NASA Technical Reports Server (NTRS)
Liberty, S. R.; Mielke, R. R.; Tung, L. J.
1981-01-01
Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.
NASA Technical Reports Server (NTRS)
Soeder, J. F.
1983-01-01
As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.
Multivariable PID controller design tuning using bat algorithm for activated sludge process
NASA Astrophysics Data System (ADS)
Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan
2018-04-01
The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Watts, Stephen R.
1995-01-01
This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.
Application of advanced control techniques to aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1984-01-01
Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.
Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.
1980-01-01
A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.
Model transformations for state-space self-tuning control of multivariable stochastic systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.
1988-01-01
The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1981-01-01
Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.
1983-09-01
promising method of af- craft multivariable flight controller design. Like any ne.! design technique, there is still more to learn about the r.~ cd...M4atix - Feedback Gain Ma trix - Fandom ’htrix Z - Number of Outputs L1 - Roll Moment • : ’ - 7oll Moment with Inertia TrML 523 a.. Symbols m - Number of
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1996-01-01
This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Behbehani, K.
1980-01-01
A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.
State-space self-tuner for on-line adaptive control
NASA Technical Reports Server (NTRS)
Shieh, L. S.
1994-01-01
Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.
Multivariate Quantitative Chemical Analysis
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Capezza, Mary
1995-01-01
Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.
Development of a robust framework for controlling high performance turbofan engines
NASA Astrophysics Data System (ADS)
Miklosovic, Robert
This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Hueschen, R. M.
1984-01-01
The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition for landing, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot time to make longer range decisions. This paper shows a design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Single control element failures are allowed in three of the four controls. The four controls design and failure cases are analyzed by means of a digital airplane simulation, with regard to tracking capability and ability to overcome severe windshear and turbulence during the aproach and landing phase of flight.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
Metric Selection for Evaluation of Human Supervisory Control Systems
2009-12-01
finding a significant effect when there is none becomes more likely. The inflation of type I error due to multiple dependent variables can be handled...with multivariate analysis techniques, such as Multivariate Analysis of Variance (MANOVA) (Johnson & Wichern, 2002). However, it should be noted that...the few significant differences among many insignificant ones. The best way to avoid failure to identify significant differences is to design an
Multivariable Techniques for High-Speed Research Flight Control Systems
NASA Technical Reports Server (NTRS)
Newman, Brett A.
1999-01-01
This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.
Diagonal dominance for the multivariable Nyquist array using function minimization
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1977-01-01
A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.
A Method for Exploiting Redundancy to Accommodate Actuator Limits in Multivariable Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Roulette, Greg
1995-01-01
This paper introduces a new method for accommodating actuator saturation in a multivariable system with actuator redundancy. Actuator saturation can cause significant deterioration in control system performance because unmet demand may result in sluggish transients and oscillations in response to setpoint changes. To help compensate for this problem, a technique has been developed which takes advantage of redundancy in multivariable systems to redistribute the unmet control demand over the remaining useful effectors. This method is not a redesign procedure, rather it modifies commands to the unlimited effectors to compensate for those which are limited, thereby exploiting the built-in redundancy. The original commands are modified by the increments due to unmet demand, but when a saturated effector comes off its limit, the incremental commands disappear and the original unmodified controller remains intact. This scheme provides a smooth transition between saturated and unsaturated modes as it divides up the unmet requirement over any available actuators. This way, if there is sufficiently redundant control authority, performance can be maintained.
ERIC Educational Resources Information Center
Fouladi, Rachel T.
2000-01-01
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Compensator improvement for multivariable control systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.
1977-01-01
A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.
On the reliability of Shewhart-type control charts for multivariate process variability
NASA Astrophysics Data System (ADS)
Djauhari, Maman A.; Salleh, Rohayu Mohd; Zolkeply, Zunnaaim; Li, Lee Siaw
2017-05-01
We show that in the current practice of multivariate process variability monitoring, the reliability of Shewhart-type control charts cannot be measured except when the sub-group size n tends to infinity. However, the requirement of large n is meaningless not only in manufacturing industry where n is small but also in service industry where n is moderate. In this paper, we introduce a new definition of control limits in the two most appreciated control charts in the literature, i.e., the improved generalized variance chart (IGV-chart) and vector variance chart (VV-chart). With the new definition of control limits, the reliability of the control charts can be determined. Some important properties of new control limits will be derived and the computational technique of probability of false alarm will be delivered.
Input-output oriented computation algorithms for the control of large flexible structures
NASA Technical Reports Server (NTRS)
Minto, K. D.
1989-01-01
An overview is given of work in progress aimed at developing computational algorithms addressing two important aspects in the control of large flexible space structures; namely, the selection and placement of sensors and actuators, and the resulting multivariable control law design problem. The issue of sensor/actuator set selection is particularly crucial to obtaining a satisfactory control design, as clearly a poor choice will inherently limit the degree to which good control can be achieved. With regard to control law design, the researchers are driven by concerns stemming from the practical issues associated with eventual implementation of multivariable control laws, such as reliability, limit protection, multimode operation, sampling rate selection, processor throughput, etc. Naturally, the burden imposed by dealing with these aspects of the problem can be reduced by ensuring that the complexity of the compensator is minimized. Our approach to these problems is based on extensions to input/output oriented techniques that have proven useful in the design of multivariable control systems for aircraft engines. In particular, researchers are exploring the use of relative gain analysis and the condition number as a means of quantifying the process of sensor/actuator selection and placement for shape control of a large space platform.
An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Watts, Stephen R.; Garg, Sanjay
1995-01-01
This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Patek, Stephen D.
1988-01-01
Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis
2018-02-09
The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Survey of adaptive control using Liapunov design
NASA Technical Reports Server (NTRS)
Lindorff, D. P.; Carroll, R. L.
1973-01-01
A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu
2011-05-01
This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Multivariable control of a rapid thermal processor using ultrasonic sensors
NASA Astrophysics Data System (ADS)
Dankoski, Paul C. P.
The semiconductor manufacturing industry faces the need for tighter control of thermal budget and process variations as circuit feature sizes decrease. Strategies to meet this need include supervisory control, run-to-run control, and real-time feedback control. Typically, the level of control chosen depends upon the actuation and sensing available. Rapid Thermal Processing (RTP) is one step of the manufacturing cycle requiring precise temperature control and hence real-time feedback control. At the outset of this research, the primary ingredient lacking from in-situ RTP temperature control was a suitable sensor. This research looks at an alternative to the traditional approach of pyrometry, which is limited by the unknown and possibly time-varying wafer emissivity. The technique is based upon the temperature dependence of the propagation time of an acoustic wave in the wafer. The aim of this thesis is to evaluate the ultrasonic sensors as a potentially viable sensor for control in RTP. To do this, an experimental implementation was developed at the Center for Integrated Systems. Because of the difficulty in applying a known temperature standard in an RTP environment, calibration to absolute temperature is nontrivial. Given reference propagation delays, multivariable model-based feedback control is applied to the system. The modelling and implementation details are described. The control techniques have been applied to a number of research processes including rapid thermal annealing and rapid thermal crystallization of thin silicon films on quartz/glass substrates.
Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari
2013-05-01
The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Park, Steve
1990-01-01
A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.
Tang, Yongqiang
2018-04-30
The controlled imputation method refers to a class of pattern mixture models that have been commonly used as sensitivity analyses of longitudinal clinical trials with nonignorable dropout in recent years. These pattern mixture models assume that participants in the experimental arm after dropout have similar response profiles to the control participants or have worse outcomes than otherwise similar participants who remain on the experimental treatment. In spite of its popularity, the controlled imputation has not been formally developed for longitudinal binary and ordinal outcomes partially due to the lack of a natural multivariate distribution for such endpoints. In this paper, we propose 2 approaches for implementing the controlled imputation for binary and ordinal data based respectively on the sequential logistic regression and the multivariate probit model. Efficient Markov chain Monte Carlo algorithms are developed for missing data imputation by using the monotone data augmentation technique for the sequential logistic regression and a parameter-expanded monotone data augmentation scheme for the multivariate probit model. We assess the performance of the proposed procedures by simulation and the analysis of a schizophrenia clinical trial and compare them with the fully conditional specification, last observation carried forward, and baseline observation carried forward imputation methods. Copyright © 2018 John Wiley & Sons, Ltd.
MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft
Zhang, Jing
2015-01-01
This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder
2009-12-01
To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1995-01-01
The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.
A tensor approach to modeling of nonhomogeneous nonlinear systems
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Sain, M.
1980-01-01
Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.
Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly
2018-02-05
The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.
1993-06-18
the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991
NASA Technical Reports Server (NTRS)
Wolf, S. F.; Lipschutz, M. E.
1993-01-01
Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.
Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk
2011-08-01
A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.
Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques
NASA Astrophysics Data System (ADS)
Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein
2017-10-01
The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.
NASA Astrophysics Data System (ADS)
Rocha-Osornio, L. N.; Pichardo-Molina, J. L.; Barbosa-Garcia, O.; Frausto-Reyes, C.; Araujo-Andrade, C.; Huerta-Franco, R.; Gutiérrez-Juárez, G.
2008-02-01
Raman spectroscopy and Multivariate methods were used to study serum blood samples of control and breast cancer patients. Blood samples were obtained from 11 patients and 12 controls from the central region of Mexico. Our results show that principal component analysis is able to discriminate serum sample of breast cancer patients from those of control group, also the loading vectors of PCA plotted as a function of Raman shift shown which bands permitted to make the maximum discrimination between both groups of samples.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
Application of multivariate statistical techniques in microbial ecology
Paliy, O.; Shankar, V.
2016-01-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
Li, Wen-Long; Qu, Hai-Bin
2016-10-01
In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.
Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods
ERIC Educational Resources Information Center
Zhang, Ying
2011-01-01
Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…
Perception of control, coping and psychological stress of infertile women undergoing IVF.
Gourounti, Kleanthi; Anagnostopoulos, Fotios; Potamianos, Grigorios; Lykeridou, Katerina; Schmidt, Lone; Vaslamatzis, Grigorios
2012-06-01
The study aimed to examine: (i) the association between perception of infertility controllability and coping strategies; and (ii) the association between perception of infertility controllability and coping strategies to psychological distress, applying multivariate statistical techniques to control for the effects of demographic variables. This cross-sectional study included 137 women with fertility problems undergoing IVF in a public hospital. All participants completed questionnaires that measured fertility-related stress, state anxiety, depressive symptomatology, perception of control and coping strategies. Pearson's correlation coefficients were calculated between all study variables, followed by hierarchical multiple linear regression. Low perception of personal and treatment controllability was associated with frequent use of avoidance coping and high perception of treatment controllability was positively associated with problem-focused coping. Multivariate analysis showed that, when controlling for demographic factors, low perception of personal control and avoidance coping were positively associated with fertility-related stress and state anxiety, and problem-appraisal coping was negatively and significantly associated with fertility-related stress and depressive symptomatology scores. The findings of this study merit the understanding of the role of control perception and coping in psychological stress of infertile women to identify beforehand those women who might be at risk of experiencing high stress and in need of support. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
The Effect of the Multivariate Box-Cox Transformation on the Power of MANOVA.
ERIC Educational Resources Information Center
Kirisci, Levent; Hsu, Tse-Chi
Most of the multivariate statistical techniques rely on the assumption of multivariate normality. The effects of non-normality on multivariate tests are assumed to be negligible when variance-covariance matrices and sample sizes are equal. Therefore, in practice, investigators do not usually attempt to remove non-normality. In this simulation…
Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques
NASA Technical Reports Server (NTRS)
McDonald, G.; Storrie-Lombardi, M.; Nealson, K.
1999-01-01
The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.
Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei
1991-01-01
A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; Van Wingerden, J. W.; Wright, A. D.
2012-01-01
In this paper we present results from an ongoing controller comparison study at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is,more » to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
Implementation Challenges for Multivariable Control: What You Did Not Learn in School
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2008-01-01
Multivariable control allows controller designs that can provide decoupled command tracking and robust performance in the presence of modeling uncertainties. Although the last two decades have seen extensive development of multivariable control theory and example applications to complex systems in software/hardware simulations, there are no production flying systems aircraft or spacecraft, that use multivariable control. This is because of the tremendous challenges associated with implementation of such multivariable control designs. Unfortunately, the curriculum in schools does not provide sufficient time to be able to provide an exposure to the students in such implementation challenges. The objective of this paper is to share the lessons learned by a practitioner of multivariable control in the process of applying some of the modern control theory to the Integrated Flight Propulsion Control (IFPC) design for an advanced Short Take-Off Vertical Landing (STOVL) aircraft simulation.
Multivariate evoked response detection based on the spectral F-test.
Rocha, Paulo Fábio F; Felix, Leonardo B; Miranda de Sá, Antonio Mauricio F L; Mendes, Eduardo M A M
2016-05-01
Objective response detection techniques, such as magnitude square coherence, component synchrony measure, and the spectral F-test, have been used to automate the detection of evoked responses. The performance of these detectors depends on both the signal-to-noise ratio (SNR) and the length of the electroencephalogram (EEG) signal. Recently, multivariate detectors were developed to increase the detection rate even in the case of a low signal-to-noise ratio or of short data records originated from EEG signals. In this context, an extension to the multivariate case of the spectral F-test detector is proposed. The performance of this technique is assessed using Monte Carlo. As an example, EEG data from 12 subjects during photic stimulation is used to demonstrate the usefulness of the proposed detector. The multivariate method showed detection rates consistently higher than those ones when only one signal was used. It is shown that the response detection in EEG signals with the multivariate technique was statistically significant if two or more EEG derivations were used. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Chia-Chuan; Shih, Chih-Shiun; Pennarun, Nicolas; Cheng, Chih-Tao
2016-01-01
The feasibility and radicalism of lymph node dissection for lung cancer surgery by a single-port technique has frequently been challenged. We performed a retrospective cohort study to investigate this issue. Two chest surgeons initiated multiple-port thoracoscopic surgery in a 180-bed cancer centre in 2005 and shifted to a single-port technique gradually after 2010. Data, including demographic and clinical information, from 389 patients receiving multiport thoracoscopic lobectomy or segmentectomy and 149 consecutive patients undergoing either single-port lobectomy or segmentectomy for primary non-small-cell lung cancer were retrieved and entered for statistical analysis by multivariable linear regression models and Box-Cox transformed multivariable analysis. The mean number of total dissected lymph nodes in the lobectomy group was 28.5 ± 11.7 for the single-port group versus 25.2 ± 11.3 for the multiport group; the mean number of total dissected lymph nodes in the segmentectomy group was 19.5 ± 10.8 for the single-port group versus 17.9 ± 10.3 for the multiport group. In linear multivariable and after Box-Cox transformed multivariable analyses, the single-port approach was still associated with a higher total number of dissected lymph nodes. The total number of dissected lymph nodes for primary lung cancer surgery by single-port video-assisted thoracoscopic surgery (VATS) was higher than by multiport VATS in univariable, multivariable linear regression and Box-Cox transformed multivariable analyses. This study confirmed that highly effective lymph node dissection could be achieved through single-port VATS in our setting. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Application of multivariate statistical techniques in microbial ecology.
Paliy, O; Shankar, V
2016-03-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.
Simulating Multivariate Nonnormal Data Using an Iterative Algorithm
ERIC Educational Resources Information Center
Ruscio, John; Kaczetow, Walter
2008-01-01
Simulating multivariate nonnormal data with specified correlation matrices is difficult. One especially popular method is Vale and Maurelli's (1983) extension of Fleishman's (1978) polynomial transformation technique to multivariate applications. This requires the specification of distributional moments and the calculation of an intermediate…
Digital controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Using linear-optimal estimation and control techniques, digital-adaptive control laws have been designed for a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. Two distinct discrete-time control laws are designed to interface with velocity-command and attitude-command guidance logic, and each incorporates proportional-integral compensation for non-zero-set-point regulation, as well as reduced-order Kalman filters for sensor blending and noise rejection. Adaptation to flight condition is achieved with a novel gain-scheduling method based on correlation and regression analysis. The linear-optimal design approach is found to be a valuable tool in the development of practical multivariable control laws for vehicles which evidence significant coupling and insufficient natural stability.
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.
1977-01-01
The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.
Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M
2016-05-01
Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.
Survey of adaptive control using Liapunov design
NASA Technical Reports Server (NTRS)
Lindorff, D. P.; Carroll, R. L.
1972-01-01
A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.
The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples
ERIC Educational Resources Information Center
Avetisyan, Marianna; Fox, Jean-Paul
2012-01-01
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
All-Possible-Subsets for MANOVA and Factorial MANOVAs: Less than a Weekend Project
ERIC Educational Resources Information Center
Nimon, Kim; Zientek, Linda Reichwein; Kraha, Amanda
2016-01-01
Multivariate techniques are increasingly popular as researchers attempt to accurately model a complex world. MANOVA is a multivariate technique used to investigate the dimensions along which groups differ, and how these dimensions may be used to predict group membership. A concern in a MANOVA analysis is to determine if a smaller subset of…
USDA-ARS?s Scientific Manuscript database
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
ERIC Educational Resources Information Center
Martin, James L.
This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.
2011-12-01
This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiplemore » single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
H(2)- and H(infinity)-design tools for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Ly, Uy-Loi
1989-01-01
Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.
On Restructurable Control System Theory
NASA Technical Reports Server (NTRS)
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Sliding Mode Control of a Thermal Mixing Process
NASA Technical Reports Server (NTRS)
Richter, Hanz; Figueroa, Fernando
2004-01-01
In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.
Hybrid suboptimal control of multi-rate multi-loop sampled-data systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.
1992-01-01
A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.
Modeling and managing risk early in software development
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.
1993-01-01
In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.
Multivariate stochastic simulation with subjective multivariate normal distributions
P. J. Ince; J. Buongiorno
1991-01-01
In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...
Sensitivity analysis of automatic flight control systems using singular value concepts
NASA Technical Reports Server (NTRS)
Herrera-Vaillard, A.; Paduano, J.; Downing, D.
1985-01-01
A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.
ERIC Educational Resources Information Center
Arbaugh, J. B.; Hwang, Alvin
2013-01-01
Seeking to assess the analytical rigor of empirical research in management education, this article reviews the use of multivariate statistical techniques in 85 studies of online and blended management education over the past decade and compares them with prescriptions offered by both the organization studies and educational research communities.…
Maione, Camila; Barbosa, Rommel Melgaço
2018-01-24
Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.
Multivariate geometry as an approach to algal community analysis
Allen, T.F.H.; Skagen, S.
1973-01-01
Multivariate analyses are put in the context of more usual approaches to phycological investigations. The intuitive common-sense involved in methods of ordination, classification and discrimination are emphasised by simple geometric accounts which avoid jargon and matrix algebra. Warnings are given that artifacts result from technique abuses by the naive or over-enthusiastic. An analysis of a simple periphyton data set is presented as an example of the approach. Suggestions are made as to situations in phycological investigations, where the techniques could be appropriate. The discipline is reprimanded for its neglect of the multivariate approach.
Modeling and Control for Microgrids
NASA Astrophysics Data System (ADS)
Steenis, Joel
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
Jenson, Susan K.; Trautwein, C.M.
1984-01-01
The application of an unsupervised, spatially dependent clustering technique (AMOEBA) to interpolated raster arrays of stream sediment data has been found to provide useful multivariate geochemical associations for modeling regional polymetallic resource potential. The technique is based on three assumptions regarding the compositional and spatial relationships of stream sediment data and their regional significance. These assumptions are: (1) compositionally separable classes exist and can be statistically distinguished; (2) the classification of multivariate data should minimize the pair probability of misclustering to establish useful compositional associations; and (3) a compositionally defined class represented by three or more contiguous cells within an array is a more important descriptor of a terrane than a class represented by spatial outliers.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Leake, R. J.; Sain, M. K.
1978-01-01
General goals of the research were classified into two categories. The first category involves the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a quiescent point. The second category involves the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. In the frequency domain category, works were published in the areas of low-interaction design, polynomial design, and multiple setpoint studies. A number of these ideas progressed to the point at which they are starting to attract practical interest. In the nonlinear category, advances were made both in engine modelling and in the details associated with software for determination of time optimal controls. Nonlinear models for a two spool turbofan engine were expanded and refined; and a promising new approach to automatic model generation was placed under study. A two time scale scheme was developed to do two-dimensional dynamic programming, and an outward spiral sweep technique has greatly speeded convergence times in time optimal calculations.
Processes and subdivisions in diogenites, a multivariate statistical analysis
NASA Technical Reports Server (NTRS)
Harriott, T. A.; Hewins, R. H.
1984-01-01
Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.
1974-01-01
Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.
Djuris, Jelena; Djuric, Zorica
2017-11-30
Mathematical models can be used as an integral part of the quality by design (QbD) concept throughout the product lifecycle for variety of purposes, including appointment of the design space and control strategy, continual improvement and risk assessment. Examples of different mathematical modeling techniques (mechanistic, empirical and hybrid) in the pharmaceutical development and process monitoring or control are provided in the presented review. In the QbD context, mathematical models are predominantly used to support design space and/or control strategies. Considering their impact to the final product quality, models can be divided into the following categories: high, medium and low impact models. Although there are regulatory guidelines on the topic of modeling applications, review of QbD-based submission containing modeling elements revealed concerns regarding the scale-dependency of design spaces and verification of models predictions at commercial scale of manufacturing, especially regarding real-time release (RTR) models. Authors provide critical overview on the good modeling practices and introduce concepts of multiple-unit, adaptive and dynamic design space, multivariate specifications and methods for process uncertainty analysis. RTR specification with mathematical model and different approaches to multivariate statistical process control supporting process analytical technologies are also presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.
Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs
2009-02-01
This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.
Evaluation of an F100 multivariable control using a real-time engine simulation
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Skira, C.; Soeder, J. F.
1977-01-01
A multivariable control design for the F100 turbofan engine was evaluated, as part of the F100 multivariable control synthesis (MVCS) program. The evaluation utilized a real-time, hybrid computer simulation of the engine and a digital computer implementation of the control. Significant results of the evaluation are presented and recommendations concerning future engine testing of the control are made.
Applications of numerical optimization methods to helicopter design problems: A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1985-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Li, Siyue; Zhang, Quanfa
2010-04-15
A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.
A numerical approach to controller design for the ACES facility
NASA Technical Reports Server (NTRS)
Frazier, W. Garth; Irwin, R. Dennis
1993-01-01
In recent years the employment of active control techniques for improving the performance of systems involving highly flexible structures has become a topic of considerable research interest. Most of these systems are quite complicated, using multiple actuators and sensors, and possessing high order models. The majority of analytical controller synthesis procedures capable of handling multivariable systems in a systematic way require considerable insight into the underlying mathematical theory to achieve a successful design. This insight is needed in selecting the proper weighting matrices or weighting functions to cast what is naturally a multiple constraint satisfaction problem into an unconstrained optimization problem. Although designers possessing considerable experience with these techniques have a feel for the proper choice of weights, others may spend a significant amount of time attempting to find an acceptable solution. Another disadvantage of such procedures is that the resulting controller has an order greater than or equal to that of the model used for the design. Of course, the order of these controllers can often be reduced, but again this requires a good understanding of the theory involved.
Cross-Reactive Plasmonic Aptasensors for Controlled Substance Identification
Yoho, Joshua N.; Geier, Brian; Grigsby, Claude C.; Hagen, Joshua A.; Chávez, Jorge L.; Kelley-Loughnane, Nancy
2017-01-01
In this work, we developed an assay to determine if an arbitrary white powder is a controlled substance, given the plasmonic response of aptamer-gold nanoparticle conjugates (Apt-AuNPs). Toward this end, we designed Apt-AuNPs with specific a response to common controlled substances without cross reactivity to chemicals typically used as fillers in street formulations. Plasmonic sensor variation was shown to produce unique data fingerprints for each chemical analyzed, supporting the application of multivariate statistical techniques to annotate unknown samples by chemical similarity. Importantly, the assay takes less than fifteen minutes to run, and requires only a few micrograms of the material, making the proposed assay easily deployable in field operations. PMID:28832512
Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses
2013-01-01
Background In this paper we use multivariate statistical techniques to gain insights into how adaptive gait involving obstacle crossing is regulated in lower-limb amputees compared to able-bodied controls, with the aim of identifying underlying characteristics that differ between the two groups and consequently highlighting gait deficits in the amputees. Methods Eight unilateral trans-tibial amputees and twelve able-bodied controls completed adaptive gait trials involving negotiating various height obstacles; with amputees leading with their prosthetic limb. Spatiotemporal variables that are regularly used to quantify how gait is adapted when crossing obstacles were determined and subsequently analysed using multivariate statistical techniques. Results and discussion There were fundamental differences in the adaptive gait between the two groups. Compared to controls, amputees had a reduced approach velocity, reduced foot placement distance before and after the obstacle and reduced foot clearance over it, and reduced lead-limb knee flexion during the step following crossing. Logistic regression analysis highlighted the variables that best distinguished between the gait of the two groups and multiple regression analysis (with approach velocity as a controlling factor) helped identify what gait adaptations were driving the differences seen in these variables. Getting closer to the obstacle before crossing it appeared to be a strategy to ensure the heel of the lead-limb foot passed over the obstacle prior to the foot being lowered to the ground. Despite adopting such a heel clearance strategy, the lead-foot was positioned closer to the obstacle following crossing, which was likely a result of a desire to attain a limb/foot angle and orientation at instant of landing that minimised loads on the residuum (as evidenced by the reduced lead-limb knee flexion during the step following crossing). These changes in foot placement meant the foot was in a different part of swing at point of crossing and this explains why foot clearance was considerably reduced in amputees. Conclusions These results highlight that trans-tibial amputees use quite different gait adaptations to cross obstacles compared with controls (at least when leading with their prosthetic limb), indicating they are governed by different constraints; seemingly related to how they land on/load their prosthesis after crossing the obstacle. PMID:23958032
NASA Astrophysics Data System (ADS)
Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.
2017-06-01
The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.
NASA Astrophysics Data System (ADS)
Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng
2013-10-01
Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.
Diagnostic tools for mixing models of stream water chemistry
Hooper, Richard P.
2003-01-01
Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Hueschen, R. M.
1984-01-01
The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot more time to make longer range decisions. This paper presents a baseline design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Non-reconfigured and reconfigured control laws are then evaluated, both analytically and by means of a digital airplane simulation, for three individual control element failures (stabilizer, elevator, spoilers). The simulation results are used to evaluate the effectiveness of the control reconfiguration on tracking ability during the approach and landing phase of flight with severe windshear and turbulence disturbing the airplane dynamics.
Numerical simulation of an elastic structure behavior under transient fluid flow excitation
NASA Astrophysics Data System (ADS)
Afanasyeva, Irina N.; Lantsova, Irina Yu.
2017-01-01
This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.
A Course in... Multivariable Control Methods.
ERIC Educational Resources Information Center
Deshpande, Pradeep B.
1988-01-01
Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2013-12-03
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.
Stability and Performance Robustness Assessment of Multivariable Control Systems
1993-04-01
00- STABILITY AND PERFORMANCE ROBUSTNESS ASSESSMENT OF MULTIVARIABLE CONTROL SYSTEMS Asok Ray , Jenny I. Shen, and Chen-Kuo Weng Mechanical...Office of Naval Research Assessment of Multivariable Control Systems Grant No. N00014-90-J- 1513 6. AUTHOR(S) (Extension) Professor Asok Ray , Dr...20 The Pennsylvania State University University Park, PA 16802 (20 for Professor Asok Ray ) Naval Postgraduate School
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd-Lively, Jennifer L
2014-01-01
The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less
NASA Astrophysics Data System (ADS)
Bandte, Oliver
It has always been the intention of systems engineering to invent or produce the best product possible. Many design techniques have been introduced over the course of decades that try to fulfill this intention. Unfortunately, no technique has succeeded in combining multi-criteria decision making with probabilistic design. The design technique developed in this thesis, the Joint Probabilistic Decision Making (JPDM) technique, successfully overcomes this deficiency by generating a multivariate probability distribution that serves in conjunction with a criterion value range of interest as a universally applicable objective function for multi-criteria optimization and product selection. This new objective function constitutes a meaningful Xnetric, called Probability of Success (POS), that allows the customer or designer to make a decision based on the chance of satisfying the customer's goals. In order to incorporate a joint probabilistic formulation into the systems design process, two algorithms are created that allow for an easy implementation into a numerical design framework: the (multivariate) Empirical Distribution Function and the Joint Probability Model. The Empirical Distribution Function estimates the probability that an event occurred by counting how many times it occurred in a given sample. The Joint Probability Model on the other hand is an analytical parametric model for the multivariate joint probability. It is comprised of the product of the univariate criterion distributions, generated by the traditional probabilistic design process, multiplied with a correlation function that is based on available correlation information between pairs of random variables. JPDM is an excellent tool for multi-objective optimization and product selection, because of its ability to transform disparate objectives into a single figure of merit, the likelihood of successfully meeting all goals or POS. The advantage of JPDM over other multi-criteria decision making techniques is that POS constitutes a single optimizable function or metric that enables a comparison of all alternative solutions on an equal basis. Hence, POS allows for the use of any standard single-objective optimization technique available and simplifies a complex multi-criteria selection problem into a simple ordering problem, where the solution with the highest POS is best. By distinguishing between controllable and uncontrollable variables in the design process, JPDM can account for the uncertain values of the uncontrollable variables that are inherent to the design problem, while facilitating an easy adjustment of the controllable ones to achieve the highest possible POS. Finally, JPDM's superiority over current multi-criteria decision making techniques is demonstrated with an optimization of a supersonic transport concept and ten contrived equations as well as a product selection example, determining an airline's best choice among Boeing's B-747, B-777, Airbus' A340, and a Supersonic Transport. The optimization examples demonstrate JPDM's ability to produce a better solution with a higher POS than an Overall Evaluation Criterion or Goal Programming approach. Similarly, the product selection example demonstrates JPDM's ability to produce a better solution with a higher POS and different ranking than the Overall Evaluation Criterion or Technique for Order Preferences by Similarity to the Ideal Solution (TOPSIS) approach.
Sampling effort affects multivariate comparisons of stream assemblages
Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.
2002-01-01
Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1979-01-01
The research is classified in two categories: (1) the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a set-point, and (2) the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. Progress in the first category included the extension of CARDIAD (Complex Acceptability Region for Diagonal Dominance) methods developed with the help of the grant to the case of engine models with four inputs and four outputs. A suitable bounding procedure for the dominance function was determined. Progress in the second category had its principal focus on automatic nonlinear model generation. Simulations of models produced satisfactory results where compared with the NASA DYNGEN digital engine deck.
Diagnostic tools for nearest neighbors techniques when used with satellite imagery
Ronald E. McRoberts
2009-01-01
Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....
Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun
2014-01-01
Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups.
Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun
2014-01-01
Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups. PMID:24905072
Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1984-01-01
Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
Luan, Xiaoli; Chen, Qiang; Liu, Fei
2014-09-01
This article presents a new scheme to design full matrix controller for high dimensional multivariable processes based on equivalent transfer function (ETF). Differing from existing ETF method, the proposed ETF is derived directly by exploiting the relationship between the equivalent closed-loop transfer function and the inverse of open-loop transfer function. Based on the obtained ETF, the full matrix controller is designed utilizing the existing PI tuning rules. The new proposed ETF model can more accurately represent the original processes. Furthermore, the full matrix centralized controller design method proposed in this paper is applicable to high dimensional multivariable systems with satisfactory performance. Comparison with other multivariable controllers shows that the designed ETF based controller is superior with respect to design-complexity and obtained performance. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Multivariate Analysis of Schools and Educational Policy.
ERIC Educational Resources Information Center
Kiesling, Herbert J.
This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo
2011-03-04
Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.
A non-iterative extension of the multivariate random effects meta-analysis.
Makambi, Kepher H; Seung, Hyunuk
2015-01-01
Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.
NASA Astrophysics Data System (ADS)
Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise
2017-02-01
A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.
Non-fragile multivariable PID controller design via system augmentation
NASA Astrophysics Data System (ADS)
Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan
2017-07-01
In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.
Falahati, Farshad; Westman, Eric; Simmons, Andrew
2014-01-01
Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.
Nespolo, Roberto F; Castañeda, Luis E; Roff, Derek A
2005-08-01
Energy metabolism in animals has been largely studied in relation to exogenous sources of variation. However, because they give insight into the relationship between whole metabolism and lower organizational levels such as organs and tissues, examination of endogenous determinants of metabolism other than body mass is itself very important. We studied the multivariate association of body parts and several aspects of energy metabolism in an insect, the nymphs of the sand cricket, Gryllus firmus. By using a variety of both univariate and multivariate techniques, we explored the resultant variance-covariance matrix to build a path diagram with latent variables. After controlling for body mass, we found a significant canonical correlation between metabolism and morphology. According to the factor loadings and path coefficients, the most important contributions of morphology to the correlation were thorax and abdomen size measures, whereas the most important metabolic contribution was resting metabolism. Activity metabolism was mostly explained by body mass rather than body parts, which could be a result of resting rates being chronic consequences of the functioning of the metabolic machinery that the insect must maintain.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Analyzing Faculty Salaries When Statistics Fail.
ERIC Educational Resources Information Center
Simpson, William A.
The role played by nonstatistical procedures, in contrast to multivariant statistical approaches, in analyzing faculty salaries is discussed. Multivariant statistical methods are usually used to establish or defend against prima facia cases of gender and ethnic discrimination with respect to faculty salaries. These techniques are not applicable,…
Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students
ERIC Educational Resources Information Center
Valero-Mora, Pedro M.; Ledesma, Ruben D.
2011-01-01
This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…
Mostafa, Hamza; Amin, Arwa M; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Arif, Nor Hayati; Ibrahim, Baharudin
2016-12-01
Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD. To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics. Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC). The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0). This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Real-time quality assurance testing using photonic techniques: Application to iodine water system
NASA Technical Reports Server (NTRS)
Arendale, W. F.; Hatcher, Richard; Garlington, Yadilett; Harwell, Jack; Everett, Tracey
1990-01-01
A feasibility study of the use of inspection systems incorporating photonic sensors and multivariate analyses to provide an instrumentation system that in real-time assures quality and that the system in control has been conducted. A system is in control when the near future of the product quality is predictable. Off-line chemical analyses can be used for a chemical process when slow kinetics allows time to take a sample to the laboratory and the system provides a recovery mechanism that returns the system to statistical control without intervention of the operator. The objective for this study has been the implementation of do-it-right-the-first-time and just-in-time philosophies. The Environment Control and Life Support Systems (ECLSS) water reclamation system that adds iodine for biocidal control is an ideal candidate for the study and implementation of do-it-right-the-first-time technologies.
ERIC Educational Resources Information Center
Magnus, Brooke E.; Thissen, David
2017-01-01
Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…
Multivariate classification of infrared spectra of cell and tissue samples
Haaland, David M.; Jones, Howland D. T.; Thomas, Edward V.
1997-01-01
Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
ERIC Educational Resources Information Center
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...
Wang, Minlin; Ren, Xuemei; Chen, Qiang
2018-01-01
The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Design and test of three active flutter suppression controllers
NASA Technical Reports Server (NTRS)
Christhilf, David M.; Waszak, Martin R.; Adams, William M.; Srinathkumar, S.; Mukhopadhyay, Vivek
1991-01-01
Three flutter suppression control law design techniques are presented. Each uses multiple control surfaces and/or sensors. The first uses linear combinations of several accelerometer signals together with dynamic compensation to synthesize the modal rate of the critical mode for feedback to distributed control surfaces. The second uses traditional tools (pole/zero loci and Nyquist diagrams) to develop a good understanding of the flutter mechanism and produce a controller with minimal complexity and good robustness to plant uncertainty. The third starts with a minimum energy Linear Quadratic Gaussian controller, applies controller order reduction, and then modifies weight and noise covariance matrices to improve multi-variable robustness. The resulting designs were implemented digitally and tested subsonically on the Active Flexible Wing (AFW) wind tunnel model. Test results presented here include plant characteristics, maximum attained closed-loop dynamic pressure, and Root Mean Square control surface activity. A key result is that simultaneous symmetric and antisymmetric flutter suppression was achieved by the second control law, with a 24 percent increase in attainable dynamic pressure.
Development of Control Models and a Robust Multivariable Controller for Surface Shape Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winters, Scott Eric
2003-06-18
Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less
Adjustment of geochemical background by robust multivariate statistics
Zhou, D.
1985-01-01
Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.
1996-04-01
This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.
Multivariate normative comparisons using an aggregated database
Murre, Jaap M. J.; Huizenga, Hilde M.
2017-01-01
In multivariate normative comparisons, a patient’s profile of test scores is compared to those in a normative sample. Recently, it has been shown that these multivariate normative comparisons enhance the sensitivity of neuropsychological assessment. However, multivariate normative comparisons require multivariate normative data, which are often unavailable. In this paper, we show how a multivariate normative database can be constructed by combining healthy control group data from published neuropsychological studies. We show that three issues should be addressed to construct a multivariate normative database. First, the database may have a multilevel structure, with participants nested within studies. Second, not all tests are administered in every study, so many data may be missing. Third, a patient should be compared to controls of similar age, gender and educational background rather than to the entire normative sample. To address these issues, we propose a multilevel approach for multivariate normative comparisons that accounts for missing data and includes covariates for age, gender and educational background. Simulations show that this approach controls the number of false positives and has high sensitivity to detect genuine deviations from the norm. An empirical example is provided. Implications for other domains than neuropsychology are also discussed. To facilitate broader adoption of these methods, we provide code implementing the entire analysis in the open source software package R. PMID:28267796
Choi, D J; Park, H
2001-11-01
For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.
Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.
Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E
2005-10-01
As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.
Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation
ERIC Educational Resources Information Center
Hsieh, Fushing; Ferrer, Emilio; Chen, Shu-Chun; Chow, Sy-Miin
2010-01-01
In this article we present an exploratory tool for extracting systematic patterns from multivariate data. The technique, hierarchical segmentation (HS), can be used to group multivariate time series into segments with similar discrete-state recurrence patterns and it is not restricted by the stationarity assumption. We use a simulation study to…
J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez
2000-01-01
Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.
ERIC Educational Resources Information Center
Claybrook, Billy G.
A new heuristic factorization scheme uses learning to improve the efficiency of determining the symbolic factorization of multivariable polynomials with interger coefficients and an arbitrary number of variables and terms. The factorization scheme makes extensive use of artificial intelligence techniques (e.g., model-building, learning, and…
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
Analysis of Exhaled Breath Volatile Organic Compounds in Inflammatory Bowel Disease: A Pilot Study.
Hicks, Lucy C; Huang, Juzheng; Kumar, Sacheen; Powles, Sam T; Orchard, Timothy R; Hanna, George B; Williams, Horace R T
2015-09-01
Distinguishing between the inflammatory bowel diseases [IBD], Crohn's disease [CD] and ulcerative colitis [UC], is important for determining management and prognosis. Selected ion flow tube mass spectrometry [SIFT-MS] may be used to analyse volatile organic compounds [VOCs] in exhaled breath: these may be altered in disease states, and distinguishing breath VOC profiles can be identified. The aim of this pilot study was to identify, quantify, and analyse VOCs present in the breath of IBD patients and controls, potentially providing insights into disease pathogenesis and complementing current diagnostic algorithms. SIFT-MS breath profiling of 56 individuals [20 UC, 18 CD, and 18 healthy controls] was undertaken. Multivariate analysis included principal components analysis and partial least squares discriminant analysis with orthogonal signal correction [OSC-PLS-DA]. Receiver operating characteristic [ROC] analysis was performed for each comparative analysis using statistically significant VOCs. OSC-PLS-DA modelling was able to distinguish both CD and UC from healthy controls and from one other with good sensitivity and specificity. ROC analysis using combinations of statistically significant VOCs [dimethyl sulphide, hydrogen sulphide, hydrogen cyanide, ammonia, butanal, and nonanal] gave integrated areas under the curve of 0.86 [CD vs healthy controls], 0.74 [UC vs healthy controls], and 0.83 [CD vs UC]. Exhaled breath VOC profiling was able to distinguish IBD patients from controls, as well as to separate UC from CD, using both multivariate and univariate statistical techniques. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.
2016-10-01
The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.
Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E
2015-03-01
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls. Copyright © 2014 Elsevier B.V. All rights reserved.
Analytical methods in multivariate highway safety exposure data estimation
DOT National Transportation Integrated Search
1984-01-01
Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...
Nerve-sparing technique and urinary control after robot-assisted laparoscopic prostatectomy.
Choi, Wesley W; Freire, Marcos P; Soukup, Jane R; Yin, Lei; Lipsitz, Stuart R; Carvas, Fernando; Williams, Stephen B; Hu, Jim C
2011-02-01
To characterize determinants of 4-, 12-, and 24-month urinary control after robot-assisted laparoscopic prostatectomy (RALP). Adjusted comparative study using prospectively collected, patient self-reported urinary control for 602 consecutive RALPs. Urinary control defined as: (1) EPIC urinary function (UF) scored from 0 to 100 and (2) continence (zero pads per day). Both UF (62.8 vs. 42.4, P<0.001) and continence rates (47.2 vs. 26.7%, P=0.043) were better for bilateral nerve-sparing (BNS) vs. non-nerve-sparing (NNS) at 4 months, but only UF scores were significantly better at 12- (80.9 vs. 70.7, P=0.014) and 24-month (89.2 vs. 77.4, P=0.024) post-RALP. No difference in positive margin rates was observed. In multivariate analysis, older age (parameter estimate -0.42, 95% CI -0.80 to -0.04) and increasing gland volume (-0.13, CI -0.26 to -0.01) resulted in lower UF scores at 4 months, while higher pre-operative UF (0.25, CI 0.05-0.46), bladder neck-sparing technique (10.1, CI 3.79-16.35), BNS (19.1, CI 9.37-28.82), and unilateral nerve-sparing (19.00, CI 7.88-30.11) resulted in higher UF scores at 4 months. At 12 months, higher pre-operative UF (0.24, CI 0.083-0.40) and BNS (9.54, CI 1.92-17.16) resulted in higher UF scores. At 24 months, higher pre-operative UF (0.20, CI 0.06-0.33), bladder neck-sparing technique (7.80, CI 3.48-12.10), and BNS (7.86, CI 1.04-14.68) resulted in higher UF scores. BNS, bladder neck-sparing technique, and higher pre-operative UF score result in improved 24-month urinary control after RALP.
Ruano, R; Rodo, C; Peiro, J L; Shamshirsaz, A A; Haeri, S; Nomura, M L; Salustiano, E M A; de Andrade, K K; Sangi-Haghpeykar, H; Carreras, E; Belfort, M A
2013-10-01
To document perinatal outcomes following use of the 'Solomon technique' in the selective photocoagulation of placental anastomoses for severe twin-twin transfusion syndrome (TTTS). Between January 2010 and July 2012, data were collected from 102 consecutive monochorionic twin pregnancies complicated by severe TTTS that underwent fetoscopic laser ablation at four different centers. We compared outcomes between subjects that underwent selective laser coagulation using the Solomon technique (cases) and those that underwent selective laser coagulation without this procedure (controls). Of the 102 pregnancies examined, 26 (25.5%) underwent the Solomon technique and 76 (74.5%) did not. Of the 204 fetuses, 139 (68.1%) survived up to 30 days of age. At least one twin survived in 82 (80.4%) pregnancies and both twins survived in 57 (55.9%) pregnancies. When compared with the control group, the Solomon-technique group had a significantly higher survival rate for both twins (84.6 vs 46.1%; P < 0.01) and a higher overall neonatal survival rate (45/52 (86.5%) vs 94/152 (61.8%); P < 0.01). Use of the Solomon technique remained independently associated with dual twin survival (adjusted odds ratio (aOR), 11.35 (95% CI, 3.11-53.14); P = 0.0007) and overall neonatal survival rate (aOR, 4.65 (95% CI, 1.59-13.62); P = 0.005) on multivariable analysis. There were no cases of recurrent TTTS or twin anemia-polycythemia sequence (TAPS) in the Solomon-technique group. Use of the Solomon technique following selective laser coagulation of placental anastomoses appears to improve twin survival and may reduce the risk of recurrent TTTS and TAPS. Our data support the idea of performing a randomized controlled trial to evaluate the effectiveness of the Solomon technique. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner
2013-04-08
In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.
Update and review of accuracy assessment techniques for remotely sensed data
NASA Technical Reports Server (NTRS)
Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.
1983-01-01
Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.
NASA Astrophysics Data System (ADS)
Trigila, Alessandro; Iadanza, Carla; Esposito, Carlo; Scarascia-Mugnozza, Gabriele
2015-11-01
The aim of this work is to define reliable susceptibility models for shallow landslides using Logistic Regression and Random Forests multivariate statistical techniques. The study area, located in North-East Sicily, was hit on October 1st 2009 by a severe rainstorm (225 mm of cumulative rainfall in 7 h) which caused flash floods and more than 1000 landslides. Several small villages, such as Giampilieri, were hit with 31 fatalities, 6 missing persons and damage to buildings and transportation infrastructures. Landslides, mainly types such as earth and debris translational slides evolving into debris flows, were triggered on steep slopes and involved colluvium and regolith materials which cover the underlying metamorphic bedrock. The work has been carried out with the following steps: i) realization of a detailed event landslide inventory map through field surveys coupled with observation of high resolution aerial colour orthophoto; ii) identification of landslide source areas; iii) data preparation of landslide controlling factors and descriptive statistics based on a bivariate method (Frequency Ratio) to get an initial overview on existing relationships between causative factors and shallow landslide source areas; iv) choice of criteria for the selection and sizing of the mapping unit; v) implementation of 5 multivariate statistical susceptibility models based on Logistic Regression and Random Forests techniques and focused on landslide source areas; vi) evaluation of the influence of sample size and type of sampling on results and performance of the models; vii) evaluation of the predictive capabilities of the models using ROC curve, AUC and contingency tables; viii) comparison of model results and obtained susceptibility maps; and ix) analysis of temporal variation of landslide susceptibility related to input parameter changes. Models based on Logistic Regression and Random Forests have demonstrated excellent predictive capabilities. Land use and wildfire variables were found to have a strong control on the occurrence of very rapid shallow landslides.
Detection of Leukemia with Blood Samples Using Raman Spectroscopy and Multivariate Analysis
NASA Astrophysics Data System (ADS)
Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.
2009-06-01
The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. Blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteers. The imprint was put under the microscope and several points were chosen for Raman measurement. All the spectra were collected by a confocal Raman micro-spectroscopy (Renishaw) with a NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) are applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman Spectroscopy could be a new technique to study the degree of damage to the bone marrow using just blood samples instead of biopsies, treatment very painful for patients.
Corvucci, Francesca; Nobili, Lara; Melucci, Dora; Grillenzoni, Francesca-Vittoria
2015-02-15
Honey traceability to food quality is required by consumers and food control institutions. Melissopalynologists traditionally use percentages of nectariferous pollens to discriminate the botanical origin and the entire pollen spectrum (presence/absence, type and quantities and association of some pollen types) to determinate the geographical origin of honeys. To improve melissopalynological routine analysis, principal components analysis (PCA) was used. A remarkable and innovative result was that the most significant pollens for the traditional discrimination of the botanical and geographical origin of honeys were the same as those individuated with the chemometric model. The reliability of assignments of samples to honey classes was estimated through explained variance (85%). This confirms that the chemometric model properly describes the melissopalynological data. With the aim to improve honey discrimination, FT-microRaman spectrography and multivariate analysis were also applied. Well performing PCA models and good agreement with known classes were achieved. Encouraging results were obtained for botanical discrimination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio
2016-10-01
personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
Self-tuning multivariable pole placement control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.
1992-01-01
This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.
Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems.
Khebbache, Hicham; Tadjine, Mohamed; Labiod, Salim; Boulkroune, Abdesselem
2015-03-01
This paper deals with the active fault tolerant control (AFTC) problem for a class of multiple-input multiple-output (MIMO) uncertain nonlinear systems subject to sensor faults and external disturbances. The proposed AFTC method can tolerate three additive (bias, drift and loss of accuracy) and one multiplicative (loss of effectiveness) sensor faults. By employing backstepping technique, a novel adaptive backstepping-based AFTC scheme is developed using the fact that sensor faults and system uncertainties (including external disturbances and unexpected nonlinear functions caused by sensor faults) can be on-line estimated and compensated via robust adaptive schemes. The stability analysis of the closed-loop system is rigorously proven using a Lyapunov approach. The effectiveness of the proposed controller is illustrated by two simulation examples. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Barton, Mitch; Yeatts, Paul E.; Henson, Robin K.; Martin, Scott B.
2016-01-01
There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent…
Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali
2013-05-01
Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.
Statistical Evaluation of Time Series Analysis Techniques
NASA Technical Reports Server (NTRS)
Benignus, V. A.
1973-01-01
The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.
Q-Technique and Graphics Research.
ERIC Educational Resources Information Center
Kahle, Roger R.
Because Q-technique is as appropriate for use with visual and design items as for use with words, it is not stymied by the topics one is likely to encounter in graphics research. In particular Q-technique is suitable for studying the so-called "congeniality" of typography, for various copytesting usages, and for multivariate graphics research. The…
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia
2018-06-01
The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied.
NASA Astrophysics Data System (ADS)
Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.
2015-04-01
Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.
Riad, Safaa M; Salem, Hesham; Elbalkiny, Heba T; Khattab, Fatma I
2015-04-05
Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p=0.05. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Magis, David; De Boeck, Paul
2011-01-01
We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…
Multivariate time series analysis of neuroscience data: some challenges and opportunities.
Pourahmadi, Mohsen; Noorbaloochi, Siamak
2016-04-01
Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...
Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003
NASA Astrophysics Data System (ADS)
Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe
2013-02-01
Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.
Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1982-01-01
A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.
Goudarz Mehdikhani, Kaveh; Morales Moreno, Beatriz; Reid, Jeremy J; de Paz Nieves, Ana; Lee, Yuo-Yu; González Della Valle, Alejandro
2016-07-01
We studied the need to use a constrained insert for residual intraoperative instability and the 1-year result of patients undergoing total knee arthroplasty (TKA) for a varus deformity. In a control group, a "classic" subperiosteal release of the medial soft tissue sleeve was performed as popularized by pioneers of TKA. In the study group, an algorithmic approach that selectively releases and pie-crusts posteromedial structures in extension and anteromedial structures in flexion was used. All surgeries were performed by a single surgeon using measured resection technique, and posterior-stabilized, cemented implants. There were 228 TKAs in the control group and 188 in the study group. Outcome variables included the use of a constrained insert, and the Knee Society Score at 6 weeks, 4 months, and 1 year postoperatively. The effect of the release technique on use of constrained inserts and clinical outcomes were analyzed in a multivariate model controlling for age, sex, body mass index, and severity of deformity. The use of constrained inserts was significantly lower in study than in control patients (8% vs 18%; P = .002). There was no difference in the Knee Society Score and range of motion between the groups at last follow-up. No patient developed postoperative medial instability. This algorithmic, pie-crusting release technique resulted in a significant reduction in the use of constrained inserts with no detrimental effects in clinical results, joint function, and stability. As constrained TKA implants are more costly than nonconstrained ones, if the adopted technique proves to be safe in the long term, it may cause a positive shift in value for hospitals and cost savings in the health care system. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Song, Heda; Wang, Hong
Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improvemore » modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.« less
Robust detection, isolation and accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.
1986-01-01
The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques
Multivariate analysis in thoracic research.
Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego
2015-03-01
Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.
Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes
NASA Astrophysics Data System (ADS)
Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu
2011-10-01
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.
Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes.
Wang, Qi; Grozdanic, Sinisa D; Harper, Matthew M; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu
2011-10-01
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.
Macdonald, Ben
2017-11-01
Hamstring Injuries commonly cause missed training and competition time in elite sports. Injury surveillance studies have demonstrated high injury and re-injury rates, which have not improved across sports despite screening and prevention programmes being commonplace. The most commonly suggested intervention for hamstring prevention and rehabilitation is eccentric strength assessment and training. This case study describes the management of an elite sprinter with a history of hamstring injury. A multi-variate screening process based around lumbar-pelvic dysfunction and hamstring strength assessment using the Nordbord is employed. The effect of external pelvic compression using a taping technique, on eccentric hamstring strength is evaluated. A persistent eccentric strength asymmetry of 17% was recorded as well as lumbar-pelvic control deficits. Pelvic taping appears to improve load transfer capability across the pelvis, resulting in correction of eccentric strength asymmetry. Screening strategies and interventions to prevent hamstring injury have failed to consistently improve injury rates across various sports. In this case study external pelvic compression resulted in normalising eccentric strength deficits assessed using the Nordbord. The inclusion of lumbar-pelvic motor control assessment, in relation to hamstring strength and function, as part of a multi-variate screening strategy requires further research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fiebig, Lukas; Laux, Ralf; Binder, Rudolf; Ebner, Thomas
2016-10-01
1. Liquid chromatography (LC)-high resolution mass spectrometry (HRMS) techniques proved to be well suited for the identification of predicted and unexpected drug metabolites in complex biological matrices. 2. To efficiently discriminate between drug-related and endogenous matrix compounds, however, sophisticated postacquisition data mining tools, such as control comparison techniques are needed. For preclinical absorption, distribution, metabolism and excretion (ADME) studies that usually lack a placebo-dosed control group, the question arises how high-quality control data can be yielded using only a minimum number of control animals. 3. In the present study, the combination of LC-traveling wave ion mobility separation (TWIMS)-HRMS(E) and multivariate data analysis was used to study the polymer patterns of the frequently used formulation constituents polyethylene glycol 400 and polysorbate 80 in rat plasma and urine after oral and intravenous administration, respectively. 4. Complex peak patterns of both constituents were identified underlining the general importance of a vehicle-dosed control group in ADME studies for control comparison. Furthermore, the detailed analysis of administration route, blood sampling time and gender influences on both vehicle peak pattern as well as endogenous matrix background revealed that high-quality control data is obtained when (i) control animals receive an intravenous dose of the vehicle, (ii) the blood sampling time point is the same for analyte and control sample and (iii) analyte and control samples of the same gender are compared.
Computation Techniques for the Volume of a Tetrahedron
ERIC Educational Resources Information Center
Srinivasan, V. K.
2010-01-01
The purpose of this article is to discuss specific techniques for the computation of the volume of a tetrahedron. A few of them are taught in the undergraduate multivariable calculus courses. Few of them are found in text books on coordinate geometry and synthetic solid geometry. This article gathers many of these techniques so as to constitute a…
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
MANCOVA for one way classification with homogeneity of regression coefficient vectors
NASA Astrophysics Data System (ADS)
Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.
2017-11-01
The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.
Multivariable control altitude demonstration on the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.
1979-01-01
The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.
Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model
NASA Astrophysics Data System (ADS)
Arumugam, S.; Libera, D.
2017-12-01
Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Biacchi, Daniele; Sammartino, Paolo; Sibio, Simone; Accarpio, Fabio; Cardi, Maurizio; Sapienza, Paolo; De Cesare, Alessandro; Atta, Joseph Maher Fouad; Impagnatiello, Alessio; Di Giorgio, Angelo
2016-02-01
Totally implantable venous access ports (TIVAP) are eventually explanted for various reasons, related or unrelated to the implantation technique used. Having more information on long-term explantation would help improve placement techniques. From a series of 1572 cancer patients who had TIVAPs implanted in our center with the cutdown technique or Seldinger technique, we studied the 542 patients who returned to us to have their TIVAP explanted after 70 days or more. As outcome measures we distinguished between TIVAPs explanted for long-term complications (infection, catheter-, reservoir-, and patient-related complications) and TIVAPs no longer needed. Univariate and multivariate analyses were run to investigate the reasons for explantation and their possible correlation with implantation techniques. The most common reason for explantation was infection (47.6 %), followed by catheter-related (20.8 %), patient-related (14.7 %), and reservoir-related complications (4.7 %). In the remaining 12.2 % of cases, the TIVAP was explanted complication free after the planned treatments ended. Infection correlated closely with longer TIVAP use. Univariate and multivariate analyses identified the Seldinger technique as a major risk factor for venous thrombosis and catheter dislocation. The need for long-term TIVAP explantation in about one-third of cancer patients is related to the implantation techniques used.
Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning
NASA Astrophysics Data System (ADS)
Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel
2014-06-01
Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
NASA Astrophysics Data System (ADS)
Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen
2014-10-01
To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.
Mishra, Gautam; Easton, Christopher D.; McArthur, Sally L.
2009-01-01
Physical and photolithographic techniques are commonly used to create chemical patterns for a range of technologies including cell culture studies, bioarrays and other biomedical applications. In this paper, we describe the fabrication of chemical micropatterns from commonly used plasma polymers. Atomic force microcopy (AFM) imaging, Time-of-Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) imaging and multivariate analysis have been employed to visualize the chemical boundaries created by these patterning techniques and assess the spatial and chemical resolution of the patterns. ToF-SSIMS analysis demonstrated that well defined chemical and spatial boundaries were obtained from photolithographic patterning, while the resolution of physical patterning via a transmission electron microscopy (TEM) grid varied depending on the properties of the plasma system including the substrate material. In general, physical masking allowed diffusion of the plasma species below the mask and bleeding of the surface chemistries. Multivariate analysis techniques including Principal Component Analysis (PCA) and Region of Interest (ROI) assessment were used to investigate the ToF-SSIMS images of a range of different plasma polymer patterns. In the most challenging case, where two strongly reacting polymers, allylamine and acrylic acid were deposited, PCA confirmed the fabrication of micropatterns with defined spatial resolution. ROI analysis allowed for the identification of an interface between the two plasma polymers for patterns fabricated using the photolithographic technique which has been previously overlooked. This study clearly demonstrated the versatility of photolithographic patterning for the production of multichemistry plasma polymer arrays and highlighted the need for complimentary characterization and analytical techniques during the fabrication plasma polymer micropatterns. PMID:19950941
Schnabel, Thomas; Musso, Maurizio; Tondi, Gianluca
2014-01-01
Vibrational spectroscopy is one of the most powerful tools in polymer science. Three main techniques--Fourier transform infrared spectroscopy (FT-IR), FT-Raman spectroscopy, and FT near-infrared (NIR) spectroscopy--can also be applied to wood science. Here, these three techniques were used to investigate the chemical modification occurring in wood after impregnation with tannin-hexamine preservatives. These spectroscopic techniques have the capacity to detect the externally added tannin. FT-IR has very strong sensitivity to the aromatic peak at around 1610 cm(-1) in the tannin-treated samples, whereas FT-Raman reflects the peak at around 1600 cm(-1) for the externally added tannin. This high efficacy in distinguishing chemical features was demonstrated in univariate analysis and confirmed via cluster analysis. Conversely, the results of the NIR measurements show noticeable sensitivity for small differences. For this technique, multivariate analysis is required and with this chemometric tool, it is also possible to predict the concentration of tannin on the surface.
Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo
2018-01-01
This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555
Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI
Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.
2015-01-01
In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490
Ronald E. McRoberts; Erkki O. Tomppo; Andrew O. Finley; Heikkinen Juha
2007-01-01
The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Hoan, E-mail: hoan.ho@wdc.com; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Zhu, Jingxi, E-mail: jingxiz@andrew.cmu.edu
2014-11-21
We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It wasmore » also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.« less
Structural analysis and design of multivariable control systems: An algebraic approach
NASA Technical Reports Server (NTRS)
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris
2016-08-01
Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.
2004-01-01
One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.
Vectored Thrust Digital Flight Control for Crew Escape. Volume 2.
1985-12-01
no. 24. Lecrique, J., A. Rault, M. Tessier and J.L. Testud (1978), - "Multivariable Regulation of a Thermal Power Plant Steam Generator," presented...and Extended Kalman Observers," presented at the Conf. Decision and Control, San Diego, CA. Testud , J.L. (1977), Commande Numerique Multivariable du
Practical Methods for the Compensation and Control of Multivariable Systems.
1982-04-01
a constant gain element gji . To be more specific, let us consider a linear multivariable system whose dynamical behavior is specified by a (pxm...controllable via uk if Yi is fed back to uj via an arbitrary gain gji , as depicted in the figure below? It might be noted that only the outputs and inputs...modes controllable via uk(s) before feedback will remain -19- controllable via uk(s) irrespective of gji (although certain of these uk controllable
Power and sample size for multivariate logistic modeling of unmatched case-control studies.
Gail, Mitchell H; Haneuse, Sebastien
2017-01-01
Sample size calculations are needed to design and assess the feasibility of case-control studies. Although such calculations are readily available for simple case-control designs and univariate analyses, there is limited theory and software for multivariate unconditional logistic analysis of case-control data. Here we outline the theory needed to detect scalar exposure effects or scalar interactions while controlling for other covariates in logistic regression. Both analytical and simulation methods are presented, together with links to the corresponding software.
Robustness of reduced-order multivariable state-space self-tuning controller
NASA Technical Reports Server (NTRS)
Yuan, Zhuzhi; Chen, Zengqiang
1994-01-01
In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.
Gackstetter, Gary D; Hooper, Tomoko I; DeBakey, Samar F; Johnson, Amy; Nagaraj, Barbara E; Heller, Jack M; Kang, Han K
2006-04-01
A proposed explanation for the observed higher risk of fatal motor vehicle crashes (MVC) among 1991 Gulf War-deployed veterans is neurocognitive deficits resulting from nerve agent exposure at Khamisiyah, Iraq. Our objective was to assess any association between postwar fatal MVC and possible nerve agent exposure based on 2000 modeled plume data. Cases were defined as MVC deaths with a record in the Department of Transportation Fatality Analysis Reporting System through 1995. Cases (n = 282) and controls (n = 3,131) were derived from a larger nested case-control study of Gulf War-era veterans and limited to Army, male, deployed personnel. Exposure and cumulative dose by case-control status were analyzed using multivariate techniques. Exposure status was not associated with fatal MVC (OR 0.96, 95% CI 0.72-1.26), nor were tertiles of cumulative dose. Findings do not support an association between possible exposures at Khamisiyah and postwar fatal MVC among Gulf War veterans.
Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics
NASA Technical Reports Server (NTRS)
Grocott, Simon C. O.; Miller, David W.
1997-01-01
The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.
Portable XRF and principal component analysis for bill characterization in forensic science.
Appoloni, C R; Melquiades, F L
2014-02-01
Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network
Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; ...
2017-12-18
Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less
Quantitative methods for analysing cumulative effects on fish migration success: a review.
Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G
2012-07-01
It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong
Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.
Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.
Naccarato, Attilio; Furia, Emilia; Sindona, Giovanni; Tagarelli, Antonio
2016-09-01
Four class-modeling techniques (soft independent modeling of class analogy (SIMCA), unequal dispersed classes (UNEQ), potential functions (PF), and multivariate range modeling (MRM)) were applied to multielement distribution to build chemometric models able to authenticate chili pepper samples grown in Calabria respect to those grown outside of Calabria. The multivariate techniques were applied by considering both all the variables (32 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y, Yb, Zn) and variables selected by means of stepwise linear discriminant analysis (S-LDA). In the first case, satisfactory and comparable results in terms of CV efficiency are obtained with the use of SIMCA and MRM (82.3 and 83.2% respectively), whereas MRM performs better than SIMCA in terms of forced model efficiency (96.5%). The selection of variables by S-LDA permitted to build models characterized, in general, by a higher efficiency. MRM provided again the best results for CV efficiency (87.7% with an effective balance of sensitivity and specificity) as well as forced model efficiency (96.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Hanson, Stephen José; Haxby, James V.; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine-learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability. PMID:19184561
Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain
2002-01-01
The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.
NASA Astrophysics Data System (ADS)
Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin
2013-04-01
The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.
NASA Astrophysics Data System (ADS)
Rish, Irina; Bashivan, Pouya; Cecchi, Guillermo A.; Goldstein, Rita Z.
2016-03-01
The objective of this study is to investigate effects of methylphenidate on brain activity in individuals with cocaine use disorder (CUD) using functional MRI (fMRI). Methylphenidate hydrochloride (MPH) is an indirect dopamine agonist commonly used for treating attention deficit/hyperactivity disorders; it was also shown to have some positive effects on CUD subjects, such as improved stop signal reaction times associated with better control/inhibition,1 as well as normalized task-related brain activity2 and resting-state functional connectivity in specific areas.3 While prior fMRI studies of MPH in CUDs have focused on mass-univariate statistical hypothesis testing, this paper evaluates multivariate, whole-brain effects of MPH as captured by the generalization (prediction) accuracy of different classification techniques applied to features extracted from resting-state functional networks (e.g., node degrees). Our multivariate predictive results based on resting-state data from3 suggest that MPH tends to normalize network properties such as voxel degrees in CUD subjects, thus providing additional evidence for potential benefits of MPH in treating cocaine addiction.
An Improved Method to Control the Critical Parameters of a Multivariable Control System
NASA Astrophysics Data System (ADS)
Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John
2017-10-01
The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palazzi, Mauro; Orlandi, Ester; Bossi, Paolo
2009-07-01
Purpose: To report the outcome of a consecutive series of patients with nonmetastatic nasopharyngeal carcinoma (NPC), focusing on the impact of treatment-related factors. Methods and Materials: Between 2000 and 2006, 87 patients with NPC were treated with either conventional (two- or three-dimensional) radiotherapy (RT) or with intensity-modulated RT (IMRT). Of these patients, 81 (93%) received either concomitant CHT (24%) or both induction and concomitant chemotherapy (CHT) (69%). Stage was III in 36% and IV in 39% of patients. Outcomes in this study population were compared with those in the previous series of 171 patients treated during 1990 to 1999. Results:more » With a median follow-up of 46 months, actuarial rates at 3 years were the following: local control, 96%; local-regional control, 93%; distant control (DC), 90%; disease-free survival (DFS), 82%; overall survival, 90%. In Stage III to IV patients, distant control at 3 years was 56% in patients treated with concomitant CHT only and 92% in patients treated with both induction and concomitant CHT (p = 0.014). At multivariate analysis, histology, N-stage, RT technique, and total RT dose had the strongest independent impact on DFS (p < 0.05). Induction CHT had a borderline effect on DC (p = 0.07). Most dosimetric statistics were improved in the group of patients treated with IMRT compared with conventional 3D technique. All outcome endpoints were substantially better in the study population compared with those in the previous series. Conclusions: Outcome of NPC has further improved in the study period compared with the previous decade, with a significant effect of RT technique optimization. The impact of induction CHT remains to be demonstrated in controlled trials.« less
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Algorithms for Robust Identification and Control of Large Space Structures. Phase 1.
1988-05-14
Variate Analysis," Proc. Amer. Control Conf., San Francisco, * pp. 445-451. LECTIQUE, J., Rault, A., Tessier, M., and Testud , J.L. (1978), "Multivariable...Rault, J.L. Testud , and J. Papon (1978), "Model Predictive Heuris- tic Control: Applications to Industrial Processes," Automatica, Vol. 14, pp. 413...Control ’. Conference, Minneapolis, MN, June. TESTUD , J.L. (1979), "Commande Numerique Multivariable du Ballon de Recupera- tion de Vapeur," Adersa/Gerbios
ERIC Educational Resources Information Center
Henry, Gary T.; And Others
1992-01-01
A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)
A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.
ERIC Educational Resources Information Center
Mayberry, Paul W.
A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…
USDA-ARS?s Scientific Manuscript database
Ensuring the supply of safe, contaminant free fresh fruit and vegetables is of importance to consumers, suppliers and governments worldwide. In this study, three hyperspectral imaging (HSI) configurations coupled with two multivariate image analysis techniques are compared for detection of fecal con...
A nonparametric clustering technique which estimates the number of clusters
NASA Technical Reports Server (NTRS)
Ramey, D. B.
1983-01-01
In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Multivariable control of a twin lift helicopter system using the LQG/LTR design methodology
NASA Technical Reports Server (NTRS)
Rodriguez, A. A.; Athans, M.
1986-01-01
Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.
Controlled Multivariate Evaluation of Open Education: Application of a Critical Model.
ERIC Educational Resources Information Center
Sewell, Alan F.; And Others
This paper continues previous reports of a controlled multivariate evaluation of a junior high school open-education program. A new method of estimating program objectives and implementation is presented, together with the nature and degree of obtained student outcomes. Open-program students were found to approve more highly of their learning…
ERIC Educational Resources Information Center
Wilson, Mark
This study investigates the accuracy of the Woodruff-Causey technique for estimating sampling errors for complex statistics. The technique may be applied when data are collected by using multistage clustered samples. The technique was chosen for study because of its relevance to the correct use of multivariate analyses in educational survey…
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wahid, A.; Putra, I. G. E. P.
2018-03-01
Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.
NASA Technical Reports Server (NTRS)
Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.
1986-01-01
The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.
Aromatherapy hand massage for older adults with chronic pain living in long-term care.
Cino, Kathleen
2014-12-01
Older adults living in long-term care experience high rates of chronic pain. Concerns with pharmacologic management have spurred alternative approaches. The purpose of this study was to examine a nursing intervention for older adults with chronic pain. This prospective, randomized control trial compared the effect of aromatherapy M technique hand massage, M technique without aromatherapy, and nurse presence on chronic pain. Chronic pain was measured with the Geriatric Multidimensional Pain and Illness Inventory factors, pain and suffering, life interference, and emotional distress and the Iowa Pain Thermometer, a pain intensity scale. Three groups of 39 to 40 participants recruited from seven long-term care facilities participated twice weekly for 4 weeks. Analysis included multivariate analysis of variance and analysis of variance. Participants experienced decreased levels of chronic pain intensity. Group membership had a significant effect on the Geriatric Multidimensional Pain Inventory Pain and Suffering scores; Iowa Pain Thermometer scores differed significantly within groups. M technique hand massage with or without aromatherapy significantly decreased chronic pain intensity compared to nurse presence visits. M technique hand massage is a safe, simple, but effective intervention. Caregivers using it could improve chronic pain management in this population. © The Author(s) 2014.
Evaluation of an F100 multivariable control using a real-time engine simulation
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Skira, C.
1977-01-01
The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.
Tuning algorithms for fractional order internal model controllers for time delay processes
NASA Astrophysics Data System (ADS)
Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.
2016-03-01
This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.
Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.
2010-08-01
Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.
Analysis of Forest Foliage Using a Multivariate Mixture Model
NASA Technical Reports Server (NTRS)
Hlavka, C. A.; Peterson, David L.; Johnson, L. F.; Ganapol, B.
1997-01-01
Data with wet chemical measurements and near infrared spectra of ground leaf samples were analyzed to test a multivariate regression technique for estimating component spectra which is based on a linear mixture model for absorbance. The resulting unmixed spectra for carbohydrates, lignin, and protein resemble the spectra of extracted plant starches, cellulose, lignin, and protein. The unmixed protein spectrum has prominent absorption spectra at wavelengths which have been associated with nitrogen bonds.
Properties of multivariable root loci. M.S. Thesis
NASA Technical Reports Server (NTRS)
Yagle, A. E.
1981-01-01
Various properties of multivariable root loci are analyzed from a frequency domain point of view by using the technique of Newton polygons, and some generalizations of the SISO root locus rules to the multivariable case are pointed out. The behavior of the angles of arrival and departure is related to the Smith-MacMillan form of G(s) and explicit equations for these angles are obtained. After specializing to first order and a restricted class of higher order poles and zeros, some simple equations for these angles that are direct generalizations of the SISO equations are found. The unusual behavior of root loci on the real axis at branch points is studied. The SISO root locus rules for break-in and break-out points are shown to generalize directly to the multivariable case. Some methods for computing both types of points are presented.
Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification
Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen
2014-01-01
Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922
Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T
2016-05-30
Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Mathematical models for exploring different aspects of genotoxicity and carcinogenicity databases.
Benigni, R; Giuliani, A
1991-12-01
One great obstacle to understanding and using the information contained in the genotoxicity and carcinogenicity databases is the very size of such databases. Their vastness makes them difficult to read; this leads to inadequate exploitation of the information, which becomes costly in terms of time, labor, and money. In its search for adequate approaches to the problem, the scientific community has, curiously, almost entirely neglected an existent series of very powerful methods of data analysis: the multivariate data analysis techniques. These methods were specifically designed for exploring large data sets. This paper presents the multivariate techniques and reports a number of applications to genotoxicity problems. These studies show how biology and mathematical modeling can be combined and how successful this combination is.
Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia
2018-06-05
The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel
Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
NASA Astrophysics Data System (ADS)
Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad
2015-11-01
One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.
The impact of multiple endpoint dependency on Q and I(2) in meta-analysis.
Thompson, Christopher Glen; Becker, Betsy Jane
2014-09-01
A common assumption in meta-analysis is that effect sizes are independent. When correlated effect sizes are analyzed using traditional univariate techniques, this assumption is violated. This research assesses the impact of dependence arising from treatment-control studies with multiple endpoints on homogeneity measures Q and I(2) in scenarios using the unbiased standardized-mean-difference effect size. Univariate and multivariate meta-analysis methods are examined. Conditions included different overall outcome effects, study sample sizes, numbers of studies, between-outcomes correlations, dependency structures, and ways of computing the correlation. The univariate approach used typical fixed-effects analyses whereas the multivariate approach used generalized least-squares (GLS) estimates of a fixed-effects model, weighted by the inverse variance-covariance matrix. Increased dependence among effect sizes led to increased Type I error rates from univariate models. When effect sizes were strongly dependent, error rates were drastically higher than nominal levels regardless of study sample size and number of studies. In contrast, using GLS estimation to account for multiple-endpoint dependency maintained error rates within nominal levels. Conversely, mean I(2) values were not greatly affected by increased amounts of dependency. Last, we point out that the between-outcomes correlation should be estimated as a pooled within-groups correlation rather than using a full-sample estimator that does not consider treatment/control group membership. Copyright © 2014 John Wiley & Sons, Ltd.
Marković, Snežana; Kerč, Janez; Horvat, Matej
2017-03-01
We are presenting a new approach of identifying sources of variability within a manufacturing process by NIR measurements of samples of intermediate material after each consecutive unit operation (interprocess NIR sampling technique). In addition, we summarize the development of a multivariate statistical process control (MSPC) model for the production of enteric-coated pellet product of the proton-pump inhibitor class. By developing provisional NIR calibration models, the identification of critical process points yields comparable results to the established MSPC modeling procedure. Both approaches are shown to lead to the same conclusion, identifying parameters of extrusion/spheronization and characteristics of lactose that have the greatest influence on the end-product's enteric coating performance. The proposed approach enables quicker and easier identification of variability sources during manufacturing process, especially in cases when historical process data is not straightforwardly available. In the presented case the changes of lactose characteristics are influencing the performance of the extrusion/spheronization process step. The pellet cores produced by using one (considered as less suitable) lactose source were on average larger and more fragile, leading to consequent breakage of the cores during subsequent fluid bed operations. These results were confirmed by additional experimental analyses illuminating the underlying mechanism of fracture of oblong pellets during the pellet coating process leading to compromised film coating.
Hertrampf, A; Müller, H; Menezes, J C; Herdling, T
2015-11-10
Pharmaceutical excipients have different functions within a drug formulation, consequently they can influence the manufacturability and/or performance of medicinal products. Therefore, critical to quality attributes should be kept constant. Sometimes it may be necessary to qualify a second supplier, but its product will not be completely equal to the first supplier product. To minimize risks of not detecting small non-similarities between suppliers and to detect lot-to-lot variability for each supplier, multivariate data analysis (MVA) can be used as a more powerful alternative to classical quality control that uses one-parameter-at-a-time monitoring. Such approach is capable of supporting the requirements of a new guideline by the European Parliament and Council (2015/C-95/02) demanding appropriate quality control strategies for excipients based on their criticality and supplier risks in ensuring quality, safety and function. This study compares calcium hydrogen phosphate from two suppliers. It can be assumed that both suppliers use different manufacturing processes. Therefore, possible chemical and physical differences were investigated by using Raman spectroscopy, laser diffraction and X-ray powder diffraction. Afterwards MVA was used to extract relevant information from each analytical technique. Both CaHPO4 could be discriminated by their supplier. The gained knowledge allowed to specify an enhanced strategy for second supplier qualification. Copyright © 2015 Elsevier B.V. All rights reserved.
Remote Multivariable Control Design Using a Competition Game
ERIC Educational Resources Information Center
Atanasijevic-Kunc, M.; Logar, V.; Karba, R.; Papic, M.; Kos, A.
2011-01-01
In this paper, some approaches to teaching multivariable control design are discussed, with special attention being devoted to a step-by-step transition to e-learning. The approach put into practice and presented here is developed through design projects, from which one is chosen as a competition game and is realized using the E-CHO system,…
New multivariable capabilities of the INCA program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1989-01-01
The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.
Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain
NASA Astrophysics Data System (ADS)
Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.
2013-03-01
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.
Laryngospasm during emergency department ketamine sedation: a case-control study.
Green, Steven M; Roback, Mark G; Krauss, Baruch
2010-11-01
The objective of this study was to assess predictors of emergency department (ED) ketamine-associated laryngospasm using case-control techniques. We performed a matched case-control analysis of a sample of 8282 ED ketamine sedations (including 22 occurrences of laryngospasm) assembled from 32 prior published series. We sequentially studied the association of each of 7 clinical variables with laryngospasm by assigning 4 controls to each case while matching for the remaining 6 variables. We then used univariate statistics and conditional logistic regression to analyze the matched sets. We found no statistical association of age, dose, oropharyngeal procedure, underlying physical illness, route, or coadministered anticholinergics with laryngospasm. Coadministered benzodiazepines showed a borderline association in the multivariate but not univariate analysis that was considered anomalous. This case-control analysis of the largest available sample of ED ketamine-associated laryngospasm did not demonstrate evidence of association with age, dose, or other clinical factors. Such laryngospasm seems to be idiosyncratic, and accordingly, clinicians administering ketamine must be prepared for its rapid identification and management. Given no evidence that they decrease the risk of laryngospasm, coadministered anticholinergics seem unnecessary.
Application of multivariable search techniques to structural design optimization
NASA Technical Reports Server (NTRS)
Jones, R. T.; Hague, D. S.
1972-01-01
Multivariable optimization techniques are applied to a particular class of minimum weight structural design problems: the design of an axially loaded, pressurized, stiffened cylinder. Minimum weight designs are obtained by a variety of search algorithms: first- and second-order, elemental perturbation, and randomized techniques. An exterior penalty function approach to constrained minimization is employed. Some comparisons are made with solutions obtained by an interior penalty function procedure. In general, it would appear that an interior penalty function approach may not be as well suited to the class of design problems considered as the exterior penalty function approach. It is also shown that a combination of search algorithms will tend to arrive at an extremal design in a more reliable manner than a single algorithm. The effect of incorporating realistic geometrical constraints on stiffener cross-sections is investigated. A limited comparison is made between minimum weight cylinders designed on the basis of a linear stability analysis and cylinders designed on the basis of empirical buckling data. Finally, a technique for locating more than one extremal is demonstrated.
MULTIVARIATE ANALYSIS OF DRINKING BEHAVIOUR IN A RURAL POPULATION
Mathrubootham, N.; Bashyam, V.S.P.; Shahjahan
1997-01-01
This study was carried out to find out the drinking pattern in a rural population, using multivariate techniques. 386 current users identified in a community were assessed with regard to their drinking behaviours using a structured interview. For purposes of the study the questions were condensed into 46 meaningful variables. In bivariate analysis, 14 variables including dependent variables such as dependence, MAST & CAGE (measuring alcoholic status), Q.F. Index and troubled drinking were found to be significant. Taking these variables and other multivariate techniques too such as ANOVA, correlation, regression analysis and factor analysis were done using both SPSS PC + and HCL magnum mainframe computer with FOCUS package and UNIX systems. Results revealed that number of factors such as drinking style, duration of drinking, pattern of abuse, Q.F. Index and various problems influenced drinking and some of them set up a vicious circle. Factor analysis revealed mainly 3 factors, abuse, dependence and social drinking factors. Dependence could be divided into low/moderate dependence. The implications and practical applications of these tests are also discussed. PMID:21584077
Buttigieg, Pier Luigi; Ramette, Alban
2014-12-01
The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Ensembles of radial basis function networks for spectroscopic detection of cervical precancer
NASA Technical Reports Server (NTRS)
Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.
1998-01-01
The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.
Ahlinder, Linnea; Ekstrand-Hammarström, Barbro; Geladi, Paul; Österlund, Lars
2013-01-01
It is a challenging task to characterize the biodistribution of nanoparticles in cells and tissue on a subcellular level. Conventional methods to study the interaction of nanoparticles with living cells rely on labeling techniques that either selectively stain the particles or selectively tag them with tracer molecules. In this work, Raman imaging, a label-free technique that requires no extensive sample preparation, was combined with multivariate classification to quantify the spatial distribution of oxide nanoparticles inside living lung epithelial cells (A549). Cells were exposed to TiO2 (titania) and/or α-FeO(OH) (goethite) nanoparticles at various incubation times (4 or 48 h). Using multivariate classification of hyperspectral Raman data with partial least-squares discriminant analysis, we show that a surprisingly large fraction of spectra, classified as belonging to the cell nucleus, show Raman bands associated with nanoparticles. Up to 40% of spectra from the cell nucleus show Raman bands associated with nanoparticles. Complementary transmission electron microscopy data for thin cell sections qualitatively support the conclusions. PMID:23870252
Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors
NASA Astrophysics Data System (ADS)
Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.
2014-12-01
This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.
Sood, Akshay; Ghani, Khurshid R; Ahlawat, Rajesh; Modi, Pranjal; Abaza, Ronney; Jeong, Wooju; Sammon, Jesse D; Diaz, Mireya; Kher, Vijay; Menon, Mani; Bhandari, Mahendra
2014-08-01
Traditional evaluation of the learning curve (LC) of an operation has been retrospective. Furthermore, LC analysis does not permit patient safety monitoring. To prospectively monitor patient safety during the learning phase of robotic kidney transplantation (RKT) and determine when it could be considered learned using the techniques of statistical process control (SPC). From January through May 2013, 41 patients with end-stage renal disease underwent RKT with regional hypothermia at one of two tertiary referral centers adopting RKT. Transplant recipients were classified into three groups based on the robotic training and kidney transplant experience of the surgeons: group 1, robot trained with limited kidney transplant experience (n=7); group 2, robot trained and kidney transplant experienced (n=20); and group 3, kidney transplant experienced with limited robot training (n=14). We employed prospective monitoring using SPC techniques, including cumulative summation (CUSUM) and Shewhart control charts, to perform LC analysis and patient safety monitoring, respectively. Outcomes assessed included post-transplant graft function and measures of surgical process (anastomotic and ischemic times). CUSUM and Shewhart control charts are time trend analytic techniques that allow comparative assessment of outcomes following a new intervention (RKT) relative to those achieved with established techniques (open kidney transplant; target value) in a prospective fashion. CUSUM analysis revealed an initial learning phase for group 3, whereas groups 1 and 2 had no to minimal learning time. The learning phase for group 3 varied depending on the parameter assessed. Shewhart control charts demonstrated no compromise in functional outcomes for groups 1 and 2. Graft function was compromised in one patient in group 3 (p<0.05) secondary to reasons unrelated to RKT. In multivariable analysis, robot training was significantly associated with improved task-completion times (p<0.01). Graft function was not adversely affected by either the lack of robotic training (p=0.22) or kidney transplant experience (p=0.72). The LC and patient safety of a new surgical technique can be assessed prospectively using CUSUM and Shewhart control chart analytic techniques. These methods allow determination of the duration of mentorship and identification of adverse events in a timely manner. A new operation can be considered learned when outcomes achieved with the new intervention are at par with outcomes following established techniques. Statistical process control techniques allowed for robust, objective, and prospective monitoring of robotic kidney transplantation and can similarly be applied to other new interventions during the introduction and adoption phase. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
An approach to multivariable control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.
Bhaumik, Runa; Jenkins, Lisanne M; Gowins, Jennifer R; Jacobs, Rachel H; Barba, Alyssa; Bhaumik, Dulal K; Langenecker, Scott A
2017-01-01
Understanding abnormal resting-state functional connectivity of distributed brain networks may aid in probing and targeting mechanisms involved in major depressive disorder (MDD). To date, few studies have used resting state functional magnetic resonance imaging (rs-fMRI) to attempt to discriminate individuals with MDD from individuals without MDD, and to our knowledge no investigations have examined a remitted (r) population. In this study, we examined the efficiency of support vector machine (SVM) classifier to successfully discriminate rMDD individuals from healthy controls (HCs) in a narrow early-adult age range. We empirically evaluated four feature selection methods including multivariate Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net feature selection algorithms. Our results showed that SVM classification with Elastic Net feature selection achieved the highest classification accuracy of 76.1% (sensitivity of 81.5% and specificity of 68.9%) by leave-one-out cross-validation across subjects from a dataset consisting of 38 rMDD individuals and 29 healthy controls. The highest discriminating functional connections were between the left amygdala, left posterior cingulate cortex, bilateral dorso-lateral prefrontal cortex, and right ventral striatum. These appear to be key nodes in the etiopathophysiology of MDD, within and between default mode, salience and cognitive control networks. This technique demonstrates early promise for using rs-fMRI connectivity as a putative neurobiological marker capable of distinguishing between individuals with and without rMDD. These methods may be extended to periods of risk prior to illness onset, thereby allowing for earlier diagnosis, prevention, and intervention.
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Distributed memory approaches for robotic neural controllers
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1990-01-01
The suitability is explored of two varieties of distributed memory neutral networks as trainable controllers for a simulated robotics task. The task requires that two cameras observe an arbitrary target point in space. Coordinates of the target on the camera image planes are passed to a neural controller which must learn to solve the inverse kinematics of a manipulator with one revolute and two prismatic joints. Two new network designs are evaluated. The first, radial basis sparse distributed memory (RBSDM), approximates functional mappings as sums of multivariate gaussians centered around previously learned patterns. The second network types involved variations of Adaptive Vector Quantizers or Self Organizing Maps. In these networks, random N dimensional points are given local connectivities. They are then exposed to training patterns and readjust their locations based on a nearest neighbor rule. Both approaches are tested based on their ability to interpolate manipulator joint coordinates for simulated arm movement while simultaneously performing stereo fusion of the camera data. Comparisons are made with classical k-nearest neighbor pattern recognition techniques.
Boggia, Raffaella; Turrini, Federica; Anselmo, Marco; Zunin, Paola; Donno, Dario; Beccaro, Gabriele L
2017-07-01
Bud extracts, named also "gemmoderivatives", are a new category of natural products, obtained macerating meristematic fresh tissues of trees and plants. In the European Community these botanical remedies are classified as plant food supplements. Nowadays these products are still poorly studied, even if they are widely used and commercialized. Several analytical tools for the quality control of these very expensive supplements are urgently needed in order to avoid mislabelling and frauds. In fact, besides the usual quality controls common to the other botanical dietary supplements, these extracts should be checked in order to quickly detect if the cheaper adult parts of the plants are deceptively used in place of the corresponding buds whose harvest-period and production are extremely limited. This study aims to provide a screening analytical method based on UV-VIS-Fluorescence spectroscopy coupled to multivariate analysis for a rapid, inexpensive and non-destructive quality control of these products.
Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi
2018-02-01
The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
De Luca, Michele; Ragno, Gaetano; Ioele, Giuseppina; Tauler, Romà
2014-07-21
An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid-base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described. Copyright © 2014 Elsevier B.V. All rights reserved.
Multivariate spatiotemporal visualizations for mobile devices in Flyover Country
NASA Astrophysics Data System (ADS)
Loeffler, S.; Thorn, R.; Myrbo, A.; Roth, R.; Goring, S. J.; Williams, J.
2017-12-01
Visualizing and interacting with complex multivariate and spatiotemporal datasets on mobile devices is challenging due to their smaller screens, reduced processing power, and limited data connectivity. Pollen data require visualizing pollen assemblages spatially, temporally, and across multiple taxa to understand plant community dynamics through time. Drawing from cartography, information visualization, and paleoecology, we have created new mobile-first visualization techniques that represent multiple taxa across many sites and enable user interaction. Using pollen datasets from the Neotoma Paleoecology Database as a case study, the visualization techniques allow ecological patterns and trends to be quickly understood on a mobile device compared to traditional pollen diagrams and maps. This flexible visualization system can be used for datasets beyond pollen, with the only requirements being point-based localities and multiple variables changing through time or depth.
NASA Astrophysics Data System (ADS)
O'Shea, Bethany; Jankowski, Jerzy
2006-12-01
The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright
Efficient Global Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2012-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
Yang, Jun-Ho; Yoh, Jack J
2018-01-01
A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.
User Selection Criteria of Airspace Designs in Flexible Airspace Management
NASA Technical Reports Server (NTRS)
Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung
2011-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John; Schmitz, Eric; Hoff, William
1991-01-01
This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced multivariable control of a turboexpander plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altena, D.; Howard, M.; Bullin, K.
1998-12-31
This paper describes an application of advanced multivariable control on a natural gas plant and compares its performance to the previous conventional feed-back control. This control algorithm utilizes simple models from existing plant data and/or plant tests to hold the process at the desired operating point in the presence of disturbances and changes in operating conditions. The control software is able to accomplish this due to effective handling of process variable interaction, constraint avoidance and feed-forward of measured disturbances. The economic benefit of improved control lies in operating closer to the process constraints while avoiding significant violations. The South Texasmore » facility where this controller was implemented experienced reduced variability in process conditions which increased liquids recovery because the plant was able to operate much closer to the customer specified impurity constraint. An additional benefit of this implementation of multivariable control is the ability to set performance criteria beyond simple setpoints, including process variable constraints, relative variable merit and optimizing use of manipulated variables. The paper also details the control scheme applied to the complex turboexpander process and some of the safety features included to improve reliability.« less
The Recoverability of P-Technique Factor Analysis
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
2009-01-01
It seems that just when we are about to lay P-technique factor analysis finally to rest as obsolete because of newer, more sophisticated multivariate time-series models using latent variables--dynamic factor models--it rears its head to inform us that an obituary may be premature. We present the results of some simulations demonstrating that even…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Randa; Bishop, Andrew J.; Brownlee, Zachary
Purpose: To evaluate the outcomes in patients treated on prospective phase 1-2 protocols with postoperative stereotactic body radiation therapy (SBRT) and identify the associated prognostic variables. Methods and Materials: Sixty-six patients with 69 tumors were treated with SBRT on prospective phase 1-2 studies for spinal metastases between 2002 and 2010. All patients underwent SBRT after spine surgery, which included laminectomy, vertebrectomy, or a combination of these techniques. Renal cell carcinoma was the most common histology represented (n=35, 53%) followed by sarcomas (n=13, 20%). Thirty-one patients (47%) were treated with prior conventional radiation to the spine (median dose 30 Gy). Patients weremore » followed up with spinal magnetic resonance imaging (MRI) studies to determine the treated tumor control (TC). Pain and other symptom data were collected prospectively to determine treatment response and toxicity. Results: The median follow-up time was 30 months (range, 1-145 months) for all patients and 75 months for living patients (range, 6-145 months). The actuarial 1-year rate of TC was 85%, adjacent vertebral body control was 85%, and overall survival (OS) was 74% (median 29 months). On multivariate competing-risks analysis, sarcoma histology (subhazard ratio [SHR] = 2.38, 95% confidence interval [CI] 1.05-5.6, P=.04) and larger preoperative tumor volumes (SHR=1.01, 95% CI 1.0-1.01, P=.006) were significantly associated with worse TC. Karnofsky performance status was the only significant predictor for OS on multivariate analysis. There were no differences in TC between patients treated with different surgical techniques or different preoperative or postoperative Bilsky grades. There were no grade 3 or higher neurologic toxicities. Conclusion: This study represents a large series of prospective data available on patients treated with SBRT in the postoperative setting. The combination of surgery with SBRT can offer patients with metastatic disease to the spine the chance of durable tumor control with minimal toxicity.« less
Multivariate postprocessing techniques for probabilistic hydrological forecasting
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian
2016-04-01
Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.
Amundsen, Spencer; Lee, Yuo-Yu; González Della Valle, Alejandro
2017-06-01
Intra-operative sensing technology is an alternative to standard techniques in total knee arthroplasty (TKA) for determining balance by providing quantitative analysis of loads and point of contact throughout a range of motion. We used intra-operative sensing (VERASENSE-OrthoSensor, Inc.) to examine pie-crusting release of the medial collateral ligament in knees with varus deformity (study group) in comparison to a control group where balance was obtained using a classic release technique and assessed using laminar spreaders, spacer blocks, manual stress, and a ruler. The surgery was performed by a single surgeon utilizing measured resection and posterior-stabilized, cemented implants. Seventy-five study TKAs were matched 1:3 with 225 control TKAs. Outcome variables included the use of a constrained insert, functional- and knee-specific Knee Society score (KSS) at six weeks, four months, and one year post-operatively. Outcomes were analyzed in a multivariate model controlling for age, sex, BMI, and severity of deformity. The use of a constrained insert was significantly lower in the study group (5.3 vs. 13.8%; p = 0.049). The use of increased constraint was not significant between groups with increasing deformity. There was no difference in functional KSS and knee-specific KSS between groups at any follow-up interval. An algorithmic pie-crusting technique guided by intra-operative sensing is associated with decreased use of constrained inserts in TKA patients with a pre-operative varus deformity. This may cause a positive shift in value and cost savings.
Haider, Adil H; Saleem, Taimur; Leow, Jeffrey J; Villegas, Cassandra V; Kisat, Mehreen; Schneider, Eric B; Haut, Elliott R; Stevens, Kent A; Cornwell, Edward E; MacKenzie, Ellen J; Efron, David T
2012-05-01
Risk-adjusted analyses are critical in evaluating trauma outcomes. The National Trauma Data Bank (NTDB) is a statistically robust registry that allows such analyses; however, analytical techniques are not yet standardized. In this study, we examined peer-reviewed manuscripts published using NTDB data, with particular attention to characteristics strongly associated with trauma outcomes. Our objective was to determine if there are substantial variations in the methodology and quality of risk-adjusted analyses and therefore, whether development of best practices for risk-adjusted analyses is warranted. A database of all studies using NTDB data published through December 2010 was created by searching PubMed and Embase. Studies with multivariate risk-adjusted analyses were examined for their central question, main outcomes measures, analytical techniques, covariates in adjusted analyses, and handling of missing data. Of 286 NTDB publications, 122 performed a multivariable adjusted analysis. These studies focused on clinical outcomes (51 studies), public health policy or injury prevention (30), quality (16), disparities (15), trauma center designation (6), or scoring systems (4). Mortality was the main outcome in 98 of these studies. There were considerable differences in the covariates used for case adjustment. The 3 covariates most frequently controlled for were age (95%), Injury Severity Score (85%), and sex (78%). Up to 43% of studies did not control for the 5 basic covariates necessary to conduct a risk-adjusted analysis of trauma mortality. Less than 10% of studies used clustering to adjust for facility differences or imputation to handle missing data. There is significant variability in how risk-adjusted analyses using data from the NTDB are performed. Best practices are needed to further improve the quality of research from the NTDB. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Abdul-Aziz, O. I.
2015-12-01
We used a systematic data-analytics approach to analyze and quantify relative linkages of four stream water quality indicators (total nitrogen, TN; total phosphorus, TP; chlorophyll-a, Chla; and dissolved oxygen, DO) with six land use and four hydrologic variables, along with the potential external (upstream in-land and downstream coastal) controls in highly complex coastal urban watersheds of southeast Florida, U.S.A. Multivariate pattern recognition techniques of principle component and factor analyses, in concert with Pearson correlation analysis, were applied to map interrelations and identify latent patterns of the participatory variables. Relative linkages of the in-stream water quality variables with their associated drivers were then quantified by developing dimensionless partial least squares (PLS) regression model based on standardized data. Model fitting efficiency (R2=0.71-0.87) and accuracy (ratio of root-mean-square error to the standard deviation of the observations, RSR=0.35-0.53) suggested good predictions of the water quality variables in both wet and dry seasons. Agricultural land and groundwater exhibited substantial controls on surface water quality. In-stream TN concentration appeared to be mostly contributed by the upstream water entering from Everglades in both wet and dry seasons. In contrast, watershed land uses had stronger linkages with TP and Chla than that of the watershed hydrologic and upstream (Everglades) components for both seasons. Both land use and hydrologic components showed strong linkages with DO in wet season; however, the land use linkage appeared to be less in dry season. The data-analytics method provided a comprehensive empirical framework to achieve crucial mechanistic insights into the urban stream water quality processes. Our study quantitatively identified dominant drivers of water quality, indicating key management targets to maintain healthy stream ecosystems in complex urban-natural environments near the coast.
NASA Astrophysics Data System (ADS)
Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini
2018-03-01
In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.
Sample size calculations for case-control studies
This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.
Multi-application controls: Robust nonlinear multivariable aerospace controls applications
NASA Technical Reports Server (NTRS)
Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob
1994-01-01
This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented as a method for analyzing robust performance and the mu-synthesis method will be presented as a method for synthesizing a robust control system. The paper concludes with the author's expectations regarding future applications of robust nonlinear multivariable controls.
Bathke, Arne C.; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne
2018-01-01
ABSTRACT To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved. PMID:29565679
Multivariable control of a rolling spider drone
NASA Astrophysics Data System (ADS)
Lyu, Haifeng
The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
Mirzaeinejad, Hossein; Mirzaei, Mehdi; Rafatnia, Sadra
2018-06-11
This study deals with the enhancement of directional stability of vehicle which turns with high speeds on various road conditions using integrated active steering and differential braking systems. In this respect, the minimum usage of intentional asymmetric braking force to compensate the drawbacks of active steering control with small reduction of vehicle longitudinal speed is desired. To this aim, a new optimal multivariable controller is analytically developed for integrated steering and braking systems based on the prediction of vehicle nonlinear responses. A fuzzy programming extracted from the nonlinear phase plane analysis is also used for managing the two control inputs in various driving conditions. With the proposed fuzzy programming, the weight factors of the control inputs are automatically tuned and softly changed. In order to simulate a real-world control system, some required information about the system states and parameters which cannot be directly measured, are estimated using the Unscented Kalman Filter (UKF). Finally, simulations studies are carried out using a validated vehicle model to show the effectiveness of the proposed integrated control system in the presence of model uncertainties and estimation errors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
Applying the metro map to software development management
NASA Astrophysics Data System (ADS)
Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción
2010-01-01
This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.
McMullin, David; Mizaikoff, Boris; Krska, Rudolf
2015-01-01
Infrared spectroscopy is a rapid, nondestructive analytical technique that can be applied to the authentication and characterization of food samples in high throughput. In particular, near infrared spectroscopy is commonly utilized in the food quality control industry to monitor the physical attributes of numerous cereal grains for protein, carbohydrate, and lipid content. IR-based methods require little sample preparation, labor, or technical competence if multivariate data mining techniques are implemented; however, they do require extensive calibration. Economically important crops are infected by fungi that can severely reduce crop yields and quality and, in addition, produce mycotoxins. Owing to the health risks associated with mycotoxins in the food chain, regulatory limits have been set by both national and international institutions for specific mycotoxins and mycotoxin classes. This article discusses the progress and potential of IR-based methods as an alternative to existing chemical methods for the determination of fungal contamination in crops, as well as emerging spectroscopic methods.
Investigating the Moisture Content of Polyamide 6 by Raman-Microscopy and Multivariate Data Analysis
NASA Astrophysics Data System (ADS)
Lechner, Tobias; Noack, Kristina; Thöne, Manuel; Amend, Philipp; Schmidt, Michael; Will, Stefan
Thermal malleability of thermoplastics results in a high product diversity in various industry sectors. However, industrial applications require a constant and high component quality. Hence, material processing such as laser welding has to consider that, e.g., the moisture content of thermoplastics influences the mechanical properties such as the tensile strength. Moreover, water evaporates during laser welding and can form pores and defects. Thus, there is a large need for non-invasive material inspection before processing. To that end, we developed a methodology based on Raman-microscopy and multivariate data analysis (MVD) to determine the moisture content of polyamide (MCP). Further, the impact of the MCP on the mechanical properties was verified. For samples with a defined variation of the MCP, xyz-Raman-scans were carried out and analysed using MVD. For reference purposes, the samples were weighted and tensile tests were performed. An evaluation by means of partial least squares regression analysis (PLSR) resulted in a prediction of the MCP with a correlation coefficient >98%. Consequently, Raman-microscopy shows large potential for developing new techniques for inspection and quality control of plastics before processing. Dedicated to Professor Alfred Leipertz on the occasion of his 70th birthday.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2003-01-01
A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.
Riveros, Ricardo; Makarova, Natalya; Riveros-Perez, Efrain; Chodavarapu, Praneeta; Saasouh, Wael; Yılmaz, Hüseyin Oğuz; Cuko, Evis; Babazade, Rovnat; Kimatian, Stephen; Turan, Alparslan
2017-12-01
Dexmedetomidine is increasingly used in children undergoing cardiac catheterization procedures. We compared the percentage of surgical time with hemodynamic instability and the incidence of postoperative agitation between pediatric cardiac catheterization patients who received dexmedetomidine infusion and those who did not and the incidence of postoperative agitation. We matched 653 pediatric patients scheduled for cardiac catheterization. Two separate multivariable linear mixed models were used to assess the association between dexmedetomidine use and intraoperative blood pressure and heart rate instability. A multivariate logistic regression was used for relationship between dexmedetomidine and postoperative agitation. No difference between the study groups was found in the duration of MAP ( P = .867) or heart rate (HR) instabilities ( P = .224). The relationship between dexmedetomidine use and the duration of negative hemodynamic effects does not depend on any of the considered CHD types (all P > .001) or intervention ( P = .453 for MAP and P = .023 for HR). No difference in postoperative agitation was found between the study groups ( P = .590). Our study demonstrated no benefit in using dexmedetomidine infusion compared with other general anesthesia techniques to maintain hemodynamic stability or decrease agitation in pediatric patients undergoing cardiac catheterization procedures.
Zanchetti Meneghini, Leonardo; Rübensam, Gabriel; Claudino Bica, Vinicius; Ceccon, Amanda; Barreto, Fabiano; Flores Ferrão, Marco; Bergold, Ana Maria
2014-01-01
A simple and inexpensive method based on solvent extraction followed by low temperature clean-up was applied for determination of seven pyrethroids residues in bovine raw milk using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) and gas chromatography with electron-capture detector (GC-ECD). Sample extraction procedure was established through the evaluation of seven different extraction protocols, evaluated in terms of analyte recovery and cleanup efficiency. Sample preparation optimization was based on Doehlert design using fifteen runs with three different variables. Response surface methodologies and polynomial analysis were used to define the best extraction conditions. Method validation was carried out based on SANCO guide parameters and assessed by multivariate analysis. Method performance was considered satisfactory since mean recoveries were between 87% and 101% for three distinct concentrations. Accuracy and precision were lower than ±20%, and led to no significant differences (p < 0.05) between results obtained by GC-ECD and GC-MS/MS techniques. The method has been applied to routine analysis for determination of pyrethroid residues in bovine raw milk in the Brazilian National Residue Control Plan since 2013, in which a total of 50 samples were analyzed. PMID:25380457
Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid
2015-12-01
This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.
Márquez, Cristina; López, M Isabel; Ruisánchez, Itziar; Callao, M Pilar
2016-12-01
Two data fusion strategies (high- and mid-level) combined with a multivariate classification approach (Soft Independent Modelling of Class Analogy, SIMCA) have been applied to take advantage of the synergistic effect of the information obtained from two spectroscopic techniques: FT-Raman and NIR. Mid-level data fusion consists of merging some of the previous selected variables from the spectra obtained from each spectroscopic technique and then applying the classification technique. High-level data fusion combines the SIMCA classification results obtained individually from each spectroscopic technique. Of the possible ways to make the necessary combinations, we decided to use fuzzy aggregation connective operators. As a case study, we considered the possible adulteration of hazelnut paste with almond. Using the two-class SIMCA approach, class 1 consisted of unadulterated hazelnut samples and class 2 of samples adulterated with almond. Models performance was also studied with samples adulterated with chickpea. The results show that data fusion is an effective strategy since the performance parameters are better than the individual ones: sensitivity and specificity values between 75% and 100% for the individual techniques and between 96-100% and 88-100% for the mid- and high-level data fusion strategies, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Computation techniques for the volume of a tetrahedron
NASA Astrophysics Data System (ADS)
Srinivasan, V. K.
2010-10-01
The purpose of this article is to discuss specific techniques for the computation of the volume of a tetrahedron. A few of them are taught in the undergraduate multivariable calculus courses. Few of them are found in text books on coordinate geometry and synthetic solid geometry. This article gathers many of these techniques so as to constitute a minor survey of a teaching-oriented article, useful to both students and teachers according to their needs in the classrooms.
Black, Nicola; Mullan, Barbara; Sharpe, Louise
2016-09-01
The current aim was to examine the effectiveness of behaviour change techniques (BCTs), theory and other characteristics in increasing the effectiveness of computer-delivered interventions (CDIs) to reduce alcohol consumption. Included were randomised studies with a primary aim of reducing alcohol consumption, which compared self-directed CDIs to assessment-only control groups. CDIs were coded for the use of 42 BCTs from an alcohol-specific taxonomy, the use of theory according to a theory coding scheme and general characteristics such as length of the CDI. Effectiveness of CDIs was assessed using random-effects meta-analysis and the association between the moderators and effect size was assessed using univariate and multivariate meta-regression. Ninety-three CDIs were included in at least one analysis and produced small, significant effects on five outcomes (d+ = 0.07-0.15). Larger effects occurred with some personal contact, provision of normative information or feedback on performance, prompting commitment or goal review, the social norms approach and in samples with more women. Smaller effects occurred when information on the consequences of alcohol consumption was provided. These findings can be used to inform both intervention- and theory-development. Intervention developers should focus on, including specific, effective techniques, rather than many techniques or more-elaborate approaches.
Rotorcraft flying qualities improvement using advanced control
NASA Technical Reports Server (NTRS)
Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.
1993-01-01
We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.
On-line evaluation of multiloop digital controller performance
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.
1993-01-01
The purpose of this presentation is to inform the Guidance and Control community of capabilities which were developed by the Aeroservoelasticity Branch to evaluate the performance of multivariable control laws, on-line, during wind-tunnel testing. The capabilities are generic enough to be useful for all kinds of on-line analyses involving multivariable control in experimental testing. Consequently, it was decided to present this material at this workshop even though it has been presented elsewhere. Topics covered include: essential on-line analysis requirements; on-line analysis capabilities; on-line analysis software; frequency domain procedures; controller performance evaluation frequency-domain flutter suppression; and plant determination.
Crosse, Michael J; Di Liberto, Giovanni M; Bednar, Adam; Lalor, Edmund C
2016-01-01
Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter-often referred to as a temporal response function-that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application.
Crosse, Michael J.; Di Liberto, Giovanni M.; Bednar, Adam; Lalor, Edmund C.
2016-01-01
Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter—often referred to as a temporal response function—that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application. PMID:27965557
Simulation techniques for estimating error in the classification of normal patterns
NASA Technical Reports Server (NTRS)
Whitsitt, S. J.; Landgrebe, D. A.
1974-01-01
Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound.
A diagnostic analysis of the VVP single-doppler retrieval technique
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
1995-01-01
A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.
Multivariate model of female black bear habitat use for a Geographic Information System
Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.
1993-01-01
Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.
NASA Astrophysics Data System (ADS)
Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan
2016-04-01
Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.
Optimal Stochastic Modeling and Control of Flexible Structures
1988-09-01
1.37] and McLane [1.18] considered multivariable systems and derived their optimal control characteristics. Kleinman, Gorman and Zaborsky considered...Leondes [1.72,1.73] studied various aspects of multivariable linear stochastic, discrete-time systems that are partly deterministic, and partly stochastic...June 1966. 1.8. A.V. Balaknishnan, Applied Functional Analaysis , 2nd ed., New York, N.Y.: Springer-Verlag, 1981 1.9. Peter S. Maybeck, Stochastic
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
2013-01-01
Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704
Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni
2013-01-01
Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.
Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence
Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.
2011-01-01
Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis. PMID:19684917
Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics.
Villar, Alberto; Vadillo, Julen; Santos, Jose I; Gorritxategi, Eneko; Mabe, Jon; Arnaiz, Aitor; Fernández, Luis A
2017-04-15
Optimization of a multivariate calibration process has been undertaken for a Visible-Near Infrared (400-1100nm) sensor system, applied in the monitoring of the fermentation process of the cider produced in the Basque Country (Spain). The main parameters that were monitored included alcoholic proof, l-lactic acid content, glucose+fructose and acetic acid content. The multivariate calibration was carried out using a combination of different variable selection techniques and the most suitable pre-processing strategies were selected based on the spectra characteristics obtained by the sensor system. The variable selection techniques studied in this work include Martens Uncertainty test, interval Partial Least Square Regression (iPLS) and Genetic Algorithm (GA). This procedure arises from the need to improve the calibration models prediction ability for cider monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tumwesigye, Nazarius M; Atuyambe, Lynn; Kibira, Simon P S; Wabwire-Mangen, Fred; Tushemerirwe, Florence; Wagner, Glenn J
2013-09-01
Fish landing sites have high levels of harmful use of alcohol. This paper examines the role of religion and religiosity on alcohol consumption at two fish landing sites on Lake Victoria in Uganda. Questionnaires were administered to randomly selected people at the sites. Dependent variables included alcohol consumption during the previous 30 days, whereas the key independent variables were religion and religiosity. Bivariate and multivariate analysis techniques were applied. People reporting low religiosity were five times more likely to have consumed alcohol (95% confidence interval: 2.45-10.04) compared with those reporting low/average religiosity. Religion and religiosity are potential channels for controlling alcohol use.
Advances in analytical chemistry
NASA Technical Reports Server (NTRS)
Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.
1991-01-01
Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.
Safe Onboard Guidance and Control Under Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars James
2011-01-01
An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.
Association between Caesarean Delivery and Isolated Doses of Formula Feeding in Cow Milk Allergy.
Gil, Francisco; Amezqueta, Ana; Martinez, Diana; Aznal, Elena; Etayo, Veronica; Durá, Teodoro; Sánchez-Valverde, Félix
2017-01-01
Cow milk allergy (CMA) is the most common food allergy in breastfed infants. The aim of this study is to verify whether certain perinatal factors may influence the development of CMA immunoglobulin E (IgE)+. A retrospective, observational study of case and control groups was carried out. Information was collected of patients with CMA IgE+ from our department during the years 1990-2013. Patients of the same age and sex were recruited for the control group. Information on the following variables was collected: sex, age, pregnancy tolerance, duration of pregnancy, type of delivery, isolated doses of formula feeding in hospital (FFH), duration of breastfeeding, and family history of allergy (defined as ≥1 first-degree family member with allergic disease). Statistical analysis was performed using multivariate logistic regression techniques. A total of 211 cases were included in this study. Multivariate analysis showed an influence of duration of breastfeeding, FFH to be a risk factor (OR 4.94; 95% CI 2.68-9.08), especially in caesarean delivery (OR 11.82; 95% CI 2.64-47.50), and prematurity (OR 0.29; 95% CI 0.09-0.92) to be a protective factor. Perinatal factors play a key role in the development of CMA IgE+, with an influence of breastfeeding duration, FFH and caesarean delivery as risk factors and prematurity as a protective factor. While family history had no important role, environmental factors were more decisive. © 2017 S. Karger AG, Basel.
Amutah-Onukagha, Ndidiamaka N; Doamekpor, Lauren A; Gardner, Michelle
2017-12-01
Black women disproportionately share the distribution of risk factors for physical and mental illnesses. The goal of this study was to examine the sociodemographic and health correlates of major depressive disorder (MDD) symptoms among black women. Pooled data from the 2005-2010 National Health and Nutrition Examination Survey (NHANES) were used to assess the sociodemographic and health correlates of MDD symptoms among black women (n = 227). Multivariate logistic regression techniques assessed the association between MDD symptoms and age, socioeconomic status, health status, and health behaviors. Poverty income ratio and smoking status were significantly associated with the likelihood of having MDD symptoms. Black women who were smokers were also more likely to have MDD symptoms compared to non-smokers [OR = 8.05, 95% CI = (4.56, 14.23)]. After controlling for all other socioeconomic and health variables, this association remained statistically significant. In addition, after controlling for all other variables, the multivariate analyses showed that black women below 299% federal poverty level (FPL) were nearly three times more likely to have MDD symptoms compared to women above 300% FPL [OR = 2.82, 95% CI = (1.02, 7.96)]. These analyses suggest that poverty and smoking status are associated with MDD symptoms among black women. A deeper understanding of the underlying mechanisms and key factors which influence MDD symptoms are needed in order to develop and create mental health programs targeting women of color.
Chasset, Thibaut; Häbe, Tim T; Ristivojevic, Petar; Morlock, Gertrud E
2016-09-23
Quality control of propolis is challenging, as it is a complex natural mixture of compounds, and thus, very difficult to analyze and standardize. Shown on the example of 30 French propolis samples, a strategy for an improved quality control was demonstrated in which high-performance thin-layer chromatography (HPTLC) fingerprints were evaluated in combination with selected mass signals obtained by desorption-based scanning mass spectrometry (MS). The French propolis sample extracts were separated by a newly developed reversed phase (RP)-HPTLC method. The fingerprints obtained by two different detection modes, i.e. after (1) derivatization and fluorescence detection (FLD) at UV 366nm and (2) scanning direct analysis in real time (DART)-MS, were analyzed by multivariate data analysis. Thus, RP-HPTLC-FLD and RP-HPTLC-DART-MS fingerprints were explored and the best classification was obtained using both methods in combination with pattern recognition techniques, such as principal component analysis. All investigated French propolis samples were divided in two types and characteristic patterns were observed. Phenolic compounds such as caffeic acid, p-coumaric acid, chrysin, pinobanksin, pinobanksin-3-acetate, galangin, kaempferol, tectochrysin and pinocembrin were identified as characteristic marker compounds of French propolis samples. This study expanded the research on the European poplar type of propolis and confirmed the presence of two botanically different types of propolis, known as the blue and orange types. Copyright © 2016 Elsevier B.V. All rights reserved.
Janik, M; Bossew, P; Kurihara, O
2018-07-15
Machine learning is a class of statistical techniques which has proven to be a powerful tool for modelling the behaviour of complex systems, in which response quantities depend on assumed controls or predictors in a complicated way. In this paper, as our first purpose, we propose the application of machine learning to reconstruct incomplete or irregularly sampled data of time series indoor radon ( 222 Rn). The physical assumption underlying the modelling is that Rn concentration in the air is controlled by environmental variables such as air temperature and pressure. The algorithms "learn" from complete sections of multivariate series, derive a dependence model and apply it to sections where the controls are available, but not the response (Rn), and in this way complete the Rn series. Three machine learning techniques are applied in this study, namely random forest, its extension called the gradient boosting machine and deep learning. For a comparison, we apply the classical multiple regression in a generalized linear model version. Performance of the models is evaluated through different metrics. The performance of the gradient boosting machine is found to be superior to that of the other techniques. By applying learning machines, we show, as our second purpose, that missing data or periods of Rn series data can be reconstructed and resampled on a regular grid reasonably, if data of appropriate physical controls are available. The techniques also identify to which degree the assumed controls contribute to imputing missing Rn values. Our third purpose, though no less important from the viewpoint of physics, is identifying to which degree physical, in this case environmental variables, are relevant as Rn predictors, or in other words, which predictors explain most of the temporal variability of Rn. We show that variables which contribute most to the Rn series reconstruction, are temperature, relative humidity and day of the year. The first two are physical predictors, while "day of the year" is a statistical proxy or surrogate for missing or unknown predictors. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1996-01-01
In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.
NASA Technical Reports Server (NTRS)
Hargrove, A.
1982-01-01
Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.
NASA Astrophysics Data System (ADS)
Zupan, Jure
1995-04-01
All problems that in some way are linked to handling of multi-variate experiments versus multi-variate responses can be approached by the group of methods that has recently became known as the artificial neural network (ANN) techniques. In this lecture, the types of the problems that can be solved by ANN techniques rather than the ANN techniques themselves will be addressed first. This issue is rather important due to the fact that the ANN techniques can be used for a very broad range of problems and choosing the wrong method can often result in either a failure to produce an effective solution or in a very time consuming and ineffective handling. Among the types of problems that can be solved by different ANN techniques the classification, mapping, look-up table, and modelling will be emphasized and discussed. Because all mentioned methods can be solved by different standard techniques, special emphasis will be paid to stress the advantages and drawbacks when employing different ANN techniques. Due to the fact that the range of possible use of ANN is so broad, even a very specific problem can be solved by many different ANN architectures or even using different learning strategies within ANN. In the second part the main learning strategies and corresponding choices of ANN architectures will be discussed. In this part the parameters and some guidelines how to select the method and the design of the ANNs will be shown on the examples of reported ANN applications in chemistry. The ANN learning strategies discussed will be back-propagation of errors, the Kohonen, and the counter propagation learning. The potential user of ANN should first, consider the problem, second, he must inspect the availability of data and the data themselves to decide for which ANN method they are best suited. In this respect, the amount of data, the dimensionality of the measurement space, the form of data (alphanumeric entries, binary, real, or even mixed forms of data) are crucial. After considering all this factors, the determination of the appropriate neural network architecture can be made. Additionally, the selection the optimal ANN involves the determination of specific internal parameters like the learning rate, the momentum term, the neighbourhood function, the time dependent decrease of corrections, etc. Even after all these decisions have been made the learning procedure itself is not a straightforward task. Here, the division of the entire ensemble of data into three data sets: training, controlling and the test set are crucial. This problem is addressed as well.
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
2014-01-01
Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
Poláček, Roman; Májek, Pavel; Hroboňová, Katarína; Sádecká, Jana
2016-04-01
Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of β-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.
USDA-ARS?s Scientific Manuscript database
Correspondence analysis is a powerful exploratory multivariate technique for categorical variables with many levels. It is a data analysis tool that characterizes associations between levels of 2 or more categorical variables using graphical representations of the information in a contingency table...
Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia.
Mohamed, Ibrahim; Othman, Faridah; Ibrahim, Adriana I N; Alaa-Eldin, M E; Yunus, Rossita M
2015-01-01
This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis
Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan
2007-11-10
In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less
Spectral compression algorithms for the analysis of very large multivariate images
Keenan, Michael R.
2007-10-16
A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.
Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics
Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven
2011-01-01
Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957
Sadala, S P; Patre, B M
2018-03-01
The 2-degree of freedom (DOF) helicopter system is a typical higher-order, multi-variable, nonlinear and strong coupled control system. The helicopter dynamics also includes parametric uncertainties and is subject to unknown external disturbances. Such complicated system requires designing a sophisticated control algorithm that can handle these difficulties. This paper presents a new robust control algorithm which is a combination of two continuous control techniques, composite nonlinear feedback (CNF) and super-twisting control (STC) methods. In the existing integral sliding mode (ISM) based CNF control law, the discontinuous term exhibits chattering which is not desirable for many practical applications. As the continuity of well known STC reduces chattering in the system, the proposed strategy is beneficial over the current ISM based CNF control law which has a discontinuous term. Two controllers with integral sliding surface are designed to control the position of the pitch and the yaw angles of the 2- DOF helicopter. The adequacy of this specific combination has been exhibited through general analysis, simulation and experimental results of 2-DOF helicopter setup. The acquired results demonstrate the good execution of the proposed controller regarding stabilization, following reference input without overshoot against actuator saturation and robustness concerning to the limited matched disturbances. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Hip Structural Analysis in Adolescent Boys With Anorexia Nervosa and Controls
Katzman, Debra K.; Clarke, Hannah; Snelgrove, Deirdre; Brigham, Kathryn; Miller, Karen K.; Klibanski, Anne
2013-01-01
Context: We have reported lower hip bone mineral density (BMD) in adolescent boys with anorexia nervosa (AN) compared with controls. Although studies have described bone structure in girls with AN, these data are not available for boys. Hip structural analysis (HSA) using dual-energy x-ray absorptiometry is a validated technique to assess hip geometry and strength while avoiding radiation associated with quantitative computed tomography. Objective: We hypothesized that boys with AN would have impaired hip structure/strength (assessed by HSA) compared with controls. Design and Setting: We conducted a cross-sectional study at a clinical research center. Subjects and Intervention: We used HSA techniques on hip dual-energy x-ray absorptiometry scans in 31 previously enrolled boys, 15 with AN and 16 normal-weight controls, 12 to 19 years old. Results: AN boys had lower body mass index SD score (P < .0001), testosterone (P = .0005), and estradiol (P = .006) than controls. A larger proportion of AN boys had BMD Z-scores <−1 at the femoral neck (60% vs 12.5%, P = 0008). Using HSA, at the narrow neck and trochanter region, boys with AN had lower cross-sectional area (P = .03, 0.02) and cortical thickness (P = .02, 0.03). Buckling ratio at the trochanter region was higher in AN (P = .008). After controlling for age and height, subperiosteal width at the femoral shaft, cross-sectional moment of inertia (narrow neck and femoral shaft), and section modulus (all sites) were lower in AN. The strongest associations of HSA measures were observed with lean mass, testosterone, and estradiol. On multivariate analysis, lean mass remained associated with most HSA measures. Conclusions: Boys with AN have impaired hip geometric parameters, associated with lower lean mass. PMID:23653430
Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.
Lin, Tsung-I; Wang, Wan-Lun
2017-10-01
In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.
Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O
2015-10-01
Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.
Hybrid passive/active damping for robust multivariable acoustic control in composite plates
NASA Astrophysics Data System (ADS)
Veeramani, Sudha; Wereley, Norman M.
1996-05-01
Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.
Ensemble transcript interaction networks: a case study on Alzheimer's disease.
Armañanzas, Rubén; Larrañaga, Pedro; Bielza, Concha
2012-10-01
Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A mathematical theory of learning control for linear discrete multivariable systems
NASA Technical Reports Server (NTRS)
Phan, Minh; Longman, Richard W.
1988-01-01
When tracking control systems are used in repetitive operations such as robots in various manufacturing processes, the controller will make the same errors repeatedly. Here consideration is given to learning controllers that look at the tracking errors in each repetition of the process and adjust the control to decrease these errors in the next repetition. A general formalism is developed for learning control of discrete-time (time-varying or time-invariant) linear multivariable systems. Methods of specifying a desired trajectory (such that the trajectory can actually be performed by the discrete system) are discussed, and learning controllers are developed. Stability criteria are obtained which are relatively easy to use to insure convergence of the learning process, and proper gain settings are discussed in light of measurement noise and system uncertainties.
BIOLOGICAL INTEGRITY IN MID-ATLANTIC COASTAL PLAINS HEADWATER STREAMS
The objective of this study was to assess the applicability of landscape metrics, in conjunction with stream water quality to estimate the biological integrity of headwater streams in the Mid-Atlantic Coastal Plains using multivariate techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyar, M. Darby; McCanta, Molly; Breves, Elly
2016-03-01
Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyar, M. Darby; McCanta, Molly; Breves, Elly
2016-03-01
Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less
Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.
2018-03-01
We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.
A Self-Organizing Maps approach to assess the wave climate of the Adriatic Sea
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Marcello Falcieri, Francesco; Scotton, Carlotta; Benetazzo, Alvise; Bergamasco, Andrea; Bergamasco, Filippo; Bonaldo, Davide; Carniel, Sandro; Sclavo, Mauro
2015-04-01
The assessment of wave conditions at sea is fruitful for many research fields in marine and atmospheric sciences and for the human activities in the marine environment. To this end, in the last decades the observational network, that mostly relies on buoys, satellites and other probes from fixed platforms, has been integrated with numerical models outputs, which allow to compute the parameters of sea states (e.g. the significant wave height, the mean and peak wave periods, the mean and peak wave directions) over wider regions. Apart from the collection of wave parameters observed at specific sites or modeled on arbitrary domains, the data processing performed to infer the wave climate at those sites is a crucial step in order to provide high quality data and information to the community. In this context, several statistical techniques has been used to model the randomness of wave parameters. While univariate and bivariate probability distribution functions (pdf) are routinely used, multivariate pdfs that model the probability structure of more than two wave parameters are hardly managed. Recently, the Self-Organizing Maps (SOM) technique has been successfully applied to represent the multivariate random wave climate at sites around the Iberian peninsula and the South America continent. Indeed, the visualization properties offered by this technique allow to get the dependencies between the different parameters by visual inspection. In this study, carried out in the frame of the Italian National Flagship Project "RITMARE", we take advantage of the SOM technique to assess the multivariate wave climate over the Adriatic Sea, a semi-enclosed basin in the north-eastern Mediterranean Sea, where winds from North-East (called "Bora") and South-East (called "Sirocco") mainly blow causing sea storms. By means of the SOM techniques we can observe the multivariate character of the typical Bora and Sirocco wave features in the Adriatic Sea. To this end, we used both observed and modeled wave parameters. The "Acqua Alta" oceanographic tower in the northern Adriatic Sea (ISMAR-CNR) and the Italian Data Buoy Network (RON, managed by ISPRA) off the western Adriatic coasts furnished the wave parameters at specific sites of interest. Widespread wave parameters were obtained by means of a numerical SWAN wave model that was implemented on the whole Adriatic Sea with a 6x6 km2 resolution and forced by the high resolution COSMO-I7 atmospheric model for the period 2007-2013.
Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel
2017-01-01
Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.
Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel
2017-01-01
Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571
Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai
2018-06-01
Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.
Bergholt, Mads S; Albro, Michael B; Stevens, Molly M
2017-09-01
Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2 = 0.84) and glycosaminoglycans (GAGs) (R 2 = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Westerik, Janine A. M.; Carter, Victoria; Chrystyn, Henry; Burden, Anne; Thompson, Samantha L.; Ryan, Dermot; Gruffydd-Jones, Kevin; Haughney, John; Roche, Nicolas; Lavorini, Federico; Papi, Alberto; Infantino, Antonio; Roman-Rodriguez, Miguel; Bosnic-Anticevich, Sinthia; Lisspers, Karin; Ställberg, Björn; Henrichsen, Svein Høegh; van der Molen, Thys; Hutton, Catherine; Price, David B.
2016-01-01
Abstract Objective: Correct inhaler technique is central to effective delivery of asthma therapy. The study aim was to identify factors associated with serious inhaler technique errors and their prevalence among primary care patients with asthma using the Diskus dry powder inhaler (DPI). Methods: This was a historical, multinational, cross-sectional study (2011–2013) using the iHARP database, an international initiative that includes patient- and healthcare provider-reported questionnaires from eight countries. Patients with asthma were observed for serious inhaler errors by trained healthcare providers as predefined by the iHARP steering committee. Multivariable logistic regression, stepwise reduced, was used to identify clinical characteristics and asthma-related outcomes associated with ≥1 serious errors. Results: Of 3681 patients with asthma, 623 (17%) were using a Diskus (mean [SD] age, 51 [14]; 61% women). A total of 341 (55%) patients made ≥1 serious errors. The most common errors were the failure to exhale before inhalation, insufficient breath-hold at the end of inhalation, and inhalation that was not forceful from the start. Factors significantly associated with ≥1 serious errors included asthma-related hospitalization the previous year (odds ratio [OR] 2.07; 95% confidence interval [CI], 1.26–3.40); obesity (OR 1.75; 1.17–2.63); poor asthma control the previous 4 weeks (OR 1.57; 1.04–2.36); female sex (OR 1.51; 1.08–2.10); and no inhaler technique review during the previous year (OR 1.45; 1.04–2.02). Conclusions: Patients with evidence of poor asthma control should be targeted for a review of their inhaler technique even when using a device thought to have a low error rate. PMID:26810934
Martyna, Agnieszka; Zadora, Grzegorz; Neocleous, Tereza; Michalska, Aleksandra; Dean, Nema
2016-08-10
Many chemometric tools are invaluable and have proven effective in data mining and substantial dimensionality reduction of highly multivariate data. This becomes vital for interpreting various physicochemical data due to rapid development of advanced analytical techniques, delivering much information in a single measurement run. This concerns especially spectra, which are frequently used as the subject of comparative analysis in e.g. forensic sciences. In the presented study the microtraces collected from the scenarios of hit-and-run accidents were analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp lenses) were subjected to Fourier transform infrared spectrometry and car paints were analysed using Raman spectroscopy. In the forensic context analytical results must be interpreted and reported according to the standards of the interpretation schemes acknowledged in forensic sciences using the likelihood ratio approach. However, for proper construction of LR models for highly multivariate data, such as spectra, chemometric tools must be employed for substantial data compression. Conversion from classical feature representation to distance representation was proposed for revealing hidden data peculiarities and linear discriminant analysis was further applied for minimising the within-sample variability while maximising the between-sample variability. Both techniques enabled substantial reduction of data dimensionality. Univariate and multivariate likelihood ratio models were proposed for such data. It was shown that the combination of chemometric tools and the likelihood ratio approach is capable of solving the comparison problem of highly multivariate and correlated data after proper extraction of the most relevant features and variance information hidden in the data structure. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
NASA Technical Reports Server (NTRS)
Chen, George T.
1987-01-01
An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.
Hybrid Arrays for Chemical Sensing
NASA Astrophysics Data System (ADS)
Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.
In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.
Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C
2014-01-01
Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patients pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (SBM), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or QCP) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patients physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patients condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
,
1990-01-01
Various techniques were used to decipher the sedimentation history of Site 765, including Markov chain analysis of facies transitions, XRD analysis of clay and other minerals, and multivariate analysis of smear-slide data, in addition to the standard descriptive procedures employed by the shipboard sedimentologist. This chapter presents brief summaries of methodology and major findings of these three techniques, a summary of the sedimentation history, and a discussion of trends in sedimentation through time.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling
2010-09-01
crustal structures. But short periods are difficult to measure, especially in tectonically and geologically complex areas. On the other hand, gravity...East Africa Rift System Knowledge of crustal and upper mantle structure is of importance for understanding East Africa’s geodynamic evolution and for...area with less lateral heterogeneity but great tectonic complexity. To increase the effectiveness of the technique in this region, we explore gravity
Lee, Tsair-Fwu; Liou, Ming-Hsiang; Huang, Yu-Jie; Chao, Pei-Ju; Ting, Hui-Min; Lee, Hsiao-Yi
2014-01-01
To predict the incidence of moderate-to-severe patient-reported xerostomia among head and neck squamous cell carcinoma (HNSCC) and nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT). Multivariable normal tissue complication probability (NTCP) models were developed by using quality of life questionnaire datasets from 152 patients with HNSCC and 84 patients with NPC. The primary endpoint was defined as moderate-to-severe xerostomia after IMRT. The numbers of predictive factors for a multivariable logistic regression model were determined using the least absolute shrinkage and selection operator (LASSO) with bootstrapping technique. Four predictive models were achieved by LASSO with the smallest number of factors while preserving predictive value with higher AUC performance. For all models, the dosimetric factors for the mean dose given to the contralateral and ipsilateral parotid gland were selected as the most significant predictors. Followed by the different clinical and socio-economic factors being selected, namely age, financial status, T stage, and education for different models were chosen. The predicted incidence of xerostomia for HNSCC and NPC patients can be improved by using multivariable logistic regression models with LASSO technique. The predictive model developed in HNSCC cannot be generalized to NPC cohort treated with IMRT without validation and vice versa. PMID:25163814
MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION
Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Kosek, Wiesław
2008-02-01
This article presents the application of a multivariate prediction technique for predicting universal time (UT1-UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1-UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1-UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1-UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1-UTC based on LS extrapolation or on LS + AR. In particular, the UT1-UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Colin; Anderson, Penny R.; Li Tianyu
Purpose: We examined the impact of radiation tumor bed boost parameters in early-stage breast cancer on local control and cosmetic outcomes. Methods and Materials: A total of 3,186 women underwent postlumpectomy whole-breast radiation with a tumor bed boost for Tis to T2 breast cancer from 1970 to 2008. Boost parameters analyzed included size, energy, dose, and technique. Endpoints were local control, cosmesis, and fibrosis. The Kaplan-Meier method was used to estimate actuarial incidence, and a Cox proportional hazard model was used to determine independent predictors of outcomes on multivariate analysis (MVA). The median follow-up was 78 months (range, 1-305 months).more » Results: The crude cosmetic results were excellent in 54%, good in 41%, and fair/poor in 5% of patients. The 10-year estimate of an excellent cosmesis was 66%. On MVA, independent predictors for excellent cosmesis were use of electron boost, lower electron energy, adjuvant systemic therapy, and whole-breast IMRT. Fibrosis was reported in 8.4% of patients. The actuarial incidence of fibrosis was 11% at 5 years and 17% at 10 years. On MVA, independent predictors of fibrosis were larger cup size and higher boost energy. The 10-year actuarial local failure was 6.3%. There was no significant difference in local control by boost method, cut-out size, dose, or energy. Conclusions: Likelihood of excellent cosmesis or fibrosis are associated with boost technique, electron energy, and cup size. However, because of high local control and rare incidence of fair/poor cosmesis with a boost, the anatomy of the patient and tumor cavity should ultimately determine the necessary boost parameters.« less
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
Saber, W.; Moua, T.; Williams, E. C.; Verso, M.; Agnelli, G.; Couban, S.; Young, A.; De Cicco, M.; Biffi, R.; van Rooden, C. J.; Huisman, M. V.; Fagnani, D.; Cimminiello, C.; Moia, M.; Magagnoli, M.; Povoski, S. P.; Malak, S. F.; Lee, A. Y.
2010-01-01
Background Knowledge of independent, baseline risk factors of catheter-related thrombosis (CRT) may help select adult cancer patients at high risk to receive thromboprophylaxis. Objectives We conducted a meta-analysis of individual patient-level data to identify these baseline risk factors. Patients/Methods MEDLINE, EMBASE, CINAHL, CENTRAL, DARE, Grey literature databases were searched in all languages from 1995-2008. Prospective studies and randomized controlled trials (RCTs) were eligible. Studies were included if original patient-level data were provided by the investigators and if CRT was objectively confirmed with valid imaging. Multivariate logistic regression analysis of 17 prespecified baseline characteristics was conducted. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated. Results A total sample of 5636 subjects from 5 RCTs and 7 prospective studies was included in the analysis. Among these subjects, 425 CRT events were observed. In multivariate logistic regression, the use of implanted ports as compared with peripherally implanted central venous catheters (PICC), decreased CRT risk (OR = 0.43; 95% CI, 0.23-0.80), whereas past history of deep vein thrombosis (DVT) (OR = 2.03; 95% CI, 1.05-3.92), subclavian venipuncture insertion technique (OR = 2.16; 95% CI, 1.07-4.34), and improper catheter tip location (OR = 1.92; 95% CI, 1.22-3.02), increased CRT risk. Conclusions CRT risk is increased with using PICC catheters, previous history of DVT, subclavian venipuncture insertion technique and improper positioning of the catheter tip. These factors may be useful for risk stratifying patients to select those for thromboprophylaxis. Prospective studies are needed to validate these findings. PMID:21040443
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
Calibrating the ChemCam LIBS for Carbonate Minerals on Mars
DOE R&D Accomplishments Database
Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.
2009-01-01
The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.
NASA Technical Reports Server (NTRS)
Troudet, T.; Garg, S.; Merrill, W.
1992-01-01
The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
Project management techniques for highly integrated programs
NASA Technical Reports Server (NTRS)
Stewart, J. F.; Bauer, C. A.
1983-01-01
The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.
Moncayo, S; Manzoor, S; Rosales, J D; Anzano, J; Caceres, J O
2017-10-01
The present work focuses on the development of a fast and cost effective method based on Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and detection of adulteration in milk. Two adulteration cases have been studied; a qualitative analysis for the discrimination between different milk blends and quantification of melamine in adulterated toddler milk powder. Principal Component Analysis (PCA) and neural networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate of 98% with a 100% of robustness. For the quantification of melamine, two methodologies have been developed; univariate analysis using CN emission band and multivariate calibration NN model obtaining correlation coefficient (R 2 ) values of 0.982 and 0.999 respectively. The results of the use of LIBS technique coupled with chemometric analysis are discussed in terms of its potential use in the food industry to perform the quality control of this dairy product. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jianbo; Wang, Yue; Rong, Lixin; Wang, Jingjuan
2018-07-01
IR, Raman and other separation-free and label-free spectroscopic techniques have been the promising methods for the rapid and low-cost quality control of complex mixtures such as food and herb. However, as the overlapped signals from different ingredients usually make it difficult to extract useful information, chemometrics tools are often needed to find out spectral features of interest. With designed perturbations, two-dimensional correlation spectroscopy (2DCOS) is a powerful technique to resolve the overlapped spectral bands and enhance the apparent spectral resolution. In this research, the integrative two-dimensional correlation spectroscopy (i2DCOS) is defined for the first time overcome some disadvantages of synchronous and asynchronous correlation spectra for identification. The integrative 2D correlation spectra weight the asynchronous cross peaks by the corresponding synchronous cross peaks, which combines the signal-to-noise ratio advantage of synchronous correlation spectra and the spectral resolution advantage of asynchronous correlation spectra. The feasibility of the integrative 2D correlation spectra for the quality control of complex mixtures is examined by the identification of adulterated Fritillariae Bulbus powders. Compared with model-based pattern recognition and multivariate calibration methods, i2DCOS can provide intuitive identification results but not require the number of samples. The results show the potential of i2DCOS in the intuitive quality control of herbs and other complex mixtures, especially when the number of samples is not large.
Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana
2013-06-01
This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey
2018-04-01
Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.
Memon, Aftab Hameed; Rahman, Ismail Abdul
2014-01-01
This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R 2 value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun. PMID:24693227
Li, Yan; Zhang, Ji; Jin, Hang; Liu, Honggao; Wang, Yuanzhong
2016-08-05
A quality assessment system comprised of a tandem technique of ultraviolet (UV) spectroscopy and ultra-fast liquid chromatography (UFLC) aided by multivariate analysis was presented for the determination of geographic origin of Wolfiporia extensa collected from five regions in Yunnan Province of China. Characteristic UV spectroscopic fingerprints of samples were determined based on its methanol extract. UFLC was applied for the determination of pachymic acid (a biomarker) presented in individual test samples. The spectrum data matrix and the content of pachymic acid were integrated and analyzed by partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). The results showed that chemical properties of samples were clearly dominated by the epidermis and inner part as well as geographical origins. The relationships among samples obtained from these five regions have been also presented. Moreover, an interesting finding implied that geographical origins had much greater influence on the chemical properties of epidermis compared with that of the inner part. This study demonstrated that a rapid tool for accurate discrimination of W. extensa by UV spectroscopy and UFLC could be available for quality control of complicated medicinal mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.
Memon, Aftab Hameed; Rahman, Ismail Abdul
2014-01-01
This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R(2) value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bristol, Ian J.; Ahamad, Anesa; Garden, Adam S.
2007-07-01
Purpose: To determine the effects of three changes in radiotherapy technique on the outcomes for patients irradiated postoperatively for maxillary sinus cancer. Methods and Materials: The data of 146 patients treated between 1969 and 2002 were reviewed. The patients were separated into two groups according to the date of treatment. Group 1 included 90 patients treated before 1991 and Group 2 included 56 patients treated after 1991, when the three changes were implemented. The outcomes were compared between the two groups. Results: No differences were found in the 5-year overall survival, recurrence-free survival, local control, nodal control, or distant metastasismore » rates between the two groups (51% vs. 62%, 51% vs. 57%, 76% vs. 70%, 82% vs. 83%, and 28% vs. 17% for Groups 1 and 2, respectively). The three changes were to increase the portals to cover the base of the skull in patients with perineural invasion, reducing their risk of local recurrence; the addition of elective neck irradiation in patients with squamous or undifferentiated histologic features, improving the nodal control, distant metastasis, and recurrence-free survival rates (64% vs. 93%, 20% vs. 3%, and 45% vs. 67%, respectively; p < 0.05 for all comparisons); and improving the dose distributions within the target volume, reducing the late Grade 3-4 complication rates (34% in Group 1 vs. 8% in Group 2, p = 0.014). Multivariate analysis revealed advancing age, the need for enucleation, and positive margins as independent predictors of worse overall survival. The need for enucleation also predicted for worse local control. Conclusion: The three changes in radiotherapy technique improved the outcomes for select patients as predicted. Despite these changes, little demonstrable overall improvement occurred in local control or survival for these patients and additional work must be done.« less
A Cyber-Attack Detection Model Based on Multivariate Analyses
NASA Astrophysics Data System (ADS)
Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi
In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.
1974-01-01
A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.
The bio-optical properties of CDOM as descriptor of lake stratification.
Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo
2006-11-01
Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.
Quantifying asymmetry: ratios and alternatives.
Franks, Erin M; Cabo, Luis L
2014-08-01
Traditionally, the study of metric skeletal asymmetry has relied largely on univariate analyses, utilizing ratio transformations when the goal is comparing asymmetries in skeletal elements or populations of dissimilar dimensions. Under this approach, raw asymmetries are divided by a size marker, such as a bilateral average, in an attempt to produce size-free asymmetry indices. Henceforth, this will be referred to as "controlling for size" (see Smith: Curr Anthropol 46 (2005) 249-273). Ratios obtained in this manner often require further transformations to interpret the meaning and sources of asymmetry. This model frequently ignores the fundamental assumption of ratios: the relationship between the variables entered in the ratio must be isometric. Violations of this assumption can obscure existing asymmetries and render spurious results. In this study, we examined the performance of the classic indices in detecting and portraying the asymmetry patterns in four human appendicular bones and explored potential methodological alternatives. Examination of the ratio model revealed that it does not fulfill its intended goals in the bones examined, as the numerator and denominator are independent in all cases. The ratios also introduced strong biases in the comparisons between different elements and variables, generating spurious asymmetry patterns. Multivariate analyses strongly suggest that any transformation to control for overall size or variable range must be conducted before, rather than after, calculating the asymmetries. A combination of exploratory multivariate techniques, such as Principal Components Analysis, and confirmatory linear methods, such as regression and analysis of covariance, appear as a promising and powerful alternative to the use of ratios. © 2014 Wiley Periodicals, Inc.
Primack, Brian A; Silk, Jennifer S; DeLozier, Christian R; Shadel, William G; Dillman Carpentier, Francesca R; Dahl, Ronald E; Switzer, Galen E
2011-04-01
To use ecological momentary assessment techniques to measure the association of major depressive disorder (MDD) with media use. Data were collected using an ecological momentary assessment protocol with cellular telephone-based brief interviews. Participants received as many as 60 telephone calls from a trained staff member during 5 extended weekends in an 8-week period. One hundred six adolescent participants who were part of a larger neurobehavioral study of depression in Pittsburgh from January 1, 2003, through December 31, 2008. At each call, participants were asked whether they were using the following 5 types of media: television or movies, music, video games, Internet, and print media, such as magazines, newspapers, and books. We developed multivariable models to determine the independent association of each type of media use with MDD, controlling for sociodemographic variables. Of the 106 participants, 46 were diagnosed as having MDD. In multivariable models controlling for age, sex, and race, each increasing quartile of audio use was associated with an 80% increase in the odds of having MDD (odds ratio, 1.8; 95% confidence interval, 1.1-2.8; P = .01 for trend). Conversely, each increasing quartile of print media use was associated with a 50% decrease in the odds of having MDD (odds ratio, 0.5; 95% confidence interval, 0.3-0.9; P = .009 for trend). Major depressive disorder is positively associated with popular music exposure and negatively associated with reading print media such as books. Further research elucidating the directionality and strength of these relationships may help advance understanding of the relationships between media use and MDD.
2011-01-01
Background Type D personality has been associated in the past with increased cardiovascular mortality among patients with established coronary heart disease. Very few studies have investigated the association of type D personality with traditional cardiovascular risk factors. In this study, we assessed the association between type D personality and the metabolic syndrome. Findings New consecutive patients referred to an outpatient lipid clinic for evaluation of possible metabolic syndrome were eligible for inclusion in the study. The metabolic syndrome was defined according to the International Diabetes Federation (IDF) diagnostic criteria. Type D personality was assessed with the DS-14 scale. Multivariate regression techniques were used to investigate the association between personality and metabolic syndromes adjusting for a number of medical and psychiatric confounders. Three hundred and fifty-nine persons were screened of whom 206 met the diagnostic criteria for the metabolic syndrome ("cases") and 153 did not ("control group"). The prevalence of type D personality was significantly higher in the cases as compared to the control group (44% versus 15% respectively, p < 0.001). In multivariate logistic regression analysis the presence of Type D personality was significantly associated with metabolic syndrome independently of other clinical factors, anxiety and depressive symptoms (odds ratio 3.47; 95% Confidence Interval: 1.90 - 6.33). Conclusions Type D personality was independently associated with the metabolic syndrome in this cross-sectional study. The potential implications of this finding, especially from a clinical or preventive perspective, should be examined in future research. PMID:21466680
Linear, multivariable robust control with a mu perspective
NASA Technical Reports Server (NTRS)
Packard, Andy; Doyle, John; Balas, Gary
1993-01-01
The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.
De Francesco, Davide; Leech, Robert; Sabin, Caroline A.; Winston, Alan
2018-01-01
Objective The reported prevalence of cognitive impairment remains similar to that reported in the pre-antiretroviral therapy era. This may be partially artefactual due to the methods used to diagnose impairment. In this study, we evaluated the diagnostic performance of the HIV-associated neurocognitive disorder (Frascati criteria) and global deficit score (GDS) methods in comparison to a new, multivariate method of diagnosis. Methods Using a simulated ‘normative’ dataset informed by real-world cognitive data from the observational Pharmacokinetic and Clinical Observations in PeoPle Over fiftY (POPPY) cohort study, we evaluated the apparent prevalence of cognitive impairment using the Frascati and GDS definitions, as well as a novel multivariate method based on the Mahalanobis distance. We then quantified the diagnostic properties (including positive and negative predictive values and accuracy) of each method, using bootstrapping with 10,000 replicates, with a separate ‘test’ dataset to which a pre-defined proportion of ‘impaired’ individuals had been added. Results The simulated normative dataset demonstrated that up to ~26% of a normative control population would be diagnosed with cognitive impairment with the Frascati criteria and ~20% with the GDS. In contrast, the multivariate Mahalanobis distance method identified impairment in ~5%. Using the test dataset, diagnostic accuracy [95% confidence intervals] and positive predictive value (PPV) was best for the multivariate method vs. Frascati and GDS (accuracy: 92.8% [90.3–95.2%] vs. 76.1% [72.1–80.0%] and 80.6% [76.6–84.5%] respectively; PPV: 61.2% [48.3–72.2%] vs. 29.4% [22.2–36.8%] and 33.9% [25.6–42.3%] respectively). Increasing the a priori false positive rate for the multivariate Mahalanobis distance method from 5% to 15% resulted in an increase in sensitivity from 77.4% (64.5–89.4%) to 92.2% (83.3–100%) at a cost of specificity from 94.5% (92.8–95.2%) to 85.0% (81.2–88.5%). Conclusion Our simulations suggest that the commonly used diagnostic criteria of HIV-associated cognitive impairment label a significant proportion of a normative reference population as cognitively impaired, which will likely lead to a substantial over-estimate of the true proportion in a study population, due to their lower than expected specificity. These findings have important implications for clinical research regarding cognitive health in people living with HIV. More accurate methods of diagnosis should be implemented, with multivariate techniques offering a promising solution. PMID:29641619
Using Fisher information to track stability in multivariate systems
With the current proliferation of data, the proficient use of statistical and mining techniques offer substantial benefits to capture useful information from any dataset. As numerous approaches make use of information theory concepts, here, we discuss how Fisher information (FI...
Sereshti, Hassan; Poursorkh, Zahra; Aliakbarzadeh, Ghazaleh; Zarre, Shahin; Ataolahi, Sahar
2018-01-15
Quality of saffron, a valuable food additive, could considerably affect the consumers' health. In this work, a novel preprocessing strategy for image analysis of saffron thin layer chromatographic (TLC) patterns was introduced. This includes performing a series of image pre-processing techniques on TLC images such as compression, inversion, elimination of general baseline (using asymmetric least squares (AsLS)), removing spots shift and concavity (by correlation optimization warping (COW)), and finally conversion to RGB chromatograms. Subsequently, an unsupervised multivariate data analysis including principal component analysis (PCA) and k-means clustering was utilized to investigate the soil salinity effect, as a cultivation parameter, on saffron TLC patterns. This method was used as a rapid and simple technique to obtain the chemical fingerprints of saffron TLC images. Finally, the separated TLC spots were chemically identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). Accordingly, the saffron quality from different areas of Iran was evaluated and classified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
NASA Astrophysics Data System (ADS)
Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.
2018-01-01
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods.
Estimating the decomposition of predictive information in multivariate systems
NASA Astrophysics Data System (ADS)
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F
2015-01-01
An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.
2015-12-01
Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.
Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly
Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman
2016-01-01
Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694
Spencer, H T; Hsu, L; Sodl, J; Arianjam, A; Yian, E H
2016-04-01
To compare radiographic failure and re-operation rates of anatomical coracoclavicular (CC) ligament reconstructional techniques with non-anatomical techniques after chronic high grade acromioclavicular (AC) joint injuries. We reviewed chronic AC joint reconstructions within a region-wide healthcare system to identify surgical technique, complications, radiographic failure and re-operations. Procedures fell into four categories: (1) modified Weaver-Dunn, (2) allograft fixed through coracoid and clavicular tunnels, (3) allograft loop coracoclavicular fixation, and (4) combined allograft loop and synthetic cortical button fixation. Among 167 patients (mean age 38.1 years, (standard deviation (sd) 14.7) treated at least a four week interval after injury, 154 had post-operative radiographs available for analysis. Radiographic failure occurred in 33/154 cases (21.4%), with the lowest rate in Technique 4 (2/42 4.8%, p = 0.001). Half the failures occurred by six weeks, and the Kaplan-Meier survivorship at 24 months was 94.4% (95% confidence interval (CI) 79.6 to 98.6) for Technique 4 and 69.9% (95% CI 59.4 to 78.3) for the other techniques when combined. In multivariable survival analysis, Technique 4 had better survival than other techniques (Hazard Ratio 0.162, 95% CI 0.039 to 0.068, p = 0.013). Among 155 patients with a minimum of six months post-operative insurance coverage, re-operation occurred in 9.7% (15 patients). However, in multivariable logistic regression, Technique 4 did not reach a statistically significant lower risk for re-operation (odds ratio 0.254, 95% CI 0.05 to 1.3, p = 0.11). In this retrospective series, anatomical CC ligament reconstruction using combined synthetic cortical button and allograft loop fixation had the lowest rate of radiographic failure. Anatomical coracoclavicular ligament reconstruction using combined synthetic cortical button and allograft loop fixation had the lowest rate of radiographic failure. ©2016 The British Editorial Society of Bone & Joint Surgery.
NASA Technical Reports Server (NTRS)
Sanchez Pena, Ricardo S.; Sideris, Athanasios
1988-01-01
A computer program implementing an algorithm for computing the multivariable stability margin to check the robust stability of feedback systems with real parametric uncertainty is proposed. The authors present in some detail important aspects of the program. An example is presented using lateral directional control system.
Risk Factors for Central Serous Chorioretinopathy: Multivariate Approach in a Case-Control Study.
Chatziralli, Irini; Kabanarou, Stamatina A; Parikakis, Efstratios; Chatzirallis, Alexandros; Xirou, Tina; Mitropoulos, Panagiotis
2017-07-01
The purpose of this prospective study was to investigate the potential risk factors associated independently with central serous retinopathy (CSR) in a Greek population, using multivariate approach. Participants in the study were 183 consecutive patients diagnosed with CSR and 183 controls, matched for age. All participants underwent complete ophthalmological examination and information regarding their sociodemographic, clinical, medical and ophthalmological history were recorded, so as to assess potential risk factors for CSR. Univariate and multivariate analysis was performed. Univariate analysis showed that male sex, high educational status, high income, alcohol consumption, smoking, hypertension, coronary heart disease, obstructive sleep apnea, autoimmune disorders, H. pylori infection, type A personality and stress, steroid use, pregnancy and hyperopia were associated with CSR, while myopia was found to protect from CSR. In multivariate analysis, alcohol consumption, hypertension, coronary heart disease and autoimmune disorders lost their significance, while the remaining factors were all independently associated with CSR. It is important to take into account the various risk factors for CSR, so as to define vulnerable groups and to shed light into the pathogenesis of the disease.
Use of video eyeglasses to decrease anxiety among children undergoing genital examinations.
Berenson, A B; Wiemann, C M; Rickert, V I
1998-06-01
Our purpose was to compare three techniques in their ability to decrease anxiety induced by the pelvic examination among children of different races. Eighty-nine subjects between 3 and 8 years old of white, African-American, and Hispanic race or ethnicity were randomly assigned to one of three distraction techniques that was used during the genital examination: passive play (being read to), active play (singing, blowing bubbles), or viewing a movie through video eyeglasses. Levels of vocalized distress, as well as distress expressed by physical behavior and emotional support requested, were directly observed and recorded. Children also reported their level of satisfaction at the end of the examination. Multivariate analysis of covariance was used to evaluate the independent effects of each technique and race while we controlled for confounding variables. Levels of physical distress were lowest among children who used video glasses and highest among those randomly assigned to passive play (p = 0.02). Children randomized to video glasses also expressed higher levels of satisfaction than those randomized to active (p = 0.001) or passive (p = 0.05) play. No differences associated with race or ethnicity were detected. This study demonstrates that video glasses are more effective than active or passive play in reducing anxiety and improving satisfaction levels among children undergoing a genital examination.
Gad, Haidy A; El-Ahmady, Sherweit H; Abou-Shoer, Mohamed I; Al-Azizi, Mohamed M
2013-01-01
Recently, the fields of chemometrics and multivariate analysis have been widely implemented in the quality control of herbal drugs to produce precise results, which is crucial in the field of medicine. Thyme represents an essential medicinal herb that is constantly adulterated due to its resemblance to many other plants with similar organoleptic properties. To establish a simple model for the quality assessment of Thymus species using UV spectroscopy together with known chemometric techniques. The success of this model may also serve as a technique for the quality control of other herbal drugs. The model was constructed using 30 samples of authenticated Thymus vulgaris and challenged with 20 samples of different botanical origins. The methanolic extracts of all samples were assessed using UV spectroscopy together with chemometric techniques: principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and hierarchical cluster analysis (HCA). The model was able to discriminate T. vulgaris from other Thymus, Satureja, Origanum, Plectranthus and Eriocephalus species, all traded in the Egyptian market as different types of thyme. The model was also able to classify closely related species in clusters using PCA and HCA. The model was finally used to classify 12 commercial thyme varieties into clusters of species incorporated in the model as thyme or non-thyme. The model constructed is highly recommended as a simple and efficient method for distinguishing T. vulgaris from other related species as well as the classification of marketed herbs as thyme or non-thyme. Copyright © 2013 John Wiley & Sons, Ltd.
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions
Li, Haoran; Xiong, Li; Jiang, Xiaoqian
2014-01-01
Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. In this paper, we propose DPCopula, a differentially private data synthesization technique using Copula functions for multi-dimensional data. The core of our method is to compute a differentially private copula function from which we can sample synthetic data. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. We present two methods for estimating the parameters of the copula functions with differential privacy: maximum likelihood estimation and Kendall’s τ estimation. We present formal proofs for the privacy guarantee as well as the convergence property of our methods. Extensive experiments using both real datasets and synthetic datasets demonstrate that DPCopula generates highly accurate synthetic multi-dimensional data with significantly better utility than state-of-the-art techniques. PMID:25405241
A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Mitra, Ankan
2018-05-01
Recent advancements in textile industry have given rise to several spinning techniques, such as ring spinning, rotor spinning etc., which can be used to produce a wide variety of textile apparels so as to fulfil the end requirements of the customers. To achieve the best out of these processes, they should be utilized at their optimal parametric settings. However, in presence of multiple yarn characteristics which are often conflicting in nature, it becomes a challenging task for the spinning industry personnel to identify the best parametric mix which would simultaneously optimize all the responses. Hence, in this paper, the applicability of a new systematic approach in the form of multivariate quality loss function technique is explored for optimizing multiple quality characteristics of yarns while identifying the ideal settings of two spinning processes. It is observed that this approach performs well against the other multi-objective optimization techniques, such as desirability function, distance function and mean squared error methods. With slight modifications in the upper and lower specification limits of the considered quality characteristics, and constraints of the non-linear optimization problem, it can be successfully applied to other processes in textile industry to determine their optimal parametric settings.
NASA Technical Reports Server (NTRS)
Smith, O. E.
1976-01-01
The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.
NASA Astrophysics Data System (ADS)
Roy, P. K.; Pal, S.; Banerjee, G.; Biswas Roy, M.; Ray, D.; Majumder, A.
2014-12-01
River is considered as one of the main sources of freshwater all over the world. Hence analysis and maintenance of this water resource is globally considered a matter of major concern. This paper deals with the assessment of surface water quality of the Ichamati river using multivariate statistical techniques. Eight distinct surface water quality observation stations were located and samples were collected. For the samples collected statistical techniques were applied to the physico-chemical parameters and depth of siltation. In this paper cluster analysis is done to determine the relations between surface water quality and siltation depth of river Ichamati. Multiple regressions and mathematical equation modeling have been done to characterize surface water quality of Ichamati river on the basis of physico-chemical parameters. It was found that surface water quality of the downstream river was different from the water quality of the upstream. The analysis of the water quality parameters of the Ichamati river clearly indicate high pollution load on the river water which can be accounted to agricultural discharge, tidal effect and soil erosion. The results further reveal that with the increase in depth of siltation, water quality degraded.
FREQ: A computational package for multivariable system loop-shaping procedures
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Armstrong, Ernest S.
1989-01-01
Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.
An error bound for a discrete reduced order model of a linear multivariable system
NASA Technical Reports Server (NTRS)
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
Modelling Truck Camper Production
ERIC Educational Resources Information Center
Kramlich, G. R., II; Kobylski, G.; Ahner, D.
2008-01-01
This note describes an interdisciplinary project designed to enhance students' knowledge of the basic techniques taught in a multivariable calculus course. The note discusses the four main requirements of the project and then the solutions for each requirement. Concepts covered include differentials, gradients, Lagrange multipliers, constrained…
Designing Interactive Online Nursing Courses
ERIC Educational Resources Information Center
Jain, Smita; Jain, Pawan
2015-01-01
This study empirically tests the relation between the instructional design elements and the overall meaningful interactions among online students. Eighteen online graduate nursing courses are analyzed using bivariate and multivariate analysis techniques. Findings suggest that the quantity of meaningful interaction among learners can be improved by…
Cohen, Mitchell J; Grossman, Adam D; Morabito, Diane; Knudson, M Margaret; Butte, Atul J; Manley, Geoffrey T
2010-01-01
Advances in technology have made extensive monitoring of patient physiology the standard of care in intensive care units (ICUs). While many systems exist to compile these data, there has been no systematic multivariate analysis and categorization across patient physiological data. The sheer volume and complexity of these data make pattern recognition or identification of patient state difficult. Hierarchical cluster analysis allows visualization of high dimensional data and enables pattern recognition and identification of physiologic patient states. We hypothesized that processing of multivariate data using hierarchical clustering techniques would allow identification of otherwise hidden patient physiologic patterns that would be predictive of outcome. Multivariate physiologic and ventilator data were collected continuously using a multimodal bioinformatics system in the surgical ICU at San Francisco General Hospital. These data were incorporated with non-continuous data and stored on a server in the ICU. A hierarchical clustering algorithm grouped each minute of data into 1 of 10 clusters. Clusters were correlated with outcome measures including incidence of infection, multiple organ failure (MOF), and mortality. We identified 10 clusters, which we defined as distinct patient states. While patients transitioned between states, they spent significant amounts of time in each. Clusters were enriched for our outcome measures: 2 of the 10 states were enriched for infection, 6 of 10 were enriched for MOF, and 3 of 10 were enriched for death. Further analysis of correlations between pairs of variables within each cluster reveals significant differences in physiology between clusters. Here we show for the first time the feasibility of clustering physiological measurements to identify clinically relevant patient states after trauma. These results demonstrate that hierarchical clustering techniques can be useful for visualizing complex multivariate data and may provide new insights for the care of critically injured patients.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1986-01-01
A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.
Measures of precision for dissimilarity-based multivariate analysis of ecological communities
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. PMID:25438826
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza
2014-10-01
The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the multivariate adaptive regression splines (MARS) technique, conclusions of this research work are exposed.
Nnane, Daniel Ekane
2011-11-15
Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment. Copyright © 2011 Elsevier B.V. All rights reserved.
OGLE II Eclipsing Binaries In The LMC: Analysis With Class
NASA Astrophysics Data System (ADS)
Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.
2011-01-01
The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.
Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep
2015-05-01
The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.
Prabitha, Vasumathi Gopala; Suchetha, Sambasivan; Jayanthi, Jayaraj Lalitha; Baiju, Kamalasanan Vijayakumary; Rema, Prabhakaran; Anuraj, Koyippurath; Mathews, Anita; Sebastian, Paul; Subhash, Narayanan
2016-01-01
Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.
Propulsion Controls, 1979. [air breathing engine control
NASA Technical Reports Server (NTRS)
1980-01-01
The state of the art of multivariable engine control is examined in order to determine future needs and problem areas and to establish the appropriate roles of government, industries, and universities in addressing these problems.
Tran, Alexandre; Matar, Maher; Steyerberg, Ewout W; Lampron, Jacinthe; Taljaard, Monica; Vaillancourt, Christian
2017-04-13
Hemorrhage is a major cause of early mortality following a traumatic injury. The progression and consequences of significant blood loss occur quickly as death from hemorrhagic shock or exsanguination often occurs within the first few hours. The mainstay of treatment therefore involves early identification of patients at risk for hemorrhagic shock in order to provide blood products and control of the bleeding source if necessary. The intended scope of this review is to identify and assess combinations of predictors informing therapeutic decision-making for clinicians during the initial trauma assessment. The primary objective of this systematic review is to identify and critically assess any existing multivariable models predicting significant traumatic hemorrhage that requires intervention, defined as a composite outcome comprising massive transfusion, surgery for hemostasis, or angiography with embolization for the purpose of external validation or updating in other study populations. If no suitable existing multivariable models are identified, the secondary objective is to identify candidate predictors to inform the development of a new prediction rule. We will search the EMBASE and MEDLINE databases for all randomized controlled trials and prospective and retrospective cohort studies developing or validating predictors of intervention for traumatic hemorrhage in adult patients 16 years of age or older. Eligible predictors must be available to the clinician during the first hour of trauma resuscitation and may be clinical, lab-based, or imaging-based. Outcomes of interest include the need for surgical intervention, angiographic embolization, or massive transfusion within the first 24 h. Data extraction will be performed independently by two reviewers. Items for extraction will be based on the CHARMS checklist. We will evaluate any existing models for relevance, quality, and the potential for external validation and updating in other populations. Relevance will be described in terms of appropriateness of outcomes and predictors. Quality criteria will include variable selection strategies, adequacy of sample size, handling of missing data, validation techniques, and measures of model performance. This systematic review will describe the availability of multivariable prediction models and summarize evidence regarding predictors that can be used to identify the need for intervention in patients with traumatic hemorrhage. PROSPERO CRD42017054589.
2004-10-01
chloroform-soaked swab prior to making electrical contact with directly related to the oxidation and reduction potential of the an alligator clip. In...other cases, no cleaning protocol was used emitting layers.’.’ Wrighton et al. examined the cyclic and a direct connection via an alligator clip was...applied to optical spectra of complex mix- samples requires techniques of simple multivariate patterntame (gasoline, blood , environmental samples
Optimization techniques for integrating spatial data
Herzfeld, U.C.; Merriam, D.F.
1995-01-01
Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.
Clinical validation of robot simulation of toothbrushing - comparative plaque removal efficacy
2014-01-01
Background Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Methods Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33–47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33–47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. Results The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. Conclusions The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing. This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning. PMID:24996973
Clinical validation of robot simulation of toothbrushing--comparative plaque removal efficacy.
Lang, Tomas; Staufer, Sebastian; Jennes, Barbara; Gaengler, Peter
2014-07-04
Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33-47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33-47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing.This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning.
An operator calculus for surface and volume modeling
NASA Technical Reports Server (NTRS)
Gordon, W. J.
1984-01-01
The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.
Applications of Infrared and Raman Spectroscopies to Probiotic Investigation
Santos, Mauricio I.; Gerbino, Esteban; Tymczyszyn, Elizabeth; Gomez-Zavaglia, Andrea
2015-01-01
In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented. PMID:28231205
Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup
2010-10-01
We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.
Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei
2010-09-01
Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.
Chronic hypertension and the risk for adverse pregnancy outcome after superimposed pre-eclampsia.
Vanek, M; Sheiner, E; Levy, A; Mazor, M
2004-07-01
To determine the risk factors and pregnancy outcome of patients with chronic hypertension during pregnancy after controlling for superimposed preeclampsia. A comparison of all singleton term (>36 weeks) deliveries occurring between 1988 and 1999, with and without chronic hypertension, was performed. Stratified analyses, using the Mantel-Haenszel technique, and a multiple logistic regression model were performed to control for confounders. Chronic hypertension complicated 1.6% (n=1807) of all deliveries included in the study (n=113156). Using a multivariable analysis, the following factors were found to be independently associated with chronic hypertension: maternal age >40 years (OR=3.1; 95% CI 2.7-3.6), diabetes mellitus (OR=3.6; 95% CI 3.3-4.1), recurrent abortions (OR=1.5; 95% CI 1.3-1.8), infertility treatment (OR=2.9; 95% CI 2.3-3.7), and previous cesarean delivery (CD; OR=1.8 CI 1.6-2.0). After adjustment for superimposed preeclampsia, using the Mantel-Haenszel technique, pregnancies complicated with chronic hypertension had higher rates of CD (OR=2.7; 95% CI 2.4-3.0), intra uterine growth restriction (OR=1.7; 95% CI 1.3-2.2), perinatal mortality (OR=1.6; 95% CI 1.01-2.6) and post-partum hemorrhage (OR=2.2; 95% CI 1.4-3.7). Chronic hypertension is associated with adverse pregnancy outcome, regardless of superimposed preeclampsia.
Heuristics to Facilitate Understanding of Discriminant Analysis.
ERIC Educational Resources Information Center
Van Epps, Pamela D.
This paper discusses the principles underlying discriminant analysis and constructs a simulated data set to illustrate its methods. Discriminant analysis is a multivariate technique for identifying the best combination of variables to maximally discriminate between groups. Discriminant functions are established on existing groups and used to…
A Forward Glimpse into Inverse Problems through a Geology Example
ERIC Educational Resources Information Center
Winkel, Brian J.
2012-01-01
This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)
Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw
2006-01-01
We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.
Multivariable feedback design - Concepts for a classical/modern synthesis
NASA Technical Reports Server (NTRS)
Doyle, J. C.; Stein, G.
1981-01-01
This paper presents a practical design perspective on multivariable feedback control problems. It reviews the basic issue - feedback design in the face of uncertainties - and generalizes known single-input, single-output (SISO) statements and constraints of the design problem to multiinput, multioutput (MIMO) cases. Two major MIMO design approaches are then evaluated in the context of these results.
ERIC Educational Resources Information Center
Grasman, Raoul P. P. P.; Huizenga, Hilde M.; Geurts, Hilde M.
2010-01-01
Crawford and Howell (1998) have pointed out that the common practice of z-score inference on cognitive disability is inappropriate if a patient's performance on a task is compared with relatively few typical control individuals. Appropriate univariate and multivariate statistical tests have been proposed for these studies, but these are only valid…
Response Surface Modeling Using Multivariate Orthogonal Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2001-01-01
A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.
Evaluation of drinking quality of groundwater through multivariate techniques in urban area.
Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D
2010-07-01
Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.
Usage of multivariate geostatistics in interpolation processes for meteorological precipitation maps
NASA Astrophysics Data System (ADS)
Gundogdu, Ismail Bulent
2017-01-01
Long-term meteorological data are very important both for the evaluation of meteorological events and for the analysis of their effects on the environment. Prediction maps which are constructed by different interpolation techniques often provide explanatory information. Conventional techniques, such as surface spline fitting, global and local polynomial models, and inverse distance weighting may not be adequate. Multivariate geostatistical methods can be more significant, especially when studying secondary variables, because secondary variables might directly affect the precision of prediction. In this study, the mean annual and mean monthly precipitations from 1984 to 2014 for 268 meteorological stations in Turkey have been used to construct country-wide maps. Besides linear regression, the inverse square distance and ordinary co-Kriging (OCK) have been used and compared to each other. Also elevation, slope, and aspect data for each station have been taken into account as secondary variables, whose use has reduced errors by up to a factor of three. OCK gave the smallest errors (1.002 cm) when aspect was included.
Boosting Higgs pair production in the [Formula: see text] final state with multivariate techniques.
Behr, J Katharina; Bortoletto, Daniela; Frost, James A; Hartland, Nathan P; Issever, Cigdem; Rojo, Juan
2016-01-01
The measurement of Higgs pair production will be a cornerstone of the LHC program in the coming years. Double Higgs production provides a crucial window upon the mechanism of electroweak symmetry breaking and has a unique sensitivity to the Higgs trilinear coupling. We study the feasibility of a measurement of Higgs pair production in the [Formula: see text] final state at the LHC. Our analysis is based on a combination of traditional cut-based methods with state-of-the-art multivariate techniques. We account for all relevant backgrounds, including the contributions from light and charm jet mis-identification, which are ultimately comparable in size to the irreducible 4 b QCD background. We demonstrate the robustness of our analysis strategy in a high pileup environment. For an integrated luminosity of [Formula: see text] ab[Formula: see text], a signal significance of [Formula: see text] is obtained, indicating that the [Formula: see text] final state alone could allow for the observation of double Higgs production at the High Luminosity LHC.
Hernandez, Wilmar
2005-01-01
In the present paper, in order to estimate the response of both a wheel speed sensor and an accelerometer placed in a car under performance tests, robust and optimal multivariable estimation techniques are used. In this case, the disturbances and noises corrupting the relevant information coming from the sensors' outputs are so dangerous that their negative influence on the electrical systems impoverish the general performance of the car. In short, the solution to this problem is a safety related problem that deserves our full attention. Therefore, in order to diminish the negative effects of the disturbances and noises on the car's electrical and electromechanical systems, an optimum observer is used. The experimental results show a satisfactory improvement in the signal-to-noise ratio of the relevant signals and demonstrate the importance of the fusion of several intelligent sensor design techniques when designing the intelligent sensors that today's cars need.
Study of archaeological coins of different dynasties using libs coupled with multivariate analysis
NASA Astrophysics Data System (ADS)
Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.
NASA Technical Reports Server (NTRS)
Sankaran, V.
1974-01-01
An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.
Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data
Batal, Iyad; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos
2015-01-01
Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes. PMID:25937993
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2014-01-01
This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Mirosław
2015-09-01
The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.
Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei
2016-01-05
An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Epidemiologic methods in clinical trials.
Rothman, K J
1977-04-01
Epidemiologic methods developed to control confounding in non-experimental studies are equally applicable for experiments. In experiments, most confounding is usually controlled by random allocation of subjects to treatment groups, but randomization does not preclude confounding except for extremely large studies, the degree of confounding expected being inversely related to the size of the treatment groups. In experiments, as in non-experimental studies, the extent of confounding for each risk indicator should be assessed, and if sufficiently large, controlled. Confounding is properly assessed by comparing the unconfounded effect estimate to the crude effect estimate; a common error is to assess confounding by statistical tests of significance. Assessment of confounding involves its control as a prerequisite. Control is most readily and cogently achieved by stratification of the data, though with many factors to control simultaneously, multivariate analysis or a combination of multivariate analysis and stratification might be necessary.
Yam, Eileen A; Okal, Jerry; Musyoki, Helgar; Muraguri, Nicholas; Tun, Waimar; Sheehy, Meredith; Geibel, Scott
2016-03-01
To examine whether nonbarrier modern contraceptive use is associated with less consistent condom use among Kenyan female sex workers (FSWs). Researchers recruited 579 FSWs using respondent-driven sampling. We conducted multivariate logistic regression to examine the association between consistent condom use and female-controlled nonbarrier modern contraceptive use. A total of 98.8% reported using male condoms in the past month, and 64.6% reported using female-controlled nonbarrier modern contraception. In multivariate analysis, female-controlled nonbarrier modern contraceptive use was not associated with decreased condom use with clients or nonpaying partners. Consistency of condom use is not compromised when FSWs use available female-controlled nonbarrier modern contraception. FSWs should be encouraged to use condoms consistently, whether or not other methods are used simultaneously. Copyright © 2016 Elsevier Inc. All rights reserved.
Business strategy and financial structure: an empirical analysis of acute care hospitals.
Ginn, G O; Young, G J; Beekun, R I
1995-01-01
This study investigated the relationship between business strategy and financial structure in the U.S. hospital industry. We studied two dimensions of financial structure--liquidity and leverage. Liquidity was assessed by the acid ratio, and leverage was assessed using the equity funding ratio. Drawing from managerial, finance, and resource dependence perspectives, we developed and tested hypotheses about the relationship between Miles and Snow strategy types and financial structure. Relevant contextual financial and organizational variables were controlled for statistically through the Multivariate Analysis of Covariance technique. The relationship between business strategy and financial structure was found to be significant. Among the Miles and Snow strategy types, defenders were found to have relatively high liquidity and low leverage. Prospectors typically had low liquidity and high leverage. Implications for financial planning, competitive assessment, and reimbursement policy are discussed.
Real time closed loop control of an Ar and Ar/O2 plasma in an ICP
NASA Astrophysics Data System (ADS)
Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.
2006-10-01
Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.
Abuse of Amphetamines and Structural Abnormalities in Brain
Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.
2009-01-01
We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shady, Waleed; Petre, Elena N.; Gonen, Mithat; Erinjeri, Joseph P.; Brown, Karen T.; Covey, Anne M.; Alago, William; Durack, Jeremy C.; Maybody, Majid; Brody, Lynn A.; Siegelbaum, Robert H.; D’Angelica, Michael I.; Jarnagin, William R.; Solomon, Stephen B.; Kemeny, Nancy E.
2016-01-01
Purpose To identify predictors of oncologic outcomes after percutaneous radiofrequency ablation (RFA) of colorectal cancer liver metastases (CLMs) and to describe and evaluate a modified clinical risk score (CRS) adapted for ablation as a patient stratification and prognostic tool. Materials and Methods This study consisted of a HIPAA-compliant institutional review board–approved retrospective review of data in 162 patients with 233 CLMs treated with percutaneous RFA between December 2002 and December 2012. Contrast material–enhanced CT was used to assess technique effectiveness 4–8 weeks after RFA. Patients were followed up with contrast-enhanced CT every 2–4 months. Overall survival (OS) and local tumor progression–free survival (LTPFS) were calculated from the time of RFA by using the Kaplan-Meier method. Log-rank tests and Cox regression models were used for univariate and multivariate analysis to identify predictors of outcomes. Results Technique effectiveness was 94% (218 of 233). Median LTPFS was 26 months. At univariate analysis, predictors of shorter LTPFS were tumor size greater than 3 cm (P < .001), ablation margin size of 5 mm or less (P < .001), high modified CRS (P = .009), male sex (P = .03), and no history of prior hepatectomy (P = .04) or hepatic arterial infusion chemotherapy (P = .01). At multivariate analysis, only tumor size greater than 3 cm (P = .01) and margin size of 5 mm or less (P < .001) were independent predictors of shorter LTPFS. Median and 5-year OS were 36 months and 31%. At univariate analysis, predictors of shorter OS were tumor size larger than 3 cm (P = .005), carcinoembryonic antigen level greater than 30 ng/mL (P = .003), high modified CRS (P = .02), and extrahepatic disease (EHD) (P < .001). At multivariate analysis, tumor size greater than 3 cm (P = .006) and more than one site of EHD (P < .001) were independent predictors of shorter OS. Conclusion Tumor size of less than 3 cm and ablation margins greater than 5 mm are essential for satisfactory local tumor control. Tumor size of more than 3 cm and the presence of more than one site of EHD are associated with shorter OS. © RSNA, 2015 PMID:26267832
NASA Astrophysics Data System (ADS)
Cannon, Alex J.
2018-01-01
Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
Fixed order dynamic compensation for multivariable linear systems
NASA Technical Reports Server (NTRS)
Kramer, F. S.; Calise, A. J.
1986-01-01
This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.
Performance and stability of telemanipulators using bilateral impedance control. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Moore, Christopher Lane
1991-01-01
A new method of control for telemanipulators called bilateral impedance control is investigated. This new method differs from previous approaches in that interaction forces are used as the communication signals between the master and slave robots. The new control architecture has several advantages: (1) It allows the master robot and the slave robot to be stabilized independently without becoming involved in the overall system dynamics; (2) It permits the system designers to arbitrarily specify desired performance characteristics such as the force and position ratios between the master and slave; (3) The impedance at both ends of the telerobotic system can be modulated to suit the requirements of the task. The main goals of the research are to characterize the performance and stability of the new control architecture. The dynamics of the telerobotic system are described by a bond graph model that illustrates how energy is transformed, stored, and dissipated. Performance can be completely described by a set of three independent parameters. These parameters are fundamentally related to the structure of the H matrix that regulates the communication of force signals within the system. Stability is analyzed with two mathematical techniques: the Small Gain Theorem and the Multivariable Nyquist Criterion. The theoretical predictions for performance and stability are experimentally verified by implementing the new control architecture on a multidegree of freedom telemanipulator.
Pogorzelska, Monika; Stone, Patricia W; Larson, Elaine L
2012-10-01
We performed a survey of National Healthcare Safety Network hospitals in 2008 to describe adoption of screening and infection control policies aimed at multidrug-resistant organisms (MDRO) in intensive care units (ICUs) and identify predictors of their presence, monitoring, and implementation. Four hundred forty-one infection control directors were surveyed using a modified Dillman technique. To explore differences in screening and infection control policies by setting characteristics, bivariate and multivariable logistic regression models were constructed. In total, 250 hospitals participated (57% response rate). Study ICUs (n = 413) routinely screened for methicillin-resistant Staphylococcus aureus (59%); vancomycin-resistant Enterococcus (22%); multidrug-resistant, gram-negative rods (12%); and Clostridium difficile (11%). Directors reported ICU policies to screen all admissions for any MDRO (40%), screen periodically (27%), utilize presumptive isolation/contact precautions pending a screen (31%), and cohort colonized patients (42%). Several independent predictors of the presence and implementation of different interventions including mandatory reporting and teaching status were identified. This study found wide variation in adoption of MDRO screening and infection control interventions, which may reflect differences in published recommendations or their interpretation. Further research is needed to provide additional insight on effective strategies and how best to promote compliance. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Materials surface contamination analysis
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Arendale, William F.
1992-01-01
The original research objective was to demonstrate the ability of optical fiber spectrometry to determine contamination levels on solid rocket motor cases in order to identify surface conditions which may result in poor bonds during production. The capability of using the spectral features to identify contaminants with other sensors which might only indicate a potential contamination level provides a real enhancement to current inspection systems such as Optical Stimulated Electron Emission (OSEE). The optical fiber probe can easily fit into the same scanning fixtures as the OSEE. The initial data obtained using the Guided Wave Model 260 spectrophotometer was primarily focused on determining spectra of potential contaminants such as HD2 grease, silicones, etc. However, once we began taking data and applying multivariate analysis techniques, using a program that can handle very large data sets, i.e., Unscrambler 2, it became apparent that the techniques also might provide a nice scientific tool for determining oxidation and chemisorption rates under controlled conditions. As the ultimate power of the technique became recognized, considering that the chemical system which was most frequently studied in this work is water + D6AC steel, we became very interested in trying the spectroscopic techniques to solve a broad range of problems. The complexity of the observed spectra for the D6AC + water system is due to overlaps between the water peaks, the resulting chemisorbed species, and products of reaction which also contain OH stretching bands. Unscrambling these spectral features, without knowledge of the specific species involved, has proven to be a formidable task.
NASA Astrophysics Data System (ADS)
Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.
2014-12-01
Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.
Skoulikidis, N Th; Amaxidis, Y; Bertahas, I; Laschou, S; Gritzalis, K
2006-06-01
Twenty-nine small- and mid-sized permanent rivers (thirty-six sites) scattered throughout Greece and equally distributed within three geo-chemical-climatic zones, have been investigated in a seasonal base. Hydrochemical types have been determined and spatio-temporal variations have been interpreted in relation to environmental characteristics and anthropogenic pressures. Multivariate statistical techniques have been used to identify the factors and processes affecting hydrochemical variability and the driving forces that control aquatic composition. It has been shown that spatial variation of aquatic quality is mainly governed by geological and hydrogeological factors. Due to geological and climatic variability, the three zones have different hydrochemical characteristics. Temporal hydrological variations in combination with hydrogeological factors control seasonal hydrochemical trends. Respiration processes due to municipal wastewaters, dominate in summer, and enhance nutrient, chloride and sodium concentrations, while nitrate originates primarily from agriculture. Photosynthetic processes dominate in spring. Carbonate chemistry is controlled by hydrogeological factors and biological activity. A possible enrichment of surface waters with nutrients in "pristine" forested catchments is attributed to soil leaching and mineralisation processes. Two management tools have been developed: a nutrient classification system and a rapid prediction of aquatic composition tool.
Bertollo, Maurizio; Bortoli, Laura; Gramaccioni, Gianfranco; Hanin, Yuri; Comani, Silvia; Robazza, Claudio
2013-06-01
The main purposes of the present study were to substantiate the existence of the four types of performance categories (i.e., optimal-automatic, optimal-controlled, suboptimal-controlled, and suboptimal-automatic) as hypothesised in the multi-action plan (MAP) model, and to investigate whether some specific affective, behavioural, psychophysiological, and postural trends may typify each type of performance. A 20-year-old athlete of the Italian shooting team, and a 46-year-old athlete of the Italian dart-throwing team participated in the study. Athletes were asked to identify the core components of the action and then to execute a large number of shots/flights. A 2 × 2 (optimal/suboptimal × automated/controlled) within subjects multivariate analysis of variance was performed to test the differences among the four types of performance. Findings provided preliminary evidence of psychophysiological and postural differences among four performance categories as conceptualized within the MAP model. Monitoring the entire spectrum of psychophysiological and behavioural features related to the different types of performance is important to develop and implement biofeedback and neurofeedback techniques aimed at helping athletes to identify individual zones of optimal functioning and to enhance their performance.
NASA Technical Reports Server (NTRS)
Prakash, OM, II
1991-01-01
Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.
NASA Technical Reports Server (NTRS)
Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.
1973-01-01
The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.
Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F
2011-06-01
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
Avalappampatty Sivasamy, Aneetha; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668
Sivasamy, Aneetha Avalappampatty; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.
Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario
2018-04-15
Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Nadeau-Fredette, Annie-Claire; Hawley, Carmel M.; Pascoe, Elaine M.; Chan, Christopher T.; Clayton, Philip A.; Polkinghorne, Kevan R.; Boudville, Neil; Leblanc, Martine
2015-01-01
Background and objectives Home dialysis is often recognized as a first-choice therapy for patients initiating dialysis. However, studies comparing clinical outcomes between peritoneal dialysis and home hemodialysis have been very limited. Design, setting, participants, & measurements This Australia and New Zealand Dialysis and Transplantation Registry study assessed all Australian and New Zealand adult patients receiving home dialysis on day 90 after initiation of RRT between 2000 and 2012. The primary outcome was overall survival. The secondary outcomes were on-treatment survival, patient and technique survival, and death-censored technique survival. All results were adjusted with three prespecified models: multivariable Cox proportional hazards model (main model), propensity score quintile–stratified model, and propensity score–matched model. Results The study included 10,710 patients on incident peritoneal dialysis and 706 patients on incident home hemodialysis. Treatment with home hemodialysis was associated with better patient survival than treatment with peritoneal dialysis (5-year survival: 85% versus 44%, respectively; log-rank P<0.001). Using multivariable Cox proportional hazards analysis, home hemodialysis was associated with superior patient survival (hazard ratio for overall death, 0.47; 95% confidence interval, 0.38 to 0.59) as well as better on-treatment survival (hazard ratio for on-treatment death, 0.34; 95% confidence interval, 0.26 to 0.45), composite patient and technique survival (hazard ratio for death or technique failure, 0.34; 95% confidence interval, 0.29 to 0.40), and death-censored technique survival (hazard ratio for technique failure, 0.34; 95% confidence interval, 0.28 to 0.41). Similar results were obtained with the propensity score models as well as sensitivity analyses using competing risks models and different definitions for technique failure and lag period after modality switch, during which events were attributed to the initial modality. Conclusions Home hemodialysis was associated with superior patient and technique survival compared with peritoneal dialysis. PMID:26068181
Primack, Brian A.; Silk, Jennifer S.; DeLozier, Christian R; Shadel, William G.; Dillman Carpentier, Francesca R.; Dahl, Ronald E.; Switzer, Galen E.
2011-01-01
Objective To use ecological momentary assessment techniques to measure the association of major depressive disorder (MDD) with media use. Design Data were collected using an ecological momentary assessment protocol with cellular telephone–based brief interviews. Setting Participants received as many as 60 telephone calls from a trained staff member during 5 extended week-ends in an 8-week period. Participants One hundred six adolescent participants who were part of a larger neurobehavioral study of depression in Pittsburgh from January 1, 2003, through December 31, 2008. Main Exposure At each call, participants were asked whether they were using the following 5 types of media: television or movies, music, video games, Internet, and print media, such as magazines, newspapers, and books. Main Outcome Measures We developed multivariable models to determine the independent association of each type of media use with MDD, controlling for socio-demographic variables. Results Of the 106 participants, 46 were diagnosed as having MDD. In multivariable models controlling for age, sex, and race, each increasing quartile of audio use was associated with an 80% increase in the odds of having MDD (odds ratio, 1.8; 95% confidence interval, 1.1–2.8; P = .01 for trend). Conversely, each increasing quartile of print media use was associated with a 48% decrease in the odds of having MDD (odds ratio, 0.5; 95% confidence interval, 0.3–0.9; P = .009 for trend). Conclusions Major depressive disorder is positively associated with popular music exposure and negatively associated with reading print media such as books. Further research elucidating the directionality and strength of these relationships may help advance understanding of the relationships between media use and MDD. PMID:21464384
Song, Shuang; Cheong, Ling-Zhi; Man, Qing-Qing; Pang, Shao-Jie; Li, Yue-Qi; Ren, Biao; Zhang, Jian
2018-05-01
Early diagnosis of neural changes causing cognitive impairment is critical for development of preventive therapies for dementia. Biomarkers currently characterized cannot be extensively applied due to the invasive sampling of cerebrospinal fluid. The other imaging approaches are either expensive or require a high technique. Phospholipids (PLs), which are basic constituents of neurons, might be a key variable in the pathogenesis of cognitive impairment. Changes in plasma PL provide the possibility for development of novel biomarkers with minimal invasion and high patient acceptance. In this work, a HILIC-ESI-IT-TOF-MS system was introduced for untargeted profiling of plasma PLs to investigate the relationship between changes of plasma PL profiles and cognitive impairment. A total of 272 types of PL molecular structures were characterized in human plasma and quantified through the internal standard method. Univariate analysis shows 29 PLs were significantly different between the control (n = 41) and the cognitive impairment (CI) group (n = 41). Multivariate analysis (PCA and OPLS-DA) was conducted based on these 29 potential PL biomarkers. Both univariate and multivariate analyses show abnormality of PL metabolism in the CI group, and the downregulation of ethanolamine plasmalogen (pPE) supply, especially those with PUFAs, in the circulation system should be strongly associated with neurodegeneration. A discriminative model was established with satisfied fit (R2) and prediction (Q2) abilities, and the classification test showed better recognition of the CI group than the control group indicating that this model of PL biomarkers could be used as indicators for screening of CI. Graphical abstract Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids.
NASA Astrophysics Data System (ADS)
Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping
Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.
Does midwife experience affect the rate of severe perineal tears?
Mizrachi, Yossi; Leytes, Sophia; Levy, Michal; Hiaev, Zvia; Ginath, Shimon; Bar, Jacob; Kovo, Michal
2017-06-01
Our aim was to study whether midwife experience affects the rate of severe perineal tears (3rd and 4th degree). A retrospective cohort study of all women with term vertex singleton pregnancies, who underwent normal vaginal deliveries, in a single tertiary hospital, between 2011 and 2015, was performed. Exclusion criteria were instrumental deliveries and stillbirth. All midwives used a "hands on" technique for protecting the perineum. The midwife experience at each delivery was calculated as the time interval between her first delivery and current delivery. A comparison was performed between deliveries in which midwife experience was less than 2 years (inexperienced), between 2 and 10 years (moderately experienced), and more than 10 years (highly experienced). A multivariate regression analysis was performed to assess the association between midwife experience and the incidence of severe perineal tears, after controlling for confounders. Overall, 15 146 deliveries were included. Severe perineal tears were diagnosed in 51 (0.33%) deliveries. Women delivered by inexperienced midwives had a higher rate of severe perineal tears compared with women delivered by highly experienced midwives (0.5% vs 0.2%, respectively, P=.024). On multivariate regression analysis, midwife experience was independently associated with a lower rate of severe perineal tears, after controlling for confounding factors. Each additional year of experience was associated with a 4.7% decrease in the risk of severe perineal tears (adjusted OR 0.95 [95% CI 0.91-0.99, P=.03). More experienced midwives had a lower rate of severe perineal tears, and may be preferred for managing deliveries of women at high risk for such tears. © 2017 Wiley Periodicals, Inc.
Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.
Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C
2008-12-24
The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, Te; Kopek, Neil; Ducruet, Thierry
2007-04-01
Purpose: To evaluate the clinical outcomes of three-dimensional conformal radiotherapy (3D-CRT) in patients with anal canal cancer, in terms of local control (LC), freedom from relapse (FFR), and overall survival (OS) rates, and to estimate long-term toxicity data. Methods and Materials: Sixty historical patients, treated with conventional radiation techniques (C-RT), were used as controls, and 62 consecutive patients were treated with 3D-CRT. Patients treated with 3D-CRT received 54 Gy in 30 fractions delivered continuously, compared with 45-58.9 Gy (median dose, 54 Gy) in a split course in patients treated with C-RT. Chemotherapy consisted of 5-fluorouracil with either mitomycin-C or cis-platinummore » given concurrently with radiation. Survival curves were performed using the Kaplan-Meier model, and the Cox proportional hazards model was used for multivariate analysis of risk factors. Results: No differences in stage and age distribution were observed between the two groups. Patients treated with 3D-CRT and C-RT had an actuarial 5-year LC rate of 85.1% and 61.1%, respectively (p = 0.0056); the FFR rate was 70.2% and 46.1% (p = 0.0166), and the OS rate was 80.7% and 53.9% (p = 0.0171). In multivariate analysis, factors of significance for LC were nodal (N) status (p < 0.001); for OS, 3D-CRT (p = 0.038), N status (p 0.011), and T status (p = 0.012); and for FFR, 3D-CRT (p = 0.024) and N status (p < 0.001). Conclusion: The use of 3D-CRT allows patients with anal canal cancer to complete radiation and chemotherapy without interruption for toxicity, with significant improvements in LC, FFR, and OS.« less
Technique and cue selection for graphical presentation of generic hyperdimensional data
NASA Astrophysics Data System (ADS)
Howard, Lee M.; Burton, Robert P.
2013-12-01
Several presentation techniques have been created for visualization of data with more than three variables. Packages have been written, each of which implements a subset of these techniques. However, these packages generally fail to provide all the features needed by the user during the visualization process. Further, packages generally limit support for presentation techniques to a few techniques. A new package called Petrichor accommodates all necessary and useful features together in one system. Any presentation technique may be added easily through an extensible plugin system. Features are supported by a user interface that allows easy interaction with data. Annotations allow users to mark up visualizations and share information with others. By providing a hyperdimensional graphics package that easily accommodates presentation techniques and includes a complete set of features, including those that are rarely or never supported elsewhere, the user is provided with a tool that facilitates improved interaction with multivariate data to extract and disseminate information.
2011-01-01
Background Polymorphisms in chemokine (C-C motif) receptors 2 and 5 genes (CCR2 and CCR5) have been associated with HIV-1 infection and disease progression. We investigated the impact of CCR2-CCR5 haplotypes on HIV-1 viral load (VL) and heterosexual transmission in an African cohort. Between 1995 and 2006, cohabiting Zambian couples discordant for HIV-1 (index seropositive and HIV-1 exposed seronegative {HESN}) were monitored prospectively to determine the role of host genetic factors in HIV-1 control and heterosexual transmission. Genotyping for eight CCR2 and CCR5 variants resolved nine previously recognized haplotypes. By regression and survival analytic techniques, controlling for non-genetic factors, we estimated the effects of these haplotypic variants on a) index partner VL, b) seroconverter VL, c) HIV-1 transmission by index partners, d) HIV-1 acquisition by HESN partners. Results Among 567 couples, 240 virologically linked transmission events had occurred through 2006. HHF*2 homozygosity was associated with significantly lower VL in seroconverters (mean beta = -0.58, log10 P = 0.027) and the HHD/HHE diplotype was associated with significantly higher VL in the seroconverters (mean beta = 0.54, log10 P = 0.014) adjusted for age and gender in multivariable model. HHD/HHE was associated with more rapid acquisition of infection by the HESNs (HR = 2.0, 95% CI = 1.20-3.43, P = 0.008), after adjustments for index partner VL and the presence of genital ulcer or inflammation in either partner in Cox multivariable models. The HHD/HHE effect was stronger in exposed females (HR = 2.1, 95% CI = 1.14-3.95, P = 0.018). Conclusions Among Zambian discordant couples, HIV-1 coreceptor gene haplotypes and diplotypes appear to modulate HIV-1 VL in seroconverters and alter the rate of HIV-1 acquisition by HESNs. These associations replicate or resemble findings reported in other African and European populations. PMID:21429204
Porta, Alberto; Faes, Luca; Bari, Vlasta; Marchi, Andrea; Bassani, Tito; Nollo, Giandomenico; Perseguini, Natália Maria; Milan, Juliana; Minatel, Vinícius; Borghi-Silva, Audrey; Takahashi, Anielle C. M.; Catai, Aparecida M.
2014-01-01
The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of respiratory sinus arrhythmia. PMID:24586796
Multiple-objective evaluation of wastewater treatment plant control alternatives.
Flores-Alsina, Xavier; Gallego, Alejandro; Feijoo, Gumersindo; Rodriguez-Roda, Ignasi
2010-05-01
Besides the evaluation of the environmental issues, the correct assessment of wastewater treatment plants (WWTP) should take into account several objectives such as: economic e.g. operation costs; technical e.g. risk of suffering microbiology-related TSS separation problems; or legal e.g. accomplishment with the effluent standards in terms of the different pollution loads. For this reason, the main objective of this paper is to show the benefits of complementing the environmental assessment carried out by life cycle assessment with economical, technical and legal criteria. Using a preliminary version of the BSM2 as a case study, different combinations of controllers are implemented, simulated and evaluated. In the following step, the resulting multi-criteria matrix is mined using multivariate statistical techniques. The results showed that the presence of an external carbon source addition, the type of aeration system and the TSS controller are the key elements creating the differences amongst the alternatives. Also, it was possible to characterize the different control strategies according to a set of aggregated criteria. Additionally, the existing synergies amongst different objectives and their consequent trade-offs were identified. Finally, it was discovered that from the initial extensive list of evaluation criteria, only a small set of five are really discriminant, being useful to differentiate within the generated alternatives. Copyright 2010 Elsevier Ltd. All rights reserved.
Metabolomic profile of systemic sclerosis patients.
Murgia, Federica; Svegliati, Silvia; Poddighe, Simone; Lussu, Milena; Manzin, Aldo; Spadoni, Tatiana; Fischetti, Colomba; Gabrielli, Armando; Atzori, Luigi
2018-05-16
Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterized by vascular lesions, immunological alterations and diffuse fibrosis of the skin and internal organs. Since recent evidence suggests that there is a link between metabolomics and immune mediated disease, serum metabolic profile of SSc patients and healthy controls was investigated by 1 H-NMR and GC-MS techniques. The results indicated a lower level of aspartate, alanine, choline, glutamate, and glutarate in SSc patients compared with healthy controls. Moreover, comparing patients affected by limited SSc (lcSSc) and diffuse SSc (dcSSc), 6 discriminant metabolites were identified. The multivariate analysis performed using all the metabolites significantly different revealed glycolysis, gluconeogenesis, energetic pathways, glutamate metabolism, degradation of ketone bodies and pyruvate metabolism as the most important networks. Aspartate, alanine and citrate yielded a high area under receiver-operating characteristic (ROC) curves (AUC of 0.81; CI 0.726-0.93) for discriminating SSc patients from controls, whereas ROC curve generated with acetate, fructose, glutamate, glutamine, glycerol and glutarate (AUC of 0.84; CI 0.7-0.98) discriminated between lcSSc and dcSSc. These results indicated that serum NMR-based metabolomics profiling method is sensitive and specific enough to distinguish SSc from healthy controls and provided a feasible diagnostic tool for the diagnosis and classification of the disease.
St-Louis, Etienne; Chabot, Annie; Stagg, Hayden; Baird, Robert
2018-05-01
Subcutaneous endoscopically-assisted ligation (SEAL) for pediatric inguinal hernia repair has gained in popularity although variations in techniques exist. Peritoneal scarring by thermal injury has been described as an adjunct. We explored the hypothesized inverse-correlation between peritoneal scarring and recurrence after SEAL. We conducted a single-center retrospective review of all patients <18years old undergoing SEAL between 2010 and 2016 (REB-20172727). Demographics and outcomes were investigated. Univariate and multivariable logistic regressions were performed to evaluate the association between peritoneal scarring and recurrence. We identified 272 patients. Median age was 3years, 35% were female, and 19% were born premature. Median follow-up was 30months, ≥1 visit/patient. Bilaterality was noted in 35%. There were no reported cases of metachronous hernia, vas injury, testicular atrophy or chronic pain, and recurrence rate was 4.6%. Prematurity, unilateral repair, incarceration, and suture-type (Ti-Cron® vs. Ethibond®) had significant correlation with recurrence on univariate analysis (p<0.25). Surgeon experience did not. Peritoneal scarring, performed in 195 cases (72%), was not predictive of recurrence (adjusted OR=0.87, p=0.830) on multivariable analysis. The rate of complications with SEAL compares favorably to published data. Thermal injury was not associated with improved recurrence rates. The benefits of peritoneal scarring may not outweigh the risks. III - Retrospective Case-Control Study. Copyright © 2018. Published by Elsevier Inc.
Timescale dependence of environmental controls on methane efflux from Poyang Hu, China
NASA Astrophysics Data System (ADS)
Liu, Lixiang; Xu, Ming; Li, Renqiang; Shao, Rui
2017-04-01
Lakes are an important natural source of CH4 to the atmosphere. However, the multi-seasonal CH4 efflux from lakes has been rarely studied. In this study, the CH4 efflux from Poyang Hu, the largest freshwater lake in China, was measured monthly over a 4-year period by using the floating-chamber technique. The mean annual CH4 efflux throughout the 4 years was 0.54 mmol m-2 day-1, ranging from 0.47 to 0.60 mmol m-2 day-1. The CH4 efflux had a high seasonal variation with an average summer (June to August) efflux of 1.34 mmol m-2 day-1 and winter (December to February) efflux of merely 0.18 mmol m-2 day-1. The efflux showed no apparent diel pattern, although most of the peak effluxes appeared in the late morning, from 10:00 to 12:00 CST (GMT + 8). Multivariate stepwise regression on a seasonal scale showed that environmental factors, such as sediment temperature, sediment total nitrogen content, dissolved oxygen, and total phosphorus content in the water, mainly regulated the CH4 efflux. However, the CH4 efflux only showed a strong positive linear correlation with wind speed within 1 day on a bihourly scale in the multivariate regression analyses but almost no correlation with wind speed on diurnal and seasonal scales.
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Considerations in cross-validation type density smoothing with a look at some data
NASA Technical Reports Server (NTRS)
Schuster, E. F.
1982-01-01
Experience gained in applying nonparametric maximum likelihood techniques of density estimation to judge the comparative quality of various estimators is reported. Two invariate data sets of one hundered samples (one Cauchy, one natural normal) are considered as well as studies in the multivariate case.
USDA-ARS?s Scientific Manuscript database
Spectral scattering is useful for nondestructive sensing of fruit firmness. Prediction models, however, are typically built using multivariate statistical methods such as partial least squares regression (PLSR), whose performance generally depends on the characteristics of the data. The aim of this ...