic parameters, lupus manifestations, comorbidities, pharmacologic treatments, inpatient complications, length of stay, readmissions, and mortality were determined. Patients with and without infections were compared using bivariate and multivariate analyses. Results: A total of 204 admissions corresponding to 129 systemic lupus erythematosus patients were studied. The mean (standard deviation) age was 34.7 (11.6) years; 90% were women. The main causes for admission were lupus flare (45.1%), infection (44.0%), and initial presentation of systemic lupus erythematosus (6.4%). The most common infections were complicated urinary tract infections (47.0%) and soft tissue infections (42.0%). In the multivariate analysis, patients admitted with infections were more likely to have diabetes mellitus (odds ratio: 4.20, 95% confidence interval: 1.23–14.41), exposure to aspirin prior to hospitalization (odds ratio: 4.04, 95% confidence interval: 1.03–15.80), and higher mortality (odds ratio: 6.00, 95% confidence interval: 1.01–35.68) than those without infection. Conclusion: In this population of systemic lupus erythematosus patients, 44% of hospitalizations were due to severe infections. Patients with infections were more likely to have diabetes mellitus and higher mortality. Preventive and control measures of infection could be crucial to improve survival in these patients.

  11. Clinical correlates and outcomes in a group of Puerto Ricans with systemic lupus erythematosus hospitalized due to severe infections.

    PubMed

    Jordán-González, Patricia; Shum, Lee Ming; González-Sepúlveda, Lorena; Vilá, Luis M

    2018-01-01

    Infections are a major cause of morbidity and mortality in systemic lupus erythematosus. Clinical outcomes of systemic lupus erythematosus patients hospitalized due to infections vary among different ethnic populations. Thus, we determined the outcomes and associated factors in a group of Hispanics from Puerto Rico with systemic lupus erythematosus admitted due to severe infections. Records of systemic lupus erythematosus patients admitted to the Adult University Hospital, San Juan, Puerto Rico, from January 2006 to December 2014 were examined. Demographic parameters, lupus manifestations, comorbidities, pharmacologic treatments, inpatient complications, length of stay, readmissions, and mortality were determined. Patients with and without infections were compared using bivariate and multivariate analyses. A total of 204 admissions corresponding to 129 systemic lupus erythematosus patients were studied. The mean (standard deviation) age was 34.7 (11.6) years; 90% were women. The main causes for admission were lupus flare (45.1%), infection (44.0%), and initial presentation of systemic lupus erythematosus (6.4%). The most common infections were complicated urinary tract infections (47.0%) and soft tissue infections (42.0%). In the multivariate analysis, patients admitted with infections were more likely to have diabetes mellitus (odds ratio: 4.20, 95% confidence interval: 1.23-14.41), exposure to aspirin prior to hospitalization (odds ratio: 4.04, 95% confidence interval: 1.03-15.80), and higher mortality (odds ratio: 6.00, 95% confidence interval: 1.01-35.68) than those without infection. In this population of systemic lupus erythematosus patients, 44% of hospitalizations were due to severe infections. Patients with infections were more likely to have diabetes mellitus and higher mortality. Preventive and control measures of infection could be crucial to improve survival in these patients.

  12. Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record

    NASA Astrophysics Data System (ADS)

    Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan

    2018-05-01

    Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.

  13. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Fully probabilistic control design in an adaptive critic framework.

    PubMed

    Herzallah, Randa; Kárný, Miroslav

    2011-12-01

    Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  16. Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2013-10-01

    The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.

  17. The relationship between local hospital IT capabilities and physician EMR adoption.

    PubMed

    Menachemi, Nir; Matthews, Michael; Ford, Eric W; Hikmet, Neset; Brooks, Robert G

    2009-10-01

    In light of new federal policies allowing hospitals to subsidize the cost of information systems for physicians, we examine the relationship between local hospital investments in information technology (IT) and physician EMR adoption. Data from two Florida surveys were combined with secondary data from the State of Florida and the Area Resource File (ARF). Hierarchal logistic regression was used to examine the effect of hospital adoption of clinical information systems on physician adoption of EMR systems after controlling for confounders. In multivariate analysis, each additional clinical IT application adopted by a local hospital was associated with an 8% increase in the odds of EMR adoption by physicians practicing in that county. Given this existing relationship between hospital IT capabilities and physician adoption patterns, federal policies designed to encourage this more directly will positively promote the proliferation of EMR systems.

  18. Evaluation of the 7(th) edition of the UICC-AJCC tumor, node, metastasis classification for esophageal cancer in a Chinese cohort.

    PubMed

    Huang, Yan; Guo, Weigang; Shi, Shiming; He, Jian

    2016-07-01

    To assess and evaluate the prognostic value of the 7(th) edition of the Union for International Cancer Control-American Joint Committee on Cancer (UICC-AJCC) tumor, node, metastasis (TNM) staging system for Chinese patients with esophageal cancer in comparison with the 6(th) edition. A retrospective review was performed on 766 consecutive esophageal cancer patients treated with esophagectomy between 2008 and 2012. Patients were staged according to the 6(th) and 7(th) editions for esophageal cancer respectively. Survival was calculated by the Kaplan-Meier method, and multivariate analysis was performed using Cox regression model. Overall 3-year survival rate was 59.5%. There were significant differences in 3-year survival rates among T stages both according to the 6(th) edition and the 7(th) edition (P<0.001). According to the 7(th) edition, the 3-year survival rates of N0 (75.4%), N1 (65.2%), N2 (39.7%) and N3 (27.3%) patients were significant differences (P<0.001). Kaplan-Meier curve revealed a good discriminatory ability from stage I to IV, except for stage IB, IIA and IIB in the 7(th) edition staging system. Based on the 7(th) edition, the degree of differentiation, tumor length and tumor location were not independent prognostic factors on multivariate analysis. The multivariate analyses suggested that pT-, pN-, pTNM-category were all the independent prognostic factors based on the 6(th) and 7(th) edition staging system. The 7(th) edition of AJCC TNM staging system of esophageal cancer should discriminate pT2-3N0M0 (stage IB, IIA and IIB) better when considering the esophageal squamous cell cancer patients. Therefore, to improve and optimize the AJCC TNM classification for Chinese patients with esophageal cancer, more considerations about the value of tumor grade and tumor location in pT2-3N0M0 esophageal squamous cell cancer should be taken in the next new TNM staging system.

  19. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    PubMed

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.

    PubMed

    Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne

    2018-05-01

    Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.

  1. The impact of new vaccine introduction on the coverage of existing vaccines: a cross-national, multivariable analysis.

    PubMed

    Shearer, Jessica C; Walker, Damian G; Risko, Nicholas; Levine, Orin S

    2012-12-14

    A surge of new and underutilized vaccine introductions into national immunization programmes has called into question the effect of new vaccine introduction on immunization and health systems. In particular, countries deciding whether to introduce a new or underutilized vaccine into their routine immunization programme may query possible effects on the delivery and coverage of existing vaccines. Using coverage of diphtheria-tetanus-pertussis (DTP) vaccine as a proxy for immunization system performance, this study aims to test whether new vaccine introduction into national immunization programs was associated with changes in coverage of three doses of DTP vaccine among infants. DTP3 vaccine coverage was analyzed in 187 countries during 1999-2009 using multivariable cross-national mixed-effect longitudinal models. Controlling for other possible determinants of DTP3 coverage at the national level these models found minimal association between the introduction of Hepatitis-, Haemophilus influenzae type b-, and rotavirus-containing vaccines and DTP3 coverage. Instead, frequent and sometimes large fluctuations in coverage are associated with other development and health systems variables, including the presence of armed conflict, coverage of antenatal care services, infant mortality, the percent of health expenditures that are private and total health expenditures per capita. Introductions of new vaccines did not affect national coverage of DTP3 vaccine in the countries studied. Introductions of other new vaccines and multiple vaccine introductions should be monitored for immunization and health systems impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. What Are Women Told When Requesting Family Planning Services at Clinics Associated with Catholic Hospitals? A Mystery Caller Study.

    PubMed

    Guiahi, Maryam; Teal, Stephanie B; Swartz, Maryke; Huynh, Sandy; Schiller, Georgia; Sheeder, Jeanelle

    2017-12-01

    Catholic Church directives restrict family planning service provision at Catholic health care institutions. It is unclear whether obstetrics and gynecology clinics that are owned by or have business affiliations with Catholic hospitals offer family planning appointments. Mystery callers phoned 144 clinics nationwide that were found on Catholic hospital websites between December 2014 and February 2016, and requested appointments for birth control generally, copper IUD services specifically, tubal ligation and abortion. Chi-square and Fisher's exact tests assessed potential correlates of appointment availability, and multivariable logistic regressions were computed if bivariate testing suggested multiple correlates. Although 95% of clinics would schedule birth control appointments, smaller proportions would schedule appointments for copper IUDs (68%) or tubal ligation (58%); only 2% would schedule an abortion. Smaller proportions of Catholic-owned than of Catholic-affiliated clinics would schedule appointments for birth control (84% vs. 100%), copper IUDs (4% vs. 97%) and tubal ligation (29% vs. 72%); for birth control and copper IUD services, no other clinic characteristics were related to appointment availability. Multivariable analysis confirmed that tubal ligation appointments were less likely to be offered at Catholic-owned than at Catholic-affiliated clinics (odds ratio. 0.1); location and association with one of the top 10 Catholic health care systems also were significant. Adherence to church directives is inconsistent at Catholic-associated clinics. Women visiting such clinics who want highly effective methods may need to rely on less effective methods or delay method uptake while seeking services elsewhere. Copyright © 2017 by the Guttmacher Institute.

  3. Understanding perception of active noise control system through multichannel EEG analysis.

    PubMed

    Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad

    2018-06-01

    In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.

  4. Relationship between cataract severity and socioeconomic status.

    PubMed

    Wesolosky, Jason D; Rudnisky, Christopher J

    2013-12-01

    To determine the relationship between cataract severity and socioeconomic status (SES). Retrospective, observational case series. A total of 1350 eyes underwent phacoemulsification cataract extraction by a single surgeon using an Alcon Infiniti system. Cataract severity was measured using phaco time in seconds. SES was measured using area-level aggregate census data: median income, education, proportion of common-law couples, and employment rate. Preoperative best corrected visual acuity was obtained and converted to logarithm of the minimum angle of resolution values. For patients undergoing bilateral surgery, the generalized estimating equation was used to account for the correlation between eyes. Univariate analyses were performed using simple regression, and multivariate analyses were performed to account for variables with significant relationships (p < 0.05) on univariate testing. Sensitivity analyses were performed to assess the effect of including patient age in the controlled analyses. Multivariate analyses demonstrated that cataracts were more severe when the median income was lower (p = 0.001) and the proportion of common-law couples living in a patient's community (p = 0.012) and the unemployment rate (p = 0.002) were higher. These associations persisted even when controlling for patient age. Patients of lower SES have more severe cataracts. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  5. Multivariate statistical analysis of a high rate biofilm process treating kraft mill bleach plant effluent.

    PubMed

    Goode, C; LeRoy, J; Allen, D G

    2007-01-01

    This study reports on a multivariate analysis of the moving bed biofilm reactor (MBBR) wastewater treatment system at a Canadian pulp mill. The modelling approach involved a data overview by principal component analysis (PCA) followed by partial least squares (PLS) modelling with the objective of explaining and predicting changes in the BOD output of the reactor. Over two years of data with 87 process measurements were used to build the models. Variables were collected from the MBBR control scheme as well as upstream in the bleach plant and in digestion. To account for process dynamics, a variable lagging approach was used for variables with significant temporal correlations. It was found that wood type pulped at the mill was a significant variable governing reactor performance. Other important variables included flow parameters, faults in the temperature or pH control of the reactor, and some potential indirect indicators of biomass activity (residual nitrogen and pH out). The most predictive model was found to have an RMSEP value of 606 kgBOD/d, representing a 14.5% average error. This was a good fit, given the measurement error of the BOD test. Overall, the statistical approach was effective in describing and predicting MBBR treatment performance.

  6. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  7. Sudden cardiac death in adults with congenital heart disease: does QRS-complex fragmentation discriminate in structurally abnormal hearts?

    PubMed

    Vehmeijer, Jim T; Koyak, Zeliha; Bokma, Jouke P; Budts, Werner; Harris, Louise; Mulder, Barbara J M; de Groot, Joris R

    2018-06-01

    Sudden cardiac death (SCD) causes a large portion of all mortality in adult congenital heart disease (ACHD) patients. However, identification of high-risk patients remains challenging. Fragmented QRS-complexes (fQRS) are a marker for SCD in patients with acquired heart disease but data in ACHD patients are lacking. We therefore aim to evaluate the prognostic value of fQRS for SCD in ACHD patients. From a multicentre cohort of 25 790 ACHD patients, we included tachyarrhythmic SCD cases (n = 147), and controls (n = 266) matched by age, gender, congenital defect and (surgical) intervention. fQRS was defined as ≥1 discontinuous deflection in narrow QRS-complexes, and ≥2 in wide QRS-complexes (>120 ms), in two contiguous ECG leads. We calculated odds ratios (OR) using univariable and multivariable conditional logistic regression models correcting for impaired systemic ventricular function, heart failure and QRS duration >120 ms. ECGs of 147 SCD cases (65% male, median age of death 34 years) and of 266 controls were assessed. fQRS was present in 51% of cases and 34% of controls (OR 2.0, P = 0.003). In multivariable analysis, fQRS was independently associated with SCD (OR 1.9, P = 0.01). The most common diagnose of SCD cases was tetralogy of Fallot (ToF, 34 cases). In ToF, fQRS was present in 71% of cases vs. 43% of controls (OR for SCD 2.8, P = 0.03). fQRS was independently associated with SCD in ACHD patients in a cohort of SCD patients and matched controls. fQRS may therefore contribute to the decision when evaluating ACHD patients for primary prevention of SCD.

  8. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Statistical issues in quality control of proteomic analyses: good experimental design and planning.

    PubMed

    Cairns, David A

    2011-03-01

    Quality control is becoming increasingly important in proteomic investigations as experiments become more multivariate and quantitative. Quality control applies to all stages of an investigation and statistics can play a key role. In this review, the role of statistical ideas in the design and planning of an investigation is described. This involves the design of unbiased experiments using key concepts from statistical experimental design, the understanding of the biological and analytical variation in a system using variance components analysis and the determination of a required sample size to perform a statistically powerful investigation. These concepts are described through simple examples and an example data set from a 2-D DIGE pilot experiment. Each of these concepts can prove useful in producing better and more reproducible data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 1: MARS System and Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.

    1974-01-01

    A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.

  11. Estimation of regions of attraction and ultimate boundedness for multiloop LQ regulators. [Linear Quadratic

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.

  12. Metabolic syndrome in Iranian patients with systemic lupus erythematosus and its determinants.

    PubMed

    Fatemi, Alimohammad; Ghanbarian, Azadeh; Sayedbonakdar, Zahra; Kazemi, Mehdi; Smiley, Abbas

    2018-06-01

    The aim of this study was to determine the prevalence of metabolic syndrome (MetS) in Iranian patients with systemic lupus erythematosus (SLE) and its determinants. In a cross-sectional study, 98 patients with SLE and 95 controls were enrolled. Prevalence of MetS was determined based on American Heart Association and National Heart, Lung, and Blood Institute (AHA/NHLBI) and 2009 harmonizing criteria. In addition, demographic features and lupus characteristics such as disease duration, pharmacological treatment, laboratory data, SLE disease activity index (SLEDAI), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage index (SDI) were recorded. The predictors of MetS were obtained by backward stepwise regression analysis. Using AHA/NHLBI, MetS was observed in 35 (35.7%) patients and 28 (29.8%) controls (P = 0.4). Using harmonizing criteria, MetS was observed in 37 (37.7%) patients and 33 (35.1%) controls (P = 0.7). There was no difference in frequency distribution of MetS components between the patients and the controls. In multivariate regression analysis, low C3, blood urea nitrogen (BUN), and body mass index were independent determinants of MetS in lupus patients. BUN, low C3, and body mass index were the major determinants of MetS in lupus patients.

  13. Neuropathic pain in Systemic Sclerosis patients: A cross-sectional study.

    PubMed

    Sousa-Neves, Joana; Cerqueira, Marcos; Santos-Faria, Daniela; Afonso, Carmo; Teixeira, Filipa

    2018-01-31

    To investigate if patients with Systemic Sclerosis (SSc) show a higher prevalence of neuropathic pain (NP) in comparison with controls. To study the relationship between clinical variables of the disease and NP among SSc patients. 48 patients and 45 controls were included. Presence of NP was assessed applying the DN4 "Douleur Neuropathique en 4 Questions" questionnaire. Different clinical variables were also assessed in patients. Statistical analysis included parametric, nonparametric tests and multivariate logistic regression. NP was significantly higher in SSc patients (56.2% vs 13.3%, p<0.001). Mean Modified Rodnan Skin Score was independently associated with the presence of NP (p<0.05, OR 1.90). Peripheral nervous system involvement in SSc is not well studied and, as far as the authors are aware, this is the first study published evaluating NP in SSc patients and controls. These findings should raise the awareness of the clinician to recognize and address the presence of NP in these patients, especially in those with severe skin involvement. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  14. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    PubMed

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Optimal False Discovery Rate Control for Dependent Data

    PubMed Central

    Xie, Jichun; Cai, T. Tony; Maris, John; Li, Hongzhe

    2013-01-01

    This paper considers the problem of optimal false discovery rate control when the test statistics are dependent. An optimal joint oracle procedure, which minimizes the false non-discovery rate subject to a constraint on the false discovery rate is developed. A data-driven marginal plug-in procedure is then proposed to approximate the optimal joint procedure for multivariate normal data. It is shown that the marginal procedure is asymptotically optimal for multivariate normal data with a short-range dependent covariance structure. Numerical results show that the marginal procedure controls false discovery rate and leads to a smaller false non-discovery rate than several commonly used p-value based false discovery rate controlling methods. The procedure is illustrated by an application to a genome-wide association study of neuroblastoma and it identifies a few more genetic variants that are potentially associated with neuroblastoma than several p-value-based false discovery rate controlling procedures. PMID:23378870

  16. A Method for Comparing Multivariate Time Series with Different Dimensions

    PubMed Central

    Tapinos, Avraam; Mendes, Pedro

    2013-01-01

    In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box. PMID:23393554

  17. Multivariate Analysis of Schools and Educational Policy.

    ERIC Educational Resources Information Center

    Kiesling, Herbert J.

    This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…

  18. Prediction of processing tomato peeling outcomes

    USDA-ARS?s Scientific Manuscript database

    Peeling outcomes of processing tomatoes were predicted using multivariate analysis of Magnetic Resonance (MR) images. Tomatoes were obtained from a whole-peel production line. Each fruit was imaged using a 7 Tesla MR system, and a multivariate data set was created from 28 different images. After ...

  19. Risk factors for microbial bioburden during daily wear of silicone hydrogel contact lenses.

    PubMed

    Jiang, Ying; Jacobs, Michael; Bajaksouzian, Saralee; Foster, Altreisha N; Debanne, Sara M; Bielefeld, Roger; Garvey, Matt; Raghupathy, Sangeetha; Kern, Jami; Szczotka-Flynn, Loretta B

    2014-05-01

    To assess risk factors associated with substantial microbial bioburden of lids, conjunctivae, contact lenses, and storage cases during daily wear of silicone hydrogel contact lenses. Two hundred eighteen patients were fit to lotrafilcon A lenses, randomized to use either a multipurpose solution or a hydrogen peroxide care system, and followed up for 1 year. Lenses, lens transport saline, lids, conjunctivae, and storage cases were cultured and considered to have substantial microbial bioburden when they harbored high levels of commensal or pathogenic organisms. Univariate and multivariate logistic regression analyses were conducted to examine which demographic covariates were associated with significant bioburden at each location while controlling for solution use. In multivariate analyses, smoking trended toward an association with lens bioburden (odds ratio [OR]=2.15, 95% confidence interval [CI]: 0.95-4.88). Clerical occupations were found to be associated with more frequent overall storage case contamination (OR=3.51, 95% CI: 1.15-10.70) and, specifically, higher gram-positive storage case contamination (OR=5.57, 95% CI: 1.82-17.06). The peroxide system was associated with more frequent storage case contamination (OR=7.6, 95% CI: 3.79-15.19). Coagulase-negative staphylococci (CNS) were the most frequently cultured organisms within storage cases, and in multivariate analyses, CNS were more frequently found in storage cases of peroxide users (OR=6.12, 95% CI: 2.91-13.09). Clerical occupations were associated with increased microbial bioburden of storage cases during daily wear of silicone hydrogel lenses. Smoking may increase the risk of lens contamination. Storage cases are most frequently contaminated with normal skin flora, and peroxide cases were associated with more frequent contamination. However, the solution type was not associated with lid or lens contamination nor with corneal infiltrative events in this study.

  20. A methodology for formulating a minimal uncertainty model for robust control system design and analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1989-01-01

    In the design and analysis of robust control systems for uncertain plants, the technique of formulating what is termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents the transfer function matrix M(s) of the nominal system, and delta represents an uncertainty matrix acting on M(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty. Since have a delta matrix of minimum order would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta model would be useful. A generalized method of obtaining a minimal M-delta structure for systems with real parameter variations is given.

  1. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  2. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers.

    PubMed

    Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J

    2014-01-01

    HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.

  3. Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning

    NASA Astrophysics Data System (ADS)

    Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel

    2014-06-01

    Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.

  4. Evaluation of an automated connective tissue disease screening assay in Korean patients with systemic rheumatic diseases

    PubMed Central

    Jeong, Seri; Yang, Heeyoung; Hwang, Hyunyong

    2017-01-01

    This study aimed to evaluate the diagnostic utilities of the automated connective tissues disease screening assay, CTD screen, in patients with systemic rheumatic diseases. A total of 1093 serum samples were assayed using CTD screen and indirect immunofluorescent (IIF) methods. Among them, 162 were diagnosed with systemic rheumatic disease, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCT). The remaining 931 with non-systemic rheumatic disease were assigned to the control group. The median ratios of CTD screen tests were significantly higher in the systemic rheumatic disease group than in the control group. The positive likelihood ratios of the CTD screen were higher than those of IIF in patients with total rheumatic diseases (4.1 vs. 1.6), including SLE (24.3 vs. 10.7). The areas under the receiver operating characteristic curves (ROC-AUCs) of the CTD screen for discriminating total rheumatic diseases, RA, SLE, and MCT from controls were 0.68, 0.56, 0.92 and 0.80, respectively. The ROC-AUCs of the combinations with IIF were significantly higher in patients with total rheumatic diseases (0.72) and MCT (0.85) than in those of the CTD screen alone. Multivariate analysis indicated that both the CTD screen and IIF were independent variables for predicting systemic rheumatic disease. CTD screen alone and in combination with IIF were a valuable diagnostic tool for predicting systemic rheumatic diseases, particularly for SLE. PMID:28273146

  5. Evaluation of an automated connective tissue disease screening assay in Korean patients with systemic rheumatic diseases.

    PubMed

    Jeong, Seri; Yang, Heeyoung; Hwang, Hyunyong

    2017-01-01

    This study aimed to evaluate the diagnostic utilities of the automated connective tissues disease screening assay, CTD screen, in patients with systemic rheumatic diseases. A total of 1093 serum samples were assayed using CTD screen and indirect immunofluorescent (IIF) methods. Among them, 162 were diagnosed with systemic rheumatic disease, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCT). The remaining 931 with non-systemic rheumatic disease were assigned to the control group. The median ratios of CTD screen tests were significantly higher in the systemic rheumatic disease group than in the control group. The positive likelihood ratios of the CTD screen were higher than those of IIF in patients with total rheumatic diseases (4.1 vs. 1.6), including SLE (24.3 vs. 10.7). The areas under the receiver operating characteristic curves (ROC-AUCs) of the CTD screen for discriminating total rheumatic diseases, RA, SLE, and MCT from controls were 0.68, 0.56, 0.92 and 0.80, respectively. The ROC-AUCs of the combinations with IIF were significantly higher in patients with total rheumatic diseases (0.72) and MCT (0.85) than in those of the CTD screen alone. Multivariate analysis indicated that both the CTD screen and IIF were independent variables for predicting systemic rheumatic disease. CTD screen alone and in combination with IIF were a valuable diagnostic tool for predicting systemic rheumatic diseases, particularly for SLE.

  6. Directionality compensation for linear multivariable anti-windup synthesis

    NASA Astrophysics Data System (ADS)

    Adegbege, Ambrose A.; Heath, William P.

    2015-11-01

    We develop new synthesis procedures for optimising anti-windup control applicable to open-loop exponentially stable multivariable plants subject to hard bounds on the inputs. The optimising anti-windup control falls into a class of compensator commonly termed directionality compensation. The computation of the control involves the online solution of a low-order quadratic programme in place of simple saturation. We exploit the structure of the quadratic programme to incorporate directionality information into the offline anti-windup synthesis using a decoupled architecture similar to that proposed in the literature for anti-windup schemes with simple saturation. We demonstrate the effectiveness of the design compared to several schemes using a simulated example. Preliminary results of this work have been published in the proceedings of the IEEE Conference on Decision and Control, Orlando, 2011 (Adegbege & Heath, 2011a).

  7. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls.

    PubMed

    Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S

    2017-09-01

    Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.

  8. Physicians' choice in using Internet and fax for patient recruitment and follow-up in a randomized controlled trial.

    PubMed

    Rahman, M; Morita, S; Fukui, T; Sakamoto, J

    2004-01-01

    To examine the physicians' preference between Web and fax-based remote data entry (RDE) system for an ongoing randomized controlled trial (RCT) in Japan. We conducted a survey among all the collaborating physicians (n = 512) of the CASE-J (Candesartan Antihypertensive Survival Evaluation in Japan) trial, who have been recruiting patients and sending follow-up data using the Web or a fax-based RDE system. The survey instrument assessed physicians' choice between Web and fax-based RDE systems, their practice pattern, and attitudes towards these two modalities. A total of 448 (87.5%) responses were received. The proportions of physicians who used Web, fax, and the combination of these two were 45.9%, 33.3% and 20.8%, respectively. Multivariate logistic regression analyses revealed that physicians 55 years or younger [odds ratio (OR) = 1.9, 95% confidence interval (CI) = 1.1-3.3] and regular users of computers (OR = 4.2, 95% CI = 2.1-8.2) were more likely to use the Web-based RDE system. This information would be useful in designing an RCT with a Web-based RDE system in Japan and abroad.

  9. Increased Arterial Stiffness in Systemic Lupus Erythematosus (SLE) Patients at Low Risk for Cardiovascular Disease: A Cross-Sectional Controlled Study

    PubMed Central

    Sacre, Karim; Escoubet, Brigitte; Pasquet, Blandine; Chauveheid, Marie-Paule; Zennaro, Maria-Christina; Tubach, Florence; Papo, Thomas

    2014-01-01

    Cardiovascular disease (CVD) is a major cause of death in systemic lupus erythematosus (SLE) patients. Although the risk for cardiovascular events in patients with SLE is significant, the absolute number of events per year in any given cohort remains small. Thus, CVD risks stratification in patients with SLE focuses on surrogate markers for atherosclerosis at an early stage, such as reduced elasticity of arteries. Our study was designed to determine whether arterial stiffness is increased in SLE patients at low risk for CVD and analyze the role for traditional and non-traditional CVD risk factors on arterial stiffness in SLE. Carotid-femoral pulse wave velocity (PWV) was prospectively assessed as a measure of arterial stiffness in 41 SLE patients and 35 controls (CTL). Adjustment on age or Framingham score was performed using a logistic regression model. Factors associated with PWV were identified separately in SLE patients and in controls using Pearson's correlation coefficient for univariate analysis and multiple linear regression for multivariate analysis. SLE patients and controls displayed a low 10-year risk for CVD according to Framingham score (1.8±3.6% in SLE vs 1.6±2.8% in CTL, p = 0.46). Pulse wave velocity was, however, higher in SLE patients (7.1±1.6 m/s) as compared to controls (6.3±0.8 m/s; p = 0.01, after Framingham score adjustment) and correlated with internal carotid wall thickness (p = 0.0017). In multivariable analysis, only systolic blood pressure (p = 0.0005) and cumulative dose of glucocorticoids (p = 0.01) were associated with PWV in SLE patients. Interestingly, the link between systolic blood pressure (SBP) and arterial stiffness was also confirmed in SLE patients with normal systolic blood pressure. In conclusion, arterial stiffness is increased in SLE patients despite a low risk for CVD according to Framingham score and is associated with systolic blood pressure and glucocorticoid therapy. PMID:24722263

  10. Multivariate Quantitative Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  11. Subsystem design in aircraft power distribution systems using optimization

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriram

    2000-10-01

    The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.

  12. Quality by design case study: an integrated multivariate approach to drug product and process development.

    PubMed

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  13. Prediction of significant conduction disease through noninvasive assessment of cardiac calcification.

    PubMed

    Mainigi, Sumeet K; Chebrolu, Lakshmi Hima Bindu; Romero-Corral, Abel; Mehta, Vinay; Machado, Rodolfo Rozindo; Konecny, Tomas; Pressman, Gregg S

    2012-10-01

    Cardiac calcification is associated with coronary artery disease, arrhythmias, conduction disease, and adverse cardiac events. Recently, we have described an echocardiographic-based global cardiac calcification scoring system. The objective of this study was to evaluate the severity of cardiac calcification in patients with permanent pacemakers as based on this scoring system. Patients with a pacemaker implanted within the 2-year study period with a previous echocardiogram were identified and underwent blinded global cardiac calcium scoring. These patients were compared to matched control patients without a pacemaker who also underwent calcium scoring. The study group consisted of 49 patients with pacemaker implantation who were compared to 100 matched control patients. The mean calcium score in the pacemaker group was 3.3 ± 2.9 versus 1.8 ± 2.0 (P = 0.006) in the control group. Univariate and multivariate analysis revealed glomerular filtration rate and calcium scoring to be significant predictors of the presence of a pacemaker. Echocardiographic-based calcium scoring correlates with the presence of severe conduction disease requiring a pacemaker. © 2012, Wiley Periodicals, Inc.

  14. Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.

    PubMed

    Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua

    2018-03-01

    The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A multivariate mixed model system for wood specific gravity and moisture content of planted loblolly pine stands in the southern United States

    Treesearch

    Finto Antony; Laurence R. Schimleck; Alex Clark; Richard F. Daniels

    2012-01-01

    Specific gravity (SG) and moisture content (MC) both have a strong influence on the quantity and quality of wood fiber. We proposed a multivariate mixed model system to model the two properties simultaneously. Disk SG and MC at different height levels were measured from 3 trees in 135 stands across the natural range of loblolly pine and the stand level values were used...

  16. Study on Dynamic Alignment Technology of COIL Resonator

    NASA Astrophysics Data System (ADS)

    Xiong, M. D.; Zou, X. J.; Guo, J. H.; Jia, S. N.; Zhang2, Z. B.

    2006-10-01

    The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system.

  17. Hypothyroidism among SLE patients: Case-control study.

    PubMed

    Watad, Abdulla; Mahroum, Naim; Whitby, Aaron; Gertel, Smadar; Comaneshter, Doron; Cohen, Arnon D; Amital, Howard

    2016-05-01

    The prevalence of hypothyroidism in SLE patients varies considerably and early reports were mainly based on small cohorts. To investigate the association between SLE and hypothyroidism. Patients with SLE were compared with age and sex-matched controls regarding the proportion of hypothyroidism in a case-control study. Chi-square and t-tests were used for univariate analysis and a logistic regression model was used for multivariate analysis. The study was performed utilizing the medical database of Clalit Health Services. The study included 5018 patients with SLE and 25,090 age and sex-matched controls. The proportion of hypothyroidism in patients with SLE was increased compared with the prevalence in controls (15.58% and 5.75%, respectively, P<0.001). In a multivariate analysis, SLE was associated with hypothyroidism (odds ratio 2.644, 95% confidence interval 2.405-2.908). Patients with SLE have a greater proportion of hypothyroidism than matched controls. Therefore, physicians treating patients with SLE should be aware of the possibility of thyroid dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  19. Using Matlab in a Multivariable Calculus Course.

    ERIC Educational Resources Information Center

    Schlatter, Mark D.

    The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…

  20. A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.

    2011-01-01

    Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.

  1. A microcomputer-based whole-body counter for personnel routine monitoring.

    PubMed

    Chou, H P; Tsai, T M; Lan, C Y

    1993-05-01

    The paper describes a cost-effective NaI(Tl) whole-body counter developed for routine examinations of worker intakes at an isotope production facility. Signal processing, data analysis and system operation are microcomputer-controlled for minimum human interactions. The pulse height analyzer is developed as an microcomputer add-on card for easy manipulation. The scheme for radionuclide analysis is aimed for fast running according to a knowledge base established from background samples and phantom experiments in conjunction with a multivariate regression analysis. Long-term stability and calibration with standards and in vivo measurements are reported.

  2. Controlled Structures Technology Steering Committee Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on controlled structures technology presented at the steering committee workshop on 22-23 Jan. 1992 are included. Topics addressed include: interferometer testbed; middeck 0-gravity dynamics experiment; middeck active control experiment; multivariable identification for control; strain actuated aeroelastic control; sensor/actuator technology development; input command shaping; and other research projects. A description of the organization and committee are included.

  3. Synthesis of a control model for a liquid nitrogen cooled, closed circuit, cryogenic nitrogen wind tunnel and its validation

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1979-01-01

    The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.

  4. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

    PubMed

    Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-15

    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Study of the TP53 codon 72 polymorphism in oral cancer and oral potentially malignant disorders in Argentine patients.

    PubMed

    Zarate, Ana Maria; Don, Julieta; Secchi, Dante; Carrica, Andres; Galindez Costa, Fernanda; Panico, Rene; Brusa, Martin; Barra, José Luis; Brunotto, Mabel

    2017-05-01

    The aim of this work was to evaluate the prevalence of TP53Arg72Pro mutations and their possible relationship with oral carcinoma and oral potentially malignant disorders in Argentine patients. A cross-sectional study was performed on 111 exfoliated cytologies from patients with oral cancer (OC), oral potentially malignant disorders (OPMD) and controls. The TP53Arg72Pro mutations were determined using conventional PCR. We evaluated univariate and multivariate study variables, setting p < 0.05. We found: (a) a low frequency of Pro72 variant in control group and a high frequency in OC and OPMD, as well in OC and oral leukoplakia (OL) diagnosis; (b) multivariate association among the TP53CC genotype and females over 45 years with no tobacco nor alcohol habits with oral lichen planus pathology; (c) multivariate association between the TP53GC genotype and males with alcohol and tobacco habits and OC and OL pathologies. Our results showed that the wild-type Arg72variant was related to control patients and Pro72variant was related to OC and OPMD, in Argentine patients.

  6. Novel, Objective, Multivariate Biomarkers Composed of Plasma Amino Acid Profiles for the Diagnosis and Assessment of Inflammatory Bowel Disease

    PubMed Central

    Hisamatsu, Tadakazu; Okamoto, Susumu; Hashimoto, Masaki; Muramatsu, Takahiko; Andou, Ayatoshi; Uo, Michihide; Kitazume, Mina T.; Matsuoka, Katsuyoshi; Yajima, Tomoharu; Inoue, Nagamu; Kanai, Takanori; Ogata, Haruhiko; Iwao, Yasushi; Yamakado, Minoru; Sakai, Ryosei; Ono, Nobukazu; Ando, Toshihiko; Suzuki, Manabu; Hibi, Toshifumi

    2012-01-01

    Background Inflammatory bowel disease (IBD) is a chronic intestinal disorder that is associated with a limited number of clinical biomarkers. In order to facilitate the diagnosis of IBD and assess its disease activity, we investigated the potential of novel multivariate indexes using statistical modeling of plasma amino acid concentrations (aminogram). Methodology and Principal Findings We measured fasting plasma aminograms in 387 IBD patients (Crohn's disease (CD), n = 165; ulcerative colitis (UC), n = 222) and 210 healthy controls. Based on Fisher linear classifiers, multivariate indexes were developed from the aminogram in discovery samples (CD, n = 102; UC, n = 102; age and sex-matched healthy controls, n = 102) and internally validated. The indexes were used to discriminate between CD or UC patients and healthy controls, as well as between patients with active disease and those in remission. We assessed index performances using the area under the curve of the receiver operating characteristic (ROC AUC). We observed significant alterations to the plasma aminogram, including histidine and tryptophan. The multivariate indexes established from plasma aminograms were able to distinguish CD or UC patients from healthy controls with ROC AUCs of 0.940 (95% confidence interval (CI): 0.898–0.983) and 0.894 (95%CI: 0.853–0.935), respectively in validation samples (CD, n = 63; UC, n = 120; healthy controls, n = 108). In addition, other indexes appeared to be a measure of disease activity. These indexes distinguished active CD or UC patients from each remission patients with ROC AUCs of 0.894 (95%CI: 0.853–0.935) and 0.849 (95%CI: 0.770–0.928), and correlated with clinical disease activity indexes for CD (rs = 0.592, 95%CI: 0.385–0.742, p<0.001) or UC (rs = 0.598, 95%CI: 0.452–0.713, p<0.001), respectively. Conclusions and Significance In this study, we demonstrated that established multivariate indexes composed of plasma amino acid profiles can serve as novel, non-invasive, objective biomarkers for the diagnosis and monitoring of IBD, providing us with new insights into the pathophysiology of the disease. PMID:22303484

  7. A study of helicopter stability and control including blade dynamics

    NASA Technical Reports Server (NTRS)

    Zhao, Xin; Curtiss, H. C., Jr.

    1988-01-01

    A linearized model of rotorcraft dynamics has been developed through the use of symbolic automatic equation generating techniques. The dynamic model has been formulated in a unique way such that it can be used to analyze a variety of rotor/body coupling problems including a rotor mounted on a flexible shaft with a number of modes as well as free-flight stability and control characteristics. Direct comparison of the time response to longitudinal, lateral and directional control inputs at various trim conditions shows that the linear model yields good to very good correlation with flight test. In particular it is shown that a dynamic inflow model is essential to obtain good time response correlation, especially for the hover trim condition. It also is shown that the main rotor wake interaction with the tail rotor and fixed tail surfaces is a significant contributor to the response at translational flight trim conditions. A relatively simple model for the downwash and sidewash at the tail surfaces based on flat vortex wake theory is shown to produce good agreement. Then, the influence of rotor flap and lag dynamics on automatic control systems feedback gain limitations is investigated with the model. It is shown that the blade dynamics, especially lagging dynamics, can severly limit the useable values of the feedback gain for simple feedback control and that multivariable optimal control theory is a powerful tool to design high gain augmentation control system. The frequency-shaped optimal control design can offer much better flight dynamic characteristics and a stable margin for the feedback system without need to model the lagging dynamics.

  8. A multivariate model of plant species richness in forested systems: Old-growth montane forests with a long history of fire

    USGS Publications Warehouse

    Laughlin, D.C.; Grace, J.B.

    2006-01-01

    Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old-growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems. Copyright ?? Oikos 2006.

  9. A multivariate model exploring the predictive value of demographic, adolescent, and family factors on glycemic control in adolescents with type 1 diabetes.

    PubMed

    Agarwal, Shivani; Jawad, Abbas F; Miller, Victoria A

    2016-11-01

    The current study examined how a comprehensive set of variables from multiple domains, including at the adolescent and family level, were predictive of glycemic control in adolescents with type 1 diabetes (T1D). Participants included 100 adolescents with T1D ages 10-16 yrs and their parents. Participants were enrolled in a longitudinal study about youth decision-making involvement in chronic illness management of which the baseline data were available for analysis. Bivariate associations with glycemic control (HbA1C) were tested. Hierarchical linear regression was implemented to inform the predictive model. In bivariate analyses, race, family structure, household income, insulin regimen, adolescent-reported adherence to diabetes self-management, cognitive development, adolescent responsibility for T1D management, and parent behavior during the illness management discussion were associated with HbA1c. In the multivariate model, the only significant predictors of HbA1c were race and insulin regimen, accounting for 17% of the variance. Caucasians had better glycemic control than other racial groups. Participants using pre-mixed insulin therapy and basal-bolus insulin had worse glycemic control than those on insulin pumps. This study shows that despite associations of adolescent and family-level variables with glycemic control at the bivariate level, only race and insulin regimen are predictive of glycemic control in hierarchical multivariate analyses. This model offers an alternative way to examine the relationship of demographic and psychosocial factors on glycemic control in adolescents with T1D. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Identifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales

    PubMed Central

    Williams, L. Keoki; Buu, Anne

    2017-01-01

    We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206

  11. Design of Embedded System for Multivariate Classification of Finger and Thumb Movements Using EEG Signals for Control of Upper Limb Prosthesis.

    PubMed

    Rashid, Nasir; Iqbal, Javaid; Javed, Amna; Tiwana, Mohsin I; Khan, Umar Shahbaz

    2018-01-01

    Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8-30 Hz) containing most of the movement data were retained through filtering using "Arduino Uno" microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%.

  12. Multivariate moment closure techniques for stochastic kinetic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less

  13. Empirical performance of the self-controlled case series design: lessons for developing a risk identification and analysis system.

    PubMed

    Suchard, Marc A; Zorych, Ivan; Simpson, Shawn E; Schuemie, Martijn J; Ryan, Patrick B; Madigan, David

    2013-10-01

    The self-controlled case series (SCCS) offers potential as an statistical method for risk identification involving medical products from large-scale observational healthcare data. However, analytic design choices remain in encoding the longitudinal health records into the SCCS framework and its risk identification performance across real-world databases is unknown. To evaluate the performance of SCCS and its design choices as a tool for risk identification in observational healthcare data. We examined the risk identification performance of SCCS across five design choices using 399 drug-health outcome pairs in five real observational databases (four administrative claims and one electronic health records). In these databases, the pairs involve 165 positive controls and 234 negative controls. We also consider several synthetic databases with known relative risks between drug-outcome pairs. We evaluate risk identification performance through estimating the area under the receiver-operator characteristics curve (AUC) and bias and coverage probability in the synthetic examples. The SCCS achieves strong predictive performance. Twelve of the twenty health outcome-database scenarios return AUCs >0.75 across all drugs. Including all adverse events instead of just the first per patient and applying a multivariate adjustment for concomitant drug use are the most important design choices. However, the SCCS as applied here returns relative risk point-estimates biased towards the null value of 1 with low coverage probability. The SCCS recently extended to apply a multivariate adjustment for concomitant drug use offers promise as a statistical tool for risk identification in large-scale observational healthcare databases. Poor estimator calibration dampens enthusiasm, but on-going work should correct this short-coming.

  14. Influence of socioeconomic aspects on lymphatic filariasis: A case-control study in Andhra Pradesh, India.

    PubMed

    Mutheneni, Srinivasa Rao; Upadhyayula, Suryanaryana Murty; Kumaraswamy, Sriram; Kadiri, Madhusudhan Rao; Nagalla, Balakrishna

    2016-01-01

    Lymphatic filariasis (LF) is a major public health problem in India. The objective of the study was to assess the impact of socioeconomic conditions on LF in Chittoor district of Andhra Pradesh, India. A survey was carried out from 2004 to 2007 during which, an epidemiological and socioeconomic data were collected and analysed. The microfilaria (mf) positive samples were taken as cases and matched with control group by sex and age (1:1) for case-control study. Bivariate and multivariate logistic regression was used to identify the potential risk factors for filariasis. Using principal component analysis (PCA), a socioeconomic index was developed and the data/scores were classified into low, medium and high categories. In total 5,133 blood smears were collected, of which 77 samples were found positive for microfilaria (1.52%). Multivariate analysis showed that the risk of filariasis was higher in groups of people with income < ₹1000 per month [OR = 2.752 (95%CI, 0.435-17.429)]; ₹ 1000-3000 per month [3.079 (0.923-0.275)]; people living in tiled house structure [1.641 (0.534-5.048)], with kutcha (uncemented) drainage system [19.427 (2.985- 126.410)], respondents who did not implemented mosquito avoidance measures [1.737 (0.563-5.358)]; and in people who were not aware about prevention and control of filariasis [1.042 (0.368-2.956)]. PCA showed that respondents with low (41.6%) and medium (33.8%) socioeconomic status are more prone to filariasis (p=0.036). The cross sectional study showed that the population with low and medium socioeconomic status are at higher risk of filariasis. The identified socioeconomic risk factors can be used as a guideline for improving the conditions for effective management of filariasis.

  15. Does Juvenile Detention Impact Health?

    PubMed

    Balogun, Titilola; Troisi, Catherine; Swartz, Michael D; Lloyd, Linda; Beyda, Rebecca

    2018-04-01

    Youth involved in the juvenile justice system represent a medically underserved population. Recidivist youth have poorer health outcomes compared to youth detained for the first time. This study determined differences in immunization history, substance use, mental health symptoms, and sexual behavior between recidivist youth and first-time detainees following improvements in intake screenings at a large, urban juvenile detention center in the Southeastern United States. Multivariable logistic regression analysis found that recidivist youth had significantly higher acellular pertussis immunization rates compared with first-time detainees (odds ratio [ OR] = 3.3; p = .02), and recidivist males were less likely to test positive for chlamydia ( OR = 0.6; p = .03) after controlling for age and Black race. There was no significant difference for most other outcomes between recidivist youth and first-time detainees after controlling for age.

  16. Common and Dissociable Mechanisms of Executive System Dysfunction Across Psychiatric Disorders in Youth

    PubMed Central

    Shanmugan, Sheila; Wolf, Daniel H.; Calkins, Monica E.; Moore, Tyler M.; Ruparel, Kosha; Hopson, Ryan D.; Vandekar, Simon N.; Roalf, David R.; Elliott, Mark A.; Jackson, Chad; Gennatas, Efstathios D.; Leibenluft, Ellen; Pine, Daniel S.; Shinohara, Russell T.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.

    2016-01-01

    Objective Disruption of executive function is present in many neuropsychiatric disorders. However, determining the specificity of executive dysfunction within these disorders is challenging given high comorbidity of conditions. Here we investigated executive system deficits in association with dimensions of psychiatric symptoms in youth using a working memory paradigm, hypothesizing that common and dissociable patterns of dysfunction would be present. Methods We studied 1,129 youths who completed a fractal n-back task during fMRI at 3T as part of the Philadelphia Neurodevelopmental Cohort. Factor scores of clinical psychopathology were calculated using an itemwise confirmatory bifactor model, describing overall psychopathology as well as four orthogonal dimensions of symptoms including anxious-misery (mood / anxiety), behavioral disturbance (ADHD / conduct), psychosis-spectrum symptoms, and fear (phobias). The impact of psychopathology dimensions on behavioral performance and executive system recruitment (2-back > 0-back) were examined using both multivariate (matrix regression) and mass-univariate (linear regression) analyses. Results Overall psychopathology was associated with both abnormal multivariate patterns of activation and a failure to activate executive regions within the cingulo-opercular control network including the frontal pole, cingulate cortex, and anterior insula. Additionally, psychosis-spectrum symptoms were associated with hypo-activation of left dorsolateral prefrontal cortex, whereas behavioral symptoms were associated with hypo-activation of fronto-parietal cortex and cerebellum. In contrast, anxious-misery symptoms were associated with widespread hyper-activation of the executive network. Conclusions These findings provide novel evidence that common and dissociable deficits within the brain’s executive system are present in association with dimensions of psychopathology in youth. PMID:26806874

  17. Multivariable robust adaptive sliding mode control of an industrial boiler-turbine in the presence of modeling imprecisions and external disturbances: A comparison with type-I servo controller.

    PubMed

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2015-09-01

    To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  19. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  20. The Use of Input-Output Control System Analysis for Sustainable Development of Multivariable Environmental Systems

    NASA Astrophysics Data System (ADS)

    Koliopoulos, T. C.; Koliopoulou, G.

    2007-10-01

    We present an input-output solution for simulating the associated behavior and optimized physical needs of an environmental system. The simulations and numerical analysis determined the accurate boundary loads and areas that were required to interact for the proper physical operation of a complicated environmental system. A case study was conducted to simulate the optimum balance of an environmental system based on an artificial intelligent multi-interacting input-output numerical scheme. The numerical results were focused on probable further environmental management techniques, with the objective of minimizing any risks and associated environmental impact to protect the quality of public health and the environment. Our conclusions allowed us to minimize the associated risks, focusing on probable cases in an emergency to protect the surrounded anthropogenic or natural environment. Therefore, the lining magnitude could be determined for any useful associated technical works to support the environmental system under examination, taking into account its particular boundary necessities and constraints.

  1. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  2. A General Multivariate Latent Growth Model with Applications to Student Achievement

    ERIC Educational Resources Information Center

    Bianconcini, Silvia; Cagnone, Silvia

    2012-01-01

    The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context, the analysis of student performance and capabilities plays a fundamental role. In this work, the authors propose a multivariate latent growth model for studying the performances of a…

  3. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    ERIC Educational Resources Information Center

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  4. AESOP: An interactive computer program for the design of linear quadratic regulators and Kalman filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L. C.

    1984-01-01

    AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.

  5. Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies

    ERIC Educational Resources Information Center

    Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.

    2012-01-01

    In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…

  6. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Corporate governance and the adoption of health information technology within integrated delivery systems.

    PubMed

    Baird, Aaron; Furukawa, Michael F; Rahman, Bushra; Schneller, Eugene S

    2014-01-01

    Although several previous studies have found "system affiliation" to be a significant and positive predictor of health information technology (IT) adoption, little is known about the association between corporate governance practices and adoption of IT within U.S. integrated delivery systems (IDSs). Rooted in agency theory and corporate governance research, this study examines the association between corporate governance practices (centralization of IT decision rights and strategic alignment between business and IT strategy) and IT adoption, standardization, and innovation within IDSs. Cross-sectional, retrospective analyses using data from the 2011 Health Information and Management Systems Society Analytics Database on adoption within IDSs (N = 485) is used to analyze the correlation between two corporate governance constructs (centralization of IT decision rights and strategic alignment) and three IT constructs (adoption, standardization, and innovation) for clinical and supply chain IT. Multivariate fractional logit, probit, and negative binomial regressions are applied. Multivariate regressions controlling for IDS and market characteristics find that measures of IT adoption, IT standardization, and innovative IT adoption are significantly associated with centralization of IT decision rights and strategic alignment. Specifically, centralization of IT decision rights is associated with 22% higher adoption of Bar Coding for Materials Management and 30%-35% fewer IT vendors for Clinical Data Repositories and Materials Management Information Systems. A combination of centralization and clinical IT strategic alignment is associated with 50% higher Computerized Physician Order Entry adoption, and centralization along with supply chain IT strategic alignment is significantly negatively correlated with Radio Frequency Identification adoption : Although IT adoption and standardization are likely to benefit from corporate governance practices within IDSs, innovation is likely to be delayed. In addition, corporate governance is not one-size-fits-all, and contingencies are important considerations.

  8. Use of multivariate statistics to identify unreliable data obtained using CASA.

    PubMed

    Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón

    2013-06-01

    In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.

  9. Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease.

    PubMed

    Baessler, Andrea; Fischer, Marcus; Mayer, Bjoern; Koehler, Martina; Wiedmann, Silke; Stark, Klaus; Doering, Angela; Erdmann, Jeanette; Riegger, Guenter; Schunkert, Heribert; Kwitek, Anne E; Hengstenberg, Christian

    2007-04-15

    Data from both experimental models and humans provide evidence that ghrelin and its receptor, the growth hormone secretagogue receptor (ghrelin receptor, GHSR), possess a variety of cardiovascular effects. Thus, we hypothesized that genetic variants within the ghrelin system (ligand ghrelin and its receptor GHSR) are associated with susceptibility to myocardial infarction (MI) and coronary artery disease (CAD). Seven single nucleotide polymorphisms (SNPs) covering the GHSR region as well as eight SNPs across the ghrelin gene (GHRL) region were genotyped in index MI patients (864 Caucasians, 'index MI cases') from the German MI family study and in matched controls without evidence of CAD (864 Caucasians, 'controls', MONICA Augsburg). In addition, siblings of these MI patients with documented severe CAD (826 'affected sibs') were matched likewise with controls (n = 826 Caucasian 'controls') and used for verification. The effect of interactions between genetic variants of both genes of the ghrelin system was explored by conditional classification tree models. We found association of several GHSR SNPs with MI [best SNP odds ratio (OR) 1.7 (1.2-2.5); P = 0.002] using a recessive model. Moreover, we identified a common GHSR haplotype which significantly increases the risk for MI [multivariate adjusted OR for homozygous carriers 1.6 (1.1-2.5) and CAD OR 1.6 (1.1-2.5)]. In contrast, no relationship between genetic variants and the disease could be revealed for GHRL. However, the increase in MI/CAD frequency related to the susceptible GHSR haplotype was abolished when it coincided with a common GHRL haplotype. Multivariate adjustments as well as permutation-based methods conveyed the same results. These data are the first to demonstrate an association of SNPs and haplotypes within important genes of the ghrelin system and the susceptibility to MI, whereas association with MI/CAD could be identified for genetic variants across GHSR, no relationship could be revealed for GHRL itself. However, we found an effect of GHRL dependent upon the presence of a common, MI and CAD susceptible haplotype of GHSR. Thus, our data suggest that specific haplotypes of the ghrelin ligand and its receptor act epistatically to affect susceptibility or tolerance to MI and/or CAD.

  10. Fatal motor vehicle crashes among veterans of the 1991 Gulf War and exposure to munitions demolitions at Khamisiyah: a nested case-control study.

    PubMed

    Gackstetter, Gary D; Hooper, Tomoko I; DeBakey, Samar F; Johnson, Amy; Nagaraj, Barbara E; Heller, Jack M; Kang, Han K

    2006-04-01

    A proposed explanation for the observed higher risk of fatal motor vehicle crashes (MVC) among 1991 Gulf War-deployed veterans is neurocognitive deficits resulting from nerve agent exposure at Khamisiyah, Iraq. Our objective was to assess any association between postwar fatal MVC and possible nerve agent exposure based on 2000 modeled plume data. Cases were defined as MVC deaths with a record in the Department of Transportation Fatality Analysis Reporting System through 1995. Cases (n = 282) and controls (n = 3,131) were derived from a larger nested case-control study of Gulf War-era veterans and limited to Army, male, deployed personnel. Exposure and cumulative dose by case-control status were analyzed using multivariate techniques. Exposure status was not associated with fatal MVC (OR 0.96, 95% CI 0.72-1.26), nor were tertiles of cumulative dose. Findings do not support an association between possible exposures at Khamisiyah and postwar fatal MVC among Gulf War veterans.

  11. Resilience and tipping points of an exploited fish population over six decades.

    PubMed

    Vasilakopoulos, Paraskevas; Marshall, C Tara

    2015-05-01

    Complex natural systems with eroded resilience, such as populations, ecosystems and socio-ecological systems, respond to small perturbations with abrupt, discontinuous state shifts, or critical transitions. Theory of critical transitions suggests that such systems exhibit fold bifurcations featuring folded response curves, tipping points and alternate attractors. However, there is little empirical evidence of fold bifurcations occurring in actual complex natural systems impacted by multiple stressors. Moreover, resilience of complex systems to change currently lacks clear operational measures with generic application. Here, we provide empirical evidence for the occurrence of a fold bifurcation in an exploited fish population and introduce a generic measure of ecological resilience based on the observed fold bifurcation attributes. We analyse the multivariate development of Barents Sea cod (Gadus morhua), which is currently the world's largest cod stock, over six decades (1949-2009), and identify a population state shift in 1981. By plotting a multivariate population index against a multivariate stressor index, the shift mechanism was revealed suggesting that the observed population shift was a nonlinear response to the combined effects of overfishing and climate change. Annual resilience values were estimated based on the position of each year in relation to the fitted attractors and assumed tipping points of the fold bifurcation. By interpolating the annual resilience values, a folded stability landscape was fit, which was shaped as predicted by theory. The resilience assessment suggested that the population may be close to another tipping point. This study illustrates how a multivariate analysis, supported by theory of critical transitions and accompanied by a quantitative resilience assessment, can clarify shift mechanisms in data-rich complex natural systems. © 2014 John Wiley & Sons Ltd.

  12. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate fermentation with diauxic growth. Model predictive control (MPC), an advanced process control strategy, is capable of utilizing nonlinear models and sensor feedback to provide optimal input while ensuring critical process constraints are met. Using the microorganism Saccharomyces cerevisiae, a commonly used microorganism for biofuel production, and work performed with M. thermoacetica, a nonlinear MPC was implemented on a continuous membrane cell-recycle bioreactor (MCRB) for the conversion of glucose to ethanol. The dilution rate was used to control the ethanol productivity of the system will maintaining total substrate conversion above the constraint of 98%. PLS multivariate models for glucose (RMSEP 1.5 g L-1) and ethanol (RMSEP 0.4 g L-1) were robust in predicting concentrations and a mechanistic kinetic model built accurately predicted continuous fermentation behavior. A setpoint trajectory, ranging from 2 - 4.5 g L-1 h-1 for productivity was closely tracked by the fermentation system using Raman measurements and an extended Kalman filter to estimate biomass concentrations. Overall, this work was able to demonstrate an effective approach for real-time monitoring and control of a complex fermentation system.

  13. Decomposition of algebraic sets and applications to weak centers of cubic systems

    NASA Astrophysics Data System (ADS)

    Chen, Xingwu; Zhang, Weinian

    2009-10-01

    There are many methods such as Gröbner basis, characteristic set and resultant, in computing an algebraic set of a system of multivariate polynomials. The common difficulties come from the complexity of computation, singularity of the corresponding matrices and some unnecessary factors in successive computation. In this paper, we decompose algebraic sets, stratum by stratum, into a union of constructible sets with Sylvester resultants, so as to simplify the procedure of elimination. Applying this decomposition to systems of multivariate polynomials resulted from period constants of reversible cubic differential systems which possess a quadratic isochronous center, we determine the order of weak centers and discuss the bifurcation of critical periods.

  14. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease.

    PubMed

    Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego

    2016-08-01

    Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p < 0.001). The extent of medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p < 0.005 for all analyses). The serotonergic system is likely to be involved in the pathophysiology of addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Timing of surgery for hip fracture and in-hospital mortality: a retrospective population-based cohort study in the Spanish National Health System

    PubMed Central

    2012-01-01

    Background While the benefits or otherwise of early hip fracture repair is a long-running controversy with studies showing contradictory results, this practice is being adopted as a quality indicator in several health care organizations. The aim of this study is to analyze the association between early hip fracture repair and in-hospital mortality in elderly people attending public hospitals in the Spanish National Health System and, additionally, to explore factors associated with the decision to perform early hip fracture repair. Methods A cohort of 56,500 patients of 60-years-old and over, hospitalized for hip fracture during the period 2002 to 2005 in all the public hospitals in 8 Spanish regions, were followed up using administrative databases to identify the time to surgical repair and in-hospital mortality. We used a multivariate logistic regression model to analyze the relationship between the timing of surgery (< 2 days from admission) and in-hospital mortality, controlling for several confounding factors. Results Early surgery was performed on 25% of the patients. In the unadjusted analysis early surgery showed an absolute difference in risk of mortality of 0.57 (from 4.42% to 3.85%). However, patients undergoing delayed surgery were older and had higher comorbidity and severity of illness. Timeliness for surgery was not found to be related to in-hospital mortality once confounding factors such as age, sex, chronic comorbidities as well as the severity of illness were controlled for in the multivariate analysis. Conclusions Older age, male gender, higher chronic comorbidity and higher severity measured by the Risk Mortality Index were associated with higher mortality, but the time to surgery was not. PMID:22257790

  16. Hemorheological parameters are related to subclinical atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis patients.

    PubMed

    Santos, Maria José; Pedro, Luís Mendes; Canhão, Helena; Fernandes E Fernandes, José; Canas da Silva, José; Fonseca, João Eurico; Saldanha, Carlota

    2011-12-01

    Rheological characteristics of blood are strongly linked to atherothrombosis in the general population, but its contribution to atherosclerosis in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) is currently unclear. This work examines the relationship between blood rheology, traditional cardiovascular (CV) risk factors, inflammation and subclinical atherosclerosis in SLE and RA. Whole blood viscosity (WBV), plasma viscosity (PV), erythrocyte deformability (ED), aggregation (EA) and erythrocyte NO production were measured in 197 patients (96 SLE and 101 RA) and compared to 97 controls, all females without previous CV events. Clinical information was obtained and fasting lipids and acute phase reactants were measured. The relationship between hemorheological parameters, CV risk factors and inflammation was assessed in patients and the impact of these variables on carotid intima-media thickness (cIMT) was evaluated in univariate followed by multivariate regression analyses. WBV and ED are significantly lower in patients, while EA is elevated as compared with controls. Hemorheological disturbances correlate with CV risk factors and markers of inflammation and are more profound in patients with metabolic syndrome. Multivariable analysis showed that menopause (OR 34.72, 95%CI 4.44-271.77), obesity (OR 4.09, 95%CI 1.00-16.68) and WBV (OR 3.98; 95%CI 1.23-12.83) are positively associated whereas current corticosteroid dose (OR 0.87; 95%CI 0.78-0.98), and erythrocyte NO production (OR 0.16; 95%CI 0.05-0.52) are negatively associated with cIMT. Disturbed hemorheological parameters in SLE and RA women are related to the presence of CV risk factors and inflammation. WBV and erythrocyte NO are independently associated with the early stages of atherosclerosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Breast-feeding initiation in low-income women: Role of attitudes, support, and perceived control.

    PubMed

    Khoury, Amal J; Moazzem, S Wakerul; Jarjoura, Chad M; Carothers, Cathy; Hinton, Agnes

    2005-01-01

    Despite the documented health and emotional benefits of breast-feeding to women and children, breast-feeding rates are low among subgroups of women. In this study, we examine factors associated with breast-feeding initiation in low-income women, including Theory of Planned Behavior measures of attitude, support, and perceived control, as well as sociodemographic characteristics. A mail survey, with telephone follow-up, of 733 postpartum Medicaid beneficiaries in Mississippi was conducted in 2000. The breast-feeding initiation rate in this population was 38%. Women who were older, white, non-Hispanic, college-educated, married, not certified for the Supplemental Nutrition Program for Women, Infants, and Children, and not working full-time were more likely to breast-feed than formula-feed at hospital discharge. Attitudes regarding benefits and barriers to breast-feeding, as well as health care system and social support, were associated with breast-feeding initiation at the multivariate level. Adding the health care system support variables to the regression model, and specifically support from lactation specialists and hospital nurses, explained the association between breast-feeding initiation and women's perceived control over the time and social constraints barriers to breast-feeding. The findings support the need for health care system interventions, family interventions, and public health education campaigns to promote breast-feeding in low-income women.

  18. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  19. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  20. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    PubMed Central

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148

  1. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    PubMed

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%. The phantom study indicated that the Calypso System's localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems.

  2. Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform.

    PubMed

    Huang, Cheng-Wei; Sue, Pei-Der; Abbod, Maysam F; Jiang, Bernard C; Shieh, Jiann-Shing

    2013-08-08

    To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.

  3. Measuring Center of Pressure Signals to Quantify Human Balance Using Multivariate Multiscale Entropy by Designing a Force Platform

    PubMed Central

    Huang, Cheng-Wei; Sue, Pei-Der; Abbod, Maysam F.; Jiang, Bernard C.; Shieh, Jiann-Shing

    2013-01-01

    To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance. PMID:23966184

  4. Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment.

    PubMed

    Peter, Jessica; Lahr, Jacob; Minkova, Lora; Lauer, Eliza; Grothe, Michel J; Teipel, Stefan; Köstering, Lena; Kaller, Christoph P; Heimbach, Bernhard; Hüll, Michael; Normann, Claus; Nissen, Christoph; Reis, Janine; Klöppel, Stefan

    2016-06-18

    Acetylcholine is critically involved in modulating learning and memory function, which both decline in neurodegeneration. It remains unclear to what extent structural and functional changes in the cholinergic system contribute to episodic memory dysfunction in mild cognitive impairment (MCI), in addition to hippocampal degeneration. A better understanding is critical, given that the cholinergic system is the main target of current symptomatic treatment in mild to moderate Alzheimer's disease. We simultaneously assessed the structural and functional integrity of the cholinergic system in 20 patients with MCI and 20 matched healthy controls and examined their effect on verbal episodic memory via multivariate regression analyses. Mediating effects of either cholinergic function or hippocampal volume on the relationship between cholinergic structure and episodic memory were computed. In MCI, a less intact structure and function of the cholinergic system was found. A smaller cholinergic structure was significantly correlated with a functionally more active cholinergic system in patients, but not in controls. This association was not modulated by age or disease severity, arguing against compensational processes. Further analyses indicated that neither functional nor structural changes in the cholinergic system influence verbal episodic memory at the MCI stage. In fact, those associations were fully mediated by hippocampal volume. Although the cholinergic system is structurally and functionally altered in MCI, episodic memory dysfunction results primarily from hippocampal neurodegeneration, which may explain the inefficiency of cholinergic treatment at this disease stage.

  5. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  6. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  7. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  8. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  9. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  10. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    PubMed

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  11. Robust detection, isolation and accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.

    1986-01-01

    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques

  12. Effect of altered sensory conditions on multivariate descriptors of human postural sway

    NASA Technical Reports Server (NTRS)

    Kuo, A. D.; Speers, R. A.; Peterka, R. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    Multivariate descriptors of sway were used to test whether altered sensory conditions result not only in changes in amount of sway but also in postural coordination. Eigenvalues and directions of eigenvectors of the covariance of shnk and hip angles were used as a set of multivariate descriptors. These quantities were measured in 14 healthy adult subjects performing the Sensory Organization test, which disrupts visual and somatosensory information used for spatial orientation. Multivariate analysis of variance and discriminant analysis showed that resulting sway changes were at least bivariate in character, with visual and somatosensory conditions producing distinct changes in postural coordination. The most significant changes were found when somatosensory information was disrupted by sway-referencing of the support surface (P = 3.2 x 10(-10)). The resulting covariance measurements showed that subjects not only swayed more but also used increased hip motion analogous to the hip strategy. Disruption of vision, by either closing the eyes or sway-referencing the visual surround, also resulted in altered sway (P = 1.7 x 10(-10)), with proportionately more motion of the center of mass than with platform sway-referencing. As shown by discriminant analysis, an optimal univariate measure could explain at most 90% of the behavior due to altered sensory conditions. The remaining 10%, while smaller, are highly significant changes in posture control that depend on sensory conditions. The results imply that normal postural coordination of the trunk and legs requires both somatosensory and visual information and that each sensory modality makes a unique contribution to posture control. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.

  13. What matters? Assessing and developing inquiry and multivariable reasoning skills in high school chemistry

    NASA Astrophysics Data System (ADS)

    Daftedar Abdelhadi, Raghda Mohamed

    Although the Next Generation Science Standards (NGSS) present a detailed set of Science and Engineering Practices, a finer grained representation of the underlying skills is lacking in the standards document. Therefore, it has been reported that teachers are facing challenges deciphering and effectively implementing the standards, especially with regards to the Practices. This analytical study assessed the development of high school chemistry students' (N = 41) inquiry, multivariable causal reasoning skills, and metacognition as a mediator for their development. Inquiry tasks based on concepts of element properties of the periodic table as well as reaction kinetics required students to conduct controlled thought experiments, make inferences, and declare predictions of the level of the outcome variable by coordinating the effects of multiple variables. An embedded mixed methods design was utilized for depth and breadth of understanding. Various sources of data were collected including students' written artifacts, audio recordings of in-depth observational groups and interviews. Data analysis was informed by a conceptual framework formulated around the concepts of coordinating theory and evidence, metacognition, and mental models of multivariable causal reasoning. Results of the study indicated positive change towards conducting controlled experimentation, making valid inferences and justifications. Additionally, significant positive correlation between metastrategic and metacognitive competencies, and sophistication of experimental strategies, signified the central role metacognition played. Finally, lack of consistency in indicating effective variables during the multivariable prediction task pointed towards the fragile mental models of multivariable causal reasoning the students had. Implications for teacher education, science education policy as well as classroom research methods are discussed. Finally, recommendations for developing reform-based chemistry curricula based on the Practices are presented.

  14. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  15. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  16. Leptospira Exposure and Gardeners: A Case-Control Seroprevalence Study

    PubMed Central

    Alvarado-Esquivel, Cosme; Hernandez-Tinoco, Jesus; Sanchez-Anguiano, Luis Francisco; Ramos-Nevarez, Agar; Cerrillo-Soto, Sandra Margarita; Guido-Arreola, Carlos Alberto

    2016-01-01

    Background Leptospira can be found in soil. However, it is unclear whether occupational exposure to soil may represent a risk for Leptospira infection in humans. Therefore, we sought to determine the association of Leptospira IgG seroprevalence with the occupation of gardener, and to determine the epidemiological characteristics of gardeners associated with Leptospira exposure. Methods We performed a case-control study in 168 gardeners and 168 age- and gender-matched control subjects without gardening occupation in Durango City, Mexico. The seroprevalence of anti-Leptospira IgG antibodies in cases and controls was determined using an enzyme immunoassay. Bivariate and multivariate analyses were used to assess the association of Leptospira exposure and the characteristics of the gardeners. Results Anti-Leptospira IgG antibodies were found in 10 (6%) of 168 gardeners and in 15 (8.9%) of 168 control subjects (odds ratio (OR): 0.64; 95% confidence interval (CI): 0.28 - 1.48; P = 0.40). Multivariate analysis showed that Leptospira seropositivity was positively associated with female gender (OR: 5.82; 95% CI: 1.11 - 30.46; P = 0.03), and negatively associated with eating while working (OR: 0.21; 95% CI: 0.05 - 0.87; P = 0.03). In addition, multivariate analysis showed that high anti-Leptospira levels were associated with consumption of boar meat (OR: 28.00; 95% CI: 1.20 - 648.80; P = 0.03). Conclusions This is the first case-control study of Leptospira exposure in gardeners. Results do not support an association of Leptospira exposure with the occupation of gardener. However, further studies to confirm the lack of this association are needed. The potential role of consumption of boar meat in Leptospira infection deserves further investigation. PMID:26668679

  17. Multivariate quantum memory as controllable delayed multi-port beamsplitter

    NASA Astrophysics Data System (ADS)

    Vetlugin, A. N.; Sokolov, I. V.

    2016-03-01

    The addressability of parallel spatially multimode quantum memory for light allows one to control independent collective spin waves within the same cold atomic ensemble. Generally speaking, there are transverse and longitudinal degrees of freedom of the memory that one can address by a proper choice of the pump (control) field spatial pattern. Here we concentrate on the mutual evolution and transformation of quantum states of the longitudinal modes of collective spin coherence in the cavity-based memory scheme. We assume that these modes are coherently controlled by the pump waves of the on-demand transverse profile, that is, by the superpositions of waves propagating in the directions close to orthogonal to the cavity axis. By the write-in, this allows one to couple a time sequence of the incoming quantized signals to a given set of superpositions of orthogonal spin waves. By the readout, one can retrieve quantum states of the collective spin waves that are controllable superpositions of the initial ones and are coupled on demand to the output signal sequence. In a general case, the memory is able to operate as a controllable delayed multi-port beamsplitter, capable of transformation of the delays, the durations and time shapes of signals in the sequence. We elaborate the theory of such light-matter interface for the spatially multivariate cavity-based off-resonant Raman-type quantum memory. Since, in order to speed up the manipulation of complex signals in multivariate memories, it might be of interest to store relatively short light pulses of a given time shape, we also address some issues of the cavity-based memory operation beyond the bad cavity limit.

  18. Successful Diabetic Control as Measured by Hemoglobin A1c is Associated with Lower Urine Risk Factors for Uric Acid Calculi.

    PubMed

    Maciolek, Kimberly A; Penniston, Kristina L; Jhagroo, R Allan; Best, Sara L

    2018-06-13

    To examine the association of glycemic control, including strict glycemic control, with 24-hour (24-h) urine risk factors for uric acid and calcium calculi. With IRB approval, we identified 183 stone formers (SFs) with 459 24-h urine collections. Hemoglobin A1c (HgbA1c) measures were obtained within 3 months of the urine collection. Collections were separated into normoglycemic (NG, HgbA1c<6.5) and hyperglycemic (HG, HgbA1c≥6.5) cohorts; 24-h urine parameters were compared. The NG cohort was further divided into patients with and without a history of diabetes type 2 (DM). Variables were analyzed using chi squared, Welch's t-test and multivariate linear regression to adjust for clustering, BMI, age, gender, thiazide and potassium citrate use. Patients in the HG group were older with higher BMI. Multivariate analysis of the total study population revealed that hyperglycemia correlated with lower pH, higher uric acid relative saturation (RS), lower brushite RS and higher citrate. NG SFs with and without a history of DM had similar risk factors for uric acid stone formation. Among NG SFs, those with DM had higher urine calcium (UCa) and calcium oxalate RS than those without DM. However, this difference may be related to other factors since neither parameter correlated with DM on multivariate regression (p>0.05). Successful glycemic control may be associated with reduced urinary risk factors for uric acid stone formation. Patients with well controlled DM had equivalent risk factors to those without DM. Glycemic control should be considered a target of the multidisciplinary medical management of stone disease.

  19. Multivariate η-μ fading distribution with arbitrary correlation model

    NASA Astrophysics Data System (ADS)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  20. Generating functions and stability study of multivariate self-excited epidemic processes

    NASA Astrophysics Data System (ADS)

    Saichev, A. I.; Sornette, D.

    2011-09-01

    We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.

  1. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.

  2. Application of the LQG/LTR technique to robust controller synthesis for a large flexible space antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.

    1986-01-01

    The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.

  3. Altered peripheral amino acid profile indicate a systemic impact of active celiac disease and a possible role of amino acids in disease pathogenesis.

    PubMed

    Torinsson Naluai, Åsa; Saadat Vafa, Ladan; Gudjonsdottir, Audur H; Arnell, Henrik; Browaldh, Lars; Nilsson, Staffan; Agardh, Daniel

    2018-01-01

    We have previously performed a Genome Wide Association and linkage study that indicated a new disease triggering mechanism involving amino acid metabolism and nutrient sensing signaling pathways. The aim of this study was to investigate if plasma amino acid levels differed among children with celiac disease compared with disease controls. Fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls, were analyzed for amino acid levels by liquid chromatography-tandem mass spectrometry (LC/MS). A general linear model using age and experimental effects as covariates was used to compare amino acid levels between children with a diagnosis of celiac disease and controls. Seven out of twenty-three analyzed amino acids were elevated in children with celiac disease compared with controls (tryptophan, taurine, glutamic acid, proline, ornithine, alanine and methionine). The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects (p = 8.4 × 10-8). These findings support the idea that amino acids could influence systemic inflammation and play a possible role in disease pathogenesis.

  4. Metabolomic profile of systemic sclerosis patients.

    PubMed

    Murgia, Federica; Svegliati, Silvia; Poddighe, Simone; Lussu, Milena; Manzin, Aldo; Spadoni, Tatiana; Fischetti, Colomba; Gabrielli, Armando; Atzori, Luigi

    2018-05-16

    Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterized by vascular lesions, immunological alterations and diffuse fibrosis of the skin and internal organs. Since recent evidence suggests that there is a link between metabolomics and immune mediated disease, serum metabolic profile of SSc patients and healthy controls was investigated by 1 H-NMR and GC-MS techniques. The results indicated a lower level of aspartate, alanine, choline, glutamate, and glutarate in SSc patients compared with healthy controls. Moreover, comparing patients affected by limited SSc (lcSSc) and diffuse SSc (dcSSc), 6 discriminant metabolites were identified. The multivariate analysis performed using all the metabolites significantly different revealed glycolysis, gluconeogenesis, energetic pathways, glutamate metabolism, degradation of ketone bodies and pyruvate metabolism as the most important networks. Aspartate, alanine and citrate yielded a high area under receiver-operating characteristic (ROC) curves (AUC of 0.81; CI 0.726-0.93) for discriminating SSc patients from controls, whereas ROC curve generated with acetate, fructose, glutamate, glutamine, glycerol and glutarate (AUC of 0.84; CI 0.7-0.98) discriminated between lcSSc and dcSSc. These results indicated that serum NMR-based metabolomics profiling method is sensitive and specific enough to distinguish SSc from healthy controls and provided a feasible diagnostic tool for the diagnosis and classification of the disease.

  5. Treatment of salivary gland neoplasms with fast neutron radiotherapy.

    PubMed

    Douglas, James G; Koh, Wui-jin; Austin-Seymour, Mary; Laramore, George E

    2003-09-01

    To evaluate the efficacy of fast neutron radiotherapy for the treatment of salivary gland neoplasms. Retrospective analysis. University of Washington Cancer Center, Neutron Facility, Seattle. The medical records of 279 patients treated with curative intent using fast neutron radiotherapy at the University of Washington Cancer Center were reviewed. Of the 279 patients, 263 had evidence of gross residual disease at the time of treatment (16 had no evidence of gross residual disease), 141 had tumors of a major salivary gland, and 138 had tumors of minor salivary glands. The median follow-up period was 36 months (range, 1-142 months). Local-regional control, cause-specific survival, and freedom from metastasis. The 6-year actuarial cause-specific survival rate was 67%. Multivariate analysis revealed that low group stage (I-II) disease, minor salivary sites, lack of skull base invasion, and primary disease were associated with a statistically significant improvement in cause-specific survival. The 6-year actuarial local-regional control rate was 59%. Multivariate analysis revealed size 4 cm or smaller, lack of base of skull invasion, prior surgical resection, and no previous radiotherapy to have a statistically significant improved local-regional control. Sixteen patients without evidence of gross residual disease had a 100% 6-year actuarial local-regional control. The 6-year actuarial freedom from metastasis rate was 64%. Factors associated with decreased development of systemic metastases included negative lymph nodes at the time of treatment and lack of base of skull involvement. The 6-year actuarial rate of development of grade 3 or 4 long-term toxicity (using the Radiation Therapy Oncology Group and European Organization for Research on the Treatment of Cancer criteria) was 10%. No patient experienced grade 5 toxic effects. Neuron radiotherapy is an effective treatment for patients with salivary gland neoplasms who have gross residual disease and achieves excellent local-regional control in patients without evidence of gross disease.

  6. Utah Cancer Survivors: A Comprehensive Comparison of Health-Related Outcomes Between Survivors and Individuals Without a History of Cancer.

    PubMed

    Fowler, Brynn; Ding, Qian; Pappas, Lisa; Wu, Yelena P; Linder, Lauri; Yancey, Jeff; Wright, Jennifer; Clayton, Margaret; Kepka, Deanna; Kirchhoff, Anne C

    2018-02-01

    Assessments of cancer survivors' health-related needs are often limited to national estimates. State-specific information is vital to inform state comprehensive cancer control efforts developed to support patients and providers. We investigated demographics, health status/quality of life, health behaviors, and health care characteristics of long-term Utah cancer survivors compared to Utahans without a history of cancer. Utah Behavioral Risk Factor Surveillance System (BRFSS) 2009 and 2010 data were used. Individuals diagnosed with cancer within the past 5 years were excluded. Multivariable survey weighted logistic regressions and computed predictive marginals were used to estimate age-adjusted percentages and 95 % confidence intervals (CI). A total of 11,320 eligible individuals (727 cancer survivors, 10,593 controls) were included. Respondents were primarily non-Hispanic White (95.3 % of survivors, 84.1 % of controls). Survivors were older (85 % of survivors ≥40 years of age vs. 47 % of controls). Survivors reported the majority of their cancer survivorship care was managed by primary care physicians or non-cancer specialists (93.5 %, 95 % CI = 87.9-99.1). Furthermore, 71.1 % (95 % CI = 59.2-82.9) of survivors reported that they did not receive a cancer treatment summary. In multivariable estimates, fair/poor general health was more common among survivors compared to controls (17.8 %, 95 % CI = 12.5-23.1 vs. 14.2 %, 95 % CI = 12.4-16.0). Few survivors in Utah receive follow-up care from a cancer specialist. Provider educational efforts are needed to promote knowledge of cancer survivor issues. Efforts should be made to improve continuity in follow-up care that addresses the known issues of long-term survivors that preclude optimal quality of life, resulting in a patient-centered approach to survivorship.

  7. The Impact of Stress on Odor Perception.

    PubMed

    Hoenen, Matthias; Wolf, Oliver T; Pause, Bettina M

    2017-01-01

    The olfactory system and emotional systems are highly intervened and share common neuronal structures. The current study investigates whether emotional (e.g., anger and fear) and physiological (saliva cortisol) stress responses are associated with odor identification ability and hedonic odor judgments (intensity, pleasantness, and unpleasantness). Nineteen men participated in the modified Trier Social Stress Test (TSST) and a control session (cycling on a stationary bike). The physiological arousal was similar in both sessions. In each session, participants' odor identification score was assessed using the University of Pennsylvania Smell Identification Test, and their transient mood was recorded on the dimensions of valence, arousal, anger, and anxiety. Multivariate regression analyses show that an increase of cortisol in the TSST session (as compared with the control session) is associated with better odor identification performance (β = .491) and higher odor intensity ratings (β = .562). However, increased anger in the TSST session (as compared with the control session) is associated with lower odor identification performance (β = -.482). The study shows divergent effects of the emotional and the physiological stress responses, indicating that an increase of cortisol is associated with better odor identification performance, whereas increased anger is associated with poorer odor identification performance.

  8. Voxelwise multivariate analysis of multimodality magnetic resonance imaging

    PubMed Central

    Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2015-01-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378

  9. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  10. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  11. Methodological challenges to multivariate syndromic surveillance: a case study using Swiss animal health data.

    PubMed

    Vial, Flavie; Wei, Wei; Held, Leonhard

    2016-12-20

    In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems (which concurrently monitor several data streams) should have a greater probability of detecting disease events than univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand, a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues' two-component model, to two multivariate animal health datasets from Switzerland. In our first application, multivariate time series of the number of laboratories test requests were derived from Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate. However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory, making such an approach suitable for outbreak prediction. In our second application, the two-component model was applied to the multivariate time series of the number of cattle abortions and the number of test requests for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from the number of abortions to the number of test requests. We further compared the joint modelling and univariate modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of superiority in terms of forecasting abilities. Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).

  12. An effective drift correction for dynamical downscaling of decadal global climate predictions

    NASA Astrophysics Data System (ADS)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  13. Perception of control, coping and psychological stress of infertile women undergoing IVF.

    PubMed

    Gourounti, Kleanthi; Anagnostopoulos, Fotios; Potamianos, Grigorios; Lykeridou, Katerina; Schmidt, Lone; Vaslamatzis, Grigorios

    2012-06-01

    The study aimed to examine: (i) the association between perception of infertility controllability and coping strategies; and (ii) the association between perception of infertility controllability and coping strategies to psychological distress, applying multivariate statistical techniques to control for the effects of demographic variables. This cross-sectional study included 137 women with fertility problems undergoing IVF in a public hospital. All participants completed questionnaires that measured fertility-related stress, state anxiety, depressive symptomatology, perception of control and coping strategies. Pearson's correlation coefficients were calculated between all study variables, followed by hierarchical multiple linear regression. Low perception of personal and treatment controllability was associated with frequent use of avoidance coping and high perception of treatment controllability was positively associated with problem-focused coping. Multivariate analysis showed that, when controlling for demographic factors, low perception of personal control and avoidance coping were positively associated with fertility-related stress and state anxiety, and problem-appraisal coping was negatively and significantly associated with fertility-related stress and depressive symptomatology scores. The findings of this study merit the understanding of the role of control perception and coping in psychological stress of infertile women to identify beforehand those women who might be at risk of experiencing high stress and in need of support. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Predicting worsening asthma control following the common cold

    PubMed Central

    Walter, Michael J.; Castro, Mario; Kunselman, Susan J.; Chinchilli, Vernon M; Reno, Melissa; Ramkumar, Thiruvamoor P.; Avila, Pedro C.; Boushey, Homer A.; Ameredes, Bill T.; Bleecker, Eugene R.; Calhoun, William J.; Cherniack, Reuben M.; Craig, Timothy J.; Denlinger, Loren C.; Israel, Elliot; Fahy, John V.; Jarjour, Nizar N.; Kraft, Monica; Lazarus, Stephen C.; Lemanske, Robert F.; Martin, Richard J.; Peters, Stephen P.; Ramsdell, Joe W.; Sorkness, Christine A.; Rand Sutherland, E.; Szefler, Stanley J.; Wasserman, Stephen I.; Wechsler, Michael E.

    2008-01-01

    The asthmatic response to the common cold is highly variable and early characteristics that predict worsening of asthma control following a cold have not been identified. In this prospective multi-center cohort study of 413 adult subjects with asthma, we used the mini-Asthma Control Questionnaire (mini-ACQ) to quantify changes in asthma control and the Wisconsin Upper Respiratory Symptom Survey-21 (WURSS-21) to measure cold severity. Univariate and multivariable models examined demographic, physiologic, serologic, and cold-related characteristics for their relationship to changes in asthma control following a cold. We observed a clinically significant worsening of asthma control following a cold (increase in mini-ACQ of 0.69 ± 0.93). Univariate analysis demonstrated season, center location, cold length, and cold severity measurements all associated with a change in asthma control. Multivariable analysis of the covariates available within the first 2 days of cold onset revealed the day 2 and the cumulative sum of the day 1 and 2 WURSS-21 scores were significant predictors for the subsequent changes in asthma control. In asthmatic subjects the cold severity measured within the first 2 days can be used to predict subsequent changes in asthma control. This information may help clinicians prevent deterioration in asthma control following a cold. PMID:18768579

  15. Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.

    PubMed

    Aguero-Valverde, Jonathan

    2013-10-01

    Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Retrospective Evaluation of Safety, Efficacy and Risk Factors for Pneumothorax in Simultaneous Localizations of Multiple Pulmonary Nodules Using Hook Wire System.

    PubMed

    Zhong, Yan; Xu, Xiao-Quan; Pan, Xiang-Long; Zhang, Wei; Xu, Hai; Yuan, Mei; Kong, Ling-Yan; Pu, Xue-Hui; Chen, Liang; Yu, Tong-Fu

    2017-09-01

    To evaluate the safety and efficacy of the hook wire system in the simultaneous localizations for multiple pulmonary nodules (PNs) before video-assisted thoracoscopic surgery (VATS), and to clarify the risk factors for pneumothorax associated with the localization procedure. Between January 2010 and February 2016, 67 patients (147 nodules, Group A) underwent simultaneous localizations for multiple PNs using a hook wire system. The demographic, localization procedure-related information and the occurrence rate of pneumothorax were assessed and compared with a control group (349 patients, 349 nodules, Group B). Multivariate logistic regression analyses were used to determine the risk factors for pneumothorax during the localization procedure. All the 147 nodules were successfully localized. Four (2.7%) hook wires dislodged before VATS procedure, but all these four lesions were successfully resected according to the insertion route of hook wire. Pathological diagnoses were acquired for all 147 nodules. Compared with Group B, Group A demonstrated significantly longer procedure time (p < 0.001) and higher occurrence rate of pneumothorax (p = 0.019). Multivariate logistic regression analysis indicated that position change during localization procedure (OR 2.675, p = 0.021) and the nodules located in the ipsilateral lung (OR 9.404, p < 0.001) were independent risk factors for pneumothorax. Simultaneous localizations for multiple PNs using a hook wire system before VATS procedure were safe and effective. Compared with localization for single PN, simultaneous localizations for multiple PNs were prone to the occurrence of pneumothorax. Position change during localization procedure and the nodules located in the ipsilateral lung were independent risk factors for pneumothorax.

  17. Studying the Relationship between Children's Self-Control and Academic Achievement: An Application of Second-Order Growth Curve Model Analysis.

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Murry, Velma McBride; Brody, Gene H.

    The functional relationships between developmental change in children's self-control and academic achievement were examined using longitudinal family data. Multivariate latent growth models (LGM) were specified to determine whether the rate of growth in academic achievement changes as a function of developmental change in self-control. Data came…

  18. Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm.

    PubMed

    Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam

    2014-07-01

    This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Quality of Life in Patients with Noninfectious Uveitis Treated with or without Systemic Anti-inflammatory Therapy.

    PubMed

    Gui, Wei; Dombrow, Matthew; Marcus, Inna; Stowe, Meredith H; Tessier-Sherman, Baylah; Yang, Elizabeth; Huang, John J

    2015-04-01

    To compare vision-related (VR-QOL) and health-related quality of life (HR-QOL) in patients with noninfectious uveitis treated with systemic anti-inflammatory therapy versus nonsystemic therapy. A prospective, cross-sectional study design was employed. VR-QOL and HR-QOL were assessed by the 25-Item Visual Function Questionnaire (VFQ-25) and the Short Form 12-Item Health Survey (SF-12), respectively. Multivariate regression analysis was performed to assess the VR-QOL and HR-QOL based on treatment. Among the 80 patients, the median age was 51 years with 28 males (35%). The adjusted effect of treatment modality on VR-QOL or HR-QOL showed no statistically significant difference in all subscores of VFQ-25 or physical component score (PCS) and mental component score (MCS) of SF-12. Systemic therapy did not compromise VR-QOL or HR-QOL compared to nonsystemic therapy. Systemic therapy can be effectively used to control serious cases of noninfectious uveitis without significant relative adverse impact on quality of life.

  20. Naproxen or estradiol for bleeding and spotting with the levonorgestrel intrauterine system: a randomized controlled trial.

    PubMed

    Madden, Tessa; Proehl, Sarah; Allsworth, Jenifer E; Secura, Gina M; Peipert, Jeffrey F

    2012-02-01

    The purpose of this study was to evaluate whether oral naproxen or transdermal estradiol decreases bleeding and spotting in women who are initiating the levonorgestrel-releasing intrauterine system. We conducted a randomized controlled trial of naproxen, estradiol, or placebo that was administered over the first 12 weeks of levonorgestrel-releasing intrauterine system use. Participants completed a written bleeding diary. We imputed missing values and performed an intention-to-treat analysis. There were 129 women who were assigned randomly to naproxen (n = 42 women), estradiol (n = 44 women), or placebo (n = 43 women). The naproxen group was more likely to be in the lowest quartile of bleeding and spotting days compared with placebo (42.9% vs 16.3%; P = .03). In the multivariable analysis, the naproxen group had a 10% reduction in bleeding and spotting days (adjusted relative risk, 0.90; 95% confidence interval, 0.84-0.97) compared with placebo. More frequent bleeding and spotting was observed in the estradiol group (adjusted relative risk, 1.25; 95% confidence interval, 1.17-1.34). The administration of naproxen resulted in a reduction in bleeding and spotting days compared with placebo. Copyright © 2012 Mosby, Inc. All rights reserved.

Top