MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)
We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Extending local canonical correlation analysis to handle general linear contrasts for FMRI data.
Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar
2012-01-01
Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic.
Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data
Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar
2012-01-01
Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic. PMID:22461786
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
On Generalizations of Cochran’s Theorem and Projection Matrices.
1980-08-01
Definiteness of the Estimated Dispersion Matrix in a Multivariate Linear Model ," F. Pukelsheim and George P.H. Styan, May 1978. TECHNICAL REPORTS...with applications to the analysis of covariance," Proc. Cambridge Philos. Soc., 30, pp. 178-191. Graybill , F. A. and Marsaglia, G. (1957...34Idempotent matrices and quad- ratic forms in the general linear hypothesis," Ann. Math. Statist., 28, pp. 678-686. Greub, W. (1975). Linear Algebra (4th ed
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2016-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2017-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. PMID:28167896
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
Linear, multivariable robust control with a mu perspective
NASA Technical Reports Server (NTRS)
Packard, Andy; Doyle, John; Balas, Gary
1993-01-01
The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
Commentary on A General Curriculum in Mathematics for Colleges.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
This document constitutes a complete revision of the report of the same name first published in 1965. A new list of basic courses is described, consisting of Calculus I, Calculus II, Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra, and Introductory Modern Algebra. Commentaries outline the content and spirit of these courses in…
Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S
2015-09-01
Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Key-Generation Algorithms for Linear Piece In Hand Matrix Method
NASA Astrophysics Data System (ADS)
Tadaki, Kohtaro; Tsujii, Shigeo
The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.
NASA Technical Reports Server (NTRS)
Sankaran, V.
1974-01-01
An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.
Analytical methods in multivariate highway safety exposure data estimation
DOT National Transportation Integrated Search
1984-01-01
Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
Linear Least Squares for Correlated Data
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.
General Multivariate Linear Modeling of Surface Shapes Using SurfStat
Chung, Moo K.; Worsley, Keith J.; Nacewicz, Brendon, M.; Dalton, Kim M.; Davidson, Richard J.
2010-01-01
Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few studies on modeling amygdala shape variations. This paper present a unified computational and statistical framework for modeling amygdala shape variations in a clinical population. The weighted spherical harmonic representation is used as to parameterize, to smooth out, and to normalize amygdala surfaces. The representation is subsequently used as an input for multivariate linear models accounting for nuisance covariates such as age and brain size difference using SurfStat package that completely avoids the complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local amygdala shape variations in 22 high functioning autistic subjects. PMID:20620211
[Analysis of variance of repeated data measured by water maze with SPSS].
Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang
2007-01-01
To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P
Risk prediction for myocardial infarction via generalized functional regression models.
Ieva, Francesca; Paganoni, Anna M
2016-08-01
In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index
NASA Astrophysics Data System (ADS)
Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun
2018-02-01
It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.
NASA Technical Reports Server (NTRS)
Wolf, S. F.; Lipschutz, M. E.
1993-01-01
Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.
Chen, Gang; Adleman, Nancy E.; Saad, Ziad S.; Leibenluft, Ellen; Cox, RobertW.
2014-01-01
All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance–covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within- subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT)with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS. PMID:24954281
Posterior propriety for hierarchical models with log-likelihoods that have norm bounds
Michalak, Sarah E.; Morris, Carl N.
2015-07-17
Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less
A mathematical theory of learning control for linear discrete multivariable systems
NASA Technical Reports Server (NTRS)
Phan, Minh; Longman, Richard W.
1988-01-01
When tracking control systems are used in repetitive operations such as robots in various manufacturing processes, the controller will make the same errors repeatedly. Here consideration is given to learning controllers that look at the tracking errors in each repetition of the process and adjust the control to decrease these errors in the next repetition. A general formalism is developed for learning control of discrete-time (time-varying or time-invariant) linear multivariable systems. Methods of specifying a desired trajectory (such that the trajectory can actually be performed by the discrete system) are discussed, and learning controllers are developed. Stability criteria are obtained which are relatively easy to use to insure convergence of the learning process, and proper gain settings are discussed in light of measurement noise and system uncertainties.
Interaction Analysis in MANOVA.
ERIC Educational Resources Information Center
Betz, M. Austin
Simultaneous test procedures (STPS for short) in the context of the unrestricted full rank general linear multivariate model for population cell means are introduced and utilized to analyze interactions in factorial designs. By appropriate choice of an implying hypothesis, it is shown how to test overall main effects, interactions, simple main,…
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
Least Squares Metric, Unidimensional Scaling of Multivariate Linear Models.
ERIC Educational Resources Information Center
Poole, Keith T.
1990-01-01
A general approach to least-squares unidimensional scaling is presented. Ordering information contained in the parameters is used to transform the standard squared error loss function into a discrete rather than continuous form. Monte Carlo tests with 38,094 ratings of 261 senators, and 1,258 representatives demonstrate the procedure's…
Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems
NASA Astrophysics Data System (ADS)
Watkins, Edward Francis
1995-01-01
A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.
2016-08-01
Drought is among the costliest natural hazards worldwide and extreme drought events in recent years have caused huge losses to various sectors. Drought prediction is therefore critically important for providing early warning information to aid decision making to cope with drought. Due to the complicated nature of drought, it has been recognized that the univariate drought indicator may not be sufficient for drought characterization and hence multivariate drought indices have been developed for drought monitoring. Alongside the substantial effort in drought monitoring with multivariate drought indices, it is of equal importance to develop a drought prediction method with multivariate drought indices to integrate drought information from various sources. This study proposes a general framework for multivariate multi-index drought prediction that is capable of integrating complementary prediction skills from multiple drought indices. The Multivariate Ensemble Streamflow Prediction (MESP) is employed to sample from historical records for obtaining statistical prediction of multiple variables, which is then used as inputs to achieve multivariate prediction. The framework is illustrated with a linearly combined drought index (LDI), which is a commonly used multivariate drought index, based on climate division data in California and New York in the United States with different seasonality of precipitation. The predictive skill of LDI (represented with persistence) is assessed by comparison with the univariate drought index and results show that the LDI prediction skill is less affected by seasonality than the meteorological drought prediction based on SPI. Prediction results from the case study show that the proposed multivariate drought prediction outperforms the persistence prediction, implying a satisfactory performance of multivariate drought prediction. The proposed method would be useful for drought prediction to integrate drought information from various sources for early drought warning.
Design of linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.
1990-01-01
Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.
Multivariate moment closure techniques for stochastic kinetic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less
ERIC Educational Resources Information Center
Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.
2008-01-01
This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…
Maternal and Paternal Age Are Jointly Associated with Childhood Autism in Jamaica
ERIC Educational Resources Information Center
Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Loveland, Katherine A.; Pearson, Deborah A.; Bressler, Jan; Chen, Zhongxue; Ardjomand-Hessabi, Manouchehr; Shakespeare-Pellington, Sydonnie; Grove, Megan L.; Beecher, Compton; Bloom, Kari; Boerwinkle, Eric
2012-01-01
Several studies have reported maternal and paternal age as risk factors for having a child with Autism Spectrum Disorder (ASD), yet the results remain inconsistent. We used data for 68 age- and sex-matched case-control pairs collected from Jamaica. Using Multivariate General Linear Models (MGLM) and controlling for parity, gestational age, and…
Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei
2017-09-25
It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1979-01-01
Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.
Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne
2016-04-01
Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Regression Models For Multivariate Count Data
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2016-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy
2018-05-06
Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.
Improved multivariate polynomial factoring algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P.S.
1978-10-01
A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timingmore » are included.« less
Truccolo, Wilson
2017-01-01
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305
Truccolo, Wilson
2016-11-01
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.
R-parametrization and its role in classification of linear multivariable feedback systems
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.
1988-01-01
A classification of all the compensators that stabilize a given general plant in a linear, time-invariant multi-input, multi-output feedback system is developed. This classification, along with the associated necessary and sufficient conditions for stability of the feedback system, is achieved through the introduction of a new parameterization, referred to as R-Parameterization, which is a dual of the familiar Q-Parameterization. The classification is made to the stability conditions of the compensators and the plant by themselves; and necessary and sufficient conditions are based on the stability of Q and R themselves.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Multivariate longitudinal data analysis with censored and intermittent missing responses.
Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun
2018-05-08
The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.
Control design for robust stability in linear regulators: Application to aerospace flight control
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1986-01-01
Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.
NASA Astrophysics Data System (ADS)
Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng
2013-10-01
Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.
Assessing exposure to violence using multiple informants: application of hierarchical linear model.
Kuo, M; Mohler, B; Raudenbush, S L; Earls, F J
2000-11-01
The present study assesses the effects of demographic risk factors on children's exposure to violence (ETV) and how these effects vary by informants. Data on exposure to violence of 9-, 12-, and 15-year-olds were collected from both child participants (N = 1880) and parents (N = 1776), as part of the assessment of the Project on Human Development in Chicago Neighborhoods (PHDCN). A two-level hierarchical linear model (HLM) with multivariate outcomes was employed to analyze information obtained from these two different groups of informants. The findings indicate that parents generally report less ETV than do their children and that associations of age, gender, and parent education with ETV are stronger in the self-reports than in the parent reports. The findings support a multivariate approach when information obtained from different sources is being integrated. The application of HLM allows an assessment of interactions between risk factors and informants and uses all available data, including data from one informant when data from the other informant is missing.
Predicting major element mineral/melt equilibria - A statistical approach
NASA Technical Reports Server (NTRS)
Hostetler, C. J.; Drake, M. J.
1980-01-01
Empirical equations have been developed for calculating the mole fractions of NaO0.5, MgO, AlO1.5, SiO2, KO0.5, CaO, TiO2, and FeO in a solid phase of initially unknown identity given only the composition of the coexisting silicate melt. The approach involves a linear multivariate regression analysis in which solid composition is expressed as a Taylor series expansion of the liquid compositions. An internally consistent precision of approximately 0.94 is obtained, that is, the nature of the liquidus phase in the input data set can be correctly predicted for approximately 94% of the entries. The composition of the liquidus phase may be calculated to better than 5 mol % absolute. An important feature of this 'generalized solid' model is its reversibility; that is, the dependent and independent variables in the linear multivariate regression may be inverted to permit prediction of the composition of a silicate liquid produced by equilibrium partial melting of a polymineralic source assemblage.
Equicontrollability and the model following problem
NASA Technical Reports Server (NTRS)
Curran, R. T.
1971-01-01
Equicontrollability and its application to the linear time-invariant model-following problem are discussed. The problem is presented in the form of two systems, the plant and the model. The requirement is to find a controller to apply to the plant so that the resultant compensated plant behaves, in an input-output sense, the same as the model. All systems are assumed to be linear and time-invariant. The basic approach is to find suitable equicontrollable realizations of the plant and model and to utilize feedback so as to produce a controller of minimal state dimension. The concept of equicontrollability is a generalization of control canonical (phase variable) form applied to multivariable systems. It allows one to visualize clearly the effects of feedback and to pinpoint the parameters of a multivariable system which are invariant under feedback. The basic contributions are the development of equicontrollable form; solution of the model-following problem in an entirely algorithmic way, suitable for computer programming; and resolution of questions on system decoupling.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Cooley, Richard L.
1993-01-01
A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.
Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281
Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.
Fixed order dynamic compensation for multivariable linear systems
NASA Technical Reports Server (NTRS)
Kramer, F. S.; Calise, A. J.
1986-01-01
This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen
2016-01-01
Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. PMID:26921716
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.
Homotopy approach to optimal, linear quadratic, fixed architecture compensation
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1991-01-01
Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.
Landscape controls on total and methyl Hg in the Upper Hudson River basin, New York, USA
Burns, Douglas A.; Riva-Murray, K.; Bradley, P.M.; Aiken, G.R.; Brigham, M.E.
2012-01-01
Approaches are needed to better predict spatial variation in riverine Hg concentrations across heterogeneous landscapes that include mountains, wetlands, and open waters. We applied multivariate linear regression to determine the landscape factors and chemical variables that best account for the spatial variation of total Hg (THg) and methyl Hg (MeHg) concentrations in 27 sub-basins across the 493 km2 upper Hudson River basin in the Adirondack Mountains of New York. THg concentrations varied by sixfold, and those of MeHg by 40-fold in synoptic samples collected at low-to-moderate flow, during spring and summer of 2006 and 2008. Bivariate linear regression relations of THg and MeHg concentrations with either percent wetland area or DOC concentrations were significant but could account for only about 1/3 of the variation in these Hg forms in summer. In contrast, multivariate linear regression relations that included metrics of (1) hydrogeomorphology, (2) riparian/wetland area, and (3) open water, explained about 66% to >90% of spatial variation in each Hg form in spring and summer samples. These metrics reflect the influence of basin morphometry and riparian soils on Hg source and transport, and the role of open water as a Hg sink. Multivariate models based solely on these landscape metrics generally accounted for as much or more of the variation in Hg concentrations than models based on chemical and physical metrics, and show great promise for identifying waters with expected high Hg concentrations in the Adirondack region and similar glaciated riverine ecosystems.
On the interpretation of weight vectors of linear models in multivariate neuroimaging.
Haufe, Stefan; Meinecke, Frank; Görgen, Kai; Dähne, Sven; Haynes, John-Dylan; Blankertz, Benjamin; Bießmann, Felix
2014-02-15
The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
A generalized multivariate regression model for modelling ocean wave heights
NASA Astrophysics Data System (ADS)
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.
Liu, Zitao; Hauskrecht, Milos
2015-01-01
Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1980-01-01
Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.
Power of Models in Longitudinal Study: Findings from a Full-Crossed Simulation Design
ERIC Educational Resources Information Center
Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S.
2009-01-01
Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…
Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong
2017-01-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696
McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen
2016-05-15
Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong
2017-02-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.
Bayesian multivariate hierarchical transformation models for ROC analysis.
O'Malley, A James; Zou, Kelly H
2006-02-15
A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.
Bayesian multivariate hierarchical transformation models for ROC analysis
O'Malley, A. James; Zou, Kelly H.
2006-01-01
SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836
USDA-ARS?s Scientific Manuscript database
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
KMgene: a unified R package for gene-based association analysis for complex traits.
Yan, Qi; Fang, Zhou; Chen, Wei; Stegle, Oliver
2018-02-09
In this report, we introduce an R package KMgene for performing gene-based association tests for familial, multivariate or longitudinal traits using kernel machine (KM) regression under a generalized linear mixed model (GLMM) framework. Extensive simulations were performed to evaluate the validity of the approaches implemented in KMgene. http://cran.r-project.org/web/packages/KMgene. qi.yan@chp.edu or wei.chen@chp.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.
An error bound for a discrete reduced order model of a linear multivariable system
NASA Technical Reports Server (NTRS)
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
Forecasted range shifts of arid-land fishes in response to climate change
Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.
2017-01-01
Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.
Predictors of Upper-Extremity Physical Function in Older Adults.
Hermanussen, Hugo H; Menendez, Mariano E; Chen, Neal C; Ring, David; Vranceanu, Ana-Maria
2016-10-01
Little is known about the influence of habitual participation in physical exercise and diet on upper-extremity physical function in older adults. To assess the relationship of general physical exercise and diet to upper-extremity physical function and pain intensity in older adults. A cohort of 111 patients 50 or older completed a sociodemographic survey, the Rapid Assessment of Physical Activity (RAPA), an 11-point ordinal pain intensity scale, a Mediterranean diet questionnaire, and three Patient- Reported Outcomes Measurement Information System (PROMIS) based questionnaires: Pain Interference to measure inability to engage in activities due to pain, Upper-Extremity Physical Function, and Depression. Multivariable linear regression modeling was used to characterize the association of physical activity, diet, depression, and pain interference to pain intensity and upper-extremity function. Higher general physical activity was associated with higher PROMIS Upper-Extremity Physical Function and lower pain intensity in bivariate analyses. Adherence to the Mediterranean diet did not correlate with PROMIS Upper-Extremity Physical Function or pain intensity in bivariate analysis. In multivariable analyses factors associated with higher PROMIS Upper-Extremity Physical Function were male sex, non-traumatic diagnosis and PROMIS Pain Interference, with the latter accounting for most of the observed variability (37%). Factors associated with greater pain intensity in multivariable analyses included fewer years of education and higher PROMIS Pain Interference. General physical activity and diet do not seem to be as strongly or directly associated with upper-extremity physical function as pain interference.
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
Predictive and mechanistic multivariate linear regression models for reaction development
Santiago, Celine B.; Guo, Jing-Yao
2018-01-01
Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711
A multivariate model and statistical method for validating tree grade lumber yield equations
Donald W. Seegrist
1975-01-01
Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Hairong; Xu, Zanzan; Shao, Xianhong; Wismeijer, Daniel; Sun, Ping; Wang, Jingxiao
2017-01-01
Objectives This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. Methods We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. Results The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. Conclusions These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice. PMID:29084260
Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman
2011-01-01
This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626
Predictors of effects of lifestyle intervention on diabetes mellitus type 2 patients.
Jacobsen, Ramune; Vadstrup, Eva; Røder, Michael; Frølich, Anne
2012-01-01
The main aim of the study was to identify predictors of the effects of lifestyle intervention on diabetes mellitus type 2 patients by means of multivariate analysis. Data from a previously published randomised clinical trial, which compared the effects of a rehabilitation programme including standardised education and physical training sessions in the municipality's health care centre with the same duration of individual counseling in the diabetes outpatient clinic, were used. Data from 143 diabetes patients were analysed. The merged lifestyle intervention resulted in statistically significant improvements in patients' systolic blood pressure, waist circumference, exercise capacity, glycaemic control, and some aspects of general health-related quality of life. The linear multivariate regression models explained 45% to 80% of the variance in these improvements. The baseline outcomes in accordance to the logic of the regression to the mean phenomenon were the only statistically significant and robust predictors in all regression models. These results are important from a clinical point of view as they highlight the more urgent need for and better outcomes following lifestyle intervention for those patients who have worse general and disease-specific health.
Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI
Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.
2015-01-01
In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490
Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.
Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs
2009-02-01
This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.
Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.
1980-01-01
A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.
Sperry, Brett W; Vranian, Michael N; Hachamovitch, Rory; Joshi, Hariom; McCarthy, Meghann; Ikram, Asad; Hanna, Mazen
2016-07-01
Low voltage electrocardiography (ECG) coupled with increased ventricular wall thickness is the hallmark of cardiac amyloidosis. However, patient characteristics influencing voltage in the general population, including bundle branch block, have not been evaluated in amyloid heart disease. A retrospective analysis was performed of patients with newly diagnosed cardiac amyloidosis from 2002 to 2014. ECG voltage was calculated using limb (sum of QRS complex in leads I, II and III) and precordial (Sokolow: S in V1 plus R in V5-V6) criteria. The associations between voltage and clinical variables were tested using multivariable linear regression. A Cox model assessed the association of voltage with mortality. In 389 subjects (transthyretin ATTR 186, light chain AL 203), 30% had conduction delay (QRS >120ms). In those with narrow QRS, 68% met low limb, 72% low Sokolow and 57% both criteria, with lower voltages found in AL vs ATTR. LV mass index as well as other typical factors that impact voltage (age, sex, race, hypertension, BSA, and smoking) in the general population were not associated with voltage in this cardiac amyloidosis cohort. Patients with LBBB and IVCD had similar voltages when compared to those with narrow QRS. Voltage was significantly associated with mortality (p<0.001 for both criteria) after multivariable adjustment. Classic predictors of ECG voltage in the general population are not valid in cardiac amyloidosis. In this cohort, the prevalence estimates of ventricular conduction delay and low voltage are higher than previously reported. Voltage predicts mortality after multivariable adjustment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A tensor approach to modeling of nonhomogeneous nonlinear systems
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Sain, M.
1980-01-01
Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.
A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Watts, Stephen R.
1995-01-01
This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.
Right-sizing statistical models for longitudinal data.
Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M
2015-12-01
Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1992-01-01
The application of a sector-based stability theory approach to the formulation of useful uncertainty descriptions for linear, time-invariant, multivariable systems is explored. A review of basic sector properties and sector-based approach are presented first. The sector-based approach is then applied to several general forms of parameter uncertainty to investigate its advantages and limitations. The results indicate that the sector uncertainty bound can be used effectively to evaluate the impact of parameter uncertainties on the frequency response of the design model. Inherent conservatism is a potential limitation of the sector-based approach, especially for highly dependent uncertain parameters. In addition, the representation of the system dynamics can affect the amount of conservatism reflected in the sector bound. Careful application of the model can help to reduce this conservatism, however, and the solution approach has some degrees of freedom that may be further exploited to reduce the conservatism.
Sleep quality and correlates of poor sleep in patients with rheumatoid arthritis.
Løppenthin, K; Esbensen, B A; Jennum, P; Østergaard, M; Tolver, A; Thomsen, T; Midtgaard, J
2015-12-01
The objective of this study is to examine sleep quality and correlates of poor sleep in patients with rheumatoid arthritis (RA). Five hundred patients with RA were recruited from a rheumatology outpatient clinic and included in this cross-sectional study. Sleep quality and disturbances were assessed using the Pittsburgh Sleep Quality Index (PSQI). Other instruments included the Multidimensional Fatigue Inventory, the Epworth Sleepiness Scale, and the Health Assessment Questionnaire. Disease activity was assessed according to disease activity score DAS28-CRP-based. Complete scores on PSQI were obtained from 384 patients (77 %). In those, the prevalence of poor sleep (PSQI >5) was 61 %, and the mean global PSQI score was 7.54 (SD 4.17). A linear association was found between poor sleep and mental fatigue, reduced activity related to fatigue, physical fatigue, and general fatigue. Mental fatigue and general fatigue were independently associated with sleep quality, sleep latency, sleep duration, sleep efficiency, and daytime dysfunction. However, in the linear multivariate analysis, only general fatigue 1.06 (95 % CI 1.03-1.09) and mental fatigue 1.03 (95 % CI 1.01-1.05) were found to be significant correlates for reporting poor sleep. This study shows that a majority of patients with RA experience poor sleep and that general fatigue and mental fatigue are associated with poor sleep.
Analysis of fracture healing in osteopenic bone caused by disuse: experimental study.
Paiva, A G; Yanagihara, G R; Macedo, A P; Ramos, J; Issa, J P M; Shimano, A C
2016-03-01
Osteoporosis has become a serious global public health issue. Hence, osteoporotic fracture healing has been investigated in several previous studies because there is still controversy over the effect osteoporosis has on the healing process. The current study aimed to analyze two different periods of bone healing in normal and osteopenic rats. Sixty, 7-week-old female Wistar rats were randomly divided into four groups: unrestricted and immobilized for 2 weeks after osteotomy (OU2), suspended and immobilized for 2 weeks after osteotomy (OS2), unrestricted and immobilized for 6 weeks after osteotomy (OU6), and suspended and immobilized for 6 weeks after osteotomy (OS6). Osteotomy was performed in the middle third of the right tibia 21 days after tail suspension, when the osteopenic condition was already set. The fractured limb was then immobilized by orthosis. Tibias were collected 2 and 6 weeks after osteotomy, and were analyzed by bone densitometry, mechanical testing, and histomorphometry. Bone mineral density values from bony calluses were significantly lower in the 2-week post-osteotomy groups compared with the 6-week post-osteotomy groups (multivariate general linear model analysis, P<0.000). Similarly, the mechanical properties showed that animals had stronger bones 6 weeks after osteotomy compared with 2 weeks after osteotomy (multivariate general linear model analysis, P<0.000). Histomorphometry indicated gradual bone healing. Results showed that osteopenia did not influence the bone healing process, and that time was an independent determinant factor regardless of whether the fracture was osteopenic. This suggests that the body is able to compensate for the negative effects of suspension.
Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Tsai, Chin-Chung
2016-01-01
Background Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. Objective The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. Methods We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. Results We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). Conclusions The inconsistent quality of health-related information obtained from the Internet may be associated with patients’ increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. PMID:27927606
Kinoshita, Shoji; Kakuda, Wataru; Momosaki, Ryo; Yamada, Naoki; Sugawara, Hidekazu; Watanabe, Shu; Abo, Masahiro
2015-05-01
Early rehabilitation for acute stroke patients is widely recommended. We tested the hypothesis that clinical outcome of stroke patients who receive early rehabilitation managed by board-certificated physiatrists (BCP) is generally better than that provided by other medical specialties. Data of stroke patients who underwent early rehabilitation in 19 acute hospitals between January 2005 and December 2013 were collected from the Japan Rehabilitation Database and analyzed retrospectively. Multivariate linear regression analysis using generalized estimating equations method was performed to assess the association between Functional Independence Measure (FIM) effectiveness and management provided by BCP in early rehabilitation. In addition, multivariate logistic regression analysis was also performed to assess the impact of management provided by BCP in acute phase on discharge destination. After setting the inclusion criteria, data of 3838 stroke patients were eligible for analysis. BCP provided early rehabilitation in 814 patients (21.2%). Both the duration of daily exercise time and the frequency of regular conferencing were significantly higher for patients managed by BCP than by other specialties. Although the mortality rate was not different, multivariate regression analysis showed that FIM effectiveness correlated significantly and positively with the management provided by BCP (coefficient, .35; 95% confidence interval [CI], .012-.059; P < .005). In addition, multivariate logistic analysis identified clinical management by BCP as a significant determinant of home discharge (odds ratio, 1.24; 95% CI, 1.08-1.44; P < .005). Our retrospective cohort study demonstrated that clinical management provided by BCP in early rehabilitation can lead to functional recovery of acute stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Traa, Marjan J; Braeken, Johan; De Vries, Jolanda; Roukema, Jan A; Slooter, Gerrit D; Crolla, Rogier M P H; Borremans, Monique P M; Den Oudsten, Brenda L
2015-09-01
This study evaluated the following: (a) levels of sexual, marital, and general life functioning for both patients and partners; (b) interdependence between both members of the couple; and (c) longitudinal change in sexual, marital, and general life functioning and longitudinal stress-spillover effects in these three domains from a dyadic perspective. Couples (n = 102) completed the Maudsley Marital Questionnaire preoperatively and 3 and 6 months postoperatively. Mean scores were compared with norm scores. A multivariate general linear model and a multivariate latent difference score - structural equation modeling (LDS-SEM), which took into account actor and partner effects, were evaluated. Patients and partners reported lower sexual, mostly similar marital, and higher general life functioning compared with norm scores. Moderate to high within-dyad associations were found. The LDS-SEM model mostly showed actor effects. Yet the longitudinal change in the partners' sexual functioning was determined not only by their own preoperative sexual functioning but also by that of the patient. Preoperative sexual functioning did not spill over to the other two domains for patients and partners, whereas the patients' preoperative general life functioning influenced postoperative change in marital and sexual functioning. Health care professionals should examine potential sexual problems but have to be aware that these problems may not spill over to the marital and general life domains. In contrast, low functioning in the general life domain may spill over to the marital and sexual domains. The interdependence between patients and partners implies that a couple-based perspective (e.g., couple-based interventions/therapies) to coping with cancer is needed. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kannan, Rohit; Tangirala, Arun K.
2014-06-01
Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C
2015-01-01
We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, James J; Williams, L Keoki; Buu, Anne
2017-08-24
A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
Arab, Ali; Holan, Scott H.; Wikle, Christopher K.; Wildhaber, Mark L.
2012-01-01
Ecological studies involving counts of abundance, presence–absence or occupancy rates often produce data having a substantial proportion of zeros. Furthermore, these types of processes are typically multivariate and only adequately described by complex nonlinear relationships involving externally measured covariates. Ignoring these aspects of the data and implementing standard approaches can lead to models that fail to provide adequate scientific understanding of the underlying ecological processes, possibly resulting in a loss of inferential power. One method of dealing with data having excess zeros is to consider the class of univariate zero-inflated generalized linear models. However, this class of models fails to address the multivariate and nonlinear aspects associated with the data usually encountered in practice. Therefore, we propose a semiparametric bivariate zero-inflated Poisson model that takes into account both of these data attributes. The general modeling framework is hierarchical Bayes and is suitable for a broad range of applications. We demonstrate the effectiveness of our model through a motivating example on modeling catch per unit area for multiple species using data from the Missouri River Benthic Fishes Study, implemented by the United States Geological Survey.
Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.
Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao
2016-11-30
Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
On the stabilization of decentralized control systems.
NASA Technical Reports Server (NTRS)
Wang, S.-H.; Davison, E. J.
1973-01-01
This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.
Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.
Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud
2015-09-03
Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.
Pengpid, Supa; Peltzer, Karl; Puckpinyo, Apa; Tiraphat, Sariyamon; Viripiromgool, Somchai; Apidechkul, Tawatchai; Sathirapanya, Chutarat; Leethongdee, Songkramchai; Chompikul, Jiraporn; Mongkolchati, Aroonsri
2016-08-02
The aim of this study was to assess tuberculosis (TB) knowledge, attitudes, and practices in both the general population and risk groups in Thailand. In a cross-sectional survey, a general population (n = 3,074) and family members of a TB patient (n = 559) were randomly selected, using stratified multistage sampling, and interviewed. The average TB knowledge score was 5.7 (maximum = 10) in the Thai and 5.1 in the migrant and ethnic minorities general populations, 6.3 in Thais with a family member with TB, and 5.4 in migrants and ethnic minorities with a family member with TB. In multivariate linear regression among the Thai general population, higher education, higher income, and knowing a person from the community with TB were all significantly associated with level of TB knowledge. Across the different study populations, 18.6% indicated that they had undergone a TB screening test. Multivariate logistic regression found that older age, lower education, being a migrant or belonging to an ethnic minority group, residing in an area supported by the Global Fund, better TB knowledge, having a family member with TB, and knowing other people in the community with TB was associated having been screened for TB. This study revealed deficiencies in the public health knowledge about TB, particularly among migrants and ethnic minorities in Thailand. Sociodemographic factors should be considered when designing communication strategies and TB prevention and control interventions.
Laurens, L M L; Wolfrum, E J
2013-12-18
One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.
1977-01-01
The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.
NASA Astrophysics Data System (ADS)
Papalexiou, Simon Michael
2018-05-01
Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.
Hsieh, Ronan Wenhan; Chen, Likwang; Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Chen, Yen-Yuan; Tsai, Chin-Chung
2016-12-07
Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). The inconsistent quality of health-related information obtained from the Internet may be associated with patients' increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. ©Ronan Wenhan Hsieh, Likwang Chen, Tsung-Fu Chen, Jyh-Chong Liang, Tzu-Bin Lin, Yen-Yuan Chen, Chin-Chung Tsai. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 07.12.2016.
Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C
2008-01-01
As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
NASA Astrophysics Data System (ADS)
Bezruczko, N.; Stanley, T.; Battle, M.; Latty, C.
2016-11-01
Despite broad sweeping pronouncements by international research organizations that social sciences are being integrated into global research programs, little attention has been directed toward obstacles blocking productive collaborations. In particular, social sciences routinely implement nonlinear, ordinal measures, which fundamentally inhibit integration with overarching scientific paradigms. The widely promoted general linear model in contemporary social science methods is largely based on untransformed scores and ratings, which are neither objective nor linear. This issue has historically separated physical and social sciences, which this report now asserts is unnecessary. In this research, nonlinear, subjective caregiver ratings of confidence to care for children supported by complex, medical technologies were transformed to an objective scale defined by logits (N=70). Transparent linear units from this transformation provided foundational insights into measurement properties of a social- humanistic caregiving construct, which clarified physical and social caregiver implications. Parameterized items and ratings were also subjected to multivariate hierarchical analysis, then decomposed to demonstrate theoretical coherence (R2 >.50), which provided further support for convergence of mathematical parameterization, physical expectations, and a social-humanistic construct. These results present substantial support for improving integration of social sciences with contemporary scientific research programs by emphasizing construction of common variables with objective, linear units.
Liu, Chia-Chuan; Shih, Chih-Shiun; Pennarun, Nicolas; Cheng, Chih-Tao
2016-01-01
The feasibility and radicalism of lymph node dissection for lung cancer surgery by a single-port technique has frequently been challenged. We performed a retrospective cohort study to investigate this issue. Two chest surgeons initiated multiple-port thoracoscopic surgery in a 180-bed cancer centre in 2005 and shifted to a single-port technique gradually after 2010. Data, including demographic and clinical information, from 389 patients receiving multiport thoracoscopic lobectomy or segmentectomy and 149 consecutive patients undergoing either single-port lobectomy or segmentectomy for primary non-small-cell lung cancer were retrieved and entered for statistical analysis by multivariable linear regression models and Box-Cox transformed multivariable analysis. The mean number of total dissected lymph nodes in the lobectomy group was 28.5 ± 11.7 for the single-port group versus 25.2 ± 11.3 for the multiport group; the mean number of total dissected lymph nodes in the segmentectomy group was 19.5 ± 10.8 for the single-port group versus 17.9 ± 10.3 for the multiport group. In linear multivariable and after Box-Cox transformed multivariable analyses, the single-port approach was still associated with a higher total number of dissected lymph nodes. The total number of dissected lymph nodes for primary lung cancer surgery by single-port video-assisted thoracoscopic surgery (VATS) was higher than by multiport VATS in univariable, multivariable linear regression and Box-Cox transformed multivariable analyses. This study confirmed that highly effective lymph node dissection could be achieved through single-port VATS in our setting. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Generalized t-statistic for two-group classification.
Komori, Osamu; Eguchi, Shinto; Copas, John B
2015-06-01
In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.
Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos
2009-01-01
In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.
Comparison of connectivity analyses for resting state EEG data
NASA Astrophysics Data System (ADS)
Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo
2017-06-01
Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.
Variable Importance in Multivariate Group Comparisons.
ERIC Educational Resources Information Center
Huberty, Carl J.; Wisenbaker, Joseph M.
1992-01-01
Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)
Alsharari, Zayed D.; Risérus, Ulf; Leander, Karin; Sjögren, Per; Carlsson, Axel C.; Vikström, Max; Laguzzi, Federica; Gigante, Bruna; Cederholm, Tommy; De Faire, Ulf; Hellénius, Mai-Lis
2017-01-01
Abdominal obesity is a key contributor of metabolic disease. Recent trials suggest that dietary fat quality affects abdominal fat content, where palmitic acid and linoleic acid influence abdominal obesity differently, while effects of n-3 polyunsaturated fatty acids are less studied. Also, fatty acid desaturation may be altered in abdominal obesity. We aimed to investigate cross-sectional associations of serum fatty acids and desaturases with abdominal obesity prevalence in a population-based cohort study. Serum cholesteryl ester fatty acids composition was measured by gas chromatography in 60-year old men (n = 1883) and women (n = 2015). Cross-sectional associations of fatty acids with abdominal obesity prevalence and anthropometric measures (e.g., sagittal abdominal diameter) were evaluated in multivariable-adjusted logistic and linear regression models, respectively. Similar models were employed to investigate relations between desaturase activities (estimated by fatty acid ratios) and abdominal obesity. In logistic regression analyses, palmitic acid, stearoyl-CoA-desaturase and Δ6-desaturase indices were associated with abdominal obesity; multivariable-adjusted odds ratios (95% confidence intervals) for highest versus lowest quartiles were 1.45 (1.19–1.76), 4.06 (3.27–5.05), and 3.07 (2.51–3.75), respectively. Linoleic acid, α-linolenic acid, docohexaenoic acid, and Δ5-desaturase were inversely associated with abdominal obesity; multivariable-adjusted odds ratios (95% confidence intervals): 0.39 (0.32–0.48), 0.74 (0.61–0.89), 0.76 (0.62–0.93), and 0.40 (0.33–0.49), respectively. Eicosapentaenoic acid was not associated with abdominal obesity. Similar results were obtained from linear regression models evaluating associations with different anthropometric measures. Sex-specific and linear associations were mainly observed for n3-polyunsaturated fatty acids, while associations of the other exposures were generally non-linear and similar across sexes. In accordance with findings from short-term trials, abdominal obesity was more common among individuals with relatively high proportions of palmitic acid, whilst the contrary was true for linoleic acid. Further trials should examine the potential role of linoleic acid and its main dietary source, vegetable oils, in abdominal obesity prevention. PMID:28125662
Kashala-Abotnes, Espérance; Sombo, Marie-Thérèse; Okitundu, Daniel L; Kunyu, Marcel; Bumoko Makila-Mabe, Guy; Tylleskär, Thorkild; Sikorskii, Alla; Banea, Jean-Pierre; Mumba Ngoyi, Dieudonné; Tshala-Katumbay, Désiré; Boivin, Michael J
2018-01-01
Dietary cyanogen exposure from ingesting bitter (toxic) cassava as a main source of food in sub-Saharan Africa is related to neurological impairments in sub-Saharan Africa. We explored possible association with early child neurodevelopmental outcomes. We undertook a cross-sectional neurodevelopmental assessment of 12-48 month-old children using the Mullen Scale of Early Learning (MSEL) and the Gensini Gavito Scale (GGS). We used the Hopkins Symptoms Checklist-10 (HSCL-10) and Goldberg Depression Anxiety Scale (GDAS) to screen for symptoms of maternal depression-anxiety. We used the cyanogen content in household cassava flour and urinary thiocyanate (SCN) as biomarkers of dietary cyanogen exposure. We employed multivariable generalized linear models (GLM) with Gamma link function to determine predictors of early child neurodevelopmental outcomes. The mean (SD) and median (IQR) of cyanogen content of cassava household flour were above the WHO cut-off points of 10 ppm (52.18 [32·79]) and 50 (30-50) ppm, respectively. Mean (SD) urinary levels of thiocyanate and median (IQR) were respectively 817·81 (474·59) and 688 (344-1032) μmole/l in mothers, and 617·49 (449·48) and 688 (344-688) μmole/l in children reflecting individual high levels as well as a community-wide cyanogenic exposure. The concentration of cyanide in cassava flour was significantly associated with early child neurodevelopment, motor development and cognitive ability as indicated by univariable linear regression (p < 0.05). After adjusting for biological and socioeconomic predictors at multivariable analyses, fine motor proficiency and child neurodevelopment remained the main predictors associated with the concentration of cyanide in cassava flour: coefficients of -0·08 to -.15 (p < 0·01). We also found a significant association between child linear growth, early child neurodevelopment, cognitive ability and motor development at both univariable and multivariable linear regression analyses coefficients of 1.44 to 7.31 (p < 0·01). Dietary cyanogen exposure is associated with early child neurodevelopment, cognitive abilities and motor development, even in the absence of clinically evident paralysis. There is a need for community-wide interventions for better cassava processing practices for detoxification, improved nutrition, and neuro-rehabilitation, all of which are essential for optimal development in exposed children.
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models
Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.
2014-01-01
The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516
A direct approach to the design of linear multivariable systems
NASA Technical Reports Server (NTRS)
Agrawal, B. L.
1974-01-01
Design of multivariable systems is considered and design procedures are formulated in the light of the most recent work on model matching. The word model matching is used exclusively to mean matching the input-output behavior of two systems. The term is used in the frequency domain to indicate the comparison of two transfer matrices containing transfer functions as elements. Design methods where non-interaction is not used as a criteria were studied. Two design methods are considered. The first method of design is based solely upon the specification of generalized error coefficients for each individual transfer function of the overall system transfer matrix. The second design method is called the pole fixing method because all the system poles are fixed at preassigned positions. The zeros of terms either above or below the diagonal are partially fixed via steady state error coefficients. The advantages and disadvantages of each method are discussed and an example is worked to demonstrate their uses. The special cases of triangular decoupling and minimum constraints are discussed.
Health-state utilities in a prisoner population: a cross-sectional survey
Chong, Christopher AKY; Li, Sicong; Nguyen, Geoffrey C; Sutton, Andrew; Levy, Michael H; Butler, Tony; Krahn, Murray D; Thein, Hla-Hla
2009-01-01
Background Health-state utilities for prisoners have not been described. Methods We used data from a 1996 cross-sectional survey of Australian prisoners (n = 734). Respondent-level SF-36 data was transformed into utility scores by both the SF-6D and Nichol's method. Socio-demographic and clinical predictors of SF-6D utility were assessed in univariate analyses and a multivariate general linear model. Results The overall mean SF-6D utility was 0.725 (SD 0.119). When subdivided by various medical conditions, prisoner SF-6D utilities ranged from 0.620 for angina to 0.764 for those with none/mild depressive symptoms. Utilities derived by the Nichol's method were higher than SF-6D scores, often by more than 0.1. In multivariate analysis, significant independent predictors of worse utility included female gender, increasing age, increasing number of comorbidities and more severe depressive symptoms. Conclusion The utilities presented may prove useful for future economic and decision models evaluating prison-based health programs. PMID:19715571
Wood, Phillip Karl; Jackson, Kristina M
2013-08-01
Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating "protective" or "launch" factors or as "developmental snares." These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of "general deviance" over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the "general deviance" model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of "general deviance" can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the "snares" alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control.
WOOD, PHILLIP KARL; JACKSON, KRISTINA M.
2014-01-01
Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating “protective” or “launch” factors or as “developmental snares.” These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of “general deviance” over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the “general deviance” model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of “general deviance” can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve model used by Hussong et al. For models including multiple constructs, a general deviance model involving a single trait and multimethod factors (or a corresponding hierarchical factor model) fit the data better than either the “snares” alternatives or the general deviance model previously considered by Hussong et al. Taken together, the analyses support the view that linkages and turning points cannot be contrasted with general deviance models absent additional experimental intervention or control. PMID:23880389
Prevalence and correlates of cognitive impairment in kidney transplant recipients.
Gupta, Aditi; Mahnken, Jonathan D; Johnson, David K; Thomas, Tashra S; Subramaniam, Dipti; Polshak, Tyler; Gani, Imran; John Chen, G; Burns, Jeffrey M; Sarnak, Mark J
2017-05-12
There is a high prevalence of cognitive impairment in dialysis patients. The prevalence of cognitive impairment after kidney transplantation is unknown. Study Design: Cross-sectional study. Single center study of prevalent kidney transplant recipients from a transplant clinic in a large academic center. Assessment of cognition using the Montreal Cognitive Assessment (MoCA). Demographic and clinical variables associated with cognitive impairment were also examined. Outcomes and Measurements: a) Prevalence of cognitive impairment defined by a MoCA score of <26. b) Multivariable linear and logistic regression to examine the association of demographic and clinical factors with cognitive impairment. Data from 226 patients were analyzed. Mean (SD) age was 54 (13.4) years, 73% were white, 60% were male, 37% had diabetes, 58% had an education level of college or above, and the mean (SD) time since kidney transplant was 3.4 (4.1) years. The prevalence of cognitive impairment was 58.0%. Multivariable linear regression demonstrated that older age, male gender and absence of diabetes were associated with lower MoCA scores (p < 0.01 for all). Estimated glomerular filtration rate (eGFR) was not associated with level of cognition. The logistic regression analysis confirmed the association of older age with cognitive impairment. Cognitive impairment is common in prevalent kidney transplant recipients, at a younger age compared to general population, and is associated with certain demographic variables, but not level of eGFR.
Investigating the sex-related geometric variation of the human cranium.
Bertsatos, Andreas; Papageorgopoulou, Christina; Valakos, Efstratios; Chovalopoulou, Maria-Eleni
2018-01-29
Accurate sexing methods are of great importance in forensic anthropology since sex assessment is among the principal tasks when examining human skeletal remains. The present study explores a novel approach in assessing the most accurate metric traits of the human cranium for sex estimation based on 80 ectocranial landmarks from 176 modern individuals of known age and sex from the Athens Collection. The purpose of the study is to identify those distance and angle measurements that can be most effectively used in sex assessment. Three-dimensional landmark coordinates were digitized with a Microscribe 3DX and analyzed in GNU Octave. An iterative linear discriminant analysis of all possible combinations of landmarks was performed for each unique set of the 3160 distances and 246,480 angles. Cross-validated correct classification as well as multivariate DFA on top performing variables reported 13 craniometric distances with over 85% classification accuracy, 7 angles over 78%, as well as certain multivariate combinations yielding over 95%. Linear regression of these variables with the centroid size was used to assess their relation to the size of the cranium. In contrast to the use of generalized procrustes analysis (GPA) and principal component analysis (PCA), which constitute the common analytical work flow for such data, our method, although computational intensive, produced easily applicable discriminant functions of high accuracy, while at the same time explored the maximum of cranial variability.
Validating the applicability of the GUM procedure
NASA Astrophysics Data System (ADS)
Cox, Maurice G.; Harris, Peter M.
2014-08-01
This paper is directed at practitioners seeking a degree of assurance in the quality of the results of an uncertainty evaluation when using the procedure in the Guide to the Expression of Uncertainty in Measurement (GUM) (JCGM 100 : 2008). Such assurance is required in adhering to general standards such as International Standard ISO/IEC 17025 or other sector-specific standards. We investigate the extent to which such assurance can be given. For many practical cases, a measurement result incorporating an evaluated uncertainty that is correct to one significant decimal digit would be acceptable. Any quantification of the numerical precision of an uncertainty statement is naturally relative to the adequacy of the measurement model and the knowledge used of the quantities in that model. For general univariate and multivariate measurement models, we emphasize the use of a Monte Carlo method, as recommended in GUM Supplements 1 and 2. One use of this method is as a benchmark in terms of which measurement results provided by the GUM can be assessed in any particular instance. We mainly consider measurement models that are linear in the input quantities, or have been linearized and the linearization process is deemed to be adequate. When the probability distributions for those quantities are independent, we indicate the use of other approaches such as convolution methods based on the fast Fourier transform and, particularly, Chebyshev polynomials as benchmarks.
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena
2007-11-05
A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.
Associations between immunological function and memory recall in healthy adults.
Wang, Grace Y; Taylor, Tamasin; Sumich, Alexander; Merien, Fabrice; Borotkanics, Robert; Wrapson, Wendy; Krägeloh, Chris; Siegert, Richard J
2017-12-01
Studies in clinical and aging populations support associations between immunological function, cognition and mood, although these are not always in line with animal models. Moreover, very little is known about the relationship between immunological measures and cognition in healthy young adults. The present study tested associations between the state of immune system and memory recall in a group of relatively healthy adults. Immediate and delayed memory recall was assessed in 30 participants using the computerised cognitive battery. CD4, CD8 and CD69 subpopulations of lymphocytes, Interleukin-6 (IL-6) and cortisol were assessed with blood assays. Correlation analysis showed significant negative relationships between CD4 and the short and long delay memory measures. IL-6 showed a significant positive correlation with long-delay recall. Generalized linear models found associations between differences in all recall challenges and CD4. A multivariate generalized linear model including CD4 and IL-6 exhibited a stronger association. Results highlight the interactions between CD4 and IL-6 in relation to memory function. Further study is necessary to determine the underlying mechanisms of the associations between the state of immune system and cognitive performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Rich, Ashleigh J; Lachowsky, Nathan J; Cui, Zishan; Sereda, Paul; Lal, Allan; Moore, David M; Hogg, Robert S; Roth, Eric A
2015-01-01
This study analyzed event-level partnership data from a computer-assisted survey of 719 gay and bisexual men (GBM) enrolled in the Momentum Health Study to delineate potential linkages between anal sex roles and so-called “sex drugs”, i.e. erectile dysfunction drugs (EDD), poppers and crystal methamphetamine. Univariable and multivariable analyses using generalized linear mixed models with logit link function with sexual encounters (n=2,514) as the unit of analysis tested four hypotheses: 1) EDD are significantly associated with insertive anal sex roles, 2) poppers are significantly associated with receptive anal sex, 3) both poppers and EDD are significantly associated with anal sexual versatility and, 4) crystal methamphetamine is significantly associated with all anal sex roles. Data for survey respondents and their sexual partners allowed testing these hypotheses for both anal sex partners in the same encounter. Multivariable results supported the first three hypotheses. Crystal methamphetamine was significantly associated with all anal sex roles in the univariable models, but not significant in any multivariable ones. Other multivariable significant variables included attending group sex events, venue where first met, and self-described sexual orientation. Results indicate that GBM sex-drug use behavior features rational decision-making strategies linked to anal sex roles. They also suggest that more research on anal sex roles, particularly versatility, is needed, and that sexual behavior research can benefit from partnership analysis. PMID:26525571
Rich, Ashleigh J; Lachowsky, Nathan J; Cui, Zishan; Sereda, Paul; Lal, Allan; Moore, David M; Hogg, Robert S; Roth, Eric A
2016-08-01
This study analyzed event-level partnership data from a computer-assisted survey of 719 gay and bisexual men (GBM) enrolled in the Momentum Health Study to delineate potential linkages between anal sex roles and the so-called "sex drugs," i.e., erectile dysfunction drugs (EDD), poppers, and crystal methamphetamine. Univariable and multivariable analyses using generalized linear mixed models with logit link function with sexual encounters (n = 2514) as the unit of analysis tested four hypotheses: (1) EDD are significantly associated with insertive anal sex roles, (2) poppers are significantly associated with receptive anal sex, (3) both poppers and EDD are significantly associated with anal sexual versatility, and (4) crystal methamphetamine is significantly associated with all anal sex roles. Data for survey respondents and their sexual partners allowed testing these hypotheses for both anal sex partners in the same encounter. Multivariable results supported the first three hypotheses. Crystal methamphetamine was significantly associated with all anal sex roles in the univariable models, but not significant in any multivariable ones. Other multivariable significant variables included attending group sex events, venue where first met, and self-described sexual orientation. Results indicate that GBM sex-drug use behavior features rational decision-making strategies linked to anal sex roles. They also suggest that more research on anal sex roles, particularly versatility, is needed, and that sexual behavior research can benefit from partnership analysis.
Naccarato, Attilio; Furia, Emilia; Sindona, Giovanni; Tagarelli, Antonio
2016-09-01
Four class-modeling techniques (soft independent modeling of class analogy (SIMCA), unequal dispersed classes (UNEQ), potential functions (PF), and multivariate range modeling (MRM)) were applied to multielement distribution to build chemometric models able to authenticate chili pepper samples grown in Calabria respect to those grown outside of Calabria. The multivariate techniques were applied by considering both all the variables (32 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y, Yb, Zn) and variables selected by means of stepwise linear discriminant analysis (S-LDA). In the first case, satisfactory and comparable results in terms of CV efficiency are obtained with the use of SIMCA and MRM (82.3 and 83.2% respectively), whereas MRM performs better than SIMCA in terms of forced model efficiency (96.5%). The selection of variables by S-LDA permitted to build models characterized, in general, by a higher efficiency. MRM provided again the best results for CV efficiency (87.7% with an effective balance of sensitivity and specificity) as well as forced model efficiency (96.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Multivariable control of a twin lift helicopter system using the LQG/LTR design methodology
NASA Technical Reports Server (NTRS)
Rodriguez, A. A.; Athans, M.
1986-01-01
Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.
Aortic dimensions in Turner syndrome.
Quezada, Emilio; Lapidus, Jodi; Shaughnessy, Robin; Chen, Zunqiu; Silberbach, Michael
2015-11-01
In Turner syndrome, linear growth is less than the general population. Consequently, to assess stature in Turner syndrome, condition-specific comparators have been employed. Similar reference curves for cardiac structures in Turner syndrome are currently unavailable. Accurate assessment of the aorta is particularly critical in Turner syndrome because aortic dissection and rupture occur more frequently than in the general population. Furthermore, comparisons to references calculated from the taller general population with the shorter Turner syndrome population can lead to over-estimation of aortic size causing stigmatization, medicalization, and potentially over-treatment. We used echocardiography to measure aortic diameters at eight levels of the thoracic aorta in 481 healthy girls and women with Turner syndrome who ranged in age from two to seventy years. Univariate and multivariate linear regression analyses were performed to assess the influence of karyotype, age, body mass index, bicuspid aortic valve, blood pressure, history of renal disease, thyroid disease, or growth hormone therapy. Because only bicuspid aortic valve was found to independently affect aortic size, subjects with bicuspid aortic valve were excluded from the analysis. Regression equations for aortic diameters were calculated and Z-scores corresponding to 1, 2, and 3 standard deviations from the mean were plotted against body surface area. The information presented here will allow clinicians and other caregivers to calculate aortic Z-scores using a Turner-based reference population. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery
NASA Technical Reports Server (NTRS)
Athans, M.
1986-01-01
In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.
Application of two tests of multivariate discordancy to fisheries data sets
Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.
2008-01-01
The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.
An approach to multivariable control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.
Baldovin-Stella stochastic volatility process and Wiener process mixtures
NASA Astrophysics Data System (ADS)
Peirano, P. P.; Challet, D.
2012-08-01
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.
[Quality-of-life-related factors in adolescents].
Lima-Serrano, Marta; Martínez-Montilla, José Manuel; Guerra-Martín, María Dolores; Vargas-Martínez, Ana Magdalena; Lima-Rodríguez, Joaquín S
To determine quality of life (QoL) and its relationship to lifestyles in adolescents in high schools. Cross-sectional, observational study with 256 students aged 12 to 17 in Seville (Spain). Multiple linear regression models were tested (p <0.05). The boys had higher scores in most of the QoL areas. The female gender was inversely related to physical, psychological, familial QoL areas and the general QoL index. Family functionality and performing physical activity were the factors most associated with better QoL in all areas. All multivariate models were statistically significant and explained from 11% of social QoL variability to 35% of the general QoL index. The findings could be useful for developing interventions to promote health in schools, with the objective of promoting healthy lifestyles and QoL. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
Evaluation of third-degree and fourth-degree laceration rates as quality indicators.
Friedman, Alexander M; Ananth, Cande V; Prendergast, Eri; D'Alton, Mary E; Wright, Jason D
2015-04-01
To examine the patterns and predictors of third-degree and fourth-degree laceration in women undergoing vaginal delivery. We identified a population-based cohort of women in the United States who underwent a vaginal delivery between 1998 and 2010 using the Nationwide Inpatient Sample. Multivariable log-linear regression models were developed to account for patient, obstetric, and hospital factors related to lacerations. Between-hospital variability of laceration rates was calculated using generalized log-linear mixed models. Among 7,096,056 women who underwent vaginal delivery in 3,070 hospitals, 3.3% (n=232,762) had a third-degree laceration and 1.1% (n=76,347) had a fourth-degree laceration. In an adjusted model for fourth-degree lacerations, important risk factors included shoulder dystocia and forceps and vacuum deliveries with and without episiotomy. Other demographic, obstetric, medical, and hospital variables, although statistically significant, were not major determinants of lacerations. Risk factors in a multivariable model for third-degree lacerations were similar to those in the fourth-degree model. Regression analysis of hospital rates (n=3,070) of lacerations demonstrated limited between-hospital variation. Risk of third-degree and fourth-degree laceration was most strongly related to operative delivery and shoulder dystocia. Between-hospital variation was limited. Given these findings and that the most modifiable practice related to lacerations would be reduction in operative vaginal deliveries (and a possible increase in cesarean delivery), third-degree and fourth-degree laceration rates may be a quality metric of limited utility.
NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES
He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.
2017-01-01
Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225
How quantitative measures unravel design principles in multi-stage phosphorylation cascades.
Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf
2008-09-07
We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.
Chen, Gang; Adleman, Nancy E; Saad, Ziad S; Leibenluft, Ellen; Cox, Robert W
2014-10-01
All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance-covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within-subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse-Geisser and Huynh-Feldt) with MVT-WS. To validate the MVM methodology, we performed simulations to assess the controllability for false positives and power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach. The methodology has been implemented into an open source program 3dMVM in AFNI, and all the statistical tests can be performed through symbolic coding with variable names instead of the tedious process of dummy coding. Our data indicates that the severity of sphericity violation varies substantially across brain regions. The differences among various modeling methodologies were addressed through direct comparisons between the MVM approach and some of the GLM implementations in the field, and the following two issues were raised: a) the improper formulation of test statistics in some univariate GLM implementations when a within-subject factor is involved in a data structure with two or more factors, and b) the unjustified presumption of uniform sphericity violation and the practice of estimating the variance-covariance structure through pooling across brain regions. Published by Elsevier Inc.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
Application of multivariable search techniques to structural design optimization
NASA Technical Reports Server (NTRS)
Jones, R. T.; Hague, D. S.
1972-01-01
Multivariable optimization techniques are applied to a particular class of minimum weight structural design problems: the design of an axially loaded, pressurized, stiffened cylinder. Minimum weight designs are obtained by a variety of search algorithms: first- and second-order, elemental perturbation, and randomized techniques. An exterior penalty function approach to constrained minimization is employed. Some comparisons are made with solutions obtained by an interior penalty function procedure. In general, it would appear that an interior penalty function approach may not be as well suited to the class of design problems considered as the exterior penalty function approach. It is also shown that a combination of search algorithms will tend to arrive at an extremal design in a more reliable manner than a single algorithm. The effect of incorporating realistic geometrical constraints on stiffener cross-sections is investigated. A limited comparison is made between minimum weight cylinders designed on the basis of a linear stability analysis and cylinders designed on the basis of empirical buckling data. Finally, a technique for locating more than one extremal is demonstrated.
Multivariable control theory applied to hierarchial attitude control for planetary spacecraft
NASA Technical Reports Server (NTRS)
Boland, J. S., III; Russell, D. W.
1972-01-01
Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
Levene, Louis S; Baker, Richard; Wilson, Andrew; Walker, Nicola; Boomla, Kambiz; Bankart, M John G
2017-01-01
NHS general practice payments in England include pay for performance elements and a weighted component designed to compensate for workload, but without measures of specific deprivation or ethnic groups. To determine whether population factors related to health needs predicted variations in NHS payments to individual general practices in England. Cross-sectional study of all practices in England, in financial years 2013-2014 and 2014-2015. Descriptive statistics, univariable analyses (examining correlations between payment and predictors), and multivariable analyses (undertaking multivariable linear regressions for each year, with logarithms of payments as the dependent variables, and with population, practice, and performance factors as independent variables) were undertaken. Several population variables predicted variations in adjusted total payments, but inconsistently. Higher payments were associated with increases in deprivation, patients of older age, African Caribbean ethnic group, and asthma prevalence. Lower payments were associated with an increase in smoking prevalence. Long-term health conditions, South Asian ethnic group, and diabetes prevalence were not predictive. The adjusted R 2 values were 0.359 (2013-2014) and 0.374 (2014-2015). A slightly different set of variables predicted variations in the payment component designed to compensate for workload. Lower payments were associated with increases in deprivation, patients of older age, and diabetes prevalence. Smoking prevalence was not predictive. There was a geographical differential. Population factors related to health needs were, overall, poor predictors of variations in adjusted total practice payments and in the payment component designed to compensate for workload. Revising the weighting formula and extending weighting to other payment components might better support practices to address these needs. © British Journal of General Practice 2017.
Using Time Series Analysis to Predict Cardiac Arrest in a PICU.
Kennedy, Curtis E; Aoki, Noriaki; Mariscalco, Michele; Turley, James P
2015-11-01
To build and test cardiac arrest prediction models in a PICU, using time series analysis as input, and to measure changes in prediction accuracy attributable to different classes of time series data. Retrospective cohort study. Thirty-one bed academic PICU that provides care for medical and general surgical (not congenital heart surgery) patients. Patients experiencing a cardiac arrest in the PICU and requiring external cardiac massage for at least 2 minutes. None. One hundred three cases of cardiac arrest and 109 control cases were used to prepare a baseline dataset that consisted of 1,025 variables in four data classes: multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 arrest prediction models using a matrix of five feature sets (combinations of data classes) with four modeling algorithms: linear regression, decision tree, neural network, and support vector machine. The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 87% area under the receiver operating characteristic curve. The best model (multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 94% and 98% area under the receiver operating characteristic curve. Cardiac arrest predictions based on a traditional model built with multivariate data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that included time series trend analysis and built with a support vector machine algorithm. Although the final model lacks the specificity necessary for clinical application, we have demonstrated how information from time series data can be used to increase the accuracy of clinical prediction models.
Serum dehydroepiandrosterone sulphate, psychosocial factors and musculoskeletal pain in workers.
Marinelli, A; Prodi, A; Pesel, G; Ronchese, F; Bovenzi, M; Negro, C; Larese Filon, F
2017-12-30
The serum level of dehydroepiandrosterone sulphate (DHEA-S) has been suggested as a biological marker of stress. To assess the association between serum DHEA-S, psychosocial factors and musculoskeletal (MS) pain in university workers. The study population included voluntary workers at the scientific departments of the University of Trieste (Italy) who underwent periodical health surveillance from January 2011 to June 2012. DHEA-S level was analysed in serum. The assessment tools included the General Health Questionnaire (GHQ) and a modified Nordic musculoskeletal symptoms questionnaire. The relation between DHEA-S, individual characteristics, pain perception and psychological factors was assessed by means of multivariable linear regression analysis. There were 189 study participants. The study population was characterized by high reward and low effort. Pain perception in the neck, shoulder, upper limbs, upper back and lower back was reported by 42, 32, 19, 29 and 43% of people, respectively. In multivariable regression analysis, gender, age and pain perception in the shoulder and upper limbs were significantly related to serum DHEA-S. Effort and overcommitment were related to shoulder and neck pain but not to DHEA-S. The GHQ score was associated with pain perception in different body sites and inversely to DHEA-S but significance was lost in multivariable regression analysis. DHEA-S was associated with age, gender and perception of MS pain, while effort-reward imbalance dimensions and GHQ score failed to reach the statistical significance in multivariable regression analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Gaussianization for fast and accurate inference from cosmological data
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
Maruyama, Koutatsu; Nishioka, Shinji; Miyoshi, Noriko; Higuchi, Kana; Mori, Hiromi; Tanno, Sakurako; Tomooka, Kiyohide; Eguchi, Eri; Furukawa, Shinya; Saito, Isao; Sakurai, Susumu; Nishida, Wataru; Osawa, Haruhiko; Tanigawa, Takeshi
2015-06-01
This study examined the associations of masticatory ability evaluated by chewing-gum-stimulated salivary flow rate with anthropometric indices among a general Japanese population. In total, 921 Japanese men and women aged 30-79 years participated in this cross-sectional study. Saliva production was stimulated by 5 min of gum chewing, then collected; salivary flow rate was calculated as g/min. Overweight, abdominal obesity in terms of waist circumference (WC), and waist-hip ratio (WHR), and elevated skinfold thickness statuses were determined. The multivariable odds ratio and 95% confidence intervals of overweight, abdominal obesity (WC, WHR), and elevated skinfold thickness status for highest vs. lowest quartile of salivary flow rate were 0.59 (0.37-0.95, P for trend = 0.02), 0.65 (0.43-0.98, P = 0.03), 0.54 (0.35-0.83, P < 0.01), and 0.61 (0.39-0.96, P < 0.01), respectively. The linear trends of multivariable-adjusted means of BMI, WC, WHR, and skinfold thickness according to quartiles of salivary flow rate did not vary after stratification by overweight status. Higher stimulated salivary flow rate, a surrogate marker for mastication ability, was associated with lower prevalence of overweight, abdominal obesity (whether WC- or WHR-defined), and elevated skinfold thickness among the general Japanese population. © 2015 The Obesity Society.
Xuan Chi; Barry Goodwin
2012-01-01
Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...
ERIC Educational Resources Information Center
McGee, Daniel Lee; Moore-Russo, Deborah
2015-01-01
In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of…
Piecewise multivariate modelling of sequential metabolic profiling data.
Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan
2008-02-19
Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
FREQ: A computational package for multivariable system loop-shaping procedures
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Armstrong, Ernest S.
1989-01-01
Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.
Li, J C; Silverberg, J I
2015-11-01
Chickenpox infection early in childhood has previously been shown to protect against the development of childhood eczema in line with the hygiene hypothesis. In 1995, the American Academy of Pediatrics recommended routine vaccination against varicella zoster virus in the United States. Subsequently, rates of chickenpox infection have dramatically decreased in childhood. We sought to understand the impact of declining rates of chickenpox infection on the prevalence of eczema. We analysed data from 207 007 children in the 1997-2013 National Health Interview Survey. One-year prevalence of eczema and 'ever had' history of chickenpox were analysed. Associations between chickenpox infection and eczema were tested using survey-weighted logistic regression. The impact of chickenpox on trends of eczema prevalence was tested using survey logistic regression and generalized linear models. Children with a history of chickenpox compared with those without chickenpox had a lower prevalence [survey-weighted logistic regression (95% confidence interval, CI)] of eczema [8·8% (8·5-9·0%) vs. 10·6% (10·4-10·8%)]. In pooled multivariate models controlling for age, sex, race/ethnicity, household income, highest level of household education, insurance coverage, U.S. birthplace and family size, eczema was inversely associated with chickenpox [adjusted odds ratio (95% CI), 0·90 (0·86-0·94), P < 0·001]. The prevalence of eczema significantly increased over time (Tukey post-hoc test, P < 0·001 for comparisons of survey years 2001-13 vs. 1997-2000, 2008-13 vs. 2001-04 and 2008-13 vs. 2005-07). In multivariate generalized linear models, the odds of eczema was not associated with chickenpox in 2001-13 (P ≥ 0·06). These findings suggest that lower rates of chickenpox infection secondary to widespread vaccination against varicella zoster virus are not contributing to higher rates of childhood eczema in the U.S. © 2015 British Association of Dermatologists.
Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O
2018-01-01
Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.
Pinho, Teresa; Bellot-Arcís, Carlos; Montiel-Company, José María; Neves, Manuel
2015-07-01
The aim of this study was to determine the dental esthetic perception of the smile of patients with maxillary lateral incisor agenesis (MLIA); the perceptions were examined pre- and post-treatment. Esthetic determinations were made with regard to the gingival exposure in the patients' smile by orthodontists, general dentists, and laypersons. Three hundred eighty one people (80 orthodontists, 181 general dentists, 120 laypersons) rated the attractiveness of the smile in four cases before and after treatment, comprising two cases with unilateral MLIA and contralateral microdontia and two with bilateral MLIA. For each case, the buccal photograph was adjusted using a computer to apply standard lips to create high, medium, and low smiles. A numeric scale was used to measure the esthetic rating perceived by the judges. The resulting arithmetic means were compared using an ANOVA test, a linear trend, and a Student's t-test, applying a significance level of p < 0.05. The predictive capability of the variables, unilateral, or bilateral MLIA, symmetry of the treatment, gingival exposure of the smile, group, and gender were assessed using a multivariable linear regression model. In the pre- and post-treatment cases, medium smile photographs received higher scores than the same cases with high or low smiles, with significant differences between them. In all cases, orthodontists were the least-tolerant evaluation group (assigning lowest scores), followed by general dentists. In a predictive linear regression model, bilateral MLIA was the more predictive variable in pretreatment cases. The gingival exposure of the smile was a predictive variable in post-treatment cases only. The medium-height smile was considered to be more attractive. In all cases, orthodontists gave the lowest scores, followed by general dentists. Laypersons and male evaluators gave the highest scores. Symmetrical treatments scored higher than asymmetrical treatments. The gingival exposure had a significant influence on the esthetic perception of smiles in post-treatment cases. © 2014 by the American College of Prosthodontists.
A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Grunberg, D. B.
1986-01-01
A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.
Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E
2002-01-01
Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
Generalized anxiety disorder in urban China: Prevalence, awareness, and disease burden.
Yu, Wei; Singh, Shikha Satendra; Calhoun, Shawna; Zhang, Hui; Zhao, Xiahong; Yang, Fengchi
2018-07-01
Limited published research has quantified the Generalized Anxiety Disorder (GAD) prevalence and its burden in China. This study aimed to fill in the knowledge gap and to evaluate the burden of GAD among adults in urban China. This study utilized existing data from the China National Health and Wellness Survey (NHWS) 2012-2013. Prevalence of self-reported diagnosed and undiagnosed GAD was estimated. Diagnosed and undiagnosed GAD respondents were compared with non-anxious respondents in terms of health-related quality of life (HRQoL), resource utilization, and work productivity and activity impairment using multivariate generalized linear models. A multivariate logistic model assessed the risk factors for GAD. The prevalence of undiagnosed/diagnosed GAD was 5.3% in urban China with only 0.5% of GAD respondents reporting a diagnosis. Compared with non-anxious respondents, both diagnosed and undiagnosed GAD respondents had significantly lower HRQoL, more work productivity and activity impairment, and greater healthcare resource utilization in the past six months. Age, gender, marital status, income level, insurance status, smoking, drinking and exercise behaviors, and comorbidity burdens were significantly associated with GAD. This was a patient-reported study; data are therefore subject to recall bias. The survey was limited to respondents in urban China; therefore, these results focused on urban China and may be under- or over-estimating GAD prevalence in China. Causal inferences cannot be made given the cross-sectional nature of the study. GAD may be substantially under-diagnosed in urban China. More healthcare resources should be invested to alleviate the burden of GAD. Copyright © 2018 Elsevier B.V. All rights reserved.
Hannich, M; Wallaschofski, H; Nauck, M; Reincke, M; Adolf, C; Völzke, H; Rettig, R; Hannemann, A
2018-01-01
Aldosterone and high-density lipoprotein cholesterol (HDL-C) are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, or non-HDL-C in the general adult population. Data from 793 men and 938 women aged 25-85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and HbA1c. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C ( β -coefficient = 0.022, standard error = 0.010, p = 0.03) and non-HDL-C ( β -coefficient = 0.023, standard error = 0.009, p = 0.01) as well as an inverse association of aldosterone with HDL-C ( β -coefficient = -0.022, standard error = 0.011, p = 0.04). The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.
Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A
2016-08-01
The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Soeder, J. F.
1983-01-01
As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
NASA Astrophysics Data System (ADS)
Penland, C.
2017-12-01
One way to test for the linearity of a multivariate system is to perform Linear Inverse Modeling (LIM) to a multivariate time series. LIM yields an estimated operator by combining a lagged covariance matrix with the contemporaneous covariance matrix. If the underlying dynamics is linear, the resulting dynamical description should not depend on the particular lag at which the lagged covariance matrix is estimated. This test is known as the "tau test." The tau test will be severely compromised if the lag at which the analysis is performed is approximately half the period of an internal oscillation frequency. In this case, the tau test will fail even though the dynamics are actually linear. Thus, until now, the tau test has only been possible for lags smaller than this "Nyquist lag." In this poster, we investigate the use of Hilbert transforms as a way to avoid the problems associated with Nyquist lags. By augmenting the data with dimensions orthogonal to those spanning the original system, information that would be inaccessible to LIM in its original form may be sampled.
Shafizadeh-Moghadam, Hossein; Valavi, Roozbeh; Shahabi, Himan; Chapi, Kamran; Shirzadi, Ataollah
2018-07-01
In this research, eight individual machine learning and statistical models are implemented and compared, and based on their results, seven ensemble models for flood susceptibility assessment are introduced. The individual models included artificial neural networks, classification and regression trees, flexible discriminant analysis, generalized linear model, generalized additive model, boosted regression trees, multivariate adaptive regression splines, and maximum entropy, and the ensemble models were Ensemble Model committee averaging (EMca), Ensemble Model confidence interval Inferior (EMciInf), Ensemble Model confidence interval Superior (EMciSup), Ensemble Model to estimate the coefficient of variation (EMcv), Ensemble Model to estimate the mean (EMmean), Ensemble Model to estimate the median (EMmedian), and Ensemble Model based on weighted mean (EMwmean). The data set covered 201 flood events in the Haraz watershed (Mazandaran province in Iran) and 10,000 randomly selected non-occurrence points. Among the individual models, the Area Under the Receiver Operating Characteristic (AUROC), which showed the highest value, belonged to boosted regression trees (0.975) and the lowest value was recorded for generalized linear model (0.642). On the other hand, the proposed EMmedian resulted in the highest accuracy (0.976) among all models. In spite of the outstanding performance of some models, nevertheless, variability among the prediction of individual models was considerable. Therefore, to reduce uncertainty, creating more generalizable, more stable, and less sensitive models, ensemble forecasting approaches and in particular the EMmedian is recommended for flood susceptibility assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mosing, Martina; Waldmann, Andreas D.; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H.; Bettschart-Wolfensberger, Regula; Bardell, David
2016-01-01
This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia. PMID:27331910
Volunteering and health benefits in general adults: cumulative effects and forms.
Yeung, Jerf W K; Zhang, Zhuoni; Kim, Tae Yeun
2017-07-11
Although the health benefits of volunteering have been well documented, no research has examined its cumulative effects according to other-oriented and self-oriented volunteering on multiple health outcomes in the general adult public. This study examined other-oriented and self-oriented volunteering in cumulative contribution to health outcomes (mental and physical health, life satisfaction, social well-being and depression). Data were drawn from the Survey of Texas Adults 2004, which contains a statewide population-based sample of adults (n = 1504). Multivariate linear regression and Wald test of parameters equivalence constraint were used to test the relationships. Both forms of volunteering were significantly related to better health outcomes (odds ratios = 3.66% to 11.11%), except the effect of self-oriented volunteering on depression. Other-oriented volunteering was found to have better health benefits than did self-volunteering. Volunteering should be promoted by public health, education and policy practitioners as a kind of healthy lifestyle, especially for the social subgroups of elders, ethnic minorities, those with little education, single people, and unemployed people, who generally have poorer health and less participation in volunteering.
Generalized semiparametric varying-coefficient models for longitudinal data
NASA Astrophysics Data System (ADS)
Qi, Li
In this dissertation, we investigate the generalized semiparametric varying-coefficient models for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects, i.e., the covariate effects that depend on other possibly time-dependent exposure variables. First, we consider the model that assumes the time-varying effects are unspecified functions of time while the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedures are developed using multivariate local linear smoothing and generalized weighted least squares estimation techniques. The asymptotic properties of the proposed estimators are established. The simulation studies show that the proposed methods have satisfactory finite sample performance. ACTG 244 clinical trial of HIV infected patients are applied to examine the effects of antiretroviral treatment switching before and after HIV developing the 215-mutation. Our analysis shows benefit of treatment switching before developing the 215-mutation. The proposed methods are also applied to the STEP study with MITT cases showing that they have broad applications in medical research.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Sexual dimorphism of the mandible in a contemporary Chinese Han population.
Dong, Hongmei; Deng, Mohong; Wang, WenPeng; Zhang, Ji; Mu, Jiao; Zhu, Guanghui
2015-10-01
A present limitation of forensic anthropology practice in China is the lack of population-specific criteria on contemporary human skeletons. In this study, a sample of 203 maxillofacial Cone beam computed tomography (CBCT) images, including 96 male and 107 female cases (20-65 years old), was analyzed to explore mandible sexual dimorphism in a population of contemporary adult Han Chinese to investigate the potential use of the mandible as sex indicator. A three-dimensional image from mandible CBCT scans was reconstructed using the SimPlant Pro 11.40 software. Nine linear and two angular parameters were measured. Discriminant function analysis (DFA) and logistic regression analysis (LRA) were used to develop the mathematics models for sex determination. All of the linear measurements studied and one angular measurement were found to be sexually dimorphic, with the maximum mandibular length and bi-condylar breadth being the most dimorphic by univariate DFA and LRA respectively. The cross-validated sex allocation accuracies on multivariate were ranged from 84.2% (direct DFA), 83.5% (direct LRA), 83.3% (stepwise DFA) to 80.5% (stepwise LRA). In general, multivariate DFA yielded a higher accuracy and LRA obtained a lower sex bias, and therefore both DFA and LRA had their own advantages for sex determination by the mandible in this sample. These results suggest that the mandible expresses sexual dimorphism in the contemporary adult Han Chinese population, indicating an excellent sexual discriminatory ability. Cone beam computed tomography scanning can be used as alternative source for contemporary osteometric techniques. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bone mineral density across a range of physical activity volumes: NHANES 2007-2010.
Whitfield, Geoffrey P; Kohrt, Wendy M; Pettee Gabriel, Kelley K; Rahbar, Mohammad H; Kohl, Harold W
2015-02-01
The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, particularly volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Data from the 2007-2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate- and vigorous-intensity leisure activity. Lumbar and proximal femur BMD were assessed with dual-energy x-ray absorptiometry. Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, whereas proximal femur BMD was significantly higher among those who exceeded the guidelines by 2-4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded the guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2-4 times may be important for maximizing BMD at the proximal femur, whereas among men, exceeding guidelines by ≥4 times may be beneficial for lumbar and proximal femur BMD.
Comparison of Positive Youth Development for Youth With Chronic Conditions With Healthy Peers.
Maslow, Gary R; Hill, Sherika N; Pollock, McLean D
2016-12-01
Adolescents with childhood-onset chronic condition (COCC) are at increased risk for physical and psychological problems. Despite being at greater risk and having to deal with traumatic experiences and uncertainty, most adolescents with COCC do well across many domains. The Positive Youth Development (PYD) perspective provides a framework for examining thriving in youth and has been useful in understanding positive outcomes for general populations of youth as well as at-risk youth. This study aimed to compare levels of PYD assets between youth with COCC and youth without illness. Participants with COCC were recruited from specialty pediatric clinics while healthy participants were recruited from a large pediatric primary care practice. Inclusion criteria for participants included being (1) English speaking, (2) no documented intellectual disability in electronic medical record, and (3) aged between 13 and 18 years during the recruitment period. Univariate and bivariate analyses on key variables were conducted for adolescents with and without COCC. Finally, we performed multivariable linear regressions for PYD and its subdomains. There were no significant differences between overall PYD or any of the subdomains between the two groups. Multivariable linear regression models showed no statistically significant relationship between chronic condition status and PYD or the subdomains. The findings from this study support the application of the PYD perspective to this population of youth. The results of this study suggest that approaches shown to benefit healthy youth, could be used to promote positive outcomes for youth with COCC. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Kirchhoff, Anne C.; Krull, Kevin R.; Ness, Kirsten K.; Park, Elyse R.; Oeffinger, Kevin C.; Hudson, Melissa M.; Stovall, Marilyn; Robison, Leslie L.; Wickizer, Thomas; Leisenring, Wendy
2010-01-01
Background We examined whether survivors from the Childhood Cancer Survivor Study were less likely to be in higher skill occupations than a sibling comparison and whether certain survivors were at higher risk. Methods We created three mutually-exclusive occupational categories for participants aged ≥25 years: Managerial/Professional and Non-Physical and Physical Service/Blue Collar. We examined currently employed survivors (N=4845) and siblings (N=1727) in multivariable generalized linear models to evaluate the likelihood of being in the three occupational categories. Among all participants, we used multinomial logistic regression to examine the likelihood of these outcomes in comparison to being unemployed (survivors N=6671; siblings N=2129). Multivariable linear models were used to assess survivor occupational differences by cancer and treatment variables. Personal income was compared by occupation. Results Employed survivors were less often in higher skilled Managerial/Professional occupations (Relative Risk=0.93, 95% Confidence Interval 0.89–0.98) than siblings. Survivors who were Black, were diagnosed at a younger age, or had high-dose cranial radiation were less likely to hold Professional occupations than other survivors. In multinomial models, female survivors’ likelihood of being in full-time Professional occupations (27%) was lower than male survivors (42%) and female (41%) and male (50%) siblings. Survivors’ personal income was lower than siblings within each of the three occupational categories in models adjusted for sociodemographic variables. Conclusions Adult childhood cancer survivors are employed in lower skill jobs than siblings. Survivors with certain treatment histories are at higher risk and may require vocational assistance throughout adulthood. PMID:21246530
Weitz, Erica; Hollon, Steven D; Kerkhof, Ad; Cuijpers, Pim
2014-01-01
Many well-researched treatments for depression exist. However, there is not yet enough evidence on whether these therapies, designed for the treatment of depression, are also effective for reducing suicidal ideation. This research provides valuable information for researchers, clinicians, and suicide prevention policy makers. Analysis was conducted on the Treatment for Depression Research Collaborative (TDCRP) sample, which included CBT, IPT, medication, and placebo treatment groups. Participants were included in the analysis if they reported suicidal ideation on the HRSD or BDI (score of ≥1). Multivariate linear regression indicated that both IPT (b=.41, p<.05) and medication (b =.47, p<.05) yielded a significant reduction in suicide symptoms compared to placebo on the HRSD. Multivariate linear regression indicated that after adjustment for change in depression these treatment effects were no longer significant. Moderate Cohen׳s d effect sizes from baseline to post-test differences in suicide score by treatment group are reported. These analyses were completed on a single suicide item from each of the measures. Moreover, the TDCRP excluded participants with moderate to severe suicidal ideation. This study demonstrates the specific effectiveness of IPT and medications in reducing suicidal ideation (relative to placebo), albeit largely as a consequence of their more general effects on depression. This adds to the growing body of evidence that depression treatments, specifically IPT and medication, can also reduce suicidal ideation and serves to further our understanding of the complex relationship between depression and suicide. Copyright © 2014 Elsevier B.V. All rights reserved.
Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.
Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A
2017-12-01
Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P < 0.001) and early pregnancy body mass index (BMI) (r = 0.17, P < 0.001), but inversely correlated with gestational age at sample collection (r = -0.21, P < 0.001) and C-reactive protein (CRP) concentrations (r = -0.07, P < 0.05). In the multivariable linear regression model, maternal age (β = 0.11, P = 0.001), early pregnancy BMI (β = 1.58, P < 0.001), gestational age at blood collection (β = -0.33, P < 0.001), and serum CRP concentrations (β = -0.57, P = 0.002) were significantly associated with early pregnancy serum BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score < 10). Maternal age, early pregnancy BMI, gestational age, and the presence of moderate antepartum depressive symptoms were statistically significantly associated with early pregnancy serum BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum BDNF concentrations.
Decoupling in linear time-varying multivariable systems
NASA Technical Reports Server (NTRS)
Sankaran, V.
1973-01-01
The necessary and sufficient conditions for the decoupling of an m-input, m-output, linear time varying dynamical system by state variable feedback is described. The class of feedback matrices which decouple the system are illustrated. Systems which do not satisfy these results are described and systems with disturbances are considered. Some examples are illustrated to clarify the results.
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
A Test Strategy for High Resolution Image Scanners.
1983-10-01
for multivariate analysis. Holt, Richart and Winston, Inc., New York. Graybill , F.A., 1961: An introduction to linear statistical models . SVolume I...i , j i -(7) 02 1 )2 y 4n .i ij 13 The linear estimation model for the polynomial coefficients can be set up as - =; =(8) with T = ( x’ . . X-nn "X...Resolution Image Scanner MTF Geometrical and radiometric performance Dynamic range, linearity , noise - Dynamic scanning errors Response uniformity Skewness of
Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M
In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.
Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin
2018-06-01
Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.
Properties of multivariable root loci. M.S. Thesis
NASA Technical Reports Server (NTRS)
Yagle, A. E.
1981-01-01
Various properties of multivariable root loci are analyzed from a frequency domain point of view by using the technique of Newton polygons, and some generalizations of the SISO root locus rules to the multivariable case are pointed out. The behavior of the angles of arrival and departure is related to the Smith-MacMillan form of G(s) and explicit equations for these angles are obtained. After specializing to first order and a restricted class of higher order poles and zeros, some simple equations for these angles that are direct generalizations of the SISO equations are found. The unusual behavior of root loci on the real axis at branch points is studied. The SISO root locus rules for break-in and break-out points are shown to generalize directly to the multivariable case. Some methods for computing both types of points are presented.
Optimal Stochastic Modeling and Control of Flexible Structures
1988-09-01
1.37] and McLane [1.18] considered multivariable systems and derived their optimal control characteristics. Kleinman, Gorman and Zaborsky considered...Leondes [1.72,1.73] studied various aspects of multivariable linear stochastic, discrete-time systems that are partly deterministic, and partly stochastic...June 1966. 1.8. A.V. Balaknishnan, Applied Functional Analaysis , 2nd ed., New York, N.Y.: Springer-Verlag, 1981 1.9. Peter S. Maybeck, Stochastic
A Civilian/Military Trauma Institute: National Trauma Coordinating Center
2015-12-01
zip codes was used in “proximity to violence” analysis. Data were analyzed using SPSS (version 20.0, SPSS Inc., Chicago, IL). Multivariable linear...number of adverse events and serious events was not statistically higher in one group, the incidence of deep venous thrombosis (DVT) was statistically ...subjects the lack of statistical difference on multivariate analysis may be related to an underpowered sample size. It was recommended that the
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
On a Family of Multivariate Modified Humbert Polynomials
Aktaş, Rabia; Erkuş-Duman, Esra
2013-01-01
This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411
Ritchie, J Brendan; Carlson, Thomas A
2016-01-01
A fundamental challenge for cognitive neuroscience is characterizing how the primitives of psychological theory are neurally implemented. Attempts to meet this challenge are a manifestation of what Fechner called "inner" psychophysics: the theory of the precise mapping between mental quantities and the brain. In his own time, inner psychophysics remained an unrealized ambition for Fechner. We suggest that, today, multivariate pattern analysis (MVPA), or neural "decoding," methods provide a promising starting point for developing an inner psychophysics. A cornerstone of these methods are simple linear classifiers applied to neural activity in high-dimensional activation spaces. We describe an approach to inner psychophysics based on the shared architecture of linear classifiers and observers under decision boundary models such as signal detection theory. Under this approach, distance from a decision boundary through activation space, as estimated by linear classifiers, can be used to predict reaction time in accordance with signal detection theory, and distance-to-bound models of reaction time. Our "neural distance-to-bound" approach is potentially quite general, and simple to implement. Furthermore, our recent work on visual object recognition suggests it is empirically viable. We believe the approach constitutes an important step along the path to an inner psychophysics that links mind, brain, and behavior.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition
Frank, Lawrence R.; Galinsky, Vitaly L.
2016-01-01
A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESP). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and non-linear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging (rsFMRI) data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging. PMID:27695512
Lee, Young-Hoon; Shin, Min-Ho; Choi, Jin-Su; Rhee, Jung-Ae; Nam, Hae-Sung; Jeong, Seul-Ki; Park, Kyeong-Soo; Ryu, So-Yeon; Choi, Seong-Woo; Kim, Bok-Hee; Oh, Gyung-Jae; Kweon, Sun-Seog
2016-04-01
We examined the associations between HbA1c levels and various atherosclerotic vascular parameters among adults without diabetes from the general population. A total of 6500 community-dwelling adults, who were free of type 2 diabetes and ≥50 years of age, were included. High-resolution B-mode ultrasound was used to evaluate carotid artery structure, including intima-media thickness (IMT), plaque, and luminal diameter. Brachial-ankle pulse wave velocity (baPWV), which is a useful indicator of systemic arterial stiffness, was determined using an automatic waveform analysis device. No significant associations were observed between HbA1c, carotid IMT, plaque, or luminal diameter in a fully adjusted model. However, the odds ratio (95% confidence interval) for high baPWV (defined as the highest quartile) increased by 1.43 (1.19-1.71) per 1% HbA1c increase after adjusting for conventional risk factors in a multivariate logistic regression analysis. In addition, HbA1c was independently associated with baPWV in a multivariate linear regression analysis. High-normal HbA1c level was independently associated with arterial stiffness, but not with carotid atherosclerotic parameters, in the general population without diabetes. Our results suggest that the functional atherosclerotic process may already be accelerated according to HbA1c level, even at a level below the diagnostic threshold for diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo
2011-03-04
Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.
Sleep apnoea and chronic headache.
Sand, T; Hagen, K; Schrader, H
2003-03-01
The objective of this study was to estimate prevalence of headache and body pain among patients referred for suspected sleep apnoea syndrome compared with the occurrence in a large population-based study (the Nord-Trøndelag Health Study). Between 1995 and 1998, ambulatory polysomnography was successfully performed in 421 consecutive patients, 324 of whom completed a questionnaire about sleep-related habits, headache and body pain. Headache and neck pain were more likely among patients admitted for polysomnography compared with the general population (n = 41 340). In the multivariate analyses, this association was mainly restricted to those with frequent complaints (> or =7 days per month). Chronic headache (headache > or = 15 days per month) was seven times more common among individuals with and without confirmed obstructive sleep apnoea syndrome than in the general population. There was no linear dose-response relationship between headache and neck pain and severity of apnoea or oxygen desaturation. Thus, hypoxia per se is less likely to explain the high headache prevalence among patients admitted for polysomnography.
Levene, Louis S; Baker, Richard; Wilson, Andrew; Walker, Nicola; Boomla, Kambiz; Bankart, M John G
2017-01-01
Background NHS general practice payments in England include pay for performance elements and a weighted component designed to compensate for workload, but without measures of specific deprivation or ethnic groups. Aim To determine whether population factors related to health needs predicted variations in NHS payments to individual general practices in England. Design and setting Cross-sectional study of all practices in England, in financial years 2013–2014 and 2014–2015. Method Descriptive statistics, univariable analyses (examining correlations between payment and predictors), and multivariable analyses (undertaking multivariable linear regressions for each year, with logarithms of payments as the dependent variables, and with population, practice, and performance factors as independent variables) were undertaken. Results Several population variables predicted variations in adjusted total payments, but inconsistently. Higher payments were associated with increases in deprivation, patients of older age, African Caribbean ethnic group, and asthma prevalence. Lower payments were associated with an increase in smoking prevalence. Long-term health conditions, South Asian ethnic group, and diabetes prevalence were not predictive. The adjusted R2 values were 0.359 (2013–2014) and 0.374 (2014–2015). A slightly different set of variables predicted variations in the payment component designed to compensate for workload. Lower payments were associated with increases in deprivation, patients of older age, and diabetes prevalence. Smoking prevalence was not predictive. There was a geographical differential. Conclusion Population factors related to health needs were, overall, poor predictors of variations in adjusted total practice payments and in the payment component designed to compensate for workload. Revising the weighting formula and extending weighting to other payment components might better support practices to address these needs. PMID:27872085
Bicycle Use and Cyclist Safety Following Boston’s Bicycle Infrastructure Expansion, 2009–2012
Angriman, Federico; Bellows, Alexandra L.; Taylor, Kathryn
2016-01-01
Objectives. To evaluate changes in bicycle use and cyclist safety in Boston, Massachusetts, following the rapid expansion of its bicycle infrastructure between 2007 and 2014. Methods. We measured bicycle lane mileage, a surrogate for bicycle infrastructure expansion, and quantified total estimated number of commuters. In addition, we calculated the number of reported bicycle accidents from 2009 to 2012. Bicycle accident and injury trends over time were assessed via generalized linear models. Multivariable logistic regression was used to examine factors associated with bicycle injuries. Results. Boston increased its total bicycle lane mileage from 0.034 miles in 2007 to 92.2 miles in 2014 (P < .001). The percentage of bicycle commuters increased from 0.9% in 2005 to 2.4% in 2014 (P = .002) and the total percentage of bicycle accidents involving injuries diminished significantly, from 82.7% in 2009 to 74.6% in 2012. The multivariable logistic regression analysis showed that for every 1-year increase in time from 2009 to 2012, there was a 14% reduction in the odds of being injured in an accident. Conclusions. The expansion of Boston’s bicycle infrastructure was associated with increases in both bicycle use and cyclist safety. PMID:27736203
Lefcheck, Jonathan S; Duffy, J Emmett
2015-11-01
The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.
Chen, Shufeng; Yeh, Fawn; Lin, Jue; Matsuguchi, Tet; Blackburn, Elizabeth; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying
2014-05-01
Shorter leukocyte telomere length (LTL) has been associated with a wide range of age-related disorders including cardiovascular disease (CVD) and diabetes. Obesity is an important risk factor for CVD and diabetes. The association of LTL with obesity is not well understood. This study for the first time examines the association of LTL with obesity indices including body mass index, waist circumference, percent body fat, waist-to-hip ratio, and waist-to-height ratio in 3,256 American Indians (14-93 years old, 60% women) participating in the Strong Heart Family Study. Association of LTL with each adiposity index was examined using multivariate generalized linear mixed model, adjusting for chronological age, sex, study center, education, lifestyle (smoking, alcohol consumption, and total energy intake), high-sensitivity C-reactive protein, hypertension and diabetes. Results show that obese participants had significantly shorter LTL than non-obese individuals (age-adjusted P=0.0002). Multivariate analyses demonstrate that LTL was significantly and inversely associated with all of the studied obesity parameters. Our results may shed light on the potential role of biological aging in pathogenesis of obesity and its comorbidities.
Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles
Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville
2015-01-01
Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497
Predictors of Serum Dioxin, Furan and PCB Concentrations among Women from Chapaevsk, Russia
Humblet, Olivier; Williams, Paige L.; Korrick, Susan A.; Sergeyev, Oleg; Emond, Claude; Birnbaum, Linda S.; Burns, Jane S.; Altshul, Larisa; Patterson, Donald G.; Turner, Wayman E.; Lee, Mary M.; Revich, Boris; Hauser, Russ
2011-01-01
INTRODUCTION Dioxins, furans and polychlorinated biphenyls (PCBs) are persistent and bioaccumulative toxic chemicals that are ubiquitous in the environment. We assessed predictors of their serum concentrations among women living in a Russian town contaminated by past industrial activity. METHODS Blood samples from 446 mothers aged 23–52 years were collected between 2003–2005 as part of the Russian Children’s Study. Serum dioxin, furan and PCB concentrations were quantified using high-resolution gas chromatography-mass spectrometry. Potential determinants of exposure were collected through interviews. Multivariate linear regression models were used to identify predictors of serum concentrations and toxic equivalencies (TEQs). RESULTS AND DISCUSSION The median total PCB concentrations and total TEQs were 260 ng/g lipid and 25 pg TEQ/g lipid, respectively. In multivariate analyses, both total PCB concentrations and total TEQs increased significantly with age, residential proximity to a local chemical plant, duration of local farming, and consumption of local beef. Both decreased with longer breastfeeding, recent increases in body mass index, and later blood draw date. These demographic and lifestyle predictors showed generally similar associations with the various measures of serum dioxins, furans, and PCBs. PMID:20578718
Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma
NASA Astrophysics Data System (ADS)
Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan
2009-09-01
We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.
Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque
2017-01-01
Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).
Sananes, Nicolas; Rodo, Carlota; Peiro, Jose Luis; Britto, Ingrid Schwach Werneck; Sangi-Haghpeykar, Haleh; Favre, Romain; Joal, Arnaud; Gaudineau, Adrien; Silva, Marcos Marques da; Tannuri, Uenis; Zugaib, Marcelo; Carreras, Elena; Ruano, Rodrigo
2016-09-01
To evaluate the independent association of fetal pulmonary response and prematurity to postnatal outcomes after fetal tracheal occlusion for congenital diaphragmatic hernia. Fetal pulmonary response, prematurity (<37 weeks at delivery) and extreme prematurity (<32 weeks at delivery) were evaluated and compared between survivors and non-survivors at 6 months of life. Multivariable analysis was conducted with generalized linear mixed models for variables significantly associated with survival in univariate analysis. Eighty-four infants were included, of whom 40 survived (47.6%) and 44 died (52.4%). Univariate analysis demonstrated that survival was associated with greater lung response (p=0.006), and the absence of extreme preterm delivery (p=0.044). In multivariable analysis, greater pulmonary response after FETO was an independent predictor of survival (aOR 1.87, 95% CI 1.08-3.33, p=0.023), whereas the presence of extreme prematurity was not statistically associated with mortality after controlling for fetal pulmonary response (aOR 0.52, 95% CI 0.12-2.30, p=0.367). Fetal pulmonary response after FETO is the most important factor associated with survival, independently from the gestational age at delivery.
Riveros, Ricardo; Makarova, Natalya; Riveros-Perez, Efrain; Chodavarapu, Praneeta; Saasouh, Wael; Yılmaz, Hüseyin Oğuz; Cuko, Evis; Babazade, Rovnat; Kimatian, Stephen; Turan, Alparslan
2017-12-01
Dexmedetomidine is increasingly used in children undergoing cardiac catheterization procedures. We compared the percentage of surgical time with hemodynamic instability and the incidence of postoperative agitation between pediatric cardiac catheterization patients who received dexmedetomidine infusion and those who did not and the incidence of postoperative agitation. We matched 653 pediatric patients scheduled for cardiac catheterization. Two separate multivariable linear mixed models were used to assess the association between dexmedetomidine use and intraoperative blood pressure and heart rate instability. A multivariate logistic regression was used for relationship between dexmedetomidine and postoperative agitation. No difference between the study groups was found in the duration of MAP ( P = .867) or heart rate (HR) instabilities ( P = .224). The relationship between dexmedetomidine use and the duration of negative hemodynamic effects does not depend on any of the considered CHD types (all P > .001) or intervention ( P = .453 for MAP and P = .023 for HR). No difference in postoperative agitation was found between the study groups ( P = .590). Our study demonstrated no benefit in using dexmedetomidine infusion compared with other general anesthesia techniques to maintain hemodynamic stability or decrease agitation in pediatric patients undergoing cardiac catheterization procedures.
Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.
Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki
2017-05-01
To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.
Yoneoka, Daisuke; Henmi, Masayuki
2017-06-01
Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.
2008-12-01
The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.
Gstat: a program for geostatistical modelling, prediction and simulation
NASA Astrophysics Data System (ADS)
Pebesma, Edzer J.; Wesseling, Cees G.
1998-01-01
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.
Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi
2017-01-01
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model—the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the “critical” GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. PMID:28111189
Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi
2017-04-01
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Characterizations of linear sufficient statistics
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.
1977-01-01
A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.
Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S
2017-09-01
Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.
Tailored multivariate analysis for modulated enhanced diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni
2015-10-21
Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. The multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). When applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. To develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
Some Integrated Squared Error Procedures for Multivariate Normal Data,
1986-01-01
a lnear regresmion or experimental design model). Our procedures have &lSO been usned wcelyOn non -linear models but we do not addres nan-lnear...of fit, outliers, influence functions, experimental design , cluster analysis, robustness 24L A =TO ACT (VCefme - pvre alli of magsy MW identif by...structured data such as multivariate experimental designs . Several illustrations are provided. * 0 %41 %-. 4.’. * " , -.--, ,. -,, ., -, ’v ’ , " ,,- ,, . -,-. . ., * . - tAma- t
Effect of Contact Damage on the Strength of Ceramic Materials.
1982-10-01
variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F
Analysis of Forest Foliage Using a Multivariate Mixture Model
NASA Technical Reports Server (NTRS)
Hlavka, C. A.; Peterson, David L.; Johnson, L. F.; Ganapol, B.
1997-01-01
Data with wet chemical measurements and near infrared spectra of ground leaf samples were analyzed to test a multivariate regression technique for estimating component spectra which is based on a linear mixture model for absorbance. The resulting unmixed spectra for carbohydrates, lignin, and protein resemble the spectra of extracted plant starches, cellulose, lignin, and protein. The unmixed protein spectrum has prominent absorption spectra at wavelengths which have been associated with nitrogen bonds.
A FORTRAN program for multivariate survival analysis on the personal computer.
Mulder, P G
1988-01-01
In this paper a FORTRAN program is presented for multivariate survival or life table regression analysis in a competing risks' situation. The relevant failure rate (for example, a particular disease or mortality rate) is modelled as a log-linear function of a vector of (possibly time-dependent) explanatory variables. The explanatory variables may also include the variable time itself, which is useful for parameterizing piecewise exponential time-to-failure distributions in a Gompertz-like or Weibull-like way as a more efficient alternative to Cox's proportional hazards model. Maximum likelihood estimates of the coefficients of the log-linear relationship are obtained from the iterative Newton-Raphson method. The program runs on a personal computer under DOS; running time is quite acceptable, even for large samples.
Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems
NASA Astrophysics Data System (ADS)
Ataei, Mohammad; Enshaee, Ali
2011-12-01
In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.
Non-fragile multivariable PID controller design via system augmentation
NASA Astrophysics Data System (ADS)
Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan
2017-07-01
In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.
Rank-based methods for modeling dependence between loss triangles.
Côté, Marie-Pier; Genest, Christian; Abdallah, Anas
2016-01-01
In order to determine the risk capital for their aggregate portfolio, property and casualty insurance companies must fit a multivariate model to the loss triangle data relating to each of their lines of business. As an inadequate choice of dependence structure may have an undesirable effect on reserve estimation, a two-stage inference strategy is proposed in this paper to assist with model selection and validation. Generalized linear models are first fitted to the margins. Standardized residuals from these models are then linked through a copula selected and validated using rank-based methods. The approach is illustrated with data from six lines of business of a large Canadian insurance company for which two hierarchical dependence models are considered, i.e., a fully nested Archimedean copula structure and a copula-based risk aggregation model.
Cryptanalysis of SFLASH with Slightly Modified Parameters
NASA Astrophysics Data System (ADS)
Dubois, Vivien; Fouque, Pierre-Alain; Stern, Jacques
SFLASH is a signature scheme which belongs to a family of multivariate schemes proposed by Patarin et al. in 1998 [9]. The SFLASH scheme itself has been designed in 2001 [8] and has been selected in 2003 by the NESSIE European Consortium [6] as the best known solution for implementation on low cost smart cards. In this paper, we show that slight modifications of the parameters of SFLASH within the general family initially proposed renders the scheme insecure. The attack uses simple linear algebra, and allows to forge a signature for an arbitrary message in a question of minutes for practical parameters, using only the public key. Although SFLASH itself is not amenable to our attack, it is worrying to observe that no rationale was ever offered for this "lucky" choice of parameters.
2014-01-01
Background General practice is stressful and burnout is common among family physicians. A growing body of evidence suggests that the way physicians relate to their patients could be linked to burnout. The goal of this study was to examine how patterns of empathy explained physicians’ burnout. Methods We surveyed 294 French general practitioners (response rate 39%), measured burnout, empathic concern (EC) and perspective taking (PT) using self-reported questionnaires, and modeled burnout levels and frequencies with EC, PT and their interaction in linear and logistic regression analyses. Results Multivariate linear models for burnout prediction were associated with lower PT (β = −0.21, p < 0.001) and lower EC (β = −0.17, p < 0.05). Interestingly, the interaction (EC x PT) also predicted burnout levels (β = 0.11, p < 0.05). The investigation of interactions revealed that high scores on PT predicted lower levels of burnout independent from EC (odd ratios (OR) 0.37; 95% confidence interval (95% CI) 0.21–0.65 p < 0.001), and high scores on both EC and PT were protective against burnout: OR 0.31; 95% CI 0.15–0.63, p < 0.001). Conclusions Deficits in PT alone might be a risk factor for burnout, whereas higher PT and EC might be protective. Educators should take into account how the various components of empathy are potentially associated with emotional outcomes in physicians. PMID:24456299
Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models
Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong
2015-01-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong
2015-05-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-14
This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.
Amirian, Mohammad-Elyas; Fazilat-Pour, Masoud
2016-08-01
The present study examined simple and multivariate relationships of spiritual intelligence with general health and happiness. The employed method was descriptive and correlational. King's Spiritual Quotient scales, GHQ-28 and Oxford Happiness Inventory, are filled out by a sample consisted of 384 students, which were selected using stratified random sampling from the students of Shahid Bahonar University of Kerman. Data are subjected to descriptive and inferential statistics including correlations and multivariate regressions. Bivariate correlations support positive and significant predictive value of spiritual intelligence toward general health and happiness. Further analysis showed that among the Spiritual Intelligence' subscales, Existential Critical Thinking Predicted General Health and Happiness, reversely. In addition, happiness was positively predicted by generation of personal meaning and transcendental awareness. The findings are discussed in line with the previous studies and the relevant theoretical background.
Kirchhoff, Anne C; Krull, Kevin R; Ness, Kirsten K; Park, Elyse R; Oeffinger, Kevin C; Hudson, Melissa M; Stovall, Marilyn; Robison, Leslie L; Wickizer, Thomas; Leisenring, Wendy
2011-07-01
The authors examined whether survivors from the Childhood Cancer Survivor Study were less likely to be in higher-skill occupations than a sibling comparison and whether certain survivors were at higher risk for lower-skill jobs. The authors created 3 mutually exclusive occupational categories for participants aged ≥ 25 years: Managerial/Professional, Nonphysical Service/Blue Collar, and Physical Service/Blue Collar. The authors examined currently employed survivors (4845) and their siblings (1727) in multivariable generalized linear models to evaluate the likelihood of being in 1 of the 3 occupational categories. Multinomial logistic regression was used among all participants to examine the likelihood of these outcomes compared to being unemployed (survivors, 6671; siblings, 2129). Multivariable linear models were used to assess survivor occupational differences by cancer- and treatment-related variables. Personal income was compared by occupation. Employed survivors were less often in higher-skilled Managerial/Professional occupations (relative risk, 0.93; 95% confidence interval 0.89-0.98) than their siblings. Survivors who were black, were diagnosed at a younger age, or had high-dose cranial radiation were less likely to hold Managerial/Professional occupations than other survivors. In multinomial models, female survivors' likelihood of being in full-time Managerial/Professional occupations (27%) was lower than male survivors (42%) and female (41%) and male (50%) siblings. Survivors' personal income was lower than siblings within each of the 3 occupational categories in models adjusted for sociodemographic variables. Adult childhood cancer survivors are employed in lower-skill jobs than siblings. Survivors with certain treatment histories are at higher risk for lower-skill jobs and may require vocational assistance throughout adulthood. Copyright © 2011 American Cancer Society.
Impact of cannabis and other drugs on age at onset of psychosis.
González-Pinto, Ana; Vega, Patricia; Ibáñez, Berta; Mosquera, Fernando; Barbeito, Sara; Gutiérrez, Miguel; Ruiz de Azúa, Sonia; Ruiz, Iván; Vieta, Eduard
2008-08-01
The aim of this study was to investigate the relationship between age and cannabis use in patients with a first psychotic episode, and to analyze the mediating effect of comorbid use of other drugs and sex on age at onset of psychosis. All consenting patients (aged 15 to 65 years) with a first psychotic episode needing inpatient psychiatric treatment during a 2-year period between February 1997 and January 1999 were considered, confirming a total of 131 patients. Subjects were interviewed using the Structured Clinical Interview for DSM-IV Axis I Disorders, and clinical and demographic data were collected. We used general linear models with age at onset as the response variable and survival Cox models to confirm the results. Both a multivariate linear model and the corresponding Cox model were fitted with a covariate that summarizes the most significant contributors that seemed to decrease age at onset. Regarding the effect of cannabis use, a significant gradual reduction on age at onset was found as dependence on cannabis increased, consisting in a decrement of 7, 8.5, and 12 years for users, abusers, and dependents, respectively, with respect to nonusers (p = .004, p < .001, and p < .001, respectively). Multivariate analysis showed a clear effect of cannabis use on age at onset, which was not explained by the use of other drugs or by gender. The finding was similar in the youngest patients, suggesting that this effect was not due to chance. The major contribution of this investigation is the independent and strong link between cannabis use and early age at onset of psychosis, and the slight or nonexistent effect of sex and comorbid substance abuse in this variable. These results point to cannabis as a dangerous drug in young people at risk of developing psychosis.
Miranda, Andreia Machado; Steluti, Josiane; Fisberg, Regina Mara; Marchioni, Dirce Maria
2016-01-01
Background/Objective Hypertension is an important risk factor for cardiovascular disease, and diet has been identified as a modifiable factor for preventing and controlling hypertension. Besides, epidemiological studies have suggested an inverse association between polyphenol intake and cardiovascular diseases. The aim of this study was to evaluate the association between the intake of polyphenols and hypertension in a general population of Sao Paulo. Methods Data came from the ‘Health Survey of Sao Paulo (ISA-Capital)’ among 550 adults and older adults in Sao Paulo, Brazil. Diet was assessed by two 24-hour dietary recalls (24HR). Usual intakes were calculated using the Multiple Source Method. Polyphenol intake was calculated by matching food consumption data from the 24HR with the Phenol-Explorer database. The associations between the hypertension and tertiles of the total and classes of polyphenols intake were tested by multivariate logistic regression analysis. Results After multivariate adjustment for potential confounding factors the findings showed an inverse and linearly association between the hypertension and highest tertiles of tyrosols (OR = 0.33; 95%CI 0.18, 0.64), alkylphenols (OR = 0.45; 95%CI 0.23, 0.87), lignans (OR = 0.49; 95%CI 0.25, 0.98), as well as stilbenes (OR = 0.60; 95%CI 0.36, 0.98), and other polyphenols (OR = 0.33; 95%CI 0.14, 0.74). However, total polyphenol intake, and phenolic acids were significantly associated only in the middle tertile with hypertension and flavonoids were not significant associated. Conclusion There is an inverse and linearly association between the highest tertile of some classes of polyphenols, such as, tyrosols, alkylphenols, lignans, stilbenes, other polyphenols and hypertension. PMID:27792767
Bone Mineral Density across a Range of Physical Activity Volumes: NHANES 2007–2010
Whitfield, Geoffrey P.; Kohrt, Wendy M.; Pettee Gabriel, Kelley K.; Rahbar, Mohammad H.; Kohl, Harold W.
2014-01-01
Introduction The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, in particular volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Methods Data from the 2007–2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate and vigorous intensity leisure activity. Lumbar and proximal femur BMD was assessed with dual-energy x-ray absorptiometry. Results Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, while proximal femur BMD was significantly higher among those who exceeded guidelines by 2–4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. Conclusion The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2–4 times may be important for maximizing BMD at the proximal femur, while among men, exceeding guidelines by 4+ times may be beneficial for lumbar and proximal femur BMD. PMID:24870584
ERIC Educational Resources Information Center
Gibbons, Robert D.; And Others
In the process of developing a conditionally-dependent item response theory (IRT) model, the problem arose of modeling an underlying multivariate normal (MVN) response process with general correlation among the items. Without the assumption of conditional independence, for which the underlying MVN cdf takes on comparatively simple forms and can be…
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching LO
1993-01-01
This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Expanded function allied dental personnel and dental practice productivity and efficiency.
Beazoglou, Tryfon J; Chen, Lei; Lazar, Vickie F; Brown, L Jackson; Ray, Subhash C; Heffley, Dennis R; Berg, Rob; Bailit, Howard L
2012-08-01
This study examined the impact of expanded function allied dental personnel on the productivity and efficiency of general dental practices. Detailed practice financial and clinical data were obtained from a convenience sample of 154 general dental practices in Colorado. In this state, expanded function dental assistants can provide a wide range of reversible dental services/procedures, and dental hygienists can give local anesthesia. The survey identified practices that currently use expanded function allied dental personnel and the specific services/procedures delegated. Practice productivity was measured using patient visits, gross billings, and net income. Practice efficiency was assessed using a multivariate linear program, Data Envelopment Analysis. Sixty-four percent of the practices were found to use expanded function allied dental personnel, and on average they delegated 31.4 percent of delegatable services/procedures. Practices that used expanded function allied dental personnel treated more patients and had higher gross billings and net incomes than those practices that did not; the more services they delegated, the higher was the practice's productivity and efficiency. The effective use of expanded function allied dental personnel has the potential to substantially expand the capacity of general dental practices to treat more patients and to generate higher incomes for dental practices.
Practical Methods for the Compensation and Control of Multivariable Systems.
1982-04-01
a constant gain element gji . To be more specific, let us consider a linear multivariable system whose dynamical behavior is specified by a (pxm...controllable via uk if Yi is fed back to uj via an arbitrary gain gji , as depicted in the figure below? It might be noted that only the outputs and inputs...modes controllable via uk(s) before feedback will remain -19- controllable via uk(s) irrespective of gji (although certain of these uk controllable
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
A comparison of two multi-variable integrator windup protection schemes
NASA Technical Reports Server (NTRS)
Mattern, Duane
1993-01-01
Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.
Alternatives for Jet Engine Control
NASA Technical Reports Server (NTRS)
Leake, R. J.; Sain, M. K.
1976-01-01
Approaches are developed as alternatives to current design methods which rely heavily on linear quadratic and Riccati equation methods. The main alternatives are discussed in two broad categories, local multivariable frequency domain methods and global nonlinear optimal methods.
Jupiter, Daniel C
2012-01-01
In this first of a series of statistical methodology commentaries for the clinician, we discuss the use of multivariate linear regression. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
On the Bayesian Treed Multivariate Gaussian Process with Linear Model of Coregionalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konomi, Bledar A.; Karagiannis, Georgios; Lin, Guang
2015-02-01
The Bayesian treed Gaussian process (BTGP) has gained popularity in recent years because it provides a straightforward mechanism for modeling non-stationary data and can alleviate computational demands by fitting models to less data. The extension of BTGP to the multivariate setting requires us to model the cross-covariance and to propose efficient algorithms that can deal with trans-dimensional MCMC moves. In this paper we extend the cross-covariance of the Bayesian treed multivariate Gaussian process (BTMGP) to that of linear model of Coregionalization (LMC) cross-covariances. Different strategies have been developed to improve the MCMC mixing and invert smaller matrices in the Bayesianmore » inference. Moreover, we compare the proposed BTMGP with existing multiple BTGP and BTMGP in test cases and multiphase flow computer experiment in a full scale regenerator of a carbon capture unit. The use of the BTMGP with LMC cross-covariance helped to predict the computer experiments relatively better than existing competitors. The proposed model has a wide variety of applications, such as computer experiments and environmental data. In the case of computer experiments we also develop an adaptive sampling strategy for the BTMGP with LMC cross-covariance function.« less
Cumulative total effective whole-body radiation dose in critically ill patients.
Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J
2013-11-01
Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.
Wang, Anxin; Li, Zhifang; Yang, Yuling; Chen, Guojuan; Wang, Chunxue; Wu, Yuntao; Ruan, Chunyu; Liu, Yan; Wang, Yilong; Wu, Shouling
2016-01-01
To investigate the relationship between baseline systolic blood pressure (SBP) and visit-to-visit blood pressure variability in a general population. This is a prospective longitudinal cohort study on cardiovascular risk factors and cardiovascular or cerebrovascular events. Study participants attended a face-to-face interview every 2 years. Blood pressure variability was defined using the standard deviation and coefficient of variation of all SBP values at baseline and follow-up visits. The coefficient of variation is the ratio of the standard deviation to the mean SBP. We used multivariate linear regression models to test the relationships between SBP and standard deviation, and between SBP and coefficient of variation. Approximately 43,360 participants (mean age: 48.2±11.5 years) were selected. In multivariate analysis, after adjustment for potential confounders, baseline SBPs <120 mmHg were inversely related to standard deviation (P<0.001) and coefficient of variation (P<0.001). In contrast, baseline SBPs ≥140 mmHg were significantly positively associated with standard deviation (P<0.001) and coefficient of variation (P<0.001). Baseline SBPs of 120-140 mmHg were associated with the lowest standard deviation and coefficient of variation. The associations between baseline SBP and standard deviation, and between SBP and coefficient of variation during follow-ups showed a U curve. Both lower and higher baseline SBPs were associated with increased blood pressure variability. To control blood pressure variability, a good target SBP range for a general population might be 120-139 mmHg.
Smith, Rachel V; Young, April M; Mullins, Ursula L; Havens, Jennifer R
2017-04-01
Examination of the association of antisocial personality disorder (ASPD) with substance use and HIV risk behaviors within the social networks of rural people who use drugs. Interviewer-administered questionnaires were used to assess substance use, HIV risk behavior, and social network characteristics of drug users (n = 503) living in rural Appalachia. The MINI International Psychiatric Interview was used to determine whether participants met DSM-IV criteria for ASPD and Axis-I psychological comorbidities (eg, major depressive disorder, posttraumatic stress disorder, generalized anxiety disorder). Participants were also tested for herpes simplex 2, hepatitis C, and HIV. Multivariate generalized linear mixed modeling was used to determine the association between ASPD and risk behaviors, substance use, and social network characteristics. Approximately one-third (31%) of participants met DSM-IV criteria for ASPD. In multivariate analysis, distrust and conflict within an individual's social networks, as well as past 30-day use of heroin and crack, male gender, younger age, lesser education, heterosexual orientation, and comorbid MDD were associated with meeting diagnostic criteria for ASPD. Participants meeting criteria for ASPD were more likely to report recent heroin and crack use, which are far less common drugs of abuse in this population in which the predominant drug of abuse is prescription opioids. Greater discord within relationships was also identified among those with ASPD symptomatology. Given the elevated risk for blood-borne infection (eg, HIV) and other negative social and health consequences conferred by this high-risk subgroup, exploration of tailored network-based interventions with mental health assessment is recommended. © 2016 National Rural Health Association.
ERIC Educational Resources Information Center
Seco, Guillermo Vallejo; Izquierdo, Marcelino Cuesta; Garcia, M. Paula Fernandez; Diez, F. Javier Herrero
2006-01-01
The authors compare the operating characteristics of the bootstrap-F approach, a direct extension of the work of Berkovits, Hancock, and Nevitt, with Huynh's improved general approximation (IGA) and the Brown-Forsythe (BF) multivariate approach in a mixed repeated measures design when normality and multisample sphericity assumptions do not hold.…
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
ERIC Educational Resources Information Center
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
A mixed model for the relationship between climate and human cranial form.
Katz, David C; Grote, Mark N; Weaver, Timothy D
2016-08-01
We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Tailored multivariate analysis for modulated enhanced diffraction
Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni; ...
2015-10-21
Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. Furthermore, the multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). Furthermore, when applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. In order to develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less
Concurrent generation of multivariate mixed data with variables of dissimilar types.
Amatya, Anup; Demirtas, Hakan
2016-01-01
Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan
2018-02-01
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln f) x and u = 2(ln f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.
Maternal and Paternal Age are Jointly Associated with Childhood Autism in Jamaica
Samms-Vaughan, Maureen; Loveland, Katherine A.; Pearson, Deborah A.; Bressler, Jan; Chen, Zhongxue; Ardjomand-Hessabi, Manouchehr; Shakespeare-Pellington, Sydonnie; Grove, Megan L.; Beecher, Compton; Bloom, Kari; Boerwinkle, Eric
2013-01-01
Several studies have reported maternal and paternal age as risk factors for having a child with Autism Spectrum Disorder (ASD), yet the results remain inconsistent. We used data for 68 age- and sex-matched case–control pairs collected from Jamaica. Using Multivariate General Linear Models (MGLM) and controlling for parity, gestational age, and parental education, we found a significant (p < 0.0001) joint effect of parental ages on having children with ASD indicating an adjusted mean paternal age difference between cases and controls of [5.9 years; 95% CI (2.6, 9.1)] and a difference for maternal age of [6.5 years; 95% CI (4.0, 8.9)]. To avoid multicollinearity in logistic regression, we recommend joint modeling of parental ages as a vector of outcome variables using MGLM. PMID:22230961
An analytics approach to designing patient centered medical homes.
Ajorlou, Saeede; Shams, Issac; Yang, Kai
2015-03-01
Recently the patient centered medical home (PCMH) model has become a popular team based approach focused on delivering more streamlined care to patients. In current practices of medical homes, a clinical based prediction frame is recommended because it can help match the portfolio capacity of PCMH teams with the actual load generated by a set of patients. Without such balances in clinical supply and demand, issues such as excessive under and over utilization of physicians, long waiting time for receiving the appropriate treatment, and non-continuity of care will eliminate many advantages of the medical home strategy. In this paper, by using the hierarchical generalized linear model with multivariate responses, we develop a clinical workload prediction model for care portfolio demands in a Bayesian framework. The model allows for heterogeneous variances and unstructured covariance matrices for nested random effects that arise through complex hierarchical care systems. We show that using a multivariate approach substantially enhances the precision of workload predictions at both primary and non primary care levels. We also demonstrate that care demands depend not only on patient demographics but also on other utilization factors, such as length of stay. Our analyses of a recent data from Veteran Health Administration further indicate that risk adjustment for patient health conditions can considerably improve the prediction power of the model.
HIV-related stigma in pregnancy and early postpartum of mothers living with HIV in Ontario, Canada.
Ion, Allyson; Wagner, Anne C; Greene, Saara; Loutfy, Mona R
2017-02-01
HIV-related stigma is associated with many psychological challenges; however, minimal research has explored how perceived HIV-related stigma intersects with psychosocial issues that mothers living with HIV may experience including depression, perceived stress and social isolation. The present study aims to describe the correlates and predictors of HIV-related stigma in a cohort of women living with HIV (WLWH) from across Ontario, Canada during pregnancy and early postpartum. From March 2011 to December 2012, WLWH ≥ 18 years (n = 77) completed a study instrument measuring independent variables including sociodemographic characteristics, perceived stress, depression symptoms, social isolation, social support and perceived racism in the third trimester and 3, 6 and 12 months postpartum. Multivariable linear regression was employed to explore the relationship between HIV-related stigma and multiple independent variables. HIV-related stigma generally increased from pregnancy to postpartum; however, there were no significant differences in HIV-related stigma across all study time points. In multivariable regression, depression symptoms and perceived racism were significant predictors of overall HIV-related stigma from pregnancy to postpartum. The present analysis contributes to our understanding of HIV-related stigma throughout the pregnancy-motherhood trajectory for WLWH including the interactional relationship between HIV-related stigma and other psychosocial variables, most notably, depression and racism.
Relationships between heart rate and age, bodyweight and breed in 10,849 dogs.
Hezzell, M J; Dennis, S G; Humm, K; Agee, L; Boswood, A
2013-06-01
To evaluate relationships between heart rate and clinical variables in healthy dogs and dogs examined at a referral hospital. Clinical data were extracted from the electronic patient records of a first opinion group (5000 healthy dogs) and a referral hospital (5849 dogs). Univariable and multi-variable general linear models were used to assess associations between heart rate and clinical characteristics. Separate multi-variable models were constructed for first opinion and referral populations. In healthy dogs, heart rate was negatively associated with bodyweight (P<0.001) but was higher in Chihuahuas. The mean difference in heart rate between a 5 and 55 kg dog was 10.5 beats per minute. In dogs presenting to a referral hospital, heart rate was negatively associated with bodyweight (P<0.001) and the following breeds; border collie, golden retriever, Labrador retriever, springer spaniel and West Highland white terrier and positively associated with age, admitting service (emergency and critical care, emergency first opinion and cardiology) and the following breeds; Cavalier King Charles spaniel, Staffordshire bull terrier and Yorkshire terrier. Bodyweight, age, breed and disease status all influence heart rate in dogs, although these factors account for a relatively small proportion of the overall variability in heart rate. © 2013 British Small Animal Veterinary Association.
Low Social Status Markers: Do They Predict Depressive Symptoms in Adolescence?
Jackson, Benita; Goodman, Elizabeth
2011-07-01
Some markers of social disadvantage are associated robustly with depressive symptoms among adolescents: female gender and lower socioeconomic status (SES), respectively. Others are associated equivocally, notably Black v. White race/ethnicity. Few studies examine whether markers of social disadvantage by gender, SES, and race/ethnicity jointly predict self-reported depressive symptoms during adolescence; this was our goal. Secondary analyses were conducted on data from a socioeconomically diverse community-based cohort study of non-Hispanic Black and White adolescents (N = 1,263, 50.4% female). Multivariable general linear models tested if female gender, Black race/ethnicity, and lower SES (assessed by parent education and household income), and their interactions predicted greater depressive symptoms reported on the Center for Epidemiological Studies-Depression scale. Models adjusted for age and pubertal status. Univariate analyses revealed more depressive symptoms in females, Blacks, and participants with lower SES. Multivariable models showed females across both racial/ethnic groups reported greater depressive symptoms; Blacks demonstrated more depressive symptoms than did Whites but when SES was included this association disappeared. Exploratory analyses suggested Blacks gained less mental health benefit from increased SES. However there were no statistically significant interactions among gender, race/ethnicity, or SES. Taken together, we conclude that complex patterning among low social status domains within gender, race/ethnicity, and SES predicts depressive symptoms among adolescents.
Noise and drift analysis of non-equally spaced timing data
NASA Technical Reports Server (NTRS)
Vernotte, F.; Zalamansky, G.; Lantz, E.
1994-01-01
Generally, it is possible to obtain equally spaced timing data from oscillators. The measurement of the drifts and noises affecting oscillators is then performed by using a variance (Allan variance, modified Allan variance, or time variance) or a system of several variances (multivariance method). However, in some cases, several samples, or even several sets of samples, are missing. In the case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in time. Nevertheless, since some observations are very close together (one minute) and since the timing data sequence is very long (more than ten years), information on both short-term and long-term stability is available. Unfortunately, a direct variance analysis is not possible without interpolating missing data. Different interpolation algorithms (linear interpolation, cubic spline) are used to calculate variances in order to verify that they neither lose information nor add erroneous information. A comparison of the results of the different algorithms is given. Finally, the multivariance method was adapted to the measurement sequence of the millisecond pulsar timing data: the responses of each variance of the system are calculated for each type of noise and drift, with the same missing samples as in the pulsar timing sequence. An estimation of precision, dynamics, and separability of this method is given.
Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.
Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing
2011-12-01
For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.
Lieb, Wolfgang; Benndorf, Ralf A; Benjamin, Emelia J; Sullivan, Lisa M; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H; Vasan, Ramachandran S
2009-05-01
Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. We related plasma ADMA and L-arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1919 Framingham Offspring Study participants (mean age 57 years, 58% women). Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. In our large community-based sample, plasma ADMA and l-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation.
Adam Smith in the Mathematics Classroom
ERIC Educational Resources Information Center
Lipsey, Sally I.
1975-01-01
The author describes a series of current economic ideas and situations which can be used in the mathematics classroom to illustrate the use of signed numbers, the coordinate system, univariate and multivariate functions, linear programing, and variation. (SD)
NASA Technical Reports Server (NTRS)
MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.
2005-01-01
Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.
Compulsive buying: Earlier illicit drug use, impulse buying, depression, and adult ADHD symptoms.
Brook, Judith S; Zhang, Chenshu; Brook, David W; Leukefeld, Carl G
2015-08-30
This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant's earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Compulsive Buying: Earlier Illicit Drug Use, Impulse Buying, Depression, and Adult ADHD Symptoms
Brook, Judith S.; Zhang, Chenshu; Brook, David W.; Leukefeld, Carl G.
2015-01-01
This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant’s earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. PMID:26165963
Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.
2018-03-01
We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.
Pérez-Hernández, Oscar; Giesler, Loren J.
2014-01-01
Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160
Silkens, Milou E W M; Arah, Onyebuchi A; Wagner, Cordula; Scherpbier, Albert J J A; Heineman, Maas Jan; Lombarts, Kiki M J M H
2018-05-15
Improving residents' patient safety behavior should be a priority in graduate medical education to ensure the safety of current and future patients. Supportive learning and patient safety climates may foster this behavior. This study examined the extent to which residents' self-reported patient safety behavior can be explained by the learning climate and patient safety climate of their clinical departments. The authors collected learning climate data from clinical departments in the Netherlands that used the web-based Dutch Residency Educational Climate Test between September 2015 and October 2016. They also gathered data on those departments' patient safety climate and on residents' self-reported patient safety behavior. They used generalized linear mixed models and multivariate general linear models to test for associations in the data. In total, 1,006 residents evaluated 143 departments in 31 teaching hospitals. Departments' patient safety climate was associated with residents' overall self-reported patient safety behavior (regression coefficient (b) = 0.33; 95% confidence interval (CI) = 0.14 - 0.52). Departments' learning climate was not associated with residents' patient safety behavior (b = 0.01; 95% CI = -0.17 - 0.19), although it was with their patient safety climate (b = 0.73; 95% CI = 0.69 - 0.77). Departments should focus on establishing a supportive patient safety climate to improve residents' patient safety behavior. Building a supportive learning climate might help to improve the patient safety climate and, in turn, residents' patient safety behavior.
Potiriadis, Maria; Chondros, Patty; Gilchrist, Gail; Hegarty, Kelsey; Blashki, Grant; Gunn, Jane M
2008-08-18
To report patient responses to the General Practice Assessment Questionnaire (GPAQ) as a measure of satisfaction with health care received from Australian general practitioners. A clustered cross-sectional study involving general practice patients from 30 randomly selected general practices in Victoria. Between January and December 2005, a screening survey, including a postal version of the GPAQ, was mailed to 17 780 eligible patients. Scores on the six GPAQ items. We analysed data from 7130 patients who completed the screening survey and fulfilled our eligibility criteria. Levels of patient satisfaction with general practice care were generally high: mean GPAQ scores ranged from 68.6 (95% CI, 66.1-71.0) for satisfaction with access to the practice to 84.0 (95% CI, 82.2-85.4) for satisfaction with communication. Intracluster correlations for the GPAQ items ranged from 0.016 for overall satisfaction with the practice to 0.163 for satisfaction with access to the practice. Compared with national benchmarks in the United Kingdom, the GPs and practices participating in our study were rated higher on all six GPAQ items. Multivariable mixed effects linear regression showed that patients who were older, rated their health more highly, visited their GP more frequently and saw the same GP each time tended to express greater satisfaction with their care. Generally patients reported high levels of satisfaction with GP care. Greater satisfaction with care was associated with older patients, good health, more frequent contact with the GP, and seeing the one GP consistently.
NASA Astrophysics Data System (ADS)
Saffari, Arian; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos
2013-11-01
Seasonal and spatial variation in redox activity of quasi-ultrafine particles (PM0.25) and its association with chemical species was investigated at 9 distinct sampling sites across the Los Angeles metropolitan area. Biologically reactive oxygen species (ROS) assay (generation of ROS in rat alveolar macrophage cells) was employed in order to assess the redox activity of PM0.25 samples. Seasonally, fall and summer displayed higher volume-based ROS activity (i.e. ROS activity per unit volume of air) compared to spring and winter. ROS levels were generally higher at near source and urban background sites compared to rural receptor locations, except for summer when comparable ROS activity was observed at the rural receptor sites. Univariate linear regression analysis indicated association (R > 0.7) between ROS activity and organic carbon (OC), water soluble organic carbon (WSOC) and water soluble transition metals (including Fe, V, Cr, Cd, Ni, Zn, Mn, Pb and Cu). A multivariate regression method was also used to obtain a model to predict the ROS activity of PM0.25, based on its water-soluble components. The most important species associated with ROS were Cu and La at the source site of Long Beach, and Fe and V at urban Los Angeles sites. These metals are tracers of road dust enriched with vehicular emissions (Fe and Cu) and residual oil combustion (V and La). At Riverside, a rural receptor location, WSOC and Ni (tracers of secondary organic aerosol and metal plating, respectively) were the dominant species driving the ROS activity. At Long Beach, the multivariate model was able to reconstruct the ROS activity with a high coefficient of determination (R2 = 0.82). For Los Angeles and Riverside, however, the regression models could only explain 63% and 68% of the ROS activity, respectively. The unexplained portion of the measured ROS activity is likely attributed to the nature of organic species not captured in the organic carbon (OC) measurement as well as non-linear effects, which were not included in our linear model.
Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin
2018-04-04
The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.
Vitamin D and health care costs: Results from two independent population-based cohort studies.
Hannemann, A; Wallaschofski, H; Nauck, M; Marschall, P; Flessa, S; Grabe, H J; Schmidt, C O; Baumeister, S E
2017-10-31
Vitamin D deficiency is associated with higher morbidity. However, there is few data regarding the effect of vitamin D deficiency on health care costs. This study examined the cross-sectional and longitudinal associations between the serum 25-hydroxy vitamin D concentration (25OHD) and direct health care costs and hospitalization in two independent samples of the general population in North-Eastern Germany. We studied 7217 healthy individuals from the 'Study of Health in Pomerania' (SHIP n = 3203) and the 'Study of Health in Pomerania-Trend' (SHIP-Trend n = 4014) who had valid 25OHD measurements and provided data on annual total costs, outpatient costs, hospital stays, and inpatient costs. The associations between 25OHD concentrations (modelled continuously using factional polynomials) and health care costs were examined using a generalized linear model with gamma distribution and a log link. Poisson regression models were used to estimate relative risks of hospitalization. In cross-sectional analysis of SHIP-Trend, non-linear associations between the 25OHD concentration and inpatient costs and hospitalization were detected: participants with 25OHD concentrations of 5, 10 and 15 ng/ml had 226.1%, 51.5% and 14.1%, respectively, higher inpatient costs than those with 25OHD concentrations of 20 ng/ml (overall p-value = 0.001) in multivariable models. We found a relation between lower 25OHD concentrations and increased inpatient health care costs and hospitalization. Our results thus indicate an influence of vitamin D deficiency on health care costs in the general population. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Multivariate predictors of music perception and appraisal by adult cochlear implant users.
Gfeller, Kate; Oleson, Jacob; Knutson, John F; Breheny, Patrick; Driscoll, Virginia; Olszewski, Carol
2008-02-01
The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music.
Impact of temperature on mortality in Hubei, China: a multi-county time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Yunquan; Yu, Chuanhua; Bao, Junzhe; Li, Xudong
2017-03-01
We examined the impact of extreme temperatures on mortality in 12 counties across Hubei Province, central China, during 2009-2012. Quasi-Poisson generalized linear regression combined with distributed lag non-linear model was first applied to estimate county-specific relationship between temperature and mortality. A multivariable meta-analysis was then used to pool the estimates of county-specific mortality effects of extreme cold temperature (1st percentile) and hot temperature (99th percentile). An inverse J-shaped relationship was observed between temperature and mortality at the provincial level. Heat effect occurred immediately and persisted for 2-3 days, whereas cold effect was 1-2 days delayed and much longer lasting. Higher mortality risks were observed among females, the elderly aged over 75 years, persons dying outside the hospital and those with high education attainment, especially for cold effects. Our data revealed some slight differences in heat- and cold- related mortality effects on urban and rural residents. These findings may have important implications for developing locally-based preventive and intervention strategies to reduce temperature-related mortality, especially for those susceptible subpopulations. Also, urbanization should be considered as a potential influence factor when evaluating temperature-mortality association in future researches.
Global determinants of mortality in under 5s: 10 year worldwide longitudinal study.
Hanf, Matthieu; Nacher, Mathieu; Guihenneuc, Chantal; Tubert-Bitter, Pascale; Chavance, Michel
2013-11-08
To assess at country level the association of mortality in under 5s with a large set of determinants. Longitudinal study. 193 United Nations member countries, 2000-09. Yearly data between 2000 and 2009 based on 12 world development indicators were used in a multivariable general additive mixed model allowing for non-linear relations and lag effects. National rate of deaths in under 5s per 1000 live births The model retained the variables: gross domestic product per capita; percentage of the population having access to improved water sources, having access to improved sanitation facilities, and living in urban areas; adolescent fertility rate; public health expenditure per capita; prevalence of HIV; perceived level of corruption and of violence; and mean number of years in school for women of reproductive age. Most of these variables exhibited non-linear behaviours and lag effects. By providing a unified framework for mortality in under 5s, encompassing both high and low income countries this study showed non-linear behaviours and lag effects of known or suspected determinants of mortality in this age group. Although some of the determinants presented a linear action on log mortality indicating that whatever the context, acting on them would be a pertinent strategy to effectively reduce mortality, others had a threshold based relation potentially mediated by lag effects. These findings could help designing efficient strategies to achieve maximum progress towards millennium development goal 4, which aims to reduce mortality in under 5s by two thirds between 1990 and 2015.
Vossoughi, Mehrdad; Ayatollahi, S M T; Towhidi, Mina; Ketabchi, Farzaneh
2012-03-22
The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of repeated measurements in medical research, especially when the number of measurements is relatively large. This study aimed to describe techniques based on summary measures for the analysis of linear trend repeated measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured multivariate approach (UMA). Practical guidelines based on the least squares regression slope and mean of response over time for each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies, the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated. All the methods were also employed to analyze two real data examples. Based on the simulation and example results, it was found that the SMA completely dominated the traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the LMM was not often robust and led to non-sensible results when the covariance structure for errors was misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as to such data. It was shown that summary measure is a simple, safe and powerful approach in which the loss of efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to moderate sample sizes.
Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E
2017-11-10
A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2010-07-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2013-01-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286
Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D
2016-05-01
The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.
2016-01-01
We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373
Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz
2014-02-01
Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.
NASA Astrophysics Data System (ADS)
Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.
2017-12-01
The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.
Minimization of transmission cost in decentralized control systems
NASA Technical Reports Server (NTRS)
Wang, S.-H.; Davison, E. J.
1978-01-01
This paper considers the problem of stabilizing a linear time-invariant multivariable system by using local feedback controllers and some limited information exchange among local stations. The problem of achieving a given degree of stability with minimum transmission cost is solved.
Van Hertem, T; Bahr, C; Schlageter Tello, A; Viazzi, S; Steensels, M; Romanini, C E B; Lokhorst, C; Maltz, E; Halachmi, I; Berckmans, D
2016-09-01
The objective of this study was to evaluate if a multi-sensor system (milk, activity, body posture) was a better classifier for lameness than the single-sensor-based detection models. Between September 2013 and August 2014, 3629 cow observations were collected on a commercial dairy farm in Belgium. Human locomotion scoring was used as reference for the model development and evaluation. Cow behaviour and performance was measured with existing sensors that were already present at the farm. A prototype of three-dimensional-based video recording system was used to quantify automatically the back posture of a cow. For the single predictor comparisons, a receiver operating characteristics curve was made. For the multivariate detection models, logistic regression and generalized linear mixed models (GLMM) were developed. The best lameness classification model was obtained by the multi-sensor analysis (area under the receiver operating characteristics curve (AUC)=0.757±0.029), containing a combination of milk and milking variables, activity and gait and posture variables from videos. Second, the multivariate video-based system (AUC=0.732±0.011) performed better than the multivariate milk sensors (AUC=0.604±0.026) and the multivariate behaviour sensors (AUC=0.633±0.018). The video-based system performed better than the combined behaviour and performance-based detection model (AUC=0.669±0.028), indicating that it is worthwhile to consider a video-based lameness detection system, regardless the presence of other existing sensors in the farm. The results suggest that Θ2, the feature variable for the back curvature around the hip joints, with an AUC of 0.719 is the best single predictor variable for lameness detection based on locomotion scoring. In general, this study showed that the video-based back posture monitoring system is outperforming the behaviour and performance sensing techniques for locomotion scoring-based lameness detection. A GLMM with seven specific variables (walking speed, back posture measurement, daytime activity, milk yield, lactation stage, milk peak flow rate and milk peak conductivity) is the best combination of variables for lameness classification. The accuracy on four-level lameness classification was 60.3%. The accuracy improved to 79.8% for binary lameness classification. The binary GLMM obtained a sensitivity of 68.5% and a specificity of 87.6%, which both exceed the sensitivity (52.1%±4.7%) and specificity (83.2%±2.3%) of the multi-sensor logistic regression model. This shows that the repeated measures analysis in the GLMM, taking into account the individual history of the animal, outperforms the classification when thresholds based on herd level (a statistical population) are used.
Matos, Larissa A.; Bandyopadhyay, Dipankar; Castro, Luis M.; Lachos, Victor H.
2015-01-01
In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyse these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013b) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes. PMID:26190871
Multivariate assessment of event-related potentials with the t-CWT method.
Bostanov, Vladimir
2015-11-05
Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.
Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage
NASA Astrophysics Data System (ADS)
Cepowski, Tomasz
2017-06-01
The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.
Determinants of weight gain in the action to control cardiovascular risk in diabetes trial.
Fonseca, Vivian; McDuffie, Roberta; Calles, Jorge; Cohen, Robert M; Feeney, Patricia; Feinglos, Mark; Gerstein, Hertzel C; Ismail-Beigi, Faramarz; Morgan, Timothy M; Pop-Busui, Rodica; Riddle, Matthew C
2013-08-01
Identify determinants of weight gain in people with type 2 diabetes mellitus (T2DM) allocated to intensive versus standard glycemic control in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. We studied determinants of weight gain over 2 years in 8,929 participants (4,425 intensive arm and 4,504 standard arm) with T2DM in the ACCORD trial. We used general linear models to examine the association between each baseline characteristic and weight change at the 2-year visit. We fit a linear regression of change in weight and A1C and used general linear models to examine the association between each medication at baseline and weight change at the 2-year visit, stratified by glycemia allocation. There was significantly more weight gain in the intensive glycemia arm of the trial compared with the standard arm (3.0 ± 7.0 vs. 0.3 ± 6.3 kg). On multivariate analysis, younger age, male sex, Asian race, no smoking history, high A1C, baseline BMI of 25-35, high waist circumference, baseline insulin use, and baseline metformin use were independently associated with weight gain over 2 years. Reduction of A1C from baseline was consistently associated with weight gain only when baseline A1C was elevated. Medication usage accounted for <15% of the variability of weight change, with initiation of thiazolidinedione (TZD) use the most prominent factor. Intensive participants who never took insulin or a TZD had an average weight loss of 2.9 kg during the first 2 years of the trial. In contrast, intensive participants who had never previously used insulin or TZD but began this combination after enrolling in the ACCORD trial had a weight gain of 4.6-5.3 kg at 2 years. Weight gain in ACCORD was greater with intensive than with standard treatment and generally associated with reduction of A1C from elevated baseline values. Initiation of TZD and/or insulin therapy was the most important medication-related factor associated with weight gain.
On Restructurable Control System Theory
NASA Technical Reports Server (NTRS)
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick
2015-08-01
Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.
Paula, Jonas Jardim de; Miranda, Débora Marques; Nicolato, Rodrigo; Moraes, Edgar Nunes de; Bicalho, Maria Aparecida Camargos; Malloy-Diniz, Leandro Fernandes
2013-09-01
Depressive pseudodementia (DPD) is a clinical condition characterized by depressive symptoms followed by cognitive and functional impairment characteristics of dementia. Memory complaints are one of the most related cognitive symptoms in DPD. The present study aims to assess the verbal learning profile of elderly patients with DPD. Ninety-six older adults (34 DPD and 62 controls) were assessed by neuropsychological tests including the Rey auditory-verbal learning test (RAVLT). A multivariate general linear model was used to assess group differences and controlled for demographic factors. Moderate or large effects were found on all RAVLT components, except for short-term and recognition memory. DPD impairs verbal memory, with large effect size on free recall and moderate effect size on the learning. Short-term storage and recognition memory are useful in clinical contexts when the differential diagnosis is required.
Nyamathi, Adeline; Ekstrand, Maria; Heylen, Elsa; Ramakrishna, Padma; Yadav, Kartik; Sinha, Sanjeev; Hudson, Angela; Carpenter, Catherine L; Arab, Lenore
2018-03-01
We conducted a cross-sectional examination of the physical and psychological factors related to ART adherence among a sample of 400 women living with HIV/AIDS in rural India. Interviewer-administered measures assessed adherence, internalized stigma, depressive symptoms, quality of life, food insecurity, health history and sociodemographic information. CD4 counts were measured using blood collected at screening. Findings revealed that adherence to ART was generally low, with 94% of women taking 50% or less of prescribed medication in past month. Multivariate analyses showed a non-linear association between numbers of self-reported opportunistic infections (OIs) in past 6 months (p = 0.016) and adherence, with adherence decreasing with each additional OI for 0-5 OIs. For those reporting more than 5 OIs, the association reversed direction, with increasing OIs beyond 5 associated with greater adherence.
Witt, Whitney P.; Litzelman, Kristin; Mandic, Carmen G.; Wisk, Lauren E.; Hampton, John M.; Creswell, Paul D.; Gottlieb, Carissa A.; Gangnon, Ronald E.
2011-01-01
This study examined the impact of childhood activity limitations on family financial burden in the U.S. We used ten complete panels (1996-2006) of the Medical Expenditure Panel Survey (MEPS) to evaluate the burden of out-of-pocket healthcare expenditures for 17,857 families with children aged 0-17 years. Multivariate generalized linear models were used to examine the relationship between childhood activity limitation status and both absolute and relative financial burden. Families of children with limitations had higher absolute out-of-pocket healthcare expenditures than families of children without limitations ($594.36 higher; p<0.05), and were 54% more likely to experience relative burden (p<0.05). Substantial socioeconomic disparities in financial burden were observed. Policies are needed to enable these families to access appropriate and affordable healthcare services. PMID:21552342
Mori, Yuka; Downs, Jenny; Wong, Kingsley; Heyworth, Jane; Leonard, Helen
2018-05-01
Using the Short Form 12 Health Survey this cross-sectional study examined parental well-being in caregivers of children with one of three genetic disorders associated with intellectual disability; Down syndrome, Rett syndrome and the CDKL5 disorder. Data were sourced from the Western Australian Down Syndrome (n = 291), Australian Rett Syndrome (n = 187) and International CDKL5 Disorder (n = 168) Databases. Among 596 mothers (median age, years 43.7; 24.6-72.2), emotional well-being was poorer than general female populations across age groups. Multivariate linear regression identified the poorest well-being in parents of children with the CDKL5 disorder, a rare but severe and complex encephalopathy, and negative associations with increased clinical severity irrespective of diagnosis. These findings are important for those providing healthcare and social services for these populations.
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Causality networks from multivariate time series and application to epilepsy.
Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2015-08-01
Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.
Physical Function in Older Men With Hyperkyphosis
Harrison, Stephanie L.; Fink, Howard A.; Marshall, Lynn M.; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M.; Kado, Deborah M.
2015-01-01
Background. Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. Methods. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71–98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. Results. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5–1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Conclusions. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. PMID:25431353
Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M
2016-05-01
Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.
Domain-specific cognitive impairment in patients with COPD and control subjects
Cleutjens, Fiona AHM; Franssen, Frits ME; Spruit, Martijn A; Vanfleteren, Lowie EGW; Gijsen, Candy; Dijkstra, Jeanette B; Ponds, Rudolf WHM; Wouters, Emiel FM; Janssen, Daisy JA
2017-01-01
Impaired cognitive function is increasingly recognized in COPD. Yet, the prevalence of cognitive impairment in specific cognitive domains in COPD has been poorly studied. The aim of this cross-sectional observational study was to compare the prevalence of domain-specific cognitive impairment between patients with COPD and non-COPD controls. A neuropsychological assessment was administered in 90 stable COPD patients and 90 non-COPD controls with comparable smoking status, age, and level of education. Six core tests from the Maastricht Aging Study were used to assess general cognitive impairment. By using Z-scores, compound scores were constructed for the following domains: psychomotor speed, planning, working memory, verbal memory, and cognitive flexibility. General cognitive impairment and domain-specific cognitive impairment were compared between COPD patients and controls after correction for comorbidities using multivariate linear and logistic regression models. General cognitive impairment was found in 56.7% of patients with COPD and in 13.3% of controls. Deficits in the following domains were more often present in patients with COPD after correction for comorbidities: psychomotor speed (17.8% vs 3.3%; P<0.001), planning (17.8% vs 1.1%; P<0.001), and cognitive flexibility (43.3% vs 12.2%; P<0.001). General cognitive impairment and impairments in the domains psychomotor speed, planning, and cognitive flexibility affect the COPD patients more than their matched controls. PMID:28031706
New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists.
Oliveira, Aline A; Lipinski, Célio F; Pereira, Estevão B; Honorio, Kathia M; Oliveira, Patrícia R; Weber, Karen C; Romero, Roseli A F; de Sousa, Alexsandro G; da Silva, Albérico B F
2017-10-02
The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r 2 training = 0.761, q 2 = 0.656, r 2 test = 0.746, MSE test = 0.132 and MAE test = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSE test values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r 2 test = 0.824, MSE test = 0.088 and MAE test = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r 2 test = 0.811, MSE test = 0.100 and MAE test = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment. Graphical abstract Main scaffold of the 1-arylpyrazole derivatives and the selected descriptors.
Preference-based Health status in a German outpatient cohort with multiple sclerosis
2013-01-01
Background To prospectively determine health status and health utility and its predictors in patients with multiple sclerosis (MS). Methods A total of 144 MS patients (mean age: 41.0 ±11.3y) with different subtypes (patterns of progression) and severities of MS were recruited in an outpatient university clinic in Germany. Patients completed a questionnaire at baseline (n = 144), 6 months (n = 65) and 12 months (n = 55). Health utilities were assessed using the EuroQol instrument (EQ-5D, EQ VAS). Health status was assessed by several scales (Expanded Disability Severity Scale (EDSS), Modified Fatigue Impact Scale (M-FIS), Functional Assessment of MS (FAMS), Beck Depression Inventory (BDI-II) and Multiple Sclerosis Functional Composite (MSFC)). Additionally, demographic and socioeconomic parameters were assessed. Multivariate linear and logistic regressions were applied to reveal independent predictors of health status. Results Health status is substantially diminished in MS patients and the EQ VAS was considerably lower than that of the general German population. No significant change in health-status parameters was observed over a 12-months period. Multivariate analyses revealed M-FIS, BDI-II, MSFC, and EDSS to be significant predictors of reduced health status. Socioeconomic and socio-demographic parameters such as working status, family status, number of household inhabitants, age, and gender did not prove significant in multivariate analyses. Conclusion MS considerably impairs patients’ health status. Guidelines aiming to improve self-reported health status should include treatment options for depression and fatigue. Physicians should be aware of depression and fatigue as co-morbidities. Future studies should consider the minimal clinical difference when health status is a primary outcome. PMID:24089999
Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De
2016-05-01
The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.
Determinants of sick-leave length: still limited to diagnosis elements.
Lévy, Yvan; Denis, Angélique; Fassier, Jean-Baptiste; Kellou, Nadir; Schott, Anne-Marie; Letrilliart, Laurent
2017-12-01
Sickness certification implies that a health problem impairs ability to work. However, its assessment is seldom performed by physicians. Our objective was, therefore, to assess the specific influence of functional and environmental limitations on the length of sick-leave prescriptions. We conducted a cross-sectional study in French general teaching practices and recorded 353 initial sick-leave certifications. For each of them, the functional and environmental limitations were collected using the ATCIF questionnaire, derived from the International Classification of Functioning. Data analysis was based on a linear regression multivariate model. Among the functional limitations, "pain" was the main body function impairment (22% of impairments) and "mobility" the main activity limitation (48%). An environmental barrier was identified in 39% of sick-listed patients, mainly relating to "products and technology" (20%), which refers to workplace factors. The prescription was longer in cases of activity limitations relating to "mobility" and in cases of environmental barriers relating to "products and technology". The multivariate model explained 27% of the variability of sick-leave length through diagnosis elements and only 7% through functional and contextual elements. In sick-leave prescription, a functional and contextual approach, in addition to the traditional diagnosis-based approach, could better support patients' shared understanding and follow-up, and accountability towards health authorities. Implication for Rehabilitation Although sickness certification implies that a health problem impairs ability to work, decision on sick-leave length in general practice is primarily based on diagnosis. A more functional and contextual approach could better support patients' and other health professionals' shared understanding and follow-up, and accountability towards health authorities. Such evolution requires a change of paradigm in medical education, and the way of reasoning of healthcare professionals.
RVUs poorly correlate with measures of surgical effort and complexity
Shah, Dhruvil R.; Bold, Richard J.; Yang, Anthony D.; Khatri, Vijay P.; Martinez, Steve R.; Canter, Robert J.
2014-01-01
Background The relationship between procedural relative value units (RVUs) for surgical procedures and other measures of surgeon effort are poorly characterized. We hypothesized that RVUs would poorly correlate with quantifiable metrics of surgeon effort. Methods Using the 2010 ACS-NSQIP database, we selected 11 primary CPT codes associated with high volume surgical procedures. We then identified all patients with a single reported procedural RVU who underwent non-emergent, inpatient general surgical operations. We used linear regression to correlate length of stay, operative time, overall morbidity, frequency of serious adverse events (SAEs), and mortality with RVUs. We used multivariable logistic regression using all pre-operative NSQIP variables to determine other significant predictors of our outcome measures. Results Among 14,481 patients, RVUs poorly correlated with individual length of stay (R2=0.05), operative time (R2=0.10), and mortality (R2=0.35). There was a moderate correlation between RVUs and SAEs (R2 =0.79), and RVUs and overall morbidity (R2=0.75). However, among low to mid-level RVU procedures (11 to 35) there was a poor correlation between SAEs (R2=0.15), overall morbidity (R2=0.05), and RVUs. On multivariable analysis, RVUs were significant predictors of operative time, length of stay, and SAEs (OR 1.06, 95%CI: 1.05–1.07), but RVUs were not a significant predictor of mortality (OR 1.02, 95%CI: 0.99–1.05) Conclusion For common, index general surgery procedures, the current RVU assignments poorly correlate with certain metrics of surgeon work, while moderately correlating with others. Given the increasing emphasis on measuring and tracking surgeon productivity, more objective measures of surgeon work and productivity should be developed. PMID:24953983
Describing the Elephant: Structure and Function in Multivariate Data.
ERIC Educational Resources Information Center
McDonald, Roderick P.
1986-01-01
There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family of models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain. (Author)
Linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1988-01-01
A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.
The Multidimensional Structure of Verbal Comprehension Test Items.
ERIC Educational Resources Information Center
Peled, Zimra
1984-01-01
The multidimensional structure of verbal comprehension test items was investigated. Empirical evidence was provided to support the theory that item tasks are multivariate-multiordered composites of faceted components: language, contextual knowledge, and cognitive operation. Linear and circular properties of cylindrical manifestation were…
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert
1989-01-01
In the design and analysis of robust control systems for uncertain plants, the technique of formulating what is termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents the transfer function matrix M(s) of the nominal system, and delta represents an uncertainty matrix acting on M(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty. Since have a delta matrix of minimum order would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta model would be useful. A generalized method of obtaining a minimal M-delta structure for systems with real parameter variations is given.
Multivariate meta-analysis using individual participant data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2016-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484
Sick of our loans: Student borrowing and the mental health of young adults in the United States.
Walsemann, Katrina M; Gee, Gilbert C; Gentile, Danielle
2015-01-01
Student loans are increasingly important and commonplace, especially among recent cohorts of young adults in the United States. These loans facilitate the acquisition of human capital in the form of education, but may also lead to stress and worries related to repayment. This study investigated two questions: 1) what is the association between the cumulative amount of student loans borrowed over the course of schooling and psychological functioning when individuals are 25-31 years old; and 2) what is the association between annual student loan borrowing and psychological functioning among currently enrolled college students? We also examined whether these relationships varied by parental wealth, college enrollment history (e.g. 2-year versus 4-year college), and educational attainment (for cumulative student loans only). We analyzed data from the National Longitudinal Survey of Youth 1997 (NLSY97), a nationally representative sample of young adults in the United States. Analyses employed multivariate linear regression and within-person fixed-effects models. Student loans were associated with poorer psychological functioning, adjusting for covariates, in both the multivariate linear regression and the within-person fixed effects models. This association varied by level of parental wealth in the multivariate linear regression models only, and did not vary by college enrollment history or educational attainment. The present findings raise novel questions for further research regarding student loan debt and the possible spillover effects on other life circumstances, such as occupational trajectories and health inequities. The study of student loans is even more timely and significant given the ongoing rise in the costs of higher education. Copyright © 2014 Elsevier Ltd. All rights reserved.
Roberts, Bayard; Damundu, Eliaba Yona; Lomoro, Olivia; Sondorp, Egbert
2010-08-27
There remains limited evidence on how armed conflict affects overall physical and mental well-being rather than specific physical or mental health conditions. The aim of this study was to investigate the influence of demographic characteristics, living conditions, and violent and traumatic events on general physical and mental health in Southern Sudan which is emerging from 20 years of armed conflict. A cross-sectional survey of 1228 adults was conducted in November 2007 in the town of Juba, the capital of Southern Sudan. Multivariate linear regression analysis was used to investigate the associations and relative influence of variables in three models of demographic characteristics, living conditions, and trauma exposure, on general physical and mental health status. These models were run separately and also as a combined model. Data quality and the internal consistency of the health status instrument (SF-8) were assessed. The variables in the multivariate analysis (combined model) with negative coefficients of association with general physical health and mental health (i.e. worse health), respectively, were being female (coef. -2.47; -2.63), higher age (coef.-0.16; -0.17), absence of soap in the household (physical health coef. -2.24), and experiencing within the past 12 months a lack of food and/or water (coef. -1.46; -2.27) and lack of medical care (coef.-3.51; -3.17). A number of trauma variables and cumulative exposure to trauma showed an association with physical and mental health (see main text for data). There was limited variance in results when each of the three models were run separately and when they were combined, suggesting the pervasive influence of these variables. The SF-8 showed good data quality and internal consistency. This study provides evidence on the pervasive influence of demographic characteristics, living conditions, and violent and traumatic events on the general physical and mental health of a conflict-affected population in Southern Sudan, and highlights the importance of addressing all these influences on overall health.
2010-01-01
Background There remains limited evidence on how armed conflict affects overall physical and mental well-being rather than specific physical or mental health conditions. The aim of this study was to investigate the influence of demographic characteristics, living conditions, and violent and traumatic events on general physical and mental health in Southern Sudan which is emerging from 20 years of armed conflict. Methods A cross-sectional survey of 1228 adults was conducted in November 2007 in the town of Juba, the capital of Southern Sudan. Multivariate linear regression analysis was used to investigate the associations and relative influence of variables in three models of demographic characteristics, living conditions, and trauma exposure, on general physical and mental health status. These models were run separately and also as a combined model. Data quality and the internal consistency of the health status instrument (SF-8) were assessed. Results The variables in the multivariate analysis (combined model) with negative coefficients of association with general physical health and mental health (i.e. worse health), respectively, were being female (coef. -2.47; -2.63), higher age (coef.-0.16; -0.17), absence of soap in the household (physical health coef. -2.24), and experiencing within the past 12 months a lack of food and/or water (coef. -1.46; -2.27) and lack of medical care (coef.-3.51; -3.17). A number of trauma variables and cumulative exposure to trauma showed an association with physical and mental health (see main text for data). There was limited variance in results when each of the three models were run separately and when they were combined, suggesting the pervasive influence of these variables. The SF-8 showed good data quality and internal consistency. Conclusions This study provides evidence on the pervasive influence of demographic characteristics, living conditions, and violent and traumatic events on the general physical and mental health of a conflict-affected population in Southern Sudan, and highlights the importance of addressing all these influences on overall health. PMID:20799956
Impact of Residency Training Level on the Surgical Quality Following General Surgery Procedures.
Loiero, Dominik; Slankamenac, Maja; Clavien, Pierre-Alain; Slankamenac, Ksenija
2017-11-01
To investigate the safety of surgical performance by residents of different training level performing common general surgical procedures. Data were consecutively collected from all patients undergoing general surgical procedures such as laparoscopic cholecystectomy, laparoscopic appendectomy, inguinal, femoral and umbilical hernia repair from 2005 to 2011 at the Department of Surgery of the University Hospital of Zurich, Switzerland. The operating surgeons were grouped into junior residents, senior residents and consultants. The comprehensive complication index (CCI) representing the overall number and severity of all postoperative complications served as primary safety endpoint. A multivariable linear regression analysis was used to analyze differences between groups. Additionally, we focused on the impact of senior residents assisting junior residents on postoperative outcome comparing to consultants. During the observed time, 2715 patients underwent a general surgical procedure. In 1114 times, a senior resident operated and in 669 procedures junior residents performed the surgery. The overall postoperative morbidity quantified by the CCI was for consultants 5.0 (SD 10.7), for senior residents 3.5 (8.2) and for junior residents 3.6 (8.3). After adjusting for possible confounders, no difference between groups concerning the postoperative complications was detected. There is also no difference in postoperative complications detectable if junior residents were assisted by consultants then if assisted by senior residents. Patient safety is ensured in general surgery when performed by surgical junior residents. Senior residents are able to adopt the role of the teaching surgeon in charge without compromising patients' safety.
Serum bilirubin levels are inversely associated with PAI-1 and fibrinogen in Korean subjects.
Cho, Hyun Sun; Lee, Sung Won; Kim, Eun Sook; Shin, Juyoung; Moon, Sung Dae; Han, Je Ho; Cha, Bong Yun
2016-01-01
Oxidative stress may contribute to atherosclerosis and increased activation of the coagulation pathway. Bilirubin may reduce activation of the hemostatic system to inhibit oxidative stress, which would explain its cardioprotective properties shown in many epidemiological studies. This study investigated the association of serum bilirubin with fibrinogen and plasminogen activator inhibitor-1 (PAI-1), respectively. A cross-sectional analysis was performed on 968 subjects (mean age, 56.0 ± 11.2 years; 61.1% men) undergoing a general health checkup. Serum biochemistry was analyzed including bilirubin subtypes, insulin resistance (using homeostasis model of assessment [HOMA]), C-reactive protein (CRP), fibrinogen, and PAI-1. Compared with subjects with a total bilirubin (TB) concentration of <10.0 μmol/L, those with a TB concentration of >17.1 μmol/L had a smaller waist circumference, a lower triglyceride level, a lower prevalence of metabolic syndrome, and decreased HOMA-IR and CRP levels. Correlation analysis revealed linear relationships of fibrinogen with TB and direct bilirubin (DB), whereas PAI-1 was correlated with DB. After adjustment for confounding factors, bilirubin levels were inversely associated with fibrinogen and PAI-1 levels, respectively. Multivariate regression models showed a negative linear relationship between all types of bilirubin and fibrinogen, whereas there was a significant linear relationship between PAI-1 and DB. High bilirubin concentrations were independently associated with low levels of fibrinogen and PAI-1, respectively. The association between TB and PAI-1 was confined to the highest TB concentration category whereas DB showed a linear association with PAI-1. Bilirubin may protect against the development of atherothrombosis by reducing the hemostatic response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Aspects of porosity prediction using multivariate linear regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrnes, A.P.; Wilson, M.D.
1991-03-01
Highly accurate multiple linear regression models have been developed for sandstones of diverse compositions. Porosity reduction or enhancement processes are controlled by the fundamental variables, Pressure (P), Temperature (T), Time (t), and Composition (X), where composition includes mineralogy, size, sorting, fluid composition, etc. The multiple linear regression equation, of which all linear porosity prediction models are subsets, takes the generalized form: Porosity = C{sub 0} + C{sub 1}(P) + C{sub 2}(T) + C{sub 3}(X) + C{sub 4}(t) + C{sub 5}(PT) + C{sub 6}(PX) + C{sub 7}(Pt) + C{sub 8}(TX) + C{sub 9}(Tt) + C{sub 10}(Xt) + C{sub 11}(PTX) + C{submore » 12}(PXt) + C{sub 13}(PTt) + C{sub 14}(TXt) + C{sub 15}(PTXt). The first four primary variables are often interactive, thus requiring terms involving two or more primary variables (the form shown implies interaction and not necessarily multiplication). The final terms used may also involve simple mathematic transforms such as log X, e{sup T}, X{sup 2}, or more complex transformations such as the Time-Temperature Index (TTI). The X term in the equation above represents a suite of compositional variable and, therefore, a fully expanded equation may include a series of terms incorporating these variables. Numerous published bivariate porosity prediction models involving P (or depth) or Tt (TTI) are effective to a degree, largely because of the high degree of colinearity between p and TTI. However, all such bivariate models ignore the unique contributions of P and Tt, as well as various X terms. These simpler models become poor predictors in regions where colinear relations change, were important variables have been ignored, or where the database does not include a sufficient range or weight distribution for the critical variables.« less
Han, Dong-Hun; Kim, Mi-Sun; Shin, Hye-Sun; Park, Kyung Pyo; Kim, Hyun-Duck
2013-06-01
Nitric oxide (NO) is known to play an important role in many biologic systems, although the relationship between NO metabolites and periodontitis remains controversial. Moreover, little evidence of an association between salivary NO (S-NO) and periodontitis in the general population has been reported. This study aims to investigate the relationship between S-NO and periodontitis in an elderly Korean population. A cross-sectional study was conducted using participants and salivary samples from Sunchang Elderly Cohort Study. The total number of final participants was 242 (91 males and 151 females; 48 to 93 years old). Periodontitis was determined by a clinical attachment loss of >6 mm at six probe points on 12 index teeth. NO was measured in unstimulated saliva via the Griess reaction. Sociodemographic status, general/oral health, and health-related behaviors were investigated as confounders. Bivariate analysis and multivariable linear regression analyses including confounders were applied. After controlling for age, sex, education, salivary flow rate, number of teeth, smoking status, physical activity, hypertension, and diabetes, three metabolites of S-NO (total NO, nitrite, and nitrate) were independently associated with the percentage of probe points exhibiting periodontitis. Of these linear associations, total NO was found to have the strongest correlation with periodontitis (partial r = 0.181, P = 0.009). These associations were most pronounced in females (except for nitrate), non-smokers, those without hypertension, and those without diabetes. Our data suggest that high concentrations of S-NO are associated with severe periodontitis. Thus, S-NO may serve as a potential biologic marker for detecting and monitoring periodontitis.
Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures
Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.
2014-01-01
Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295
NASA Astrophysics Data System (ADS)
Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan
2013-01-01
The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.
Evaluation of an F100 multivariable control using a real-time engine simulation
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Skira, C.
1977-01-01
The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.
Mino, H
2007-01-01
To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
Fierce, Laura; McGraw, Robert L.
2017-07-26
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierce, Laura; McGraw, Robert L.
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk
2009-01-12
An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
Ferreira, Ana Paula A; Póvoa, Luciana C; Zanier, José F C; Ferreira, Arthur S
2017-02-01
The aim of this study was to develop and validate a multivariate prediction model, guided by palpation and personal information, for locating the seventh cervical spinous process (C7SP). A single-blinded, cross-sectional study at a primary to tertiary health care center was conducted for model development and temporal validation. One-hundred sixty participants were prospectively included for model development (n = 80) and time-split validation stages (n = 80). The C7SP was located using the thorax-rib static method (TRSM). Participants underwent chest radiography for assessment of the inner body structure located with TRSM and using radio-opaque markers placed over the skin. Age, sex, height, body mass, body mass index, and vertex-marker distance (D V-M ) were used to predict the distance from the C7SP to the vertex (D V-C7 ). Multivariate linear regression modeling, limits of agreement plot, histogram of residues, receiver operating characteristic curves, and confusion tables were analyzed. The multivariate linear prediction model for D V-C7 (in centimeters) was D V-C7 = 0.986D V-M + 0.018(mass) + 0.014(age) - 1.008. Receiver operating characteristic curves had better discrimination of D V-C7 (area under the curve = 0.661; 95% confidence interval = 0.541-0.782; P = .015) than D V-M (area under the curve = 0.480; 95% confidence interval = 0.345-0.614; P = .761), with respective cutoff points at 23.40 cm (sensitivity = 41%, specificity = 63%) and 24.75 cm (sensitivity = 69%, specificity = 52%). The C7SP was correctly located more often when using predicted D V-C7 in the validation sample than when using the TRSM in the development sample: n = 53 (66%) vs n = 32 (40%), P < .001. Better accuracy was obtained when locating the C7SP by use of a multivariate model that incorporates palpation and personal information. Copyright © 2016. Published by Elsevier Inc.
Lieb, Wolfgang; Benndorf, Ralf A.; Benjamin, Emelia J.; Sullivan, Lisa M.; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H.; Vasan, Ramachandran S.
2009-01-01
Objective Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. Methods We related plasma ADMA and L-Arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1,919 Framingham Offspring Study participants (mean age 57 years, 58 % women). Results Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. Conclusion In our large community-based sample, plasma ADMA and L-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation. PMID:18829028
Gender differences in health-related quality of life of adolescents with cystic fibrosis
Arrington-Sanders, Renata; Yi, Michael S; Tsevat, Joel; Wilmott, Robert W; Mrus, Joseph M; Britto, Maria T
2006-01-01
Background Female patients with cystic fibrosis (CF) have consistently poorer survival rates than males across all ages. To determine if gender differences exist in health-related quality of life (HRQOL) of adolescent patients with CF, we performed a cross-section analysis of CF patients recruited from 2 medical centers in 2 cities during 1997–2001. Methods We used the 87-item child self-report form of the Child Health Questionnaire to measure 12 health domains. Data was also collected on age and forced expiratory volume in 1 second (FEV1). We analyzed data from 98 subjects and performed univariate analyses and linear regression or ordinal logistic regression for multivariable analyses. Results The mean (SD) age was 14.6 (2.5) years; 50 (51.0%) were female; and mean FEV1 was 71.6% (25.6%) of predicted. There were no statistically significant gender differences in age or FEV1. In univariate analyses, females reported significantly poorer HRQOL in 5 of the 12 domains. In multivariable analyses controlling for FEV1 and age, we found that female gender was associated with significantly lower global health (p < 0.05), mental health (p < 0.01), and general health perceptions (p < 0.05) scores. Conclusion Further research will need to focus on the causes of these differences in HRQOL and on potential interventions to improve HRQOL of adolescent patients with CF. PMID:16433917
Risk Factors for Reduced Salivary Flow Rate in a Japanese Population: The Hisayama Study
Takeuchi, Kenji; Furuta, Michiko; Takeshita, Toru; Shibata, Yukie; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Yamashita, Yoshihisa
2015-01-01
The purpose of this study was to determine distinct risk factors causing reduced salivary flow rate in a community-dwelling population using a prospective cohort study design. This was a 5-year follow-up survey of 1,377 community-dwelling Japanese individuals aged ≥40 years. The salivary flow rate was evaluated at baseline and follow-up by collecting stimulated saliva. Data on demographic characteristics, use of medication, and general and oral health status were obtained at baseline. The relationship between reduced salivary flow rate during the follow-up period and its predictors was evaluated after adjustment for confounding factors. In a multivariate logistic regression model, higher age and plaque score and lower serum albumin levels were significantly associated with greater odds of an obvious reduction in salivary flow rate (age per decade, odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.03–1.51; serum albumin levels <4 g/dL, OR = 1.60, 95% CI = 1.04–2.46; plaque score ≥1, OR = 1.53, 95% CI = 1.04–2.24). In a multivariate linear regression model, age and plaque score remained independently associated with the increased rate of reduced salivary flow. These results suggest that aging and plaque score are important predictors of reduced salivary flow rate in Japanese adults. PMID:25705657
Chang, Sherilyn; Ong, Hui Lin; Seow, Esmond; Chua, Boon Yiang; Abdin, Edimansyah; Samari, Ellaisha; Chong, Siow Ann; Subramaniam, Mythily
2017-01-01
Objectives To assess stigma towards people with mental illness among Singapore medical and nursing students using the Opening Minds Stigma Scale for Health Care Providers (OMS-HC), and to examine the relationship of students’ stigmatising attitudes with sociodemographic and education factors. Design and setting Cross-sectional study conducted in Singapore Participants The study was conducted among 1002 healthcare (502 medical and 500 nursing) students during April to September 2016. Students had to be Singapore citizens or permanent residents and enrolled in public educational institutions to be included in the study. The mean (SD) age of the participants was 21.3 (3.3) years, with the majority being females (71.1%). 75.2% of the participants were Chinese, 14.1% were Malays, and 10.7% were either Indians or of other ethnicity. Methods Factor analysis was conducted to validate the OMS-HC scale in the study sample and to examine its factor structure. Descriptive statistics and multivariate linear regression were used to examine sociodemographic and education correlates. Results Factor analysis revealed a three-factor structure with 14 items. The factors were labelled as attitudes towards help-seeking and people with mental illness, social distance and disclosure. Multivariable linear regression analysis showed that medical students were found to be associated with lower total OMS-HC scores (P<0.05), less negative attitudes (P<0.001) and greater disclosure (P<0.05) than nursing students. Students who had a monthly household income of below S$4000 had more unfavourable attitudes than those with an income of SGD$10 000 and above (P<0.05). Having attended clinical placement was associated with more negative attitudes (P<0.05) among the students. Conclusion Healthcare students generally possessed positive attitudes towards help-seeking and persons with mental illness, though they preferred not to disclose their own mental health condition. Academic curriculum may need to enhance the component of mental health training, particularly on reducing stigma in certain groups of students. PMID:29208617
Egg consumption and risk of type 2 diabetes among African Americans: The Jackson Heart Study
Djoussé, Luc; Petrone, Andrew B; Hickson, DeMarc A; Talegawkar, Sameera A.; Dubbert, Patricia M; Taylor, Herman; Tucker, Katherine L
2015-01-01
Background and Aims Type 2 diabetes (DM) disproportionally affects African Americans. Data on the association between egg consumption and risk of DM are sparse. We sought to examine whether egg consumption is associated with the prevalence and incidence of DM among African Americans. Methods We analyzed baseline data from 4,568 participants of the Jackson Heart Study. Egg consumption was obtained using a food frequency questionnaire designed for this population. We used generalized estimating equations to calculate adjusted prevalence ratios of DM and Cox regression to estimate hazard ratios of DM with corresponding 95% confidence intervals (CI). Results The average age was 55±13 years and 64% of subjects were women. The median frequency of egg consumption was 2/week for men and 1/week for women. The prevalence of DM was 22% overall (21% of men and 23% of women). Multivariable adjusted prevalence ratio [PR(95% CI)] for DM were: 1.00 (ref), 1.14 (0.90–1.44), 1.33 (1.04–1.70), 1.33 (1.06–1.68), 1.26 (0.99–1.61), and 1.52 (1.17–1.97) for egg consumption of <1/month, 1–3/month, 1/week, 2/week, 3–4/week, and 5+/week, respectively, p for linear trend 0.0024. Corresponding multivariable adjusted hazard ratios were 1.00 (ref), 0.88 (0.65–1.19), 0.94 (0.68–1.30), 0.91 (0.66–1.25), 1.11 (0.81–1.52), and 1.17 (0.81–1.70), respectively, during a mean follow up of 7.3 years (p for linear trend 0.22). Conclusions While egg consumption was positively associated with prevalent DM, prospective analysis did not show an association of egg intake with incidence of DM among African Americans. PMID:25971658
NASA Astrophysics Data System (ADS)
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.
Gregson, Simon; Dharmayat, Kanika; Pereboom, Monique; Takaruza, Albert; Mugurungi, Owen; Schur, Nadine; Nyamukapa, Constance A.
2016-01-01
Objective National estimates of HIV trends in generalised epidemics rely on HIV prevalence data from antenatal clinic (ANC) surveillance. We investigate whether HIV prevalence trends in ANC data reflect trends in men and women in the general population during the scale-up of anti-retroviral treatment (ART) in Manicaland, Zimbabwe. Methods Trends in HIV prevalence in local ANC attendees and adults aged 15-49yrs in towns, agricultural estates, and villages were compared using five rounds of parallel ANC (N≈1,200) and general-population surveys (N≈10,000) and multi-variable log-linear regression. Changes in the age-pattern of HIV prevalence and the age-distribution of ANC attendees were compared with those in the general population. Age-specific pregnancy prevalence rates were compared by HIV infection and ART status. Results Cumulatively, from 1998-2000 to 2009-2011, HIV prevalence fell by 60.0% (95% CI, 51.1%-67.3%) in ANC surveillance data and by 34.3% (30.8%-37.7%) in the general population. Most of the difference arose following the introduction of ART (2006-2011). The estates and villages reflected this overall pattern but HIV prevalence in the towns was lower at local ANCs than in the general population, largely due to attendance by pregnant women from outlying (lower prevalence) areas. The ageing of people living with HIV in the general population (52.4% aged >35yrs, 2009-2011) was under-represented in the ANC data (12.6%) due to lower fertility in older and HIV-infected women. Conclusion After the introduction of ART in Manicaland, HIV prevalence declined more steeply in ANC surveillance data than in the general population. Models used for HIV estimates must reflect this change in bias. PMID:26372390
NASA Astrophysics Data System (ADS)
Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan
2018-05-01
Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.
NASA Astrophysics Data System (ADS)
Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran
2018-03-01
This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).
Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.
Lin, Tsung-I; Wang, Wan-Lun
2017-10-01
In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena
1993-01-01
This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.
Hussein, Shaimaa H; Almajran, Abdullah; Albatineh, Ahmed N
2018-05-03
The purpose of this study is to estimate the prevalence of health literacy among patients with type II diabetes and investigate its association with several covariates. No studies were conducted in the Arabian Gulf region characterizing such factors for this population. A cross sectional study was implemented in which 359 type II diabetes patients were recruited from diabetes centers across Kuwait. Health literacy was measured by STOFHLA. Multivariate linear regression was applied to investigate the relationship between health literacy and several covariates. About 44.5% had inadequate, 19.5% marginal, and 35.5% adequate health literacy. Patients with inadequate health literacy were more likely to be older, females, widowed, low education, with income less than 500 KD/month. Multivariate linear regression indicated residence, nationality, education level, and age were significantly associated with health literacy. Adding marital status and gender, hierarchical linear regression revealed that 43.4% of the variability was accounted for. Inadequate health literacy is high in Kuwait. Interventions should be implemented to improve health literacy. This will reduce the prevalence of diabetes-related complications, produce better diabetes outcomes, and improve patients' quality-of-life. Health literacy should be an integral part to health promotion and chronic diseases' management programs in Kuwait. Copyright © 2018 Elsevier B.V. All rights reserved.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Multivariate Predictors of Music Perception and Appraisal by Adult Cochlear Implant Users
Gfeller, Kate; Oleson, Jacob; Knutson, John F.; Breheny, Patrick; Driscoll, Virginia; Olszewski, Carol
2009-01-01
The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music. PMID:18669126
Robust Nonlinear Causality Analysis of Nonstationary Multivariate Physiological Time Series.
Schack, Tim; Muma, Michael; Feng, Mengling; Guan, Cuntai; Zoubir, Abdelhak M
2018-06-01
An important research area in biomedical signal processing is that of quantifying the relationship between simultaneously observed time series and to reveal interactions between the signals. Since biomedical signals are potentially nonstationary and the measurements may contain outliers and artifacts, we introduce a robust time-varying generalized partial directed coherence (rTV-gPDC) function. The proposed method, which is based on a robust estimator of the time-varying autoregressive (TVAR) parameters, is capable of revealing directed interactions between signals. By definition, the rTV-gPDC only displays the linear relationships between the signals. We therefore suggest to approximate the residuals of the TVAR process, which potentially carry information about the nonlinear causality by a piece-wise linear time-varying moving-average model. The performance of the proposed method is assessed via extensive simulations. To illustrate the method's applicability to real-world problems, it is applied to a neurophysiological study that involves intracranial pressure, arterial blood pressure, and brain tissue oxygenation level (PtiO2) measurements. The rTV-gPDC reveals causal patterns that are in accordance with expected cardiosudoral meachanisms and potentially provides new insights regarding traumatic brain injuries. The rTV-gPDC is not restricted to the above problem but can be useful in revealing interactions in a broad range of applications.
Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun
2018-02-21
Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.
Bone Mass in Boys with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Calarge, Chadi A.; Schlechte, Janet A.
2017-01-01
To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…
Functional Relationships and Regression Analysis.
ERIC Educational Resources Information Center
Preece, Peter F. W.
1978-01-01
Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Song, Mi-Kyung; Paul, Sudeshna; Ward, Sandra E; Gilet, Constance A; Hladik, Gerald A
2018-01-25
This study evaluated 1-year linear trajectories of patient-reported dimensions of quality of life among patients receiving dialysis. Longitudinal observational study. 227 patients recruited from 12 dialysis centers. Sociodemographic and clinical characteristics. Participants completed an hour-long interview monthly for 12 months. Each interview included patient-reported outcome measures of overall symptoms (Edmonton Symptom Assessment System), physical functioning (Activities of Daily Living/Instrumental Activities of Daily Living), cognitive functioning (Patient's Assessment of Own Functioning Inventory), emotional well-being (Center for Epidemiologic Studies Depression Scale, State Anxiety Inventory, and Positive and Negative Affect Schedule), and spiritual well-being (Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale). For each dimension, linear and generalized linear mixed-effects models were used. Linear trajectories of the 5 dimensions were jointly modeled as a multivariate outcome over time. Although dimension scores fluctuated greatly from month to month, overall symptoms, cognitive functioning, emotional well-being, and spiritual well-being improved over time. Older compared with younger participants reported higher scores across all dimensions (all P<0.05). Higher comorbidity scores were associated with worse scores in most dimensions (all P<0.01). Nonwhite participants reported better spiritual well-being compared with their white counterparts (P<0.01). Clustering analysis of dimension scores revealed 2 distinctive clusters. Cluster 1 was characterized by better scores than those of cluster 2 in nearly all dimensions at baseline and by gradual improvement over time. Study was conducted in a single region of the United States and included mostly patients with high levels of function across the dimensions of quality of life studied. Multidimensional patient-reported quality of life varies widely from month to month regardless of whether overall trajectories improve or worsen over time. Additional research is needed to identify the best approaches to incorporate patient-reported outcome measures into dialysis care. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Force required for correcting the deformity of pectus carinatum and related multivariate analysis.
Chen, Chenghao; Zeng, Qi; Li, Zhongzhi; Zhang, Na; Yu, Jie
2017-12-24
To measure the force required for correcting pectus carinatum to the desired position and investigate the correlations of the required force with patients' gender, age, deformity type, severity and body mass index (BMI). A total of 125 patients with pectus carinatum were enrolled in the study from August 2013 to August 2016. Their gender, age, deformity type, severity and BMI were recorded. A chest wall compressor was used to measure the force required for correcting the chest wall deformity. Multivariate linear regression was used for data analysis. Among the 125 patients, 112 were males and 13 were females. Their mean age was 13.7±1.5 years old, mean Haller index was 2.1±0.2, and mean BMI was 17.4±1.8 kg/m 2 . Multivariate linear regression analysis showed that the desirable force for correcting chest wall deformity was not correlated with gender and deformity type, but positively correlated with age and BMI and negatively correlated with Haller index. The desirable force measured for correcting chest wall deformities of patients with pectus carinatum positively correlates with age and BMI and negatively correlates with Haller index. The study provides valuable information for future improvement of implanted bar, bar fixation technique, and personalized surgery. Retrospective study. Level 3-4. Copyright © 2018. Published by Elsevier Inc.
Stinchcombe, Thomas E; Zhang, Ying; Vokes, Everett E; Schiller, Joan H; Bradley, Jeffrey D; Kelly, Karen; Curran, Walter J; Schild, Steven E; Movsas, Benjamin; Clamon, Gerald; Govindan, Ramaswamy; Blumenschein, George R; Socinski, Mark A; Ready, Neal E; Akerley, Wallace L; Cohen, Harvey J; Pang, Herbert H; Wang, Xiaofei
2017-09-01
Purpose Concurrent chemoradiotherapy is standard treatment for patients with stage III non-small-cell lung cancer. Elderly patients may experience increased rates of adverse events (AEs) or less benefit from concurrent chemoradiotherapy. Patients and Methods Individual patient data were collected from 16 phase II or III trials conducted by US National Cancer Institute-supported cooperative groups of concurrent chemoradiotherapy alone or with consolidation or induction chemotherapy for stage III non-small-cell lung cancer from 1990 to 2012. Overall survival (OS), progression-free survival, and AEs were compared between patients age ≥ 70 (elderly) and those younger than 70 years (younger). Unadjusted and adjusted hazard ratios (HRs) for survival time and CIs were estimated by single-predictor and multivariable frailty Cox models. Unadjusted and adjusted odds ratio (ORs) for AEs and CIs were obtained from single-predictor and multivariable generalized linear mixed-effect models. Results A total of 2,768 patients were classified as younger and 832 as elderly. In unadjusted and multivariable models, elderly patients had worse OS (HR, 1.20; 95% CI, 1.09 to 1.31 and HR, 1.17; 95% CI, 1.07 to 1.29, respectively). In unadjusted and multivariable models, elderly and younger patients had similar progression-free survival (HR, 1.01; 95% CI, 0.93 to 1.10 and HR, 1.00; 95% CI, 0.91 to 1.09, respectively). Elderly patients had a higher rate of grade ≥ 3 AEs in unadjusted and multivariable models (OR, 1.35; 95% CI, 1.07 to 1.70 and OR, 1.38; 95% CI, 1.10 to 1.74, respectively). Grade 5 AEs were significantly higher in elderly compared with younger patients (9% v 4%; P < .01). Fewer elderly compared with younger patients completed treatment (47% v 57%; P < .01), and more discontinued treatment because of AEs (20% v 13%; P < .01), died during treatment (7.8% v 2.9%; P < .01), and refused further treatment (5.8% v 3.9%; P = .02). Conclusion Elderly patients in concurrent chemoradiotherapy trials experienced worse OS, more toxicity, and had a higher rate of death during treatment than younger patients.
Verdam, Mathilde G. E.; Oort, Frans J.
2014-01-01
Highlights Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data. A method for the investigation of measurement bias with Kronecker product restricted models. Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions. The use of curves to facilitate substantive interpretation of apparent measurement bias. Assessment of change in common factor means, after accounting for apparent measurement bias. Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks. PMID:25295016
Verdam, Mathilde G E; Oort, Frans J
2014-01-01
Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data.A method for the investigation of measurement bias with Kronecker product restricted models.Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions.The use of curves to facilitate substantive interpretation of apparent measurement bias.Assessment of change in common factor means, after accounting for apparent measurement bias.Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks.
Gupta, Deepak K; Claggett, Brian; Wells, Quinn; Cheng, Susan; Li, Man; Maruthur, Nisa; Selvin, Elizabeth; Coresh, Josef; Konety, Suma; Butler, Kenneth R; Mosley, Thomas; Boerwinkle, Eric; Hoogeveen, Ron; Ballantyne, Christie M; Solomon, Scott D
2015-01-01
Background Natriuretic peptides promote natriuresis, diuresis, and vasodilation. Experimental deficiency of natriuretic peptides leads to hypertension (HTN) and cardiac hypertrophy, conditions more common among African Americans. Hospital-based studies suggest that African Americans may have reduced circulating natriuretic peptides, as compared to Caucasians, but definitive data from community-based cohorts are lacking. Methods and Results We examined plasma N-terminal pro B-type natriuretic peptide (NTproBNP) levels according to race in 9137 Atherosclerosis Risk in Communities (ARIC) Study participants (22% African American) without prevalent cardiovascular disease at visit 4 (1996–1998). Multivariable linear and logistic regression analyses were performed adjusting for clinical covariates. Among African Americans, percent European ancestry was determined from genetic ancestry informative markers and then examined in relation to NTproBNP levels in multivariable linear regression analysis. NTproBNP levels were significantly lower in African Americans (median, 43 pg/mL; interquartile range [IQR], 18, 88) than Caucasians (median, 68 pg/mL; IQR, 36, 124; P<0.0001). In multivariable models, adjusted log NTproBNP levels were 40% lower (95% confidence interval [CI], −43, −36) in African Americans, compared to Caucasians, which was consistent across subgroups of age, gender, HTN, diabetes, insulin resistance, and obesity. African-American race was also significantly associated with having nondetectable NTproBNP (adjusted OR, 5.74; 95% CI, 4.22, 7.80). In multivariable analyses in African Americans, a 10% increase in genetic European ancestry was associated with a 7% (95% CI, 1, 13) increase in adjusted log NTproBNP. Conclusions African Americans have lower levels of plasma NTproBNP than Caucasians, which may be partially owing to genetic variation. Low natriuretic peptide levels in African Americans may contribute to the greater risk for HTN and its sequalae in this population. PMID:25999400
Physical function in older men with hyperkyphosis.
Katzman, Wendy B; Harrison, Stephanie L; Fink, Howard A; Marshall, Lynn M; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M; Kado, Deborah M
2015-05-01
Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71-98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5-1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Persson, Sophie Schön; Lindström, Petra Nilsson; Pettersson, Pär; Andersson, Ingemar
2018-05-22
The impact of positive social relationships on the health of municipal employees in the elder care sector in Sweden needs further examination. To explore the association between health and relationships among elderly care employees using a salutogenic perspective. Survey of all employees (n = 997) in special housing, home care and Disabled Support and Services in a Swedish municipality. The questionnaire, which had a salutogenic perspective, included information on self-rated health from the previously validated SHIS (Salutogenic Health Indicator Scale), psychosocial work environment and experiences, social climate, and health-promoting workplace relationships. The response rate was 69% . Results of a multivariable linear regression model showed four significant predictors of health: general work experiences, colleague belongingness and positive relationships with managers and care recipients. In another model, colleague belongingness was significantly related to satisfaction with care recipients, work, length of employment as well as general work experiences and relationships with managers. Strengthening of positive work relationships, not only between workmates but also with managers and care recipients, seems to be an essential area for employee health promotion. Colleague belongingness may be deepened by development of a positive work climate, including satisfactory work experiences, positive manager relationships and a stable work force.
A regularization corrected score method for nonlinear regression models with covariate error.
Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna
2013-03-01
Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.
Feeney, Rachel; Desha, Laura; Khan, Asaduzzaman; Ziviani, Jenny
2017-04-01
The trajectory of health-related quality-of-life (HRQoL) for children aged 4-9 years and its relationship with speech and language difficulties (SaLD) was examined using data from the Longitudinal Study of Australian Children (LSAC). Generalized linear latent and mixed modelling was used to analyse data from three waves of the LSAC across four HRQoL domains (physical, emotional, social and school functioning). Four domains of HRQoL, measured using the Paediatric Quality-of-Life Inventory (PedsQL™), were examined to find the contribution of SaLD while accounting for child-specific factors (e.g. gender, ethnicity, temperament) and family characteristics (social ecological considerations and psychosocial stressors). In multivariable analyses, one measure of SaLD, namely parent concern about receptive language, was negatively associated with all HRQoL domains. Covariates positively associated with all HRQoL domains included child's general health, maternal mental health, parental warmth and primary caregiver's engagement in the labour force. Findings suggest that SaLD are associated with reduced HRQoL. For most LSAC study children, having typical speech/language skills was a protective factor positively associated with HRQoL.
Cámara, María S; Ferroni, Félix M; De Zan, Mercedes; Goicoechea, Héctor C
2003-07-01
An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.
FACTOR ANALYTIC MODELS OF CLUSTERED MULTIVARIATE DATA WITH INFORMATIVE CENSORING
This paper describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster-level latent variables related to the primary outcomes and to the censorin...
MULTIVARIATE RECEPTOR MODELS-CURRENT PRACTICE AND FUTURE TRENDS. (R826238)
Multivariate receptor models have been applied to the analysis of air quality data for sometime. However, solving the general mixture problem is important in several other fields. This paper looks at the panoply of these models with a view of identifying common challenges and ...
MULTIVARIATERESIDUES : A Mathematica package for computing multivariate residues
NASA Astrophysics Data System (ADS)
Larsen, Kasper J.; Rietkerk, Robbert
2018-01-01
Multivariate residues appear in many different contexts in theoretical physics and algebraic geometry. In theoretical physics, they for example give the proper definition of generalized-unitarity cuts, and they play a central role in the Grassmannian formulation of the S-matrix by Arkani-Hamed et al. In realistic cases their evaluation can be non-trivial. In this paper we provide a Mathematica package for efficient evaluation of multivariate residues based on methods from computational algebraic geometry.
Comparative Research of Navy Voluntary Education at Operational Commands
2017-03-01
return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21 B. DESCRIPTIVE STATISTICS TABLES ...............................................25 C. PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1. Variables and Descriptions . Adapted from NETC (2016). .......................21
Geostatistics and petroleum geology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.
1988-01-01
This book examines purpose and use of geostatistics in exploration and development of oil and gas with an emphasis on appropriate and pertinent case studies. It present an overview of geostatistics. Topics covered include: The semivariogram; Linear estimation; Multivariate geostatistics; Nonlinear estimation; From indicator variables to nonparametric estimation; and More detail, less certainty; conditional simulation.
A modeling study of 2006 Huntington Beach (Lake Erie) beach bacteria concentrations indicates multi-variable linear regression (MLR) can effectively estimate bacteria concentrations compared to the persistence model. Our use of the Virtual Beach (VB) model affirms that fact. VB i...
USDA-ARS?s Scientific Manuscript database
There are few data on the relationship of sleep with measures of cognitive function and symptoms of depression in dialysis patients. We evaluated the relationship of sleep with cognitive function and symptoms of depression in 168 hemodialysis patients, using multivariable linear and logistic regress...
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
Dynamic Web Pages: Performance Impact on Web Servers.
ERIC Educational Resources Information Center
Kothari, Bhupesh; Claypool, Mark
2001-01-01
Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)
Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L
2016-01-01
The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n. , Camponotus androy sp. n. , Camponotus bevohitra sp. n. , Camponotus galoko sp. n. , Camponotus matsilo sp. n. , Camponotus mifaka sp. n. , Camponotus orombe sp. n. , Camponotus tafo sp. n. , Camponotus tratra sp. n. , Camponotus varatra sp. n. , and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi . This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases.
Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L.
2016-01-01
Abstract The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n., Camponotus androy sp. n., Camponotus bevohitra sp. n., Camponotus galoko sp. n., Camponotus matsilo sp. n., Camponotus mifaka sp. n., Camponotus orombe sp. n., Camponotus tafo sp. n., Camponotus tratra sp. n., Camponotus varatra sp. n., and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi. This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases. PMID:28050160
Interpretation of a compositional time series
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; van den Boogaart, K. G.
2012-04-01
Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA. In this data set, the proportion of annual precipitation falling in winter, spring, summer and autumn is considered a 4-component time series. Three invertible log-ratios are defined for calculations, balancing rainfall in autumn vs. winter, in summer vs. spring, and in autumn-winter vs. spring-summer. Results suggest a 2-year correlation range, and certain oscillatory behaviour in the last balance, which does not occur in the other two.
Yock, Adam D; Rao, Arvind; Dong, Lei; Beadle, Beth M; Garden, Adam S; Kudchadker, Rajat J; Court, Laurence E
2014-05-01
The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.
Zhang, Y J; Wu, S L; Li, H Y; Zhao, Q H; Ning, C H; Zhang, R Y; Yu, J X; Li, W; Chen, S H; Gao, J S
2018-01-24
Objective: To investigate the impact of blood pressure and age on arterial stiffness in general population. Methods: Participants who took part in 2010, 2012 and 2014 Kailuan health examination were included. Data of brachial ankle pulse wave velocity (baPWV) examination were analyzed. According to the WHO criteria of age, participants were divided into 3 age groups: 18-44 years group ( n= 11 608), 45-59 years group ( n= 12 757), above 60 years group ( n= 5 002). Participants were further divided into hypertension group and non-hypertension group according to the diagnostic criteria for hypertension (2010 Chinese guidelines for the managemengt of hypertension). Multiple linear regression analysis was used to analyze the association between systolic blood pressure (SBP) with baPWV in the total participants and then stratified by age groups. Multivariate logistic regression model was used to analyze the influence of blood pressure on arterial stiffness (baPWV≥1 400 cm/s) of various groups. Results: (1)The baseline characteristics of all participants: 35 350 participants completed 2010, 2012 and 2014 Kailuan examinations and took part in baPWV examination. 2 237 participants without blood pressure measurement values were excluded, 1 569 participants with history of peripheral artery disease were excluded, we also excluded 1 016 participants with history of cardiac-cerebral vascular disease. Data from 29 367 participants were analyzed. The age was (48.0±12.4) years old, 21 305 were males (72.5%). (2) Distribution of baPWV in various age groups: baPWV increased with aging. In non-hypertension population, baPWV in 18-44 years group, 45-59 years group, above 60 years group were as follows: 1 299.3, 1 428.7 and 1 704.6 cm/s, respectively. For hypertension participants, the respective values of baPWV were: 1 498.4, 1 640.7 and 1 921.4 cm/s. BaPWV was significantly higher in hypertension group than non-hypertension group of respective age groups ( P< 0.05). (3) Multiple linear regression analysis defined risk factors of baPWV: Multivariate linear regression analysis showed that baPWV was positively correlated with SBP( t= 39.30, P< 0.001), and same results were found in the sub-age groups ( t -value was 37.72, 27.30, 9.15, all P< 0.001, respectively) after adjustment for other confounding factors, including age, sex, pulse pressure(PP), body mass index (BMI), fasting blood glucose (FBG), total cholesterol (TC), smoking, drinking, physical exercise, antihypertensive medications, lipid-lowering medication. (4) Multivariate logistic regression analysis of baPWV-related factors: After adjustment for other confounding factors, including age, sex, PP, BMI, FBG, TC, smoking, drinking, physical exercise, antihypertensive medication, lipid-lowering medication, multivariate logistic regression analysis showed that risks for increased arterial stiffness in hypertension group were higher than those in non-hypertension group, the OR in participants with hypertension was 2.54 (2.35-2.74) in the total participants, and same results were also found in sub-age groups, the OR s were 3.22(2.86-3.63), 2.48(2.23-2.76), and 1.91(1.42-2.56), respectively, in each sub-age group. Conclusion: SBP is positively related to arterial stiffness in different age groups, and hypertension is a risk factor for increased arterial stiffness in different age groups. Clinical Trial Registry Chinese Clinical Trial Registry, ChiCTR-TNC-11001489.
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects
ERIC Educational Resources Information Center
Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle
2011-01-01
Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…
Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace
ERIC Educational Resources Information Center
Culpepper, Steven Andrew; Park, Trevor
2017-01-01
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
A Multivariate Solution of the Multivariate Ranking and Selection Problem
1980-02-01
Taneja (1972)), a ’a for a vector of constants c (Krishnaiah and Rizvi (1966)), the generalized variance ( Gnanadesikan and Gupta (1970)), iegier (1976...Olk-in, I. and Sobel, M. (1977). Selecting and Ordering Populations: A New Statistical Methodology, John Wiley & Sons, Inc., New York. Gnanadesikan
Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...
Multivariate Relationships between Statistics Anxiety and Motivational Beliefs
ERIC Educational Resources Information Center
Baloglu, Mustafa; Abbassi, Amir; Kesici, Sahin
2017-01-01
In general, anxiety has been found to be associated with motivational beliefs and the current study investigated multivariate relationships between statistics anxiety and motivational beliefs among 305 college students (60.0% women). The Statistical Anxiety Rating Scale, the Motivated Strategies for Learning Questionnaire, and a set of demographic…
Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models
ERIC Educational Resources Information Center
Liu, Qian
2011-01-01
For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, S; Lu, WG; Chen, YP
2015-03-11
A unique strategy, sequential linker installation (SLI), has been developed to construct multivariate MOFs with functional groups precisely positioned. PCN-700, a Zr-MOF with eight-connected Zr6O4(OH)(8)(H2O)(4) clusters, has been judiciously designed; the Zr-6 clusters in this MOF are arranged in such a fashion that, by replacement of terminal OH-/H2O ligands, subsequent insertion of linear dicarboxylate linkers is achieved. We demonstrate that linkers with distinct lengths and functionalities can be sequentially installed into PCN-700. Single-crystal to single-crystal transformation is realized so that the positions of the subsequently installed linkers are pinpointed via single-crystal X-ray diffraction analyses. This methodology provides a powerful toolmore » to construct multivariate MOFs with precisely positioned functionalities in the desired proximity, which would otherwise be difficult to achieve.« less
Multivariate meta-analysis using individual participant data.
Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R
2015-06-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260
An alternative to the breeder's and Lande's equations.
Houchmandzadeh, Bahram
2014-01-10
The breeder's equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) - E(Z0) to the selection differential S = E(ZW) - E(Z0) through a simple proportionality relation R = h(2)S, where the heritability coefficient h(2) is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R' = j(2)S' can be derived, regardless of the parental genotype distribution. Here R' = E(Z1) - μ and S' = E(ZW) - μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j(2) is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande's equation Δ(z) = GP(-1)S. The linearity coefficient of the alternative equation are not changed by Gaussian selection.
Which Frail Older People Are Dehydrated? The UK DRIE Study
Bunn, Diane K.; Downing, Alice; Jimoh, Florence O.; Groves, Joyce; Free, Carol; Cowap, Vicky; Potter, John F.; Hunter, Paul R.; Shepstone, Lee
2016-01-01
Background: Water-loss dehydration in older people is associated with increased mortality and disability. We aimed to assess the prevalence of dehydration in older people living in UK long-term care and associated cognitive, functional, and health characteristics. Methods: The Dehydration Recognition In our Elders (DRIE) cohort study included people aged 65 or older living in long-term care without heart or renal failure. In a cross-sectional baseline analysis, we assessed serum osmolality, previously suggested dehydration risk factors, general health, markers of continence, cognitive and functional health, nutrition status, and medications. Univariate linear regression was used to assess relationships between participant characteristics and serum osmolality, then associated characteristics entered into stepwise backwards multivariate linear regression. Results: DRIE included 188 residents (mean age 86 years, 66% women) of whom 20% were dehydrated (serum osmolality >300 mOsm/kg). Linear and logistic regression suggested that renal, cognitive, and diabetic status were consistently associated with serum osmolality and odds of dehydration, while potassium-sparing diuretics, sex, number of recent health contacts, and bladder incontinence were sometimes associated. Thirst was not associated with hydration status. Conclusions: DRIE found high prevalence of dehydration in older people living in UK long-term care, reinforcing the proposed association between cognitive and renal function and hydration. Dehydration is associated with increased mortality and disability in older people, but trials to assess effects of interventions to support healthy fluid intakes in older people living in residential care are needed to enable us to formally assess causal direction and any health benefits of increasing fluid intakes. PMID:26553658
A screening system for smear-negative pulmonary tuberculosis using artificial neural networks.
de O Souza Filho, João B; de Seixas, José Manoel; Galliez, Rafael; de Bragança Pereira, Basilio; de Q Mello, Fernanda C; Dos Santos, Alcione Miranda; Kritski, Afranio Lineu
2016-08-01
Molecular tests show low sensitivity for smear-negative pulmonary tuberculosis (PTB). A screening and risk assessment system for smear-negative PTB using artificial neural networks (ANNs) based on patient signs and symptoms is proposed. The prognostic and risk assessment models exploit a multilayer perceptron (MLP) and inspired adaptive resonance theory (iART) network. Model development considered data from 136 patients with suspected smear-negative PTB in a general hospital. MLP showed higher sensitivity (100%, 95% confidence interval (CI) 78-100%) than the other techniques, such as support vector machine (SVM) linear (86%; 95% CI 60-96%), multivariate logistic regression (MLR) (79%; 95% CI 53-93%), and classification and regression tree (CART) (71%; 95% CI 45-88%). MLR showed a slightly higher specificity (85%; 95% CI 59-96%) than MLP (80%; 95% CI 54-93%), SVM linear (75%, 95% CI 49-90%), and CART (65%; 95% CI 39-84%). In terms of the area under the receiver operating characteristic curve (AUC), the MLP model exhibited a higher value (0.918, 95% CI 0.824-1.000) than the SVM linear (0.796, 95% CI 0.651-0.970) and MLR (0.782, 95% CI 0.663-0.960) models. The significant signs and symptoms identified in risk groups are coherent with clinical practice. In settings with a high prevalence of smear-negative PTB, the system can be useful for screening and also to aid clinical practice in expediting complementary tests for higher risk patients. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Low child survival index in a multi-dimensionally poor Amerindian population in Venezuela.
Villalba, Julian A; Liu, Yushi; Alvarez, Mauyuri K; Calderon, Luisana; Canache, Merari; Cardenas, Gaudymar; Del Nogal, Berenice; Takiff, Howard E; De Waard, Jacobus H
2013-01-01
Warao Amerindians, who inhabit the Orinoco Delta, are the second largest indigenous group in Venezuela. High Warao general mortality rates were mentioned in a limited study 21 years ago. However, there have been no comprehensive studies addressing child survival across the entire population. To determine the Child Survival-Index (CSI) (ratio: still-living children/total-live births) in the Warao population, the principal causes of childhood death and the socio-demographic factors associated with childhood deaths. We conducted a cross-sectional epidemiological survey of 688 women from 97 communities in 7 different subregions of the Orinoco Delta. Data collected included socio-demographic characteristics and the reproductive history of each woman surveyed. The multidimensional poverty index (MPI) was used to classify the households as deprived across the three dimensions of the Human Development Index. Multivariable linear regression and Generalized Linear Model Procedures were used to identify socioeconomic and environmental characteristics statistically associated with the CSI. The average CSI was 73.8% ±26. The two most common causes of death were gastroenteritis/diarrhea (63%) and acute respiratory tract Infection/pneumonia (18%). Deaths in children under five years accounted for 97.3% of childhood deaths, with 54% occurring in the neonatal period or first year of life. Most of the women (95.5%) were classified as multidimensionally poor. The general MPI in the sample was 0.56. CSI was negatively correlated with MPI, maternal age, residence in a traditional dwelling and profession of the head of household other than nurse or teacher. The Warao have a low CSI which is correlated with MPI and maternal age. Infectious diseases are responsible for 85% of childhood deaths. The low socioeconomic development, lack of infrastructure and geographic and cultural isolation suggest that an integrated approach is urgently needed to improve the child survival and overall health of the Warao Amerindians.
Applicability of Type A/B alcohol dependence in the general population.
Tam, Tammy W; Mulia, Nina; Schmidt, Laura A
2014-05-01
This study examined the concurrent and predictive validity of Type A/B alcohol dependence in the general population-a typology developed in clinical populations to gauge severity of dependence. Data were drawn from Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). The sample included 1,172 alcohol-dependent drinkers at baseline who were reinterviewed three years later. Latent class analysis was used to derive Type A/B classification using variables replicating the original Type A/B typology. Predictive validity of the Type A/B classification was assessed by multivariable linear and logistic regressions. A two-class solution consistent with Babor's original Type A/B typology adequately fit the data. Type B alcoholics in the general population, compared to Type As, had higher alcohol severity and more co-occurring drug, mental, and physical health problems. In the absence of treatment services utilization, Type B drinkers had two times the odds of being alcohol dependent three years later. Among those who utilized alcohol treatment services, Type B membership was predictive of heavy drinking and drug dependence, but not alcohol dependence, three years later. Findings suggest that Type A/B classification is both generalizable to, and valid within, the US general population of alcohol dependent drinkers. Results highlight the value of treatment for mitigating the persistence of dependence among Type B alcoholics in the general population. Screening for markers of vulnerability to Type B dependence could be of clinical value for health care providers to determine appropriate intervention. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Smoothed Residual Plots for Generalized Linear Models. Technical Report #450.
ERIC Educational Resources Information Center
Brant, Rollin
Methods for examining the viability of assumptions underlying generalized linear models are considered. By appealing to the likelihood, a natural generalization of the raw residual plot for normal theory models is derived and is applied to investigating potential misspecification of the linear predictor. A smooth version of the plot is also…
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1984-01-01
Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.
Estimating the decomposition of predictive information in multivariate systems
NASA Astrophysics Data System (ADS)
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
Fu, Alex Z; Jhaveri, Mehul
2012-01-01
To evaluate breast cancer-associated healthcare cost from the payer perspective for the initial year after diagnoses of invasive breast cancer. Breast cancer is the second most common malignancy in American women. While lifetime burden-of-care studies have reported spending between $20,000 and $100,000 per patient, previous studies have not outlined first year cost in managing this disease in recently diagnosed patients. This study was a retrospective, matched cohort study of privately-insured patients. Data were from a large US employers' health claims database (January 2003-September 2008). Breast cancer cases were identified by ICD-9-CM diagnostic codes on index and confirmatory claims. A control group was identified with a ratio of 3:1, matched by demographic and health plan characteristics. Comorbidities were analyzed using the Charlson comorbidity index and AHRQ Comorbidity Software. A multivariate, log-linked, generalized linear model evaluated cost contributions of breast cancer in relation to demographic factors, comorbidities, and plan type. The study included 35,057 cases and 105,171 matched controls (mean age 52 years). Common comorbidities included hypertension, diabetes, hypothyroidism, chronic pulmonary disease, and deficiency anemia. In the generalized linear model, the adjusted difference in total healthcare cost was $42,401 per patient within a year, with outpatient services responsible for most of this sum. Breast cancer-associated incremental annual costs per patient in inpatient, outpatient, and prescription categories were $5100, $37,231, and $1037, respectively. These results may not be representative of the entire US, as data were derived from breast cancer patients with private, employer-based health insurance, and lacked covariates including race/ethnicity, education, income, and disease stage. Recently diagnosed breast cancer represents a substantial economic burden for US healthcare payers.
2012-01-01
Background This study used a social capital framework to examine the relationship between a set of potential protective ('health assets') factors and the wellbeing of 15 year adolescents living in Spain and England. The overall purpose of the study was to compare the consistency of these relationships between countries and to investigate their respective relative importance. Methods Data were drawn from the 2002, English and Spanish components of the WHO Health Behaviour in School-Aged Children (HBSC) survey A total of 3,591 respondents (1884, Spain; 1707, England) aged 15, drawn from random samples of students in 215 and 80 schools respectively were included in the study. A series of univariate, bivariate and multivariate (general linear modelling and decision tree) analyses were used to establish the relationships. Results Results showed that the wellbeing of Spanish and English adolescents is similar and good. Three measures of social capital and 2 measures of social support were found to be important factors in the general linear model. Namely, family autonomy and control; family and school sense of belonging; and social support at home and school. However, there were differences in how the sub components of social capital manifest themselves in each country--feelings of autonomy of control, were more important in England and social support factors in Spain. Conclusions There is some evidence to suggest that social capital (and its related concept of social support) do travel and are applicable to young people living in Spain and England. Given the different constellation of assets found in each country, it is not possible to define exactly the precise formula for applying social capital across cultures. This should more appropriately be defined at the programme planning stage. PMID:22353283
Zang, Xiaodong; Huang, Hesuyuan; Zhuang, Zhulun; Chen, Runsen; Xie, Zongyun; Xu, Cheng; Mo, Xuming
2018-06-01
Copper is an essential element in human beings, alterations in serum copper levels could potentially have effect on human health. To date, no data are available regarding how serum copper affects cardiovascular disease (CVD) risk factors in children and adolescents. We examined the association between serum copper levels and CVD risk factors in children and adolescents. We analyzed data consisting of 1427 subjects from a nationally representative sample of the US population in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The CVD risk factors included total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, fasting glucose, glycohemoglobin, fasting insulin, and blood pressure. Multivariate and generalized linear regressions were performed to investigate associations adjusted for age, gender, ethnicity, poverty:income ratio (PIR), BMI, energy intake, and physical activity. We found significant associations between serum copper and total cholesterol (coefficient = 0.132; 95% CI 0.081, 0.182; P for trend < 0.001), glycohemoglobin (coefficient = 0.044; 95% CI 0.020, 0.069; P < 0.001), and fasting insulin (coefficient = 0.730; 95% CI 0.410, 1.050; P < 0.001) among the included participants. Moreover, in the generalized linear models, subjects with the highest copper levels demonstrated a 0.83% (95% CI 0.44%, 1.24%) greater increase in serum total cholesterol (p for trend < 0.001) when compared to participants with the lowest copper concentrations. Our results provide the first epidemiological evidence that serum copper concentrations are associated with total cholesterol concentrations in children and adolescents. However, the underlying mechanisms still need further exploration.
A General Multivariate Latent Growth Model with Applications to Student Achievement
ERIC Educational Resources Information Center
Bianconcini, Silvia; Cagnone, Silvia
2012-01-01
The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context, the analysis of student performance and capabilities plays a fundamental role. In this work, the authors propose a multivariate latent growth model for studying the performances of a…
NASA Technical Reports Server (NTRS)
Sanchez Pena, Ricardo S.; Sideris, Athanasios
1988-01-01
A computer program implementing an algorithm for computing the multivariable stability margin to check the robust stability of feedback systems with real parametric uncertainty is proposed. The authors present in some detail important aspects of the program. An example is presented using lateral directional control system.
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM
ERIC Educational Resources Information Center
Mair, Patrick; Satorra, Albert; Bentler, Peter M.
2012-01-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
A Simpli ed, General Approach to Simulating from Multivariate Copula Functions
Barry Goodwin
2012-01-01
Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses \\probability{...
ERIC Educational Resources Information Center
Sun, Min; Youngs, Peter
2009-01-01
This study used Hierarchical Multivariate Linear models to investigate relationships between principals' behaviors and district principal evaluation purpose, focus, and assessed leadership activities in 13 school districts in Michigan. The study found that principals were more likely to engage in learning-centered leadership behaviors when the…
ERIC Educational Resources Information Center
Denham, Bryan E.
2009-01-01
Grounded conceptually in social cognitive theory, this research examines how personal, behavioral, and environmental factors are associated with risk perceptions of anabolic-androgenic steroids. Ordinal logistic regression and logit log-linear models applied to data gathered from high-school seniors (N = 2,160) in the 2005 Monitoring the Future…
ERIC Educational Resources Information Center
Baker, Bruce D.; Richards, Craig E.
1999-01-01
Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…
ERIC Educational Resources Information Center
Zablotsky, Benjamin; Colpe, Lisa J.; Pringle, Beverly A.; Kogan, Michael D.; Rice, Catherine; Blumberg, Stephen J.
2017-01-01
Children with autism spectrum disorder (ASD) require substantial support to address the core symptoms of ASD and co-occurring behavioral/developmental conditions. This study explores the early diagnostic experiences of school-aged children with ASD using survey data from a large probability-based national sample. Multivariate linear regressions…
ERIC Educational Resources Information Center
Abayomi, Kobi; Pizarro, Gonzalo
2013-01-01
We offer a straightforward framework for measurement of progress, across many dimensions, using cross-national social indices, which we classify as linear combinations of multivariate country level data onto a univariate score. We suggest a Bayesian approach which yields probabilistic (confidence type) intervals for the point estimates of country…
Logistic models--an odd(s) kind of regression.
Jupiter, Daniel C
2013-01-01
The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2014-09-15
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.
Estimation of value at risk in currency exchange rate portfolio using asymmetric GJR-GARCH Copula
NASA Astrophysics Data System (ADS)
Nurrahmat, Mohamad Husein; Noviyanti, Lienda; Bachrudin, Achmad
2017-03-01
In this study, we discuss the problem in measuring the risk in a portfolio based on value at risk (VaR) using asymmetric GJR-GARCH Copula. The approach based on the consideration that the assumption of normality over time for the return can not be fulfilled, and there is non-linear correlation for dependent model structure among the variables that lead to the estimated VaR be inaccurate. Moreover, the leverage effect also causes the asymmetric effect of dynamic variance and shows the weakness of the GARCH models due to its symmetrical effect on conditional variance. Asymmetric GJR-GARCH models are used to filter the margins while the Copulas are used to link them together into a multivariate distribution. Then, we use copulas to construct flexible multivariate distributions with different marginal and dependence structure, which is led to portfolio joint distribution does not depend on the assumptions of normality and linear correlation. VaR obtained by the analysis with confidence level 95% is 0.005586. This VaR derived from the best Copula model, t-student Copula with marginal distribution of t distribution.
NASA Astrophysics Data System (ADS)
Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.
2014-09-01
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.
Perturbative Gaussianizing transforms for cosmological fields
NASA Astrophysics Data System (ADS)
Hall, Alex; Mead, Alexander
2018-01-01
Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.
Jin, Xiaoli; Shi, Chunhai; Yu, Chang Yeon; ...
2017-05-19
Leaf water content is one of the most common physiological parameters limiting efficiency of photosynthesis and biomass productivity in plants including Miscanthus. Therefore, it is of great significance to determine or predict the water content quickly and non-destructively. In this study, we explored the relationship between leaf water content and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including partial least squares (PLS), least squares support vector machine regression (LSSVR), and radial basis function (RBF) neural network (NN) were developed for the models of leaf water content determination. The non-linear models including RBF_LSSVR and RBF_NN showed higher accuracy than themore » PLS and Lin_LSSVR models. Moreover, 75 sensitive wavelengths were identified to be closely associated with the leaf water content in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content, based on 75 characteristic wavelengths, obtained the high determination coefficients of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were more accurate than the linear models using both wavelength intervals. These results demonstrated that visible and near-infrared (VIS/NIR) spectroscopy combined with RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf water content in Miscanthus, and thus very helpful for development of drought-resistant varieties in Miscanthus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiaoli; Shi, Chunhai; Yu, Chang Yeon
Leaf water content is one of the most common physiological parameters limiting efficiency of photosynthesis and biomass productivity in plants including Miscanthus. Therefore, it is of great significance to determine or predict the water content quickly and non-destructively. In this study, we explored the relationship between leaf water content and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including partial least squares (PLS), least squares support vector machine regression (LSSVR), and radial basis function (RBF) neural network (NN) were developed for the models of leaf water content determination. The non-linear models including RBF_LSSVR and RBF_NN showed higher accuracy than themore » PLS and Lin_LSSVR models. Moreover, 75 sensitive wavelengths were identified to be closely associated with the leaf water content in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content, based on 75 characteristic wavelengths, obtained the high determination coefficients of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were more accurate than the linear models using both wavelength intervals. These results demonstrated that visible and near-infrared (VIS/NIR) spectroscopy combined with RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf water content in Miscanthus, and thus very helpful for development of drought-resistant varieties in Miscanthus.« less
Tooth loss and general quality of life in dentate adults from Southern Brazil.
Haag, Dandara Gabriela; Peres, Karen Glazer; Brennan, David Simon
2017-10-01
This study aimed to estimate the association between the number of teeth and general quality of life in adults. A population-based study was conducted with 1720 individuals aged 20-59 years residing in Florianópolis, Brazil, in 2009. Data were collected at participants' households using a structured questionnaire. In 2012, a second wave was undertaken with 1222 individuals. Oral examinations were performed for number of teeth, prevalence of functional dentition (≥21 natural teeth), and shortened dental arch (SDA), which were considered the main exposures. General quality of life was the outcome and was assessed with the WHO Abbreviated Instrument for Quality of Life (WHOQOL-BREF). Covariates included sociodemographic factors, health-related behaviors, and chronic diseases. Multivariable linear regression models were performed to test the associations between the main exposures and the outcome adjusted for covariates. In 2012, 1222 individuals participated in the study (response rate = 71.1%). Having more teeth was associated with greater scores on physical domain of the WHOQOL-BREF [β = 0.24 (95% CI 0.01; 0.46)] after adjustment for covariates. Absence of functional dentition was associated with lower scores on the physical domain [β = -3.94 (95% CI -7.40; -0.48)] in the adjusted analysis. There was no association between both SDA definitions and the domains of general quality of life. Oral health as measured by tooth loss was associated with negative impacts on general quality of life assessed by the WHOQOL-BREF. There was a lack of evidence that SDA is a condition that negatively affects general quality of life.
What Effect Does Increasing Inpatient Time Have on Outpatient-oriented Internist Satisfaction?
Saint, Sanjay; Zemencuk, Judith K; Hayward, Rodney A; Golin, Carol E; Konrad, Thomas R; Linzer, Mark
2003-01-01
OBJECTIVE Because career satisfaction among general internists is relatively low, we sought to understand the impact on satisfaction of general internists managing patients both in and outside of the hospital. Using data from a national survey, we asked, “Among outpatient-oriented general internists (i.e., internists who spend less than 50% of their clinical time caring for inpatients), what effect does time spent in the hospital have on physician satisfaction, stress, and burnout?” DESIGN/PARTICIPANTS The Physician Worklife Study, in which 5,704 physicians in primary and specialty nonsurgical care selected from the American Medical Association's Masterfile were surveyed (adjusted response rate = 52%), was used. Our analyses focused on clinically active outpatient-oriented general internists (N = 339). MEASUREMENTS AND MAIN RESULTS We constructed multivariate linear models to test for statistically significant associations between the amount of time spent seeing inpatients and physician satisfaction as measured by several satisfaction scales. Even after controlling for total hours worked and other possible confounding variables, we found that increased time working in the hospital was significantly associated with decreases in satisfaction with administration, specialty, autonomy, and personal time, and significantly associated with an increase in life stress. There was also a significant association between increased time spent in the hospital and burnout. CONCLUSIONS Our findings imply that there may be a tension between the practice of inpatient and outpatient medicine by general internists, and suggest that fewer hospital duties may increase career satisfaction for outpatient-oriented internists. Although additional studies are warranted in order to better understand why these relationships exist, our data suggest that the hospitalist model of inpatient care might be one approach to alleviate stress and improve satisfaction for many general internists. PMID:12950481
Neonatal MRI is associated with future cognition and academic achievement in preterm children
Spencer-Smith, Megan; Thompson, Deanne K.; Doyle, Lex W.; Inder, Terrie E.; Anderson, Peter J.; Klingberg, Torkel
2015-01-01
School-age children born preterm are particularly at risk for low mathematical achievement, associated with reduced working memory and number skills. Early identification of preterm children at risk for future impairments using brain markers might assist in referral for early intervention. This study aimed to examine the use of neonatal magnetic resonance imaging measures derived from automated methods (Jacobian maps from deformation-based morphometry; fractional anisotropy maps from diffusion tensor images) to predict skills important for mathematical achievement (working memory, early mathematical skills) at 5 and 7 years in a cohort of preterm children using both univariable (general linear model) and multivariable models (support vector regression). Participants were preterm children born <30 weeks’ gestational age and healthy control children born ≥37 weeks’ gestational age at the Royal Women’s Hospital in Melbourne, Australia between July 2001 and December 2003 and recruited into a prospective longitudinal cohort study. At term-equivalent age ( ±2 weeks) 224 preterm and 46 control infants were recruited for magnetic resonance imaging. Working memory and early mathematics skills were assessed at 5 years (n = 195 preterm; n = 40 controls) and 7 years (n = 197 preterm; n = 43 controls). In the preterm group, results identified localized regions around the insula and putamen in the neonatal Jacobian map that were positively associated with early mathematics at 5 and 7 years (both P < 0.05), even after covarying for important perinatal clinical factors using general linear model but not support vector regression. The neonatal Jacobian map showed the same trend for association with working memory at 7 years (models ranging from P = 0.07 to P = 0.05). Neonatal fractional anisotropy was positively associated with working memory and early mathematics at 5 years (both P < 0.001) even after covarying for clinical factors using support vector regression but not general linear model. These significant relationships were not observed in the control group. In summary, we identified, in the preterm brain, regions around the insula and putamen using neonatal deformation-based morphometry, and brain microstructural organization using neonatal diffusion tensor imaging, associated with skills important for childhood mathematical achievement. Results contribute to the growing evidence for the clinical utility of neonatal magnetic resonance imaging for early identification of preterm infants at risk for childhood cognitive and academic impairment. PMID:26329284
Mameli, Chiara; Krakauer, Nir Y; Krakauer, Jesse C; Bosetti, Alessandra; Ferrari, Chiara Matilde; Moiana, Norma; Schneider, Laura; Borsani, Barbara; Genoni, Teresa; Zuccotti, Gianvincenzo
2018-01-01
A Body Shape Index (ABSI) and normalized hip circumference (Hip Index, HI) have been recently shown to be strong risk factors for mortality and for cardiovascular disease in adults. We conducted an observational cross-sectional study to evaluate the relationship between ABSI, HI and cardiometabolic risk factors and obesity-related comorbidities in overweight and obese children and adolescents aged 2-18 years. We performed multivariate linear and logistic regression analyses with BMI, ABSI, and HI age and sex normalized z scores as predictors to examine the association with cardiometabolic risk markers (systolic and diastolic blood pressure, fasting glucose and insulin, total cholesterol and its components, transaminases, fat mass % detected by bioelectrical impedance analysis) and obesity-related conditions (including hepatic steatosis and metabolic syndrome). We recruited 217 patients (114 males), mean age 11.3 years. Multivariate linear regression showed a significant association of ABSI z score with 10 out of 15 risk markers expressed as continuous variables, while BMI z score showed a significant correlation with 9 and HI only with 1. In multivariate logistic regression to predict occurrence of obesity-related conditions and above-threshold values of risk factors, BMI z score was significantly correlated to 7 out of 12, ABSI to 5, and HI to 1. Overall, ABSI is an independent anthropometric index that was significantly associated with cardiometabolic risk markers in a pediatric population affected by overweight and obesity.
Merchak, Noelle; Silvestre, Virginie; Loquet, Denis; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph
2017-01-01
Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13 C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13 C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13 C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13 C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13 C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13 C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.
Polgreen, P M; Bohnett, L C; Yang, M; Pentella, M A; Cavanaugh, J E
2010-03-01
To characterize the association between county-level risk factors and the incidence of mumps in the 2006 Iowa outbreak, we used generalized linear mixed models with the number of mumps cases per county as the dependent variable. To assess the impact of spring-break travel, we tested for differences in the proportions of mumps cases in three different age groups. In the final multivariable model, the proportion of Iowa's college students per county was positively associated (P<0.0001) with mumps cases, but the number of colleges was negatively associated with cases (P=0.0002). Thus, if the college students in a county were spread among more campuses, this was associated with fewer mumps cases. Finally, we found the proportion of mumps cases in both older and younger persons increased after 1 April (P=0.0029), suggesting that spring-break college travel was associated with the spread of mumps to other age groups.
NASA Astrophysics Data System (ADS)
Svoboda, Aaron A.; Forbes, Jeffrey M.; Miyahara, Saburo
2005-11-01
A self-consistent global tidal climatology, useful for comparing and interpreting radar observations from different locations around the globe, is created from space-based Upper Atmosphere Research Satellite (UARS) horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough mode extensions (HMEs). These basis functions are numerically computed modifications to Hough modes and are globally self-consistent in wind, temperature, and density. We first demonstrate this self-consistency with a proxy data set from the Kyushu University General Circulation Model, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A brief explanation of the HMEs’ origin is provided as well as information about a public website that has been set up to make the full extrapolated data sets available.
Inmate responses to prison-based drug treatment: a repeated measures analysis.
Welsh, Wayne N
2010-06-01
Using a sample of 347 prison inmates and general linear modeling (GLM) repeated measures analyses, this paper examined during-treatment responses (e.g., changes in psychological and social functioning) to prison-based TC drug treatment. These effects have rarely been examined in previous studies, and never with a fully multivariate model accounting for within-subjects effects (changes over time), between-subjects effects (e.g., levels of risk and motivation), and within/between-subjects interactions (timexriskxmotivation). The results provide evidence of positive inmate change in response to prison TC treatment, but the patterns of results varied depending upon: (a) specific indicators of psychological and social functioning, motivation, and treatment process; (b) the time periods examined (1, 6, and 12 months during treatment); and (c) baseline levels of risk and motivation. Significant interactions between time and type of inmate suggest important new directions for research, theory, and practice in offender-based substance abuse treatment. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Demidenko, Eugene
2017-09-01
The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.
NASA Technical Reports Server (NTRS)
Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.
1981-01-01
Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.
Thomas, Akshay S; Redd, Travis; Campbell, John P; Palejwala, Neal V; Baynham, Justin T; Suhler, Eric B; Rosenbaum, James T; Lin, Phoebe
2017-10-16
To study if peripheral vascular leakage (PVL) on ultra-widefield fluorescein angiography (UWFFA) prognosticates complications of uveitis or necessitates treatment augmentation. Retrospective cohort study of uveitis patients imaged with UWFFA and ≥1 yr of follow-up. We included 73 eyes of 42 patients with uveitis. There was no difference in baseline, intermediate, final visual acuity (p = 0.47-0.95) or rates of cystoid macular edema (CME) (p = 0.37-0.87) in eyes with PVL vs. those without. Eyes with PVL receiving baseline treatment augmentation were more likely to have baseline CME but were not more likely to have impaired visual acuity at final follow-up. PVL was independently associated with treatment augmentation on generalized estimating equation analysis with multivariable linear regression (OR: 4.39, p = 0.015). PVL did not confer an increased risk of impaired VA or CME at ≥1 yr follow-up but was possibly an independent driver of treatment augmentation.
Health service staff's attitudes towards patients with mental illness.
Arvaniti, Aikaterini; Samakouri, Maria; Kalamara, Eleni; Bochtsou, Valentini; Bikos, Constantinos; Livaditis, Miltos
2009-08-01
Stereotypes and prejudices against patients with mental illness are widespread in many societies. The aim of the present study is to investigate such attitudes among the staff and medical students, including employees and trainees, in a general university hospital. Six hundred individuals (361 employees, 231 students) completed the following questionnaires: Level of Contact Report (LCR), Authoritarianism Scale (AS), and Opinion about Mental Illness (OMI), a scale yielding five factors (social discrimination, social restriction, social care, social integration, and aetiology). Multivariate linear regression models were applied in order to search for the simultaneous effect of many variables on the scores of OMI factors. An important part of the sample held negative attitudes especially concerning social discrimination and restriction of the patients. Women, older and less educated staff, nursing staff, and people scoring higher on authoritarianism were more prejudiced. Higher scores on familiarity were associated with less negative attitudes. The results indicate the need to develop sensitisation and training programs considering mental health topics among health service employees.
Kunutsor, Setor K; Laukkanen, Tanjaniina; Laukkanen, Jari A
2017-10-01
Cardiorespiratory fitness (CRF), an index of cardiac and respiratory functioning, is strongly associated with a reduced risk of adverse health outcomes. We aimed to assess the prospective association of CRF with the risk of respiratory diseases (defined as chronic obstructive pulmonary disease, pneumonia, or asthma). Cardiorespiratory fitness, as measured by maximal oxygen uptake, was assessed in 1974 middle-aged men. During a median follow-up of 25.7 years, 382 hospital diagnosed respiratory diseases were recorded. Cardiorespiratory fitness was linearly associated with risk of respiratory diseases. In analysis adjusted for several established and potential risk factors, the hazard ratio (HR) (95% CI) for respiratory diseases was 0.63 (0.45-0.88), when comparing extreme quartiles of CRF levels. The corresponding multivariate adjusted HR (95% CI) for pneumonia was 0.67 (0.48-0.95). Our findings indicate a graded inverse and independent association between CRF and the future risk of respiratory diseases in a general male Caucasian population.
Ahn, Borami; Kim, Shin-Hye; Park, Mi-Jung
2017-01-01
To assess blood cadmium levels in Korean adolescents with respect to demographic and lifestyle factors. We analyzed data from the Korea National Health and Nutrition Examination Survey from 2010 to 2013, totaling 1472 adolescents aged 10-18 years. Geometric means of blood cadmium were calculated using a complex samples general linear model to compare blood levels in different demographic and lifestyle groups. Multivariate logistic regression analyses were also used to find predictors for high blood cadmium (>90th percentile). The geometric mean of the blood cadmium concentrations was 0.30μg/L in Korean adolescents. Older age, type of housing (multifamily house and commercial building), smoking and alcohol consumption, and iron deficiency/iron deficiency anemia (IDA) were significantly associated with higher blood cadmium concentrations (P<0.05). Blood cadmium concentrations were not significantly affected by gender, region, body mass index status, or household income. In multivariate logistic regression analysis, independent predictors for higher blood cadmium levels included current smoker (OR=7.77), alcohol consumption (OR=4.31), living in a multifamily house or commercial building (OR=3.11-3.46), and IDA (OR=2.64). Possible associations between blood cadmium levels and type of housing or alcohol consumption in adolescents are suggested for the first time in this study. Further studies are needed to elucidate the mechanism of these findings. Copyright © 2016 Elsevier GmbH. All rights reserved.
Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
NASA Astrophysics Data System (ADS)
Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
Readiness of Primary Care Practices for Medical Home Certification
Clark, Sarah J.; Sakshaug, Joseph W.; Chen, Lena M.; Hollingsworth, John M.
2013-01-01
OBJECTIVES: To assess the prevalence of medical home infrastructure among primary care practices for children and identify practice characteristics associated with medical home infrastructure. METHODS: Cross-sectional analysis of restricted data files from 2007 and 2008 of the National Ambulatory Medical Care Survey. We mapped survey items to the 2011 National Committee on Quality Assurance’s Patient-Centered Medical home standards. Points were awarded for each “passed” element based on National Committee for Quality Assurance scoring, and we then calculated the percentage of the total possible points met for each practice. We used multivariate linear regression to assess associations between practice characteristics and the percentage of medical home infrastructure points attained. RESULTS: On average, pediatric practices attained 38% (95% confidence interval 34%–41%) of medical home infrastructure points, and family/general practices attained 36% (95% confidence interval 33%–38%). Practices scored higher on medical home elements related to direct patient care (eg, providing comprehensive health assessments) and lower in areas highly dependent on health information technology (eg, computerized prescriptions, test ordering, laboratory result viewing, or quality of care measurement and reporting). In multivariate analyses, smaller practice size was significantly associated with lower infrastructure scores. Practice ownership, urban versus rural location, and proportion of visits covered by public insurers were not consistently associated with a practice’s infrastructure score. CONCLUSIONS: Medical home programs need effective approaches to support practice transformation in the small practices that provide the vast majority of the primary care for children in the United States. PMID:23382438
Brain galanin system genes interact with life stresses in depression-related phenotypes
Juhasz, Gabriella; Hullam, Gabor; Eszlari, Nora; Gonda, Xenia; Antal, Peter; Anderson, Ian Muir; Hökfelt, Tomas G. M.; Deakin, J. F. William; Bagdy, Gyorgy
2014-01-01
Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression. PMID:24706871
Dimension reduction of frequency-based direct Granger causality measures on short time series.
Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2017-09-01
The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.
Walter, Dawn; Tousimis, Eleni; Hayes, Mary Katherine
2018-01-01
A new breast cancer treatment, brachytherapy-based accelerated partial breast radiotherapy (RT), was adopted before long-term effectiveness evidence, potentially increasing morbidity and costs compared with whole breast RT. The aim of this study was to estimate complication rates and RT-specific and 1-year costs for a cohort of female Medicare beneficiaries diagnosed with breast cancer (N = 47 969). We analyzed 2005-2007 Medicare claims using multivariable logistic regression for complications and generalized linear models (log link, gamma distribution) for costs. Overall, 11% (n = 5296) underwent brachytherapy-based RT; 9.4% had complications. Odds of any complication were higher (odds ratio [OR]: 1.62; 95% confidence interval [CI]: 1.49-1.76) for brachytherapy versus whole breast RT, similarly to seroma (OR: 2.85; 95% CI: 1.97-4.13), wound complication/infection (OR: 1.72; 95% CI: 1.52-1.95), cellulitis (OR: 1.48; 95% CI: 1.27-1.73), and necrosis (OR: 2.07; 95% CI: 1.55-2.75). Mean RT-specific and 1-year total costs for whole breast RT were $6375, and $19 917, $4886, and $4803 lower than brachytherapy (P < .0001). Multivariable analyses indicated brachytherapy yielded 76% higher RT costs (risk ratio: 1.76; 95% CI: 1.74-1.78, P < .0001) compared with whole breast RT. Brachytherapy had higher complications and costs before long-term evidence proved its effectiveness. Policies should require treatment registries with reimbursement incentives to capture surveillance data for new technologies. PMID:29502466
Income Inequality and the Differential Effect of Adverse Childhood Experiences in US Children.
Halfon, Neal; Larson, Kandyce; Son, John; Lu, Michael; Bethell, Christina
Adverse childhood experiences (ACEs) can affect health and development across the life course. Despite a general understanding that adversity is associated with lower income, we know less about how ACEs manifest at different income levels and how these income-related patterns affect children's health and development. Data from the 2011 to 2012 National Survey of Children's Health were used to examine the prevalence of 9 ACEs in US children, across 4 levels of household income, and in relationship to 5 parent-reported measures of child health. Bivariate analyses and multivariable logistic regression models were used to examine the associations between number of ACEs and children's health outcomes on the basis of the 4 income groups. When partitioned according to income strata, the proportion of children who experienced ACEs showed a steep income gradient, particularly for children who experienced ≥4 ACEs. The linear gradient across income groups was less pronounced for each specific ACE, with several ACEs (experience of divorce, drug and alcohol exposure, parental mental illness) showing high reported prevalence in all but the highest income group. Multivariate analysis showed a consistent income-related gradient for each of the health outcomes. However, higher income was not necessarily found to be a protective factor against ACEs. ACEs are distributed across the income ladder and not just concentrated below the poverty level. This suggests that a more comprehensive policy strategy that includes targeted as well as universal interventions is warranted. Copyright © 2016 Academic Pediatric Association. All rights reserved.
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Kinung’hi, Safari; Magnussen, Pascal; Kaatano, Godfrey
2016-01-01
Background Infection with Schistosoma mansoni negatively impact children’s physical health and may influence their general well-being. The aim of this study was to investigate the effect of S. mansoni infections on a panel of morbidity indicators with emphasis on quality of life (PedsQL; measured in four different dimensions) and physical fitness (measured as VO2 max) among 572 schoolchildren aged 7–8 years. Methodology/Principal findings Prevalence of S. mansoni infections was 58.7%, with an arithmetic mean (95% CI) among positives of 207.3 (169.2–245.4) eggs per gram (epg). Most infections were light (56.5%), while 16.4% had heavy infections. Girls had significantly higher arithmetic mean intensities (95% CI) than boys (247.4 (189.2–305.6) vs. 153.2 (110.6–195.8); P = 0.004). A total of 30.1% were anaemic with no sex difference. Stunting and wasting was found in less than 10% of the population. There was no association between S. mansoni prevalence or intensities and the following parameters: anthropometry, anaemia, liver or spleen pathology in neither univariable nor multivariable linear regression analyses. However, in univariable analyses children with S. mansoni infection had a significantly lower score in emotional PedsQL (95% CI) than uninfected (77.3 (74.5–80.1) vs. 82.7 (79.9–85.5); P = 0.033) and infected children had a higher VO2 max (95% CI) compared to uninfected (51.4 (51.0–51.8) vs. 50.8 (50.3–51.3); P = 0.042). In multivariable linear regression analyses, age, S. mansoni infection, haemoglobin and VO2 max were significant predictors for emotional PedsQL while significant predictors for VO2 max were physical PedsQL, height, age and haemoglobin. S. mansoni infection was thus not retained in the multivariable regression analyses on VO2 max. Conclusions/Significance Of the measured morbidity parameters, S. mansoni infection had a significant effect on the emotional dimension of quality of life, but not on physical fitness. If PedsQL should be a useful tool to measure schistosome related morbidity, more in depth studies are needed in order to refine the tool so it focuses more on aspects of quality of life that may be affected by schistosome infections. PMID:28027317
Daly, Shaun C; Deal, Rebecca A; Rinewalt, Daniel E; Francescatti, Amanda B; Luu, Minh B; Millikan, Keith W; Anderson, Mary C; Myers, Jonathan A
2014-04-01
The purpose of our study was to determine the predictive impact of individual academic measures for the matriculation of senior medical students into a general surgery residency. Academic records were evaluated for third-year medical students (n = 781) at a single institution between 2004 and 2011. Cohorts were defined by student matriculation into either a general surgery residency program (n = 58) or a non-general surgery residency program (n = 723). Multivariate logistic regression was performed to evaluate independently significant academic measures. Clinical evaluation raw scores were predictive of general surgery matriculation (P = .014). In addition, multivariate modeling showed lower United States Medical Licensing Examination Step 1 scores to be independently associated with matriculation into general surgery (P = .007). Superior clinical aptitude is independently associated with general surgical matriculation. This is in contrast to the negative correlation United States Medical Licensing Examination Step 1 scores have on general surgery matriculation. Recognizing this, surgical clerkship directors can offer opportunities for continued surgical education to students showing high clinical aptitude, increasing their likelihood of surgical matriculation. Copyright © 2014 Elsevier Inc. All rights reserved.
Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo
2017-03-15
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Compensator improvement for multivariable control systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.
1977-01-01
A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.
Measures of dependence for multivariate Lévy distributions
NASA Astrophysics Data System (ADS)
Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.
2001-02-01
Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.
Multivariable feedback design - Concepts for a classical/modern synthesis
NASA Technical Reports Server (NTRS)
Doyle, J. C.; Stein, G.
1981-01-01
This paper presents a practical design perspective on multivariable feedback control problems. It reviews the basic issue - feedback design in the face of uncertainties - and generalizes known single-input, single-output (SISO) statements and constraints of the design problem to multiinput, multioutput (MIMO) cases. Two major MIMO design approaches are then evaluated in the context of these results.
NASA Astrophysics Data System (ADS)
Ünver, H.
2017-02-01
A main focus of this research paper is to investigate on the explanation of the ‘digital inequality’ or ‘digital divide’ by economic level and education standard of about 150 countries worldwide. Inequality regarding GDP per capita, literacy and the so-called UN Education Index seem to be important factors affecting ICT usage, in particular Internet penetration, mobile phone usage and also mobile Internet services. Empirical methods and (multivariate) regression analysis with linear and non-linear functions are useful methods to measure some crucial factors of a country or culture towards becoming information and knowledge based society. Overall, the study concludes that the convergence regarding ICT usage proceeds worldwide faster than the convergence in terms of economic wealth and education in general. The results based on a large data analysis show that the digital divide is declining over more than a decade between 2000 and 2013, since more people worldwide use mobile phones and the Internet. But a high digital inequality explained to a significant extent by the functional relation between technology penetration rates, education level and average income still exists. Furthermore it supports the actions of countries at UN/G20/OECD level for providing ICT access to all people for a more balanced world in context of sustainable development by postulating that policymakers need to promote comprehensive education worldwide by means of using ICT.
Seggers, Jorien; Haadsma, Maaike L; Bastide-van Gemert, Sacha la; Heineman, Maas Jan; Kok, Joke H; Middelburg, Karin J; Roseboom, Tessa J; Schendelaar, Pamela; Van den Heuvel, Edwin R; Hadders-Algra, Mijna
2013-11-01
Recent studies suggest that in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are associated with suboptimal cardiometabolic outcome in offspring. It is unknown whether preimplantation genetic screening (PGS), which involves embryo biopsy, affects blood pressure (BP), anthropometrics, and the frequency of received medical care. In this prospective multicenter follow-up study, we assessed BP, anthropometrics, and received medical care of 4-y-old children born to women who were randomly assigned to IVF/ICSI with PGS (n = 49) or without PGS (controls; n = 64). We applied linear and generalized linear mixed-effects models to investigate possible effects of PGS. BP in the PGS and control groups was similar: 102/64 and 100/64 mm Hg, respectively. Main anthropometric outcomes in the PGS vs. control group were: BMI: 16.1 vs. 15.8; triceps skinfold: 108 vs. 98 mm; and subscapular skinfold: 54 vs. 53 mm (all P values > 0.05). More PGS children than controls had received paramedical care (speech, physical, or occupational therapy: 14 (29%) vs. 9 (14%); P = 0.03 in multivariable analysis). The frequency of medicial treatment was comparable. PGS does not seem to affect BP or anthropometrics in 4-y-old children. The higher frequency of received paramedical care after PGS may suggest an effect of PGS on subtle developmental parameters.
Variable Order and Distributed Order Fractional Operators
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
2002-01-01
Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. This paper develops the concept of variable and distributed order fractional operators. Definitions based on the Riemann-Liouville definitions are introduced and behavior of the operators is studied. Several time domain definitions that assign different arguments to the order q in the Riemann-Liouville definition are introduced. For each of these definitions various characteristics are determined. These include: time invariance of the operator, operator initialization, physical realization, linearity, operational transforms. and memory characteristics of the defining kernels. A measure (m2) for memory retentiveness of the order history is introduced. A generalized linear argument for the order q allows the concept of "tailored" variable order fractional operators whose a, memory may be chosen for a particular application. Memory retentiveness (m2) and order dynamic behavior are investigated and applications are shown. The concept of distributed order operators where the order of the time based operator depends on an additional independent (spatial) variable is also forwarded. Several definitions and their Laplace transforms are developed, analysis methods with these operators are demonstrated, and examples shown. Finally operators of multivariable and distributed order are defined in their various applications are outlined.
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
Outcomes and resource utilization associated with underage drinking at a level I trauma center.
Psoter, Kevin J; Roudsari, Bahman S; Mack, Christopher; Vavilala, Monica S; Jarvik, Jeffrey G
2014-08-01
To examine the association of blood alcohol content (BAC) on hospital-based outcomes and imaging utilization for patients <21 years admitted to a level I trauma center. Retrospective analysis of alcohol-involved injuries in patients 13-20 years, admitted to a level I trauma center from 1996 to 2010. An injury was considered alcohol involved if the patient had a BAC > 0. Multivariable logistic regression was used to compare mortality, discharge destination (home and skilled nursing facility), intensive care unit admission, and operating room use between patients with and without positive BAC for patients 13-15, 16-17, and 18-20 years. Multivariable linear regression was used to compare length of hospitalization. Finally, multivariable negative binomial regression evaluated radiology resource utilization (x-ray, computed tomography [CT], and magnetic resonance imaging). A total of 7,663 patients, 13-20 years old, were admitted over the study period. A positive BAC was reported in 19% of these patients. In general, the presence of alcohol was not associated with mortality rate, length of hospitalization, intensive care unit, and operating room use or discharge status for any age group. However, the presence of alcohol was associated with higher utilization of head (incidence rate ratio [IRR] 1.13, 95% confidence interval [CI] 1.02-1.26), cervical spine (IRR 1.10, 95% CI 1.01-1.22), and thoracic (IRR 1.30, 95% CI 1.05-1.63) CTs in young adults 18-20 years. No differences in CT use were observed in patients 13-15 or 16-17 years. Positive BAC was not significantly associated with adverse outcomes or resource utilization in younger trauma patients. However, the use of certain body region CTs was associated with positive BAC in patients 18-20 years. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Enjuanes, Cristina; Bruguera, Jordi; Grau, María; Cladellas, Mercé; Gonzalez, Gina; Meroño, Oona; Moliner-Borja, Pedro; Verdú, José M; Farré, Nuria; Comín-Colet, Josep
2016-03-01
To evaluate the effect of iron deficiency and anemia on submaximal exercise capacity in patients with chronic heart failure. We undertook a single-center cross-sectional study in a group of stable patients with chronic heart failure. At recruitment, patients provided baseline information and completed a 6-minute walk test to evaluate submaximal exercise capacity and exercise-induced symptoms. At the same time, blood samples were taken for serological evaluation. Iron deficiency was defined as ferritin < 100 ng/mL or transferrin saturation < 20% when ferritin is < 800 ng/mL. Additional markers of iron status were also measured. A total of 538 heart failure patients were eligible for inclusion, with an average age of 71 years and 33% were in New York Heart Association class III/IV. The mean distance walked in the test was 285 ± 101 meters among those with impaired iron status, vs 322 ± 113 meters (P=.002). Symptoms during the test were more frequent in iron deficiency patients (35% vs 27%; P=.028) and the most common symptom reported was fatigue. Multivariate logistic regression analyses showed that increased levels of soluble transferrin receptor indicating abnormal iron status were independently associated with advanced New York Heart Association class (P < .05). Multivariable analysis using generalized additive models, soluble transferrin receptor and ferritin index, both biomarkers measuring iron status, showed a significant, independent and linear association with submaximal exercise capacity (P=.03 for both). In contrast, hemoglobin levels were not significantly associated with 6-minute walk test distance in the multivariable analysis. In patients with chronic heart failure, iron deficiency but not anemia was associated with impaired submaximal exercise capacity and symptomatic functional limitation. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.
2018-06-01
The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.
Embedding of multidimensional time-dependent observations.
Barnard, J P; Aldrich, C; Gerber, M
2001-10-01
A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.
Embedding of multidimensional time-dependent observations
NASA Astrophysics Data System (ADS)
Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius
2001-10-01
A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.
Feature combinations and the divergence criterion
NASA Technical Reports Server (NTRS)
Decell, H. P., Jr.; Mayekar, S. M.
1976-01-01
Classifying large quantities of multidimensional remotely sensed agricultural data requires efficient and effective classification techniques and the construction of certain transformations of a dimension reducing, information preserving nature. The construction of transformations that minimally degrade information (i.e., class separability) is described. Linear dimension reducing transformations for multivariate normal populations are presented. Information content is measured by divergence.
Response to comments on "Productivity is a poor predictor of plant species richness"
Grace, James B.; Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Anderson, T. Michael; Bakker, Jonathan D.; Brown, Cynthia S.; Buckley, Yvonne M.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hagenah, Nicole; Jin, Virginia L.; Kirkman, Kevin P.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Orrock, John L.; Prover, Suzanne M.; Stevens, Carly J.; Wragg, Peter D.; Yang, Louie H.
2012-01-01
Pan et al. claim that our results actually support a strong linear positive relationship between productivity and richness, whereas Fridley et al. contend that the data support a strong humped relationship. These responses illustrate how preoccupation with bivariate patterns distracts from a deeper understanding of the multivariate mechanisms that control these important ecosystem properties.
ERIC Educational Resources Information Center
Malin, Heather; Han, Hyemin; Liauw, Indrawati
2017-01-01
This study investigated the effects of internal and demographic variables on civic development in late adolescence using the construct "civic purpose." We conducted surveys on civic engagement with 480 high school seniors, and surveyed them again 2 years later. Using multivariate regression and linear mixed models, we tested the main…
USDA-ARS?s Scientific Manuscript database
Objectives To determine the associations between diet quality, body mass index (BMI), and health-related quality of life (HRQOL) as assessed by the health and activity limitation index (HALex) in older adults. Design Multivariate linear regression models were used to analyze associations between Di...
Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models
ERIC Educational Resources Information Center
Cheung, Mike W.-L.
2013-01-01
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
Bellman Continuum (3rd) International Workshop (13-14 June 1988)
1988-06-01
Modelling Uncertain Problem ................. 53 David Bensoussan ,---,>Asymptotic Linearization of Uncertain Multivariable Systems by Sliding Modes...K. Ghosh .-. Robust Model Tracking for a Class of Singularly Perturbed Nonlinear Systems via Composite Control ....... 93 F. Garofalo and L. Glielmo...MODELISATION ET COMMANDE EN ECONOMIE MODELS AND CONTROL POLICIES IN ECONOMICS Qualitative Differential Games : A Viability Approach ............. 117
H(2)- and H(infinity)-design tools for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Ly, Uy-Loi
1989-01-01
Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.
Multi-state succession in wetlands: a novel use of state and transition models
Zweig, Christa L.; Kitchens, Wiley M.
2009-01-01
The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration management and experimentation which will refine transition and threshold concepts.
Piciu, A; Piciu, D; Marlowe, R J; Irimie, A
2013-02-01
In patients radically treated for differentiated thyroid carcinoma, we assessed the response of highly-sensitive C-reactive protein, an inflammatory biomarker for cardiovascular risk, after thyroid hormone withholding ("deprivation"), as well as factors potentially influencing this response. We included 52 adults (mean age 45.6±14.0 years, 35 females) who were disease-free after total thyroidectomy, radioiodine ablation and chronic thyroid hormone therapy. They were lifelong non-smokers without apparent inflammatory comorbidity, cardiovascular history beyond pharmacotherapy-controlled hypertension, anti-dyslipidemic medication, or C-reactive protein >10 mg/L in any study measurement. The index deprivation lasted ≥2 weeks, elevating serum thyrotropin >40 mIU/L or ≥100 × the individual's suppressed level. We examined the relationship of age, number of prior deprivations, and gender with the magnitude of post-deprivation C-reactive protein concentration through multivariable statistical analyses using the F test on linear regression models. Post-deprivation, C-reactive protein reached intermediate cardiovascular risk levels (based on general population studies involving chronic elevation), 1-3 mg/L, in 44.2% of patients and high-risk levels, >3 mg/L, in another 17.3%. Mean C-reactive protein was 1.77±1.50 mg/L, differing significantly in females (2.12±1.66 mg/L) vs. males (1.05±0.69 mg/L, P <0.001). In multivariable analysis, patients ≤45 years old (odds ratio, 95% confidence interval 0.164 [0.049-0.548]) were less likely, and females, more likely (3.571 [1.062-12.009]) to have post-deprivation C-reactive protein ≥1 mg/L. Thyroid hormone withdrawal frequently elevated C-reactive protein to levels that when present chronically, were associated with increased cardiovascular risk in general population studies. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Maione, Camila; Barbosa, Rommel Melgaço
2018-01-24
Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.
Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study.
Kühn, Tilman; Sookthai, Disorn; Graf, Mirja E; Schübel, Ruth; Freisling, Heinz; Johnson, Theron; Katzke, Verena; Kaaks, Rudolf
2017-11-07
It has long been proposed that albumin, bilirubin and uric acid may inhibit cancer development due to their anti-oxidative properties. However, there is a lack of population-based studies on blood levels of these molecules and cancer risk. Associations between pre-diagnostic serum albumin, bilirubin and uric acid and the risks of common cancers as well as cancer death in the EPIC-Heidelberg cohort were evaluated by multivariable Cox regression analyses. A case-cohort sample including a random subcohort (n=2739) and all incident cases of breast (n=627), prostate (n=554), colorectal (n=256), and lung cancer (n=195) as well as cancer death (n=761) that occurred between baseline (1994-1998) and 2009 was used. Albumin levels were inversely associated with breast cancer risk (hazard ratio Quartile 4 vs Quartile 1 (95% CI): 0.71 (0.51, 0.99), P linear trend =0.004) and overall cancer mortality (HR Q4 vs Q1 (95% CI): 0.64 (0.48, 0.86), P linear trend <0.001) after multivariable adjustment. Uric acid levels were also inversely associated with breast cancer risk (HR Q4 vs Q1 (95% CI): 0.72 (0.53, 0.99), P linear trend =0.043) and cancer mortality (HR Q4 vs Q1 (95% CI): 0.75 (0.58, 0.98), P linear trend =0.09). There were no significant associations between albumin or uric acid and prostate, lung and colorectal cancer. Serum bilirubin was not associated with any cancer end point. The present findings indicate that higher levels of albumin and uric acid are related to lower risks of breast cancer and cancer mortality. Further studies are needed to assess whether the observed associations are causal.
Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.
Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J
2014-12-01
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
Archer, Kristin R.; Devin, Clinton J.; Vanston, Susan W.; Koyama, Tatsuki; Phillips, Sharon; George, Steven Z.; McGirt, Matthew J.; Spengler, Dan M.; Aaronson, Oran S.; Cheng, Joseph S.; Wegener, Stephen T.
2015-01-01
The purpose of this study was to determine the efficacy of a cognitive-behavioral based physical therapy (CBPT) program for improving outcomes in patients following lumbar spine surgery. A randomized controlled trial was conducted in 86 adults undergoing a laminectomy with or without arthrodesis for a lumbar degenerative condition. Patients were screened preoperatively for high fear of movement using the Tampa Scale for Kinesiophobia. Randomization to either CBPT or an Education program occurred at 6 weeks after surgery. Assessments were completed pre-treatment, post-treatment and at 3 month follow-up. The primary outcomes were pain and disability measured by the Brief Pain Inventory and Oswestry Disability Index. Secondary outcomes included general health (SF-12) and performance-based tests (5-Chair Stand, Timed Up and Go, 10 Meter Walk). Multivariable linear regression analyses found that CBPT participants had significantly greater decreases in pain and disability and increases in general health and physical performance compared to the Education group at 3 month follow-up. Results suggest a targeted CBPT program may result in significant and clinically meaningful improvement in postoperative outcomes. CBPT has the potential to be an evidence-based program that clinicians can recommend for patients at-risk for poor recovery following spine surgery. PMID:26476267
Prediction and analysis of beta-turns in proteins by support vector machine.
Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao
2003-01-01
Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.
Spooner, Kiara K; Salemi, Jason L; Salihu, Hamisu M; Zoorob, Roger J
2016-05-01
This study aimed to describe disparities and temporal trends in the level of perceived patient-provider communication quality (PPPCQ) in the United States, and to identify sociodemographic and health-related factors associated with elements of PPPCQ. A cross-sectional analysis was conducted using nationally-representative data from the 2011-2013 iterations of the Health Information National Trends Survey (HINTS). Descriptive statistics, multivariable linear and logistic regression analyses were conducted to examine associations. PPPCQ scores, the composite measure of patients' ratings of communication quality, were positive overall (82.8; 95% CI: 82.1-83.5). However, less than half (42-46%) of respondents perceived that providers always addressed their feelings, spent enough time with them, or helped with feelings of uncertainty about their health. Older adults and those with a regular provider consistently had higher PPPCQ scores, while those with poorer perceived general health were consistently less likely to have positive perceptions of their providers' communication behaviors. Disparities in PPPCQ can be attributed to patients' age, race/ethnicity, educational attainment, employment status, income, healthcare access and general health. These findings may inform educational and policy efforts which aim to improve patient-provider communication, enhance the quality of care, and reduce health disparities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Continental-Scale View of Bankfull Width Versus Drainage Area Relationship
NASA Astrophysics Data System (ADS)
Wilkerson, G. V.
2012-12-01
While recognizing that there are multiple variables that influence bankfull channel width (Wbf), this study explores the relationship between Wbf and drainage area (Ada) across a range of geologic, terrestrial, climatic, and botanical environments. The study aims to develop a foundational model that will facilitate developing a comprehensive multivariate model for predicting channel width. Data for this study was compiled from independent regional curve studies (i.e., studies in which Wbf vs. Ada relationships are developed). The data represent 1,018 sites that span 12 states in the continental U.S. The channels are alluvial and are such that 1 m ≤ Wbf ≤ 110 m and 0.50 km2 ≤ Ada ≤ 22,000 km2. For developing regional curves, the Wbf vs. Ada relationship is generally assumed to be log-linear. Also, past studies have indicated that the Wbf vs. Ada relationship differs for small basins (i.e., 10 to 100 km2) and large basins due to the effects of vegetation. Linear and nonlinear (i.e., sigmoidal) models were considered for this study. The best model relates ln(Wbf ) and ln(Ada) using a three-piece linear model (Figure 1). The value of dWbf /dAda is significantly greater (p < 0.001) for mid-size basins (5 km2 ≤ Ada ≤ 350 km2) than either small or large basins. The noted change in dWbf /dAda is likely in response to vegetation. Also, the change in dWbf /dAda is so abrupt that the three-piece linear model, fits the data better than any of the sigmoidal functions explored in this study. For every model evaluated in this study, the residuals were bi-modal (Figure 2). For the residuals to begin converging on a normal distribution, at least one other factor (probably precipitation) needs to be included in the model.
Gupta, Deepak K; Claggett, Brian; Wells, Quinn; Cheng, Susan; Li, Man; Maruthur, Nisa; Selvin, Elizabeth; Coresh, Josef; Konety, Suma; Butler, Kenneth R; Mosley, Thomas; Boerwinkle, Eric; Hoogeveen, Ron; Ballantyne, Christie M; Solomon, Scott D
2015-05-21
Natriuretic peptides promote natriuresis, diuresis, and vasodilation. Experimental deficiency of natriuretic peptides leads to hypertension (HTN) and cardiac hypertrophy, conditions more common among African Americans. Hospital-based studies suggest that African Americans may have reduced circulating natriuretic peptides, as compared to Caucasians, but definitive data from community-based cohorts are lacking. We examined plasma N-terminal pro B-type natriuretic peptide (NTproBNP) levels according to race in 9137 Atherosclerosis Risk in Communities (ARIC) Study participants (22% African American) without prevalent cardiovascular disease at visit 4 (1996-1998). Multivariable linear and logistic regression analyses were performed adjusting for clinical covariates. Among African Americans, percent European ancestry was determined from genetic ancestry informative markers and then examined in relation to NTproBNP levels in multivariable linear regression analysis. NTproBNP levels were significantly lower in African Americans (median, 43 pg/mL; interquartile range [IQR], 18, 88) than Caucasians (median, 68 pg/mL; IQR, 36, 124; P<0.0001). In multivariable models, adjusted log NTproBNP levels were 40% lower (95% confidence interval [CI], -43, -36) in African Americans, compared to Caucasians, which was consistent across subgroups of age, gender, HTN, diabetes, insulin resistance, and obesity. African-American race was also significantly associated with having nondetectable NTproBNP (adjusted OR, 5.74; 95% CI, 4.22, 7.80). In multivariable analyses in African Americans, a 10% increase in genetic European ancestry was associated with a 7% (95% CI, 1, 13) increase in adjusted log NTproBNP. African Americans have lower levels of plasma NTproBNP than Caucasians, which may be partially owing to genetic variation. Low natriuretic peptide levels in African Americans may contribute to the greater risk for HTN and its sequalae in this population. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.
Adams, Dean C; Collyer, Michael L
2018-01-01
Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A note on a simplified and general approach to simulating from multivariate copula functions
Barry K. Goodwin
2013-01-01
Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses âProbability-...
NASA Technical Reports Server (NTRS)
Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.
1973-01-01
The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.