Sample records for multivariable generalized estimating

  1. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  2. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  3. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  4. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  5. Statistical inferences for data from studies conducted with an aggregated multivariate outcome-dependent sample design

    PubMed Central

    Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo

    2016-01-01

    Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260

  6. Statistical inferences for data from studies conducted with an aggregated multivariate outcome-dependent sample design.

    PubMed

    Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo

    2017-03-15

    Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  8. Application of two tests of multivariate discordancy to fisheries data sets

    USGS Publications Warehouse

    Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.

    2008-01-01

    The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.

  9. Statistical analysis of multivariate atmospheric variables. [cloud cover

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.

    1979-01-01

    Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.

  10. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  11. Measuring agreement of multivariate discrete survival times using a modified weighted kappa coefficient.

    PubMed

    Guo, Ying; Manatunga, Amita K

    2009-03-01

    Assessing agreement is often of interest in clinical studies to evaluate the similarity of measurements produced by different raters or methods on the same subjects. We present a modified weighted kappa coefficient to measure agreement between bivariate discrete survival times. The proposed kappa coefficient accommodates censoring by redistributing the mass of censored observations within the grid where the unobserved events may potentially happen. A generalized modified weighted kappa is proposed for multivariate discrete survival times. We estimate the modified kappa coefficients nonparametrically through a multivariate survival function estimator. The asymptotic properties of the kappa estimators are established and the performance of the estimators are examined through simulation studies of bivariate and trivariate survival times. We illustrate the application of the modified kappa coefficient in the presence of censored observations with data from a prostate cancer study.

  12. Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew; Park, Trevor

    2017-01-01

    A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…

  13. A Simpli ed, General Approach to Simulating from Multivariate Copula Functions

    Treesearch

    Barry Goodwin

    2012-01-01

    Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses \\probability{...

  14. Standard Error of Linear Observed-Score Equating for the NEAT Design with Nonnormally Distributed Data

    ERIC Educational Resources Information Center

    Zu, Jiyun; Yuan, Ke-Hai

    2012-01-01

    In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…

  15. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  16. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  17. A General Approach for Estimating Scale Score Reliability for Panel Survey Data

    ERIC Educational Resources Information Center

    Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A.

    2009-01-01

    Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…

  18. Kalman filter for statistical monitoring of forest cover across sub-continental regions

    Treesearch

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...

  19. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study

    PubMed Central

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398

  20. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.

    PubMed

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.

  1. On the degrees of freedom of reduced-rank estimators in multivariate regression

    PubMed Central

    Mukherjee, A.; Chen, K.; Wang, N.; Zhu, J.

    2015-01-01

    Summary We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example. PMID:26702155

  2. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  3. A note on a simplified and general approach to simulating from multivariate copula functions

    Treesearch

    Barry K. Goodwin

    2013-01-01

    Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses ‘Probability-...

  4. Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models.

    PubMed

    Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S

    2015-09-01

    Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

  5. Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies

    PubMed Central

    Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373

  6. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  7. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  8. Analytical methods in multivariate highway safety exposure data estimation

    DOT National Transportation Integrated Search

    1984-01-01

    Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...

  9. Estimating Rates of Motor Vehicle Crashes Using Medical Encounter Data: A Feasibility Study

    DTIC Science & Technology

    2015-11-05

    used to develop more detailed predictive risk models as well as strategies for preventing specific types of MVCs. Systematic Review of Evidence... used to estimate rates of accident-related injuries more generally,9 but not with specific reference to MVCs. For the present report, rates of...precise rate estimates based on person-years rather than active duty strength, (e) multivariable effects of specific risk /protective factors after

  10. [Analysis of variance of repeated data measured by water maze with SPSS].

    PubMed

    Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang

    2007-01-01

    To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P

  11. Multivariate Prediction Equations for HbA1c Lowering, Weight Change, and Hypoglycemic Events Associated with Insulin Rescue Medication in Type 2 Diabetes Mellitus: Informing Economic Modeling.

    PubMed

    Willis, Michael; Asseburg, Christian; Nilsson, Andreas; Johnsson, Kristina; Kartman, Bernt

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is chronic and progressive and the cost-effectiveness of new treatment interventions must be established over long time horizons. Given the limited durability of drugs, assumptions regarding downstream rescue medication can drive results. Especially for insulin, for which treatment effects and adverse events are known to depend on patient characteristics, this can be problematic for health economic evaluation involving modeling. To estimate parsimonious multivariate equations of treatment effects and hypoglycemic event risks for use in parameterizing insulin rescue therapy in model-based cost-effectiveness analysis. Clinical evidence for insulin use in T2DM was identified in PubMed and from published reviews and meta-analyses. Study and patient characteristics and treatment effects and adverse event rates were extracted and the data used to estimate parsimonious treatment effect and hypoglycemic event risk equations using multivariate regression analysis. Data from 91 studies featuring 171 usable study arms were identified, mostly for premix and basal insulin types. Multivariate prediction equations for glycated hemoglobin A 1c lowering and weight change were estimated separately for insulin-naive and insulin-experienced patients. Goodness of fit (R 2 ) for both outcomes were generally good, ranging from 0.44 to 0.84. Multivariate prediction equations for symptomatic, nocturnal, and severe hypoglycemic events were also estimated, though considerable heterogeneity in definitions limits their usefulness. Parsimonious and robust multivariate prediction equations were estimated for glycated hemoglobin A 1c and weight change, separately for insulin-naive and insulin-experienced patients. Using these in economic simulation modeling in T2DM can improve realism and flexibility in modeling insulin rescue medication. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. A general, multivariate definition of causal effects in epidemiology.

    PubMed

    Flanders, W Dana; Klein, Mitchel

    2015-07-01

    Population causal effects are often defined as contrasts of average individual-level counterfactual outcomes, comparing different exposure levels. Common examples include causal risk difference and risk ratios. These and most other examples emphasize effects on disease onset, a reflection of the usual epidemiological interest in disease occurrence. Exposure effects on other health characteristics, such as prevalence or conditional risk of a particular disability, can be important as well, but contrasts involving these other measures may often be dismissed as non-causal. For example, an observed prevalence ratio might often viewed as an estimator of a causal incidence ratio and hence subject to bias. In this manuscript, we provide and evaluate a definition of causal effects that generalizes those previously available. A key part of the generalization is that contrasts used in the definition can involve multivariate, counterfactual outcomes, rather than only univariate outcomes. An important consequence of our generalization is that, using it, one can properly define causal effects based on a wide variety of additional measures. Examples include causal prevalence ratios and differences and causal conditional risk ratios and differences. We illustrate how these additional measures can be useful, natural, easily estimated, and of public health importance. Furthermore, we discuss conditions for valid estimation of each type of causal effect, and how improper interpretation or inferences for the wrong target population can be sources of bias.

  13. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  14. Divergences and estimating tight bounds on Bayes error with applications to multivariate Gaussian copula and latent Gaussian copula

    NASA Astrophysics Data System (ADS)

    Thelen, Brian J.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.

    2017-04-01

    In Bayesian decision theory, there has been a great amount of research into theoretical frameworks and information- theoretic quantities that can be used to provide lower and upper bounds for the Bayes error. These include well-known bounds such as Chernoff, Battacharrya, and J-divergence. Part of the challenge of utilizing these various metrics in practice is (i) whether they are "loose" or "tight" bounds, (ii) how they might be estimated via either parametric or non-parametric methods, and (iii) how accurate the estimates are for limited amounts of data. In general what is desired is a methodology for generating relatively tight lower and upper bounds, and then an approach to estimate these bounds efficiently from data. In this paper, we explore the so-called triangle divergence which has been around for a while, but was recently made more prominent in some recent research on non-parametric estimation of information metrics. Part of this work is motivated by applications for quantifying fundamental information content in SAR/LIDAR data, and to help in this, we have developed a flexible multivariate modeling framework based on multivariate Gaussian copula models which can be combined with the triangle divergence framework to quantify this information, and provide approximate bounds on Bayes error. In this paper we present an overview of the bounds, including those based on triangle divergence and verify that under a number of multivariate models, the upper and lower bounds derived from triangle divergence are significantly tighter than the other common bounds, and often times, dramatically so. We also propose some simple but effective means for computing the triangle divergence using Monte Carlo methods, and then discuss estimation of the triangle divergence from empirical data based on Gaussian Copula models.

  15. Analysis models for the estimation of oceanic fields

    NASA Technical Reports Server (NTRS)

    Carter, E. F.; Robinson, A. R.

    1987-01-01

    A general model for statistically optimal estimates is presented for dealing with scalar, vector and multivariate datasets. The method deals with anisotropic fields and treats space and time dependence equivalently. Problems addressed include the analysis, or the production of synoptic time series of regularly gridded fields from irregular and gappy datasets, and the estimate of fields by compositing observations from several different instruments and sampling schemes. Technical issues are discussed, including the convergence of statistical estimates, the choice of representation of the correlations, the influential domain of an observation, and the efficiency of numerical computations.

  16. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  17. Analysis of multivariate longitudinal kidney function outcomes using generalized linear mixed models.

    PubMed

    Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A

    2015-06-14

    Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.

  18. A New Approach of Juvenile Age Estimation using Measurements of the Ilium and Multivariate Adaptive Regression Splines (MARS) Models for Better Age Prediction.

    PubMed

    Corron, Louise; Marchal, François; Condemi, Silvana; Chaumoître, Kathia; Adalian, Pascal

    2017-01-01

    Juvenile age estimation methods used in forensic anthropology generally lack methodological consistency and/or statistical validity. Considering this, a standard approach using nonparametric Multivariate Adaptive Regression Splines (MARS) models were tested to predict age from iliac biometric variables of male and female juveniles from Marseilles, France, aged 0-12 years. Models using unidimensional (length and width) and bidimensional iliac data (module and surface) were constructed on a training sample of 176 individuals and validated on an independent test sample of 68 individuals. Results show that MARS prediction models using iliac width, module and area give overall better and statistically valid age estimates. These models integrate punctual nonlinearities of the relationship between age and osteometric variables. By constructing valid prediction intervals whose size increases with age, MARS models take into account the normal increase of individual variability. MARS models can qualify as a practical and standardized approach for juvenile age estimation. © 2016 American Academy of Forensic Sciences.

  19. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    PubMed

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  20. Challenging Conventional Wisdom for Multivariate Statistical Models with Small Samples

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2017-01-01

    In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…

  1. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.

    PubMed

    Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J

    2016-02-01

    A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.

  2. A Hybrid Index for Characterizing Drought Based on a Nonparametric Kernel Estimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong

    This study develops a nonparametric multivariate drought index, namely, the Nonparametric Multivariate Standardized Drought Index (NMSDI), by considering the variations of both precipitation and streamflow. Building upon previous efforts in constructing Nonparametric Multivariate Drought Index, we use the nonparametric kernel estimator to derive the joint distribution of precipitation and streamflow, thus providing additional insights in drought index development. The proposed NMSDI are applied in the Wei River Basin (WRB), based on which the drought evolution characteristics are investigated. Results indicate: (1) generally, NMSDI captures the drought onset similar to Standardized Precipitation Index (SPI) and drought termination and persistence similar tomore » Standardized Streamflow Index (SSFI). The drought events identified by NMSDI match well with historical drought records in the WRB. The performances are also consistent with that by an existing Multivariate Standardized Drought Index (MSDI) at various timescales, confirming the validity of the newly constructed NMSDI in drought detections (2) An increasing risk of drought has been detected for the past decades, and will be persistent to a certain extent in future in most areas of the WRB; (3) the identified change points of annual NMSDI are mainly concentrated in the early 1970s and middle 1990s, coincident with extensive water use and soil reservation practices. This study highlights the nonparametric multivariable drought index, which can be used for drought detections and predictions efficiently and comprehensively.« less

  3. Exact Interval Estimation, Power Calculation, and Sample Size Determination in Normal Correlation Analysis

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2006-01-01

    This paper considers the problem of analysis of correlation coefficients from a multivariate normal population. A unified theorem is derived for the regression model with normally distributed explanatory variables and the general results are employed to provide useful expressions for the distributions of simple, multiple, and partial-multiple…

  4. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  5. Numerically stable algorithm for combining census and sample estimates with the multivariate composite estimator

    Treesearch

    R. L. Czaplewski

    2009-01-01

    The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...

  6. On Generalizations of Cochran’s Theorem and Projection Matrices.

    DTIC Science & Technology

    1980-08-01

    Definiteness of the Estimated Dispersion Matrix in a Multivariate Linear Model ," F. Pukelsheim and George P.H. Styan, May 1978. TECHNICAL REPORTS...with applications to the analysis of covariance," Proc. Cambridge Philos. Soc., 30, pp. 178-191. Graybill , F. A. and Marsaglia, G. (1957...34Idempotent matrices and quad- ratic forms in the general linear hypothesis," Ann. Math. Statist., 28, pp. 678-686. Greub, W. (1975). Linear Algebra (4th ed

  7. Analyzing developmental processes on an individual level using nonstationary time series modeling.

    PubMed

    Molenaar, Peter C M; Sinclair, Katerina O; Rovine, Michael J; Ram, Nilam; Corneal, Sherry E

    2009-01-01

    Individuals change over time, often in complex ways. Generally, studies of change over time have combined individuals into groups for analysis, which is inappropriate in most, if not all, studies of development. The authors explain how to identify appropriate levels of analysis (individual vs. group) and demonstrate how to estimate changes in developmental processes over time using a multivariate nonstationary time series model. They apply this model to describe the changing relationships between a biological son and father and a stepson and stepfather at the individual level. The authors also explain how to use an extended Kalman filter with iteration and smoothing estimator to capture how dynamics change over time. Finally, they suggest further applications of the multivariate nonstationary time series model and detail the next steps in the development of statistical models used to analyze individual-level data.

  8. Robust Multivariable Estimation of the Relevant Information Coming from a Wheel Speed Sensor and an Accelerometer Embedded in a Car under Performance Tests

    PubMed Central

    Hernandez, Wilmar

    2005-01-01

    In the present paper, in order to estimate the response of both a wheel speed sensor and an accelerometer placed in a car under performance tests, robust and optimal multivariable estimation techniques are used. In this case, the disturbances and noises corrupting the relevant information coming from the sensors' outputs are so dangerous that their negative influence on the electrical systems impoverish the general performance of the car. In short, the solution to this problem is a safety related problem that deserves our full attention. Therefore, in order to diminish the negative effects of the disturbances and noises on the car's electrical and electromechanical systems, an optimum observer is used. The experimental results show a satisfactory improvement in the signal-to-noise ratio of the relevant signals and demonstrate the importance of the fusion of several intelligent sensor design techniques when designing the intelligent sensors that today's cars need.

  9. Regression Models For Multivariate Count Data

    PubMed Central

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2016-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500

  10. Regression Models For Multivariate Count Data.

    PubMed

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  11. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    PubMed

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  12. The Association of Irritability and Impulsivity with Suicidal Ideation Among 15- to 20-Year-Old Males

    ERIC Educational Resources Information Center

    Conner, Kenneth R.; Meldrum, Sean; Wieczorek, William F.; Duberstein, Paul R.; Welte, John W.

    2004-01-01

    Information on the association of impulsivity and measures of aggression with suicidal ideation in adolescents and young adults is limited. Data were gathered from a community sample of 625 adolescent and young adult males. Analyses were based on multivariate generalized estimating equations. Impulsivity and irritability were associated strongly…

  13. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining

    PubMed Central

    Truccolo, Wilson

    2017-01-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305

  14. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    PubMed

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  15. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

    PubMed Central

    Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.

    2016-01-01

    Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095

  16. Multivariate longitudinal data analysis with censored and intermittent missing responses.

    PubMed

    Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun

    2018-05-08

    The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  18. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  20. A semiparametric separation curve approach for comparing correlated ROC data from multiple markers

    PubMed Central

    Tang, Liansheng Larry; Zhou, Xiao-Hua

    2012-01-01

    In this article we propose a separation curve method to identify the range of false positive rates for which two ROC curves differ or one ROC curve is superior to the other. Our method is based on a general multivariate ROC curve model, including interaction terms between discrete covariates and false positive rates. It is applicable with most existing ROC curve models. Furthermore, we introduce a semiparametric least squares ROC estimator and apply the estimator to the separation curve method. We derive a sandwich estimator for the covariance matrix of the semiparametric estimator. We illustrate the application of our separation curve method through two real life examples. PMID:23074360

  1. Multiple imputation for handling missing outcome data when estimating the relative risk.

    PubMed

    Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B

    2017-09-06

    Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.

  2. Inter-hospital transfer is associated with increased mortality and costs in severe sepsis and septic shock: An instrumental variables approach.

    PubMed

    Mohr, Nicholas M; Harland, Karisa K; Shane, Dan M; Ahmed, Azeemuddin; Fuller, Brian M; Torner, James C

    2016-12-01

    The objective of this study was to evaluate the impact of regionalization on sepsis survival, to describe the role of inter-hospital transfer in rural sepsis care, and to measure the cost of inter-hospital transfer in a predominantly rural state. Observational case-control study using statewide administrative claims data from 2005 to 2014 in a predominantly rural Midwestern state. Mortality and marginal costs were estimated with multivariable generalized estimating equations models and with instrumental variables models. A total of 18 246 patients were included, of which 59% were transferred between hospitals. Transferred patients had higher mortality and longer hospital length-of-stay than non-transferred patients. Using a multivariable generalized estimating equations (GEE) model to adjust for potentially confounding factors, inter-hospital transfer was associated with increased mortality (aOR 1.7, 95% CI 1.5-1.9). Using an instrumental variables model, transfer was associated with a 9.2% increased risk of death. Transfer was associated with additional costs of $6897 (95% CI $5769-8024). Even when limiting to only those patients who received care in the largest hospitals, transfer was still associated with $5167 (95% CI $3696-6638) in additional cost. The majority of rural sepsis patients are transferred, and these transferred patients have higher mortality and significantly increased cost of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Functional Generalized Structured Component Analysis.

    PubMed

    Suk, Hye Won; Hwang, Heungsun

    2016-12-01

    An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.

  4. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

    PubMed

    Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-15

    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan-Meier estimator.

    PubMed

    Prentice, Ross L; Zhao, Shanshan

    2018-01-01

    The Dabrowska (Ann Stat 16:1475-1489, 1988) product integral representation of the multivariate survivor function is extended, leading to a nonparametric survivor function estimator for an arbitrary number of failure time variates that has a simple recursive formula for its calculation. Empirical process methods are used to sketch proofs for this estimator's strong consistency and weak convergence properties. Summary measures of pairwise and higher-order dependencies are also defined and nonparametrically estimated. Simulation evaluation is given for the special case of three failure time variates.

  6. Joint coverage probability in a simulation study on Continuous-Time Markov Chain parameter estimation.

    PubMed

    Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S

    2015-01-01

    Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.

  7. Analysis of cohort studies with multivariate and partially observed disease classification data.

    PubMed

    Chatterjee, Nilanjan; Sinha, Samiran; Diver, W Ryan; Feigelson, Heather Spencer

    2010-09-01

    Complex diseases like cancers can often be classified into subtypes using various pathological and molecular traits of the disease. In this article, we develop methods for analysis of disease incidence in cohort studies incorporating data on multiple disease traits using a two-stage semiparametric Cox proportional hazards regression model that allows one to examine the heterogeneity in the effect of the covariates by the levels of the different disease traits. For inference in the presence of missing disease traits, we propose a generalization of an estimating equation approach for handling missing cause of failure in competing-risk data. We prove asymptotic unbiasedness of the estimating equation method under a general missing-at-random assumption and propose a novel influence-function-based sandwich variance estimator. The methods are illustrated using simulation studies and a real data application involving the Cancer Prevention Study II nutrition cohort.

  8. Estimation of Posterior Probabilities Using Multivariate Smoothing Splines and Generalized Cross-Validation.

    DTIC Science & Technology

    1983-09-01

    Ciencia y Tecnologia -Mexico, by ONR under Contract No. N00014-77-C-0675, and by ARO under Contract No. DAAG29-80-K-0042. LUJ THE VIE~W, rTIJ. ’~v ’’~c...Department of Statis- tics. For financial support I thank the Consejo Nacional de Ciencia y Tecnologia - Mexico, and the Department of Statistics of the

  9. A mixed model for the relationship between climate and human cranial form.

    PubMed

    Katz, David C; Grote, Mark N; Weaver, Timothy D

    2016-08-01

    We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.

    PubMed

    Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G

    2017-03-01

    We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  11. Risk prediction for myocardial infarction via generalized functional regression models.

    PubMed

    Ieva, Francesca; Paganoni, Anna M

    2016-08-01

    In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.

  12. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data.

    PubMed

    Adams, Dean C

    2014-09-01

    Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Usual Dietary Intakes: SAS Macros for Fitting Multivariate Measurement Error Models & Estimating Multivariate Usual Intake Distributions

    Cancer.gov

    The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.

  14. Multivariate generalized hidden Markov regression models with random covariates: Physical exercise in an elderly population.

    PubMed

    Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello

    2018-04-22

    A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Comparing interval estimates for small sample ordinal CFA models

    PubMed Central

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002

  16. Comparing interval estimates for small sample ordinal CFA models.

    PubMed

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.

  17. Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)

    PubMed Central

    Churchill, Morgan; Clementz, Mark T; Kohno, Naoki

    2014-01-01

    Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814

  18. Generalized semiparametric varying-coefficient models for longitudinal data

    NASA Astrophysics Data System (ADS)

    Qi, Li

    In this dissertation, we investigate the generalized semiparametric varying-coefficient models for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects, i.e., the covariate effects that depend on other possibly time-dependent exposure variables. First, we consider the model that assumes the time-varying effects are unspecified functions of time while the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedures are developed using multivariate local linear smoothing and generalized weighted least squares estimation techniques. The asymptotic properties of the proposed estimators are established. The simulation studies show that the proposed methods have satisfactory finite sample performance. ACTG 244 clinical trial of HIV infected patients are applied to examine the effects of antiretroviral treatment switching before and after HIV developing the 215-mutation. Our analysis shows benefit of treatment switching before developing the 215-mutation. The proposed methods are also applied to the STEP study with MITT cases showing that they have broad applications in medical research.

  19. Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies

    PubMed Central

    Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne

    2014-01-01

    Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111

  20. Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.

    2016-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.

  1. Evolutionary rates for multivariate traits: the role of selection and genetic variation

    PubMed Central

    Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian

    2014-01-01

    A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697

  2. Predicting seasonal influenza transmission using functional regression models with temporal dependence.

    PubMed

    Oviedo de la Fuente, Manuel; Febrero-Bande, Manuel; Muñoz, María Pilar; Domínguez, Àngela

    2018-01-01

    This paper proposes a novel approach that uses meteorological information to predict the incidence of influenza in Galicia (Spain). It extends the Generalized Least Squares (GLS) methods in the multivariate framework to functional regression models with dependent errors. These kinds of models are useful when the recent history of the incidence of influenza are readily unavailable (for instance, by delays on the communication with health informants) and the prediction must be constructed by correcting the temporal dependence of the residuals and using more accessible variables. A simulation study shows that the GLS estimators render better estimations of the parameters associated with the regression model than they do with the classical models. They obtain extremely good results from the predictive point of view and are competitive with the classical time series approach for the incidence of influenza. An iterative version of the GLS estimator (called iGLS) was also proposed that can help to model complicated dependence structures. For constructing the model, the distance correlation measure [Formula: see text] was employed to select relevant information to predict influenza rate mixing multivariate and functional variables. These kinds of models are extremely useful to health managers in allocating resources in advance to manage influenza epidemics.

  3. A Comparison of Three Multivariate Models for Estimating Test Battery Reliability.

    ERIC Educational Resources Information Center

    Wood, Terry M.; Safrit, Margaret J.

    1987-01-01

    A comparison of three multivariate models (canonical reliability model, maximum generalizability model, canonical correlation model) for estimating test battery reliability indicated that the maximum generalizability model showed the least degree of bias, smallest errors in estimation, and the greatest relative efficiency across all experimental…

  4. Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix

    PubMed Central

    Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou

    2013-01-01

    Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479

  5. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  6. External validity of a hierarchical dimensional model of child and adolescent psychopathology: Tests using confirmatory factor analyses and multivariate behavior genetic analyses.

    PubMed

    Waldman, Irwin D; Poore, Holly E; van Hulle, Carol; Rathouz, Paul J; Lahey, Benjamin B

    2016-11-01

    Several recent studies of the hierarchical phenotypic structure of psychopathology have identified a General psychopathology factor in addition to the more expected specific Externalizing and Internalizing dimensions in both youth and adult samples and some have found relevant unique external correlates of this General factor. We used data from 1,568 twin pairs (599 MZ & 969 DZ) age 9 to 17 to test hypotheses for the underlying structure of youth psychopathology and the external validity of the higher-order factors. Psychopathology symptoms were assessed via structured interviews of caretakers and youth. We conducted phenotypic analyses of competing structural models using Confirmatory Factor Analysis and used Structural Equation Modeling and multivariate behavior genetic analyses to understand the etiology of the higher-order factors and their external validity. We found that both a General factor and specific Externalizing and Internalizing dimensions are necessary for characterizing youth psychopathology at both the phenotypic and etiologic levels, and that the 3 higher-order factors differed substantially in the magnitudes of their underlying genetic and environmental influences. Phenotypically, the specific Externalizing and Internalizing dimensions were slightly negatively correlated when a General factor was included, which reflected a significant inverse correlation between the nonshared environmental (but not genetic) influences on Internalizing and Externalizing. We estimated heritability of the general factor of psychopathology for the first time. Its moderate heritability suggests that it is not merely an artifact of measurement error but a valid construct. The General, Externalizing, and Internalizing factors differed in their relations with 3 external validity criteria: mother's smoking during pregnancy, parent's harsh discipline, and the youth's association with delinquent peers. Multivariate behavior genetic analyses supported the external validity of the 3 higher-order factors by suggesting that the General, Externalizing, and Internalizing factors were correlated with peer delinquency and parent's harsh discipline for different etiologic reasons. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Bayesian multivariate hierarchical transformation models for ROC analysis.

    PubMed

    O'Malley, A James; Zou, Kelly H

    2006-02-15

    A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.

  8. Bayesian multivariate hierarchical transformation models for ROC analysis

    PubMed Central

    O'Malley, A. James; Zou, Kelly H.

    2006-01-01

    SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836

  9. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.

    PubMed

    Park, Eun Sug; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford

    2015-06-01

    A major difficulty with assessing source-specific health effects is that source-specific exposures cannot be measured directly; rather, they need to be estimated by a source-apportionment method such as multivariate receptor modeling. The uncertainty in source apportionment (uncertainty in source-specific exposure estimates and model uncertainty due to the unknown number of sources and identifiability conditions) has been largely ignored in previous studies. Also, spatial dependence of multipollutant data collected from multiple monitoring sites has not yet been incorporated into multivariate receptor modeling. The objectives of this project are (1) to develop a multipollutant approach that incorporates both sources of uncertainty in source-apportionment into the assessment of source-specific health effects and (2) to develop enhanced multivariate receptor models that can account for spatial correlations in the multipollutant data collected from multiple sites. We employed a Bayesian hierarchical modeling framework consisting of multivariate receptor models, health-effects models, and a hierarchical model on latent source contributions. For the health model, we focused on the time-series design in this project. Each combination of number of sources and identifiability conditions (additional constraints on model parameters) defines a different model. We built a set of plausible models with extensive exploratory data analyses and with information from previous studies, and then computed posterior model probability to estimate model uncertainty. Parameter estimation and model uncertainty estimation were implemented simultaneously by Markov chain Monte Carlo (MCMC*) methods. We validated the methods using simulated data. We illustrated the methods using PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) speciation data and mortality data from Phoenix, Arizona, and Houston, Texas. The Phoenix data included counts of cardiovascular deaths and daily PM2.5 speciation data from 1995-1997. The Houston data included respiratory mortality data and 24-hour PM2.5 speciation data sampled every six days from a region near the Houston Ship Channel in years 2002-2005. We also developed a Bayesian spatial multivariate receptor modeling approach that, while simultaneously dealing with the unknown number of sources and identifiability conditions, incorporated spatial correlations in the multipollutant data collected from multiple sites into the estimation of source profiles and contributions based on the discrete process convolution model for multivariate spatial processes. This new modeling approach was applied to 24-hour ambient air concentrations of 17 volatile organic compounds (VOCs) measured at nine monitoring sites in Harris County, Texas, during years 2000 to 2005. Simulation results indicated that our methods were accurate in identifying the true model and estimated parameters were close to the true values. The results from our methods agreed in general with previous studies on the source apportionment of the Phoenix data in terms of estimated source profiles and contributions. However, we had a greater number of statistically insignificant findings, which was likely a natural consequence of incorporating uncertainty in the estimated source contributions into the health-effects parameter estimation. For the Houston data, a model with five sources (that seemed to be Sulfate-Rich Secondary Aerosol, Motor Vehicles, Industrial Combustion, Soil/Crustal Matter, and Sea Salt) showed the highest posterior model probability among the candidate models considered when fitted simultaneously to the PM2.5 and mortality data. There was a statistically significant positive association between respiratory mortality and same-day PM2.5 concentrations attributed to one of the sources (probably industrial combustion). The Bayesian spatial multivariate receptor modeling approach applied to the VOC data led to a highest posterior model probability for a model with five sources (that seemed to be refinery, petrochemical production, gasoline evaporation, natural gas, and vehicular exhaust) among several candidate models, with the number of sources varying between three and seven and with different identifiability conditions. Our multipollutant approach assessing source-specific health effects is more advantageous than a single-pollutant approach in that it can estimate total health effects from multiple pollutants and can also identify emission sources that are responsible for adverse health effects. Our Bayesian approach can incorporate not only uncertainty in the estimated source contributions, but also model uncertainty that has not been addressed in previous studies on assessing source-specific health effects. The new Bayesian spatial multivariate receptor modeling approach enables predictions of source contributions at unmonitored sites, minimizing exposure misclassification and providing improved exposure estimates along with their uncertainty estimates, as well as accounting for uncertainty in the number of sources and identifiability conditions.

  10. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  11. Spatial estimation from remotely sensed data via empirical Bayes models

    NASA Technical Reports Server (NTRS)

    Hill, J. R.; Hinkley, D. V.; Kostal, H.; Morris, C. N.

    1984-01-01

    Multichannel satellite image data, available as LANDSAT imagery, are recorded as a multivariate time series (four channels, multiple passovers) in two spatial dimensions. The application of parametric empirical Bayes theory to classification of, and estimating the probability of, each crop type at each of a large number of pixels is considered. This theory involves both the probability distribution of imagery data, conditional on crop types, and the prior spatial distribution of crop types. For the latter Markov models indexed by estimable parameters are used. A broad outline of the general theory reveals several questions for further research. Some detailed results are given for the special case of two crop types when only a line transect is analyzed. Finally, the estimation of an underlying continuous process on the lattice is discussed which would be applicable to such quantities as crop yield.

  12. Support vector machines for nuclear reactor state estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less

  13. The impact of social support and partner relationship dynamics on engagement in HIV care and antiretroviral treatment adherence among MSM in Latin America.

    PubMed

    Anderson, Kelsey; Biello, Katie; Rosenberger, Joshua G; Novak, David; Mayer, Kenneth; Carey, Kate; Mimiaga, Matthew J

    2018-03-27

    In Latin America (LA), HIV prevalence among MSM is estimated at thirty times greater than in the general male population. Little is known about the role of social support or disclosure status in relation to the HIV care continuum among LA MSM. Using multivariable logistic generalized estimation equations, we assessed the impact of social support satisfaction and disclosure status on engagement in HIV care, ART initiation, and ART adherence with data from an online, multinational sample of HIV infected MSM in Latin America (N = 2,350). 80.0% were engaged in HIV care, 71% initiated ART, and among those, 37% reported missing at least one dose in the past month. In multivariable models, compared to being very satisfied with social support, being somewhat satisfied (aOR = 0.73, 95% CI 0.56, 0.95) or somewhat dissatisfied (aOR = 0.83, 95% CI 0.70, 0.98) were associated with reduced odds of reporting 100% ART adherence. Disclosure of status was associated with a greater odds of HIV care engagement (OR = 1.63, 95% CI 1.28, 2.07) and ART initiation (OR = 1.55, 95% CI 1.30, 1.84). Greater satisfaction with social support and comfort disclosing HIV status to these sources were associated with improved engagement in HIV care and greater initiation of ART among MSM in LA.

  14. Generalized anxiety disorder in urban China: Prevalence, awareness, and disease burden.

    PubMed

    Yu, Wei; Singh, Shikha Satendra; Calhoun, Shawna; Zhang, Hui; Zhao, Xiahong; Yang, Fengchi

    2018-07-01

    Limited published research has quantified the Generalized Anxiety Disorder (GAD) prevalence and its burden in China. This study aimed to fill in the knowledge gap and to evaluate the burden of GAD among adults in urban China. This study utilized existing data from the China National Health and Wellness Survey (NHWS) 2012-2013. Prevalence of self-reported diagnosed and undiagnosed GAD was estimated. Diagnosed and undiagnosed GAD respondents were compared with non-anxious respondents in terms of health-related quality of life (HRQoL), resource utilization, and work productivity and activity impairment using multivariate generalized linear models. A multivariate logistic model assessed the risk factors for GAD. The prevalence of undiagnosed/diagnosed GAD was 5.3% in urban China with only 0.5% of GAD respondents reporting a diagnosis. Compared with non-anxious respondents, both diagnosed and undiagnosed GAD respondents had significantly lower HRQoL, more work productivity and activity impairment, and greater healthcare resource utilization in the past six months. Age, gender, marital status, income level, insurance status, smoking, drinking and exercise behaviors, and comorbidity burdens were significantly associated with GAD. This was a patient-reported study; data are therefore subject to recall bias. The survey was limited to respondents in urban China; therefore, these results focused on urban China and may be under- or over-estimating GAD prevalence in China. Causal inferences cannot be made given the cross-sectional nature of the study. GAD may be substantially under-diagnosed in urban China. More healthcare resources should be invested to alleviate the burden of GAD. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package

    PubMed Central

    Decker, Anna L.; Hubbard, Alan; Crespi, Catherine M.; Seto, Edmund Y.W.; Wang, May C.

    2015-01-01

    While child and adolescent obesity is a serious public health concern, few studies have utilized parameters based on the causal inference literature to examine the potential impacts of early intervention. The purpose of this analysis was to estimate the causal effects of early interventions to improve physical activity and diet during adolescence on body mass index (BMI), a measure of adiposity, using improved techniques. The most widespread statistical method in studies of child and adolescent obesity is multi-variable regression, with the parameter of interest being the coefficient on the variable of interest. This approach does not appropriately adjust for time-dependent confounding, and the modeling assumptions may not always be met. An alternative parameter to estimate is one motivated by the causal inference literature, which can be interpreted as the mean change in the outcome under interventions to set the exposure of interest. The underlying data-generating distribution, upon which the estimator is based, can be estimated via a parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-scores via a parameter motivated by the causal inference literature, using both parametric and semi-parametric estimation approaches. The parameters of interest were estimated with a recently released R package, ltmle, for estimating means based upon general longitudinal treatment regimes. We found that early, sustained intervention on total calories had a greater impact than a physical activity intervention or non-sustained interventions. Multivariable linear regression yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal semiparametric estimation of longitudinal treatment-specific means via ltmle provides an incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice. PMID:26046009

  16. The impact of multiple endpoint dependency on Q and I(2) in meta-analysis.

    PubMed

    Thompson, Christopher Glen; Becker, Betsy Jane

    2014-09-01

    A common assumption in meta-analysis is that effect sizes are independent. When correlated effect sizes are analyzed using traditional univariate techniques, this assumption is violated. This research assesses the impact of dependence arising from treatment-control studies with multiple endpoints on homogeneity measures Q and I(2) in scenarios using the unbiased standardized-mean-difference effect size. Univariate and multivariate meta-analysis methods are examined. Conditions included different overall outcome effects, study sample sizes, numbers of studies, between-outcomes correlations, dependency structures, and ways of computing the correlation. The univariate approach used typical fixed-effects analyses whereas the multivariate approach used generalized least-squares (GLS) estimates of a fixed-effects model, weighted by the inverse variance-covariance matrix. Increased dependence among effect sizes led to increased Type I error rates from univariate models. When effect sizes were strongly dependent, error rates were drastically higher than nominal levels regardless of study sample size and number of studies. In contrast, using GLS estimation to account for multiple-endpoint dependency maintained error rates within nominal levels. Conversely, mean I(2) values were not greatly affected by increased amounts of dependency. Last, we point out that the between-outcomes correlation should be estimated as a pooled within-groups correlation rather than using a full-sample estimator that does not consider treatment/control group membership. Copyright © 2014 John Wiley & Sons, Ltd.

  17. An efficient parallel sampling technique for Multivariate Poisson-Lognormal model: Analysis with two crash count datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Xianyuan; Aziz, H. M. Abdul; Ukkusuri, Satish V.

    Our study investigates the Multivariate Poisson-lognormal (MVPLN) model that jointly models crash frequency and severity accounting for correlations. The ordinary univariate count models analyze crashes of different severity level separately ignoring the correlations among severity levels. The MVPLN model is capable to incorporate the general correlation structure and takes account of the over dispersion in the data that leads to a superior data fitting. But, the traditional estimation approach for MVPLN model is computationally expensive, which often limits the use of MVPLN model in practice. In this work, a parallel sampling scheme is introduced to improve the original Markov Chainmore » Monte Carlo (MCMC) estimation approach of the MVPLN model, which significantly reduces the model estimation time. Two MVPLN models are developed using the pedestrian vehicle crash data collected in New York City from 2002 to 2006, and the highway-injury data from Washington State (5-year data from 1990 to 1994) The Deviance Information Criteria (DIC) is used to evaluate the model fitting. The estimation results show that the MVPLN models provide a superior fit over univariate Poisson-lognormal (PLN), univariate Poisson, and Negative Binomial models. Moreover, the correlations among the latent effects of different severity levels are found significant in both datasets that justifies the importance of jointly modeling crash frequency and severity accounting for correlations.« less

  18. An efficient parallel sampling technique for Multivariate Poisson-Lognormal model: Analysis with two crash count datasets

    DOE PAGES

    Zhan, Xianyuan; Aziz, H. M. Abdul; Ukkusuri, Satish V.

    2015-11-19

    Our study investigates the Multivariate Poisson-lognormal (MVPLN) model that jointly models crash frequency and severity accounting for correlations. The ordinary univariate count models analyze crashes of different severity level separately ignoring the correlations among severity levels. The MVPLN model is capable to incorporate the general correlation structure and takes account of the over dispersion in the data that leads to a superior data fitting. But, the traditional estimation approach for MVPLN model is computationally expensive, which often limits the use of MVPLN model in practice. In this work, a parallel sampling scheme is introduced to improve the original Markov Chainmore » Monte Carlo (MCMC) estimation approach of the MVPLN model, which significantly reduces the model estimation time. Two MVPLN models are developed using the pedestrian vehicle crash data collected in New York City from 2002 to 2006, and the highway-injury data from Washington State (5-year data from 1990 to 1994) The Deviance Information Criteria (DIC) is used to evaluate the model fitting. The estimation results show that the MVPLN models provide a superior fit over univariate Poisson-lognormal (PLN), univariate Poisson, and Negative Binomial models. Moreover, the correlations among the latent effects of different severity levels are found significant in both datasets that justifies the importance of jointly modeling crash frequency and severity accounting for correlations.« less

  19. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  20. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    PubMed

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Reduced rank regression via adaptive nuclear norm penalization

    PubMed Central

    Chen, Kun; Dong, Hongbo; Chan, Kung-Sik

    2014-01-01

    Summary We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation method for high-dimensional multivariate regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the matrix, and it is generally non-convex under the natural restriction that the weight decreases with the singular value. However, we show that the proposed non-convex penalized regression method has a global optimal solution obtained from an adaptively soft-thresholded singular value decomposition. The method is computationally efficient, and the resulting solution path is continuous. The rank consistency of and prediction/estimation performance bounds for the estimator are established for a high-dimensional asymptotic regime. Simulation studies and an application in genetics demonstrate its efficacy. PMID:25045172

  2. Effects of Covariance Heterogeneity on Three Procedures for Analyzing Multivariate Repeated Measures Designs.

    ERIC Educational Resources Information Center

    Vallejo, Guillermo; Fidalgo, Angel; Fernandez, Paula

    2001-01-01

    Estimated empirical Type I error rate and power rate for three procedures for analyzing multivariate repeated measures designs: (1) the doubly multivariate model; (2) the Welch-James multivariate solution (H. Keselman, M. Carriere, a nd L. Lix, 1993); and (3) the multivariate version of the modified Brown-Forsythe procedure (M. Brown and A.…

  3. Evolutionary rates for multivariate traits: the role of selection and genetic variation.

    PubMed

    Pitchers, William; Wolf, Jason B; Tregenza, Tom; Hunt, John; Dworkin, Ian

    2014-08-19

    A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Are classic predictors of voltage valid in cardiac amyloidosis? A contemporary analysis of electrocardiographic findings.

    PubMed

    Sperry, Brett W; Vranian, Michael N; Hachamovitch, Rory; Joshi, Hariom; McCarthy, Meghann; Ikram, Asad; Hanna, Mazen

    2016-07-01

    Low voltage electrocardiography (ECG) coupled with increased ventricular wall thickness is the hallmark of cardiac amyloidosis. However, patient characteristics influencing voltage in the general population, including bundle branch block, have not been evaluated in amyloid heart disease. A retrospective analysis was performed of patients with newly diagnosed cardiac amyloidosis from 2002 to 2014. ECG voltage was calculated using limb (sum of QRS complex in leads I, II and III) and precordial (Sokolow: S in V1 plus R in V5-V6) criteria. The associations between voltage and clinical variables were tested using multivariable linear regression. A Cox model assessed the association of voltage with mortality. In 389 subjects (transthyretin ATTR 186, light chain AL 203), 30% had conduction delay (QRS >120ms). In those with narrow QRS, 68% met low limb, 72% low Sokolow and 57% both criteria, with lower voltages found in AL vs ATTR. LV mass index as well as other typical factors that impact voltage (age, sex, race, hypertension, BSA, and smoking) in the general population were not associated with voltage in this cardiac amyloidosis cohort. Patients with LBBB and IVCD had similar voltages when compared to those with narrow QRS. Voltage was significantly associated with mortality (p<0.001 for both criteria) after multivariable adjustment. Classic predictors of ECG voltage in the general population are not valid in cardiac amyloidosis. In this cohort, the prevalence estimates of ventricular conduction delay and low voltage are higher than previously reported. Voltage predicts mortality after multivariable adjustment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.

    PubMed

    Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman

    2017-03-01

    We consider a high-dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).

  6. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  7. MULTIVARIATE RECEPTOR MODELS AND MODEL UNCERTAINTY. (R825173)

    EPA Science Inventory

    Abstract

    Estimation of the number of major pollution sources, the source composition profiles, and the source contributions are the main interests in multivariate receptor modeling. Due to lack of identifiability of the receptor model, however, the estimation cannot be...

  8. Using Copula Distributions to Support More Accurate Imaging-Based Diagnostic Classifiers for Neuropsychiatric Disorders

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.

    2014-01-01

    Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging measures or their multivariate Gaussian distributions. Thus, our findings demonstrate that estimated multivariate Copula distributions can generate dense sets of brain imaging measures that can in turn be used to train classifiers, and those classifiers are significantly more accurate and more reproducible than are those generated using real-world imaging measures alone. PMID:25093634

  9. Comparison of different Kalman filter approaches in deriving time varying connectivity from EEG data.

    PubMed

    Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick

    2015-08-01

    Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.

  10. Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.

    PubMed

    Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei

    2017-09-25

    It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).

  11. Subtle but ubiquitous selection on body size in a natural population of collared flycatchers over 33 years.

    PubMed

    Björklund, M; Gustafsson, L

    2017-07-01

    Understanding the magnitude and long-term patterns of selection in natural populations is of importance, for example, when analysing the evolutionary impact of climate change. We estimated univariate and multivariate directional, quadratic and correlational selection on four morphological traits (adult wing, tarsus and tail length, body mass) over a time period of 33 years (≈ 19 000 observations) in a nest-box breeding population of collared flycatchers (Ficedula albicollis). In general, selection was weak in both males and females over the years regardless of fitness measure (fledged young, recruits and survival) with only few cases with statistically significant selection. When data were analysed in a multivariate context and as time series, a number of patterns emerged; there was a consistent, but weak, selection for longer wings in both sexes, selection was stronger on females when the number of fledged young was used as a fitness measure, there were no indications of sexually antagonistic selection, and we found a negative correlation between selection on tarsus and wing length in both sexes but using different fitness measures. Uni- and multivariate selection gradients were correlated only for wing length and mass. Multivariate selection gradient vectors were longer than corresponding vector of univariate gradients and had more constrained direction. Correlational selection had little importance. Overall, the fitness surface was more or less flat with few cases of significant curvature, indicating that the adaptive peak with regard to body size in this species is broader than the phenotypic distribution, which has resulted in weak estimates of selection. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.

  13. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.

    PubMed

    Han, Fang; Liu, Han

    2017-02-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.

  14. Low central venous pressure versus acute normovolemic hemodilution versus conventional fluid management for reducing blood loss in radical retropubic prostatectomy: a randomized controlled trial.

    PubMed

    Habib, Ashraf S; Moul, Judd W; Polascik, Thomas J; Robertson, Cary N; Roche, Anthony M; White, William D; Hill, Stephen E; Nosnick, Israel; Gan, Tong J

    2014-05-01

    To compare acute normovolemic hemodilution versus low central venous pressure strategy versus conventional fluid management in reducing intraoperative estimated blood loss, hematocrit drop and need for blood transfusion in patients undergoing radical retropubic prostatectomy under general anesthesia. Patients undergoing radical retropubic prostatectomy under general anesthesia were randomized to conventional fluid management, acute normovolemic hemodilution or low central venous pressure (≤5 mmHg). Treatment effects on estimated blood loss and hematocrit change were tested in multivariable regression models accounting for surgeon, prostate size, and all two-way interactions. Ninety-two patients completed the study. Estimated blood loss (mean ± SD) was significantly lower with low central venous pressure (706 ± 362 ml) compared to acute normovolemic hemodilution (1103 ± 635 ml) and conventional (1051 ± 714 ml) groups (p = 0.0134). There was no difference between the groups in need for blood transfusion, or hematocrit drop from preoperative values. The multivariate model predicting estimated blood loss showed a significant effect of treatment (p = 0.0028) and prostate size (p = 0.0323), accounting for surgeon (p = 0.0013). In the model predicting hematocrit change, accounting for surgeon difference (p = 0.0037), the treatment effect depended on prostate size (p = 0.0007) with the slope of low central venous pressure differing from the other two groups. Hematocrit was predicted to drop more with increased prostate size in acute normovolemic hemodilution and conventional groups but not with low central venous pressure. Limitations include the inability to blind providers to group assignment, possible variability between providers in estimation of blood loss, and the relatively small sample size that was not powered to detect differences between the groups in need for blood transfusion. Maintaining low central venous pressure reduced estimated blood loss compared to conventional fluid management and acute normovolemic hemodilution in patients undergoing radical retropubic prostatectomy but there was no difference in allogeneic blood transfusion between the groups.

  15. Conventional and advanced time series estimation: application to the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database, 1993-2006.

    PubMed

    Moran, John L; Solomon, Patricia J

    2011-02-01

    Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series. Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series. The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}. A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators. © 2010 Blackwell Publishing Ltd.

  16. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  17. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    NASA Astrophysics Data System (ADS)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  18. A survey of kernel-type estimators for copula and their applications

    NASA Astrophysics Data System (ADS)

    Sumarjaya, I. W.

    2017-10-01

    Copulas have been widely used to model nonlinear dependence structure. Main applications of copulas include areas such as finance, insurance, hydrology, rainfall to name but a few. The flexibility of copula allows researchers to model dependence structure beyond Gaussian distribution. Basically, a copula is a function that couples multivariate distribution functions to their one-dimensional marginal distribution functions. In general, there are three methods to estimate copula. These are parametric, nonparametric, and semiparametric method. In this article we survey kernel-type estimators for copula such as mirror reflection kernel, beta kernel, transformation method and local likelihood transformation method. Then, we apply these kernel methods to three stock indexes in Asia. The results of our analysis suggest that, albeit variation in information criterion values, the local likelihood transformation method performs better than the other kernel methods.

  19. Clinical management provided by board-certificated physiatrists in early rehabilitation is a significant determinant of functional improvement in acute stroke patients: a retrospective analysis of Japan rehabilitation database.

    PubMed

    Kinoshita, Shoji; Kakuda, Wataru; Momosaki, Ryo; Yamada, Naoki; Sugawara, Hidekazu; Watanabe, Shu; Abo, Masahiro

    2015-05-01

    Early rehabilitation for acute stroke patients is widely recommended. We tested the hypothesis that clinical outcome of stroke patients who receive early rehabilitation managed by board-certificated physiatrists (BCP) is generally better than that provided by other medical specialties. Data of stroke patients who underwent early rehabilitation in 19 acute hospitals between January 2005 and December 2013 were collected from the Japan Rehabilitation Database and analyzed retrospectively. Multivariate linear regression analysis using generalized estimating equations method was performed to assess the association between Functional Independence Measure (FIM) effectiveness and management provided by BCP in early rehabilitation. In addition, multivariate logistic regression analysis was also performed to assess the impact of management provided by BCP in acute phase on discharge destination. After setting the inclusion criteria, data of 3838 stroke patients were eligible for analysis. BCP provided early rehabilitation in 814 patients (21.2%). Both the duration of daily exercise time and the frequency of regular conferencing were significantly higher for patients managed by BCP than by other specialties. Although the mortality rate was not different, multivariate regression analysis showed that FIM effectiveness correlated significantly and positively with the management provided by BCP (coefficient, .35; 95% confidence interval [CI], .012-.059; P < .005). In addition, multivariate logistic analysis identified clinical management by BCP as a significant determinant of home discharge (odds ratio, 1.24; 95% CI, 1.08-1.44; P < .005). Our retrospective cohort study demonstrated that clinical management provided by BCP in early rehabilitation can lead to functional recovery of acute stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.

    PubMed

    Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne

    2016-01-05

    In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.

  1. Estimating the decomposition of predictive information in multivariate systems

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  2. A general diagnostic model applied to language testing data.

    PubMed

    von Davier, Matthias

    2008-11-01

    Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.

  3. The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference: an application to longitudinal modeling.

    PubMed

    Heggeseth, Brianna C; Jewell, Nicholas P

    2013-07-20

    Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  5. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  6. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  7. Valuing the visual impact of wind farms: A calculus method for synthesizing choice experiments studies.

    PubMed

    Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy

    2018-05-06

    Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.

  8. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  9. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    NASA Astrophysics Data System (ADS)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  10. Estimating time-varying conditional correlations between stock and foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Tastan, Hüseyin

    2006-02-01

    This study explores the dynamic interaction between stock market returns and changes in nominal exchange rates. Many financial variables are known to exhibit fat tails and autoregressive variance structure. It is well-known that unconditional covariance and correlation coefficients also vary significantly over time and multivariate generalized autoregressive model (MGARCH) is able to capture the time-varying variance-covariance matrix for stock market returns and changes in exchange rates. The model is applied to daily Euro-Dollar exchange rates and two stock market indexes from the US economy: Dow-Jones Industrial Average Index and S&P500 Index. The news impact surfaces are also drawn based on the model estimates to see the effects of idiosyncratic shocks in respective markets.

  11. The factors associated to psychosocial stress among general practitioners in Lithuania. Cross-sectional study.

    PubMed

    Vanagas, Giedrius; Bihari-Axelsson, Susanna

    2005-06-10

    There are number of studies showing that general practice is one of the most stressful workplace among health care workers. Since Baltic States regained independence in 1990, the reform of the health care system took place in which new role and more responsibilities were allocated to general practitioners' in Lithuania. This study aimed to explore the psychosocial stress level among Lithuanian general practitioner's and examine the relationship between psychosocial stress and work characteristics. The cross-sectional study of 300 Lithuanian General practitioners. Psychosocial stress was investigated with a questionnaire based on the Reeder scale. Job demands were investigated with the R. Karasek scale. The analysis included descriptive statistics; interrelationship analysis between characteristics and multivariate logistic regression to estimate odds ratios for each of the independent variables in the model. Response rate 66% (N = 197). Our study highlighted highest prevalence of psychosocial stress among widowed, single and female general practitioners. Lowest prevalence of psychosocial stress was among males and older age general practitioners. Psychosocial stress occurs when job demands are high and job decision latitude is low (chi2 = 18,9; p < 0,01). The multivariate analysis shows that high job demands (OR 4,128; CI 2,102-8,104; p < 0,001), patient load more than 18 patients per day (OR 5,863; CI 1,549-22,188; p < 0,01) and young age of GP's (OR 6,874; CI 1,292-36,582; p < 0,05) can be assigned as significant predictors for psychosocial stress. One half of respondents suffering from work related psychosocial stress. High psychological workload demands combined with low decision latitude has the greatest impact to stress caseness among GP's. High job demands, high patient load and young age of GP's can be assigned as significant predictors of psychosocial stress among GP's.

  12. Foreign Exchange Value-at-Risk with Multiple Currency Exposure: A Multivariate and Copula Generalized Autoregressive Conditional Heteroskedasticity Approach

    DTIC Science & Technology

    2014-11-01

    du taux de change, et les responsables de la gestion interne se voient donc pressés de trouver des ... mesurer les effets négatifs que peuvent avoir les fluctuations mo- nétaires sur le budget et la planification du MDN, il faut connaître le poids des ...qualités comparables et qu’ils permettent d’effectuer une meilleure évaluation du risque qu’avec la méthode courante. On obtient désormais des estimations de

  13. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  14. Estimating long-term multivariate progression from short-term data.

    PubMed

    Donohue, Michael C; Jacqmin-Gadda, Hélène; Le Goff, Mélanie; Thomas, Ronald G; Raman, Rema; Gamst, Anthony C; Beckett, Laurel A; Jack, Clifford R; Weiner, Michael W; Dartigues, Jean-François; Aisen, Paul S

    2014-10-01

    Diseases that progress slowly are often studied by observing cohorts at different stages of disease for short periods of time. The Alzheimer's Disease Neuroimaging Initiative (ADNI) follows elders with various degrees of cognitive impairment, from normal to impaired. The study includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months for as long as 6 years. The relative timing of the observations with respect to disease pathology is unknown. We propose a general semiparametric model and iterative estimation procedure to estimate simultaneously the pathological timing and long-term growth curves. The resulting estimates of long-term progression are fine-tuned using cognitive trajectories derived from the long-term "Personnes Agées Quid" study. We demonstrate with simulations that the method can recover long-term disease trends from short-term observations. The method also estimates temporal ordering of individuals with respect to disease pathology, providing subject-specific prognostic estimates of the time until onset of symptoms. When the method is applied to ADNI data, the estimated growth curves are in general agreement with prevailing theories of the Alzheimer's disease cascade. Other data sets with common outcome measures can be combined using the proposed algorithm. Software to fit the model and reproduce results with the statistical software R is available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution

    PubMed Central

    Han, Fang; Liu, Han

    2016-01-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068

  16. Critical elements on fitting the Bayesian multivariate Poisson Lognormal model

    NASA Astrophysics Data System (ADS)

    Zamzuri, Zamira Hasanah binti

    2015-10-01

    Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.

  17. Fighting with Siblings and with Peers among Urban High School Students

    PubMed Central

    Johnson, Renee M.; Duncan, Dustin T.; Rothman, Emily F.; Gilreath, Tamika D.; Hemenway, David; Molnar, Beth E.; Azrael, Deborah

    2014-01-01

    Understanding the determinants of fighting is important for prevention efforts. Unfortunately, there is little research on how sibling fighting is related to peer fighting. Therefore, the aim of this study was to evaluate the association between sibling fighting and peer fighting. Data are from the Boston Youth Survey 2008, a school-based sample of youth in Boston, MA. To estimate the association between sibling fighting and peer fighting we ran four multivariate regression models and estimated adjusted prevalence ratios and 95% confidence intervals. We fit generalized estimating equation models to account for the fact that students were clustered within schools. Controlling for school clustering, race/ethnicity, sex, school failure, substance use, and caregiver aggression, youth who fought with siblings were 2.49 times more likely to have reported fighting with peers. To the extent that we can confirm that sibling violence is associated with aggressive behavior, we should incorporate it into violence prevention programming. PMID:25287411

  18. Baseline estimation in flame's spectra by using neural networks and robust statistics

    NASA Astrophysics Data System (ADS)

    Garces, Hugo; Arias, Luis; Rojas, Alejandro

    2014-09-01

    This work presents a baseline estimation method in flame spectra based on artificial intelligence structure as a neural network, combining robust statistics with multivariate analysis to automatically discriminate measured wavelengths belonging to continuous feature for model adaptation, surpassing restriction of measuring target baseline for training. The main contributions of this paper are: to analyze a flame spectra database computing Jolliffe statistics from Principal Components Analysis detecting wavelengths not correlated with most of the measured data corresponding to baseline; to systematically determine the optimal number of neurons in hidden layers based on Akaike's Final Prediction Error; to estimate baseline in full wavelength range sampling measured spectra; and to train an artificial intelligence structure as a Neural Network which allows to generalize the relation between measured and baseline spectra. The main application of our research is to compute total radiation with baseline information, allowing to diagnose combustion process state for optimization in early stages.

  19. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  20. Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach.

    PubMed

    Demidenko, Eugene

    2017-09-01

    The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.

  1. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  2. Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.

    PubMed

    Aguero-Valverde, Jonathan

    2013-10-01

    Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Empirical Bayes approach to the estimation of "unsafety": the multivariate regression method.

    PubMed

    Hauer, E

    1992-10-01

    There are two kinds of clues to the unsafety of an entity: its traits (such as traffic, geometry, age, or gender) and its historical accident record. The Empirical Bayes approach to unsafety estimation makes use of both kinds of clues. It requires information about the mean and the variance of the unsafety in a "reference population" of similar entities. The method now in use for this purpose suffers from several shortcomings. First, a very large reference population is required. Second, the choice of reference population is to some extent arbitrary. Third, entities in the reference population usually cannot match the traits of the entity the unsafety of which is estimated. To alleviate these shortcomings the multivariate regression method for estimating the mean and variance of unsafety in reference populations is offered. Its logical foundations are described and its soundness is demonstrated. The use of the multivariate method makes the Empirical Bayes approach to unsafety estimation applicable to a wider range of circumstances and yields better estimates of unsafety. The application of the method to the tasks of identifying deviant entities and of estimating the effect of interventions on unsafety are discussed and illustrated by numerical examples.

  4. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes.

    PubMed

    Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J

    2014-07-21

    Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

  5. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  6. Prevalence of gestational diabetes mellitus in Europe: A meta-analysis.

    PubMed

    Eades, Claire E; Cameron, Dawn M; Evans, Josie M M

    2017-07-01

    Estimates of the prevalence of gestational diabetes vary widely. It is important to have a clear understanding of the prevalence of this condition to be able to plan interventions and health care provision. This paper describes a meta-analysis of primary research data reporting the prevalence of gestational diabetes mellitus in the general pregnant population of developed countries in Europe. Four electronic databases were systematically searched in May 2016. English language articles reporting gestational diabetes mellitus prevalence using universal screening in general pregnant population samples from developed countries in Europe were included. All papers identified by the search were screened by one author, and then half screened independently by a second author and half by a third author. Data were extracted by one author. Values for the measures of interest were combined using a random effects model and analysis of the effects of moderator variables was carried out. A total of 3258 abstracts were screened, with 40 studies included in the review. Overall prevalence of gestational diabetes mellitus was 5.4% (3.8-7.8). Maternal age, year of data collection, country, area of Europe, week of gestation at testing, and diagnostic criteria were found to have a significant univariate effect on GDM prevalence, and area, week of gestation at testing and year of data collection remained statistically significant in multivariate analysis. Quality category was significant in multivariate but not univariate analysis. This meta-analysis shows prevalence of GDM that is at the upper end of previous estimates in Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Threshold and subthreshold Generalized Anxiety Disorder (GAD) and suicide ideation.

    PubMed

    Gilmour, Heather

    2016-11-16

    Subthreshold Generalized Anxiety Disorder (GAD) has been reported to be at least as prevalent as threshold GAD and of comparable clinical significance. It is not clear if GAD is uniquely associated with the risk of suicide, or if psychiatric comorbidity drives the association. Data from the 2012 Canadian Community Health Survey-Mental Health were used to estimate the prevalence of threshold and subthreshold GAD in the household population aged 15 or older. As well, the relationship between GAD and suicide ideation was studied. Multivariate logistic regression was used in a sample of 24,785 people to identify significant associations, while adjusting for the confounding effects of sociodemographic factors and other mental disorders. In 2012, an estimated 722,000 Canadians aged 15 or older (2.6%) met the criteria for threshold GAD; an additional 2.3% (655,000) had subthreshold GAD. For people with threshold GAD, past 12-month suicide ideation was more prevalent among men than women (32.0% versus 21.2% respectively). In multivariate models that controlled sociodemographic factors, the odds of past 12-month suicide ideation among people with either past 12-month threshold or subthreshold GAD were significantly higher than the odds for those without GAD. When psychiatric comorbidity was also controlled, associations between threshold and subthreshold GAD and suicidal ideation were attenuated, but remained significant. Threshold and subthreshold GAD affect similar percentages of the Canadian household population. This study adds to the literature that has identified an independent association between threshold GAD and suicide ideation, and demonstrates that an association is also apparent for subthreshold GAD.

  8. Multivariate Meta-Analysis of Preference-Based Quality of Life Values in Coronary Heart Disease.

    PubMed

    Stevanović, Jelena; Pechlivanoglou, Petros; Kampinga, Marthe A; Krabbe, Paul F M; Postma, Maarten J

    2016-01-01

    There are numerous health-related quality of life (HRQol) measurements used in coronary heart disease (CHD) in the literature. However, only values assessed with preference-based instruments can be directly applied in a cost-utility analysis (CUA). To summarize and synthesize instrument-specific preference-based values in CHD and the underlying disease-subgroups, stable angina and post-acute coronary syndrome (post-ACS), for developed countries, while accounting for study-level characteristics, and within- and between-study correlation. A systematic review was conducted to identify studies reporting preference-based values in CHD. A multivariate meta-analysis was applied to synthesize the HRQoL values. Meta-regression analyses examined the effect of study level covariates age, publication year, prevalence of diabetes and gender. A total of 40 studies providing preference-based values were detected. Synthesized estimates of HRQoL in post-ACS ranged from 0.64 (Quality of Well-Being) to 0.92 (EuroQol European"tariff"), while in stable angina they ranged from 0.64 (Short form 6D) to 0.89 (Standard Gamble). Similar findings were observed in estimates applying to general CHD. No significant improvement in model fit was found after adjusting for study-level covariates. Large between-study heterogeneity was observed in all the models investigated. The main finding of our study is the presence of large heterogeneity both within and between instrument-specific HRQoL values. Current economic models in CHD ignore this between-study heterogeneity. Multivariate meta-analysis can quantify this heterogeneity and offers the means for uncertainty around HRQoL values to be translated to uncertainty in CUAs.

  9. State-space self-tuner for on-line adaptive control

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.

    1994-01-01

    Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.

  10. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  11. A novel multivariate STeady-state index during general ANesthesia (STAN).

    PubMed

    Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S

    2017-08-01

    The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.

  12. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle

    PubMed Central

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008

  13. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle.

    PubMed

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection.

  14. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  15. Exploring super-Gaussianity toward robust information-theoretical time delay estimation.

    PubMed

    Petsatodis, Theodoros; Talantzis, Fotios; Boukis, Christos; Tan, Zheng-Hua; Prasad, Ramjee

    2013-03-01

    Time delay estimation (TDE) is a fundamental component of speaker localization and tracking algorithms. Most of the existing systems are based on the generalized cross-correlation method assuming gaussianity of the source. It has been shown that the distribution of speech, captured with far-field microphones, is highly varying, depending on the noise and reverberation conditions. Thus the performance of TDE is expected to fluctuate depending on the underlying assumption for the speech distribution, being also subject to multi-path reflections and competitive background noise. This paper investigates the effect upon TDE when modeling the source signal with different speech-based distributions. An information theoretical TDE method indirectly encapsulating higher order statistics (HOS) formed the basis of this work. The underlying assumption of Gaussian distributed source has been replaced by that of generalized Gaussian distribution that allows evaluating the problem under a larger set of speech-shaped distributions, ranging from Gaussian to Laplacian and Gamma. Closed forms of the univariate and multivariate entropy expressions of the generalized Gaussian distribution are derived to evaluate the TDE. The results indicate that TDE based on the specific criterion is independent of the underlying assumption for the distribution of the source, for the same covariance matrix.

  16. Relationship between estimated glomerular filtration rate, albuminuria, and oxidant status in the Japanese population

    PubMed Central

    2013-01-01

    Background In the general population, reported levels of oxidative stress and antioxidant potential seem to vary. The aim of this study was to investigate the levels of oxidant status markers in relation to estimated glomerular filtration rate (eGFR) and albuminuria in Japanese population. Methods Data were analyzed from 8335 individuals who underwent a general health screening test. For the estimation of albuminuria, urinary albumin-to-creatinine ratio (UAER) was calculated. Oxidant status was determined by assessing derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP). Results After adjusting for age, high blood pressure, depressor agent use, CRP, smoking status, multivariate logistic regression analysis showed that the lowest eGFR quartile was associated negatively with the top d-ROM quartile in men (odds ratio 0.78 [95% CI 0.62-0.98, P = 0.034]) and the highest UAER was associated with the top d-ROM in men (odds ratio 1.68) [95% CI 1.35-2.10, P < 0.001]. In addition, both the first eGFR quartile and the fourth UAER quartile showed significant positive association with low BAP levels in men, but not in women. Conclusions Among men who underwent general health screening, lower eGFR and increased albuminuria was negatively and positively, respectively, associated with higher oxidative stress levels, whereas both conditions were positively associated with lower antioxidant potential levels. PMID:24016221

  17. Estimation of failure criteria in multivariate sensory shelf life testing using survival analysis.

    PubMed

    Giménez, Ana; Gagliardi, Andrés; Ares, Gastón

    2017-09-01

    For most food products, shelf life is determined by changes in their sensory characteristics. A predetermined increase or decrease in the intensity of a sensory characteristic has frequently been used to signal that a product has reached the end of its shelf life. Considering all attributes change simultaneously, the concept of multivariate shelf life allows a single measurement of deterioration that takes into account all these sensory changes at a certain storage time. The aim of the present work was to apply survival analysis to estimate failure criteria in multivariate sensory shelf life testing using two case studies, hamburger buns and orange juice, by modelling the relationship between consumers' rejection of the product and the deterioration index estimated using PCA. In both studies, a panel of 13 trained assessors evaluated the samples using descriptive analysis whereas a panel of 100 consumers answered a "yes" or "no" question regarding intention to buy or consume the product. PC1 explained the great majority of the variance, indicating all sensory characteristics evolved similarly with storage time. Thus, PC1 could be regarded as index of sensory deterioration and a single failure criterion could be estimated through survival analysis for 25 and 50% consumers' rejection. The proposed approach based on multivariate shelf life testing may increase the accuracy of shelf life estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Behavioral problems and the occurrence of tobacco, cannabis, and coca paste smoking in Chile: evidence based on multivariate response models for school survey data.

    PubMed

    Caris, Luis; Anthony, Christopher B; Ríos-Bedoya, Carlos F; Anthony, James C

    2009-09-01

    In this study we estimate suspected links between youthful behavioral problems and smoking of tobacco, cannabis, and coca paste. In the Republic of Chile, school-attending youths were sampled from all 13 regions of the country, with sample size of 46,907 youths from 8th to 12th grades. A Generalized Estimating Equations (GEE) approach to multiple logistic regression was used to address three interdependent response variables, tobacco smoking, cannabis smoking, and coca paste smoking, and to estimate associations. Drug-specific adjusted slope estimates indicate that youths at the highest levels of behavioral problems are an estimated 1.1 times more likely to have started smoking tobacco, an estimated 1.6 times more likely to have started cannabis smoking, and an estimated 2.0 times more likely to have started coca paste smoking, as compared to youths at the lowest level of behavioral problems (p<0.001). In Chile, there is an association linking behavioral problems with onsets of smoking tobacco and cannabis, as well as coca paste; strength of association is modestly greater for coca paste smoking.

  19. Circulating total testosterone and PSA concentrations in a nationally representative sample of men without a diagnosis of prostate cancer.

    PubMed

    Peskoe, Sarah B; Joshu, Corinne E; Rohrmann, Sabine; McGlynn, Katherine A; Nyante, Sarah J; Bradwin, Gary; Dobs, Adrian S; Kanarek, Norma; Nelson, William G; Platz, Elizabeth A

    2015-08-01

    The association between serum sex steroid hormones and PSA in a general population has not been described. Included were 378 men aged 40-85 years who participated in the National Health and Nutrition Examination Survey in 2001-2004, who did not have a prostate cancer diagnosis, and had not had a recent biopsy, rectal examination, cystoscopy, or prostate infection or inflammation. Serum total PSA, total testosterone, androstanediol glucuronide (3α-diol-G), estradiol, and sex hormone binding globulin (SHBG) concentrations were previously measured. Free testosterone was estimated by mass action. We applied sampling weights and calculated geometric mean PSA concentration by hormone quintiles adjusting for age and race/ethnicity, and also for body mass index, waist circumference, smoking, diabetes, and mutually for hormones. We estimated the OR of PSA ≥2.5 ng/ml per hormone quintile using logistic regression. Geometric mean PSA increased across testosterone quintiles after age and race/ethnicity (Q1: 0.80, Q5: 1.14 ng/ml; P-trend = 0.002) and multivariable (Q1: 0.79, Q5: 1.16 ng/ml; P-trend = 0.02) adjustment; patterns were similar for free testosterone and 3α-diol-G. SHBG was inversely associated with PSA only after multivariable adjustment (Q1: 1.32, Q5: 0.82 nmol/L; P-trend = 0.01). Estradiol and PSA were not associated. The OR of PSA ≥2.5 ng/ml was 1.54 (95% CI 1.18-2.01) per testosterone quintile after age and race/ethnicity adjustment, and 1.78 (95% CI 1.16-2.73) after multivariable adjustment. In this nationally representative sample, men with higher testosterone had higher PSA even after taking into account other hormones and modifiable factors. Men with higher SHBG had lower PSA, but only after multivariable adjustment. © 2015 Wiley Periodicals, Inc.

  20. Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models.

    PubMed

    Ayalew, Wondossen; Aliy, Mohammed; Negussie, Enyew

    2017-11-01

    This study estimated the genetic parameters for productive and reproductive traits. The data included production and reproduction records of animals that have calved between 1979 and 2013. The genetic parameters were estimated using multivariate mixed models (DMU) package, fitting univariate and multivariate mixed models with average information restricted maximum likelihood algorithm. The estimates of heritability for milk production traits from the first three lactation records were 0.03±0.03 for lactation length (LL), 0.17±0.04 for lactation milk yield (LMY), and 0.15±0.04 for 305 days milk yield (305-d MY). For reproductive traits the heritability estimates were, 0.09±0.03 for days open (DO), 0.11±0.04 for calving interval (CI), and 0.47±0.06 for age at first calving (AFC). The repeatability estimates for production traits were 0.12±0.02, for LL, 0.39±0.02 for LMY, and 0.25±0.02 for 305-d MY. For reproductive traits the estimates of repeatability were 0.19±0.02 for DO, and to 0.23±0.02 for CI. The phenotypic correlations between production and reproduction traits ranged from 0.08±0.04 for LL and AFC to 0.42±0.02 for LL and DO. The genetic correlation among production traits were generally high (>0.7) and between reproductive traits the estimates ranged from 0.06±0.13 for AFC and DO to 0.99±0.01 between CI and DO. Genetic correlations of productive traits with reproductive traits were ranged from -0.02 to 0.99. The high heritability estimates observed for AFC indicated that reasonable genetic improvement for this trait might be possible through selection. The h2 and r estimates for reproductive traits were slightly different from single versus multi-trait analyses of reproductive traits with production traits. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended.

  1. Properties of multivariable root loci. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yagle, A. E.

    1981-01-01

    Various properties of multivariable root loci are analyzed from a frequency domain point of view by using the technique of Newton polygons, and some generalizations of the SISO root locus rules to the multivariable case are pointed out. The behavior of the angles of arrival and departure is related to the Smith-MacMillan form of G(s) and explicit equations for these angles are obtained. After specializing to first order and a restricted class of higher order poles and zeros, some simple equations for these angles that are direct generalizations of the SISO equations are found. The unusual behavior of root loci on the real axis at branch points is studied. The SISO root locus rules for break-in and break-out points are shown to generalize directly to the multivariable case. Some methods for computing both types of points are presented.

  2. Mental Health and Related Factors of Hospital Nurses.

    PubMed

    Nukui, Hiroshi; Murakami, Michio; Midorikawa, Sanae; Suenaga, Minako; Rokkaku, Yuichi; Yabe, Hirooki; Ohtsuru, Akira

    2017-03-01

    The mental health of hospital nurses is a key health issue in public health promotion during the recovery phase following the Fukushima disaster. In this study, conducted 4 years after the disaster, we analyzed the overall mental health, knowledge, risk perception of radiation, and work and daily life burdens of nurses working at medical institutions in the Fukushima Prefecture (collection rate = 89.6%; response number = 730). Overall mental health status was estimated using the 12-item version of the General Health Questionnaire, and 333 respondents (45.6%) scored above the 12-item General Health Questionnaire threshold point (≥4), indicating probable emotional distress compared with the general population under normal circumstances. Multivariate logistic analysis suggested that the ability to cope with daily life and work-related stressors were more important than risk perception and acquisition of knowledge regarding radiation and its control methods for supporting the mental health of nurses following the Fukushima disaster.

  3. A simplified parsimonious higher order multivariate Markov chain model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.

  4. Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging.

    PubMed

    Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F

    2015-01-01

    An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  5. Dimension reduction of frequency-based direct Granger causality measures on short time series.

    PubMed

    Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2017-09-01

    The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.

    2012-06-15

    In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less

  7. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  8. Site-specific estimation of peak-streamflow frequency using generalized least-squares regression for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.

  9. A multivariate cure model for left-censored and right-censored data with application to colorectal cancer screening patterns.

    PubMed

    Hagar, Yolanda C; Harvey, Danielle J; Beckett, Laurel A

    2016-08-30

    We develop a multivariate cure survival model to estimate lifetime patterns of colorectal cancer screening. Screening data cover long periods of time, with sparse observations for each person. Some events may occur before the study begins or after the study ends, so the data are both left-censored and right-censored, and some individuals are never screened (the 'cured' population). We propose a multivariate parametric cure model that can be used with left-censored and right-censored data. Our model allows for the estimation of the time to screening as well as the average number of times individuals will be screened. We calculate likelihood functions based on the observations for each subject using a distribution that accounts for within-subject correlation and estimate parameters using Markov chain Monte Carlo methods. We apply our methods to the estimation of lifetime colorectal cancer screening behavior in the SEER-Medicare data set. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. On a Family of Multivariate Modified Humbert Polynomials

    PubMed Central

    Aktaş, Rabia; Erkuş-Duman, Esra

    2013-01-01

    This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411

  11. Association of Race With Mortality and Cardiovascular Events in a Large Cohort of US Veterans.

    PubMed

    Kovesdy, Csaba P; Norris, Keith C; Boulware, L Ebony; Lu, Jun L; Ma, Jennie Z; Streja, Elani; Molnar, Miklos Z; Kalantar-Zadeh, Kamyar

    2015-10-20

    In the general population, blacks experience higher mortality than their white peers, attributed in part to their lower socioeconomic status, reduced access to care, and possibly intrinsic biological factors. Patients with kidney disease are a notable exception, among whom blacks experience lower mortality. It is unclear if similar differences affecting outcomes exist in patients with no kidney disease but with equal or similar access to health care. We compared all-cause mortality, incident coronary heart disease, and incident ischemic stroke using multivariable-adjusted Cox models in a nationwide cohort of 547 441 black and 2 525 525 white patients with baseline estimated glomerular filtration rate ≥ 60 mL·min⁻¹·1.73 m⁻² receiving care from the US Veterans Health Administration. In parallel analyses, we compared outcomes in black versus white individuals in the National Health and Nutrition Examination Survey (NHANES) 1999 to 2004. After multivariable adjustments in veterans, black race was associated with 24% lower all-cause mortality (adjusted hazard ratio, 0.76; 95% confidence interval, 0.75-0.77; P<0.001) and 37% lower incidence of coronary heart disease (adjusted hazard ratio, 0.63; 95% confidence interval, 0.62-0.65; P<0.001) but a similar incidence of ischemic stroke (adjusted hazard ratio, 0.99; 95% confidence interval, 0.97-1.01; P=0.3). Black race was associated with a 42% higher adjusted mortality among individuals with estimated glomerular filtration rate ≥ 60 mL·min⁻¹·1.73 m⁻² in NHANES (adjusted hazard ratio, 1.42; 95% confidence interval, 1.09-1.87). Black veterans with normal estimated glomerular filtration rate and equal access to healthcare have lower all-cause mortality and incidence of coronary heart disease and a similar incidence of ischemic stroke. These associations are in contrast to the higher mortality experienced by black individuals in the general US population. © 2015 American Heart Association, Inc.

  12. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes.

    PubMed

    Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O

    2018-01-01

    Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.

  13. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes

    NASA Astrophysics Data System (ADS)

    Kannan, Rohit; Tangirala, Arun K.

    2014-06-01

    Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.

  14. Analysis of longitudinal multivariate outcome data from couples cohort studies: application to HPV transmission dynamics

    PubMed Central

    Kong, Xiangrong; Wang, Mei-Cheng; Gray, Ronald

    2014-01-01

    We consider a specific situation of correlated data where multiple outcomes are repeatedly measured on each member of a couple. Such multivariate longitudinal data from couples may exhibit multi-faceted correlations which can be further complicated if there are polygamous partnerships. An example is data from cohort studies on human papillomavirus (HPV) transmission dynamics in heterosexual couples. HPV is a common sexually transmitted disease with 14 known oncogenic types causing anogenital cancers. The binary outcomes on the multiple types measured in couples over time may introduce inter-type, intra-couple, and temporal correlations. Simple analysis using generalized estimating equations or random effects models lacks interpretability and cannot fully utilize the available information. We developed a hybrid modeling strategy using Markov transition models together with pairwise composite likelihood for analyzing such data. The method can be used to identify risk factors associated with HPV transmission and persistence, estimate difference in risks between male-to-female and female-to-male HPV transmission, compare type-specific transmission risks within couples, and characterize the inter-type and intra-couple associations. Applying the method to HPV couple data collected in a Ugandan male circumcision (MC) trial, we assessed the effect of MC and the role of gender on risks of HPV transmission and persistence. PMID:26195849

  15. A tridiagonal parsimonious higher order multivariate Markov chain model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

  16. The ABCs of Math: A Genetic Analysis of Mathematics and Its Links With Reading Ability and General Cognitive Ability

    PubMed Central

    Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert

    2009-01-01

    The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of assessment. Univariate analyses provide a range of estimates of genetic (h2 = .00 –.63) and shared (c2 = .15–.52) environmental influences across math calculation, fluency, and problem solving measures. Multivariate analyses indicate genetic overlap between math problem solving with general cognitive ability and reading decoding, whereas math fluency shares significant genetic overlap with reading fluency and general cognitive ability. Further, math fluency has unique genetic influences. In general, math ability has shared environmental overlap with general cognitive ability and decoding. These results indicate that aspects of math that include problem solving have different genetic and environmental influences than math calculation. Moreover, math fluency, a timed measure of calculation, is the only measured math ability with unique genetic influences. PMID:20157630

  17. Identifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales

    PubMed Central

    Williams, L. Keoki; Buu, Anne

    2017-01-01

    We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206

  18. HIV Due to Female Sex Work: Regional and Global Estimates

    PubMed Central

    Prüss-Ustün, Annette; Wolf, Jennyfer; Driscoll, Tim; Degenhardt, Louisa; Neira, Maria; Calleja, Jesus Maria Garcia

    2013-01-01

    Introduction Female sex workers (FSWs) are at high risk of HIV infection. Our objective was to determine the proportion of HIV prevalence in the general female adult population that is attributable to the occupational exposure of female sex work, due to unprotected sexual intercourse. Methods Population attributable fractions of HIV prevalence due to female sex work were estimated for 2011. A systematic search was conducted to retrieve required input data from available sources. Data gaps of HIV prevalence in FSWs for 2011 were filled using multilevel modeling and multivariate linear regression. The fraction of HIV attributable to female sex work was estimated as the excess HIV burden in FSWs deducting the HIV burden in FSWs due to injecting drug use. Results An estimated fifteen percent of HIV in the general female adult population is attributable to (unsafe) female sex work. The region with the highest attributable fraction is Sub Saharan Africa, but the burden is also substantial for the Caribbean, Latin America and South and Southeast Asia. We estimate 106,000 deaths from HIV are a result of female sex work globally, 98,000 of which occur in Sub-Saharan Africa. If HIV prevalence in other population groups originating from sexual contact with FSWs had been considered, the overall attributable burden would probably be much larger. Discussion Female sex work is an important contributor to HIV transmission and the global HIV burden. Effective HIV prevention measures exist and have been successfully targeted at key populations in many settings. These must be scaled up. Conclusion FSWs suffer from high HIV burden and are a crucial core population for HIV transmission. Surveillance, prevention and treatment of HIV in FSWs should benefit both this often neglected vulnerable group and the general population. PMID:23717432

  19. Assessment of source-specific health effects associated with an unknown number of major sources of multiple air pollutants: a unified Bayesian approach.

    PubMed

    Park, Eun Sug; Hopke, Philip K; Oh, Man-Suk; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford H

    2014-07-01

    There has been increasing interest in assessing health effects associated with multiple air pollutants emitted by specific sources. A major difficulty with achieving this goal is that the pollution source profiles are unknown and source-specific exposures cannot be measured directly; rather, they need to be estimated by decomposing ambient measurements of multiple air pollutants. This estimation process, called multivariate receptor modeling, is challenging because of the unknown number of sources and unknown identifiability conditions (model uncertainty). The uncertainty in source-specific exposures (source contributions) as well as uncertainty in the number of major pollution sources and identifiability conditions have been largely ignored in previous studies. A multipollutant approach that can deal with model uncertainty in multivariate receptor models while simultaneously accounting for parameter uncertainty in estimated source-specific exposures in assessment of source-specific health effects is presented in this paper. The methods are applied to daily ambient air measurements of the chemical composition of fine particulate matter ([Formula: see text]), weather data, and counts of cardiovascular deaths from 1995 to 1997 for Phoenix, AZ, USA. Our approach for evaluating source-specific health effects yields not only estimates of source contributions along with their uncertainties and associated health effects estimates but also estimates of model uncertainty (posterior model probabilities) that have been ignored in previous studies. The results from our methods agreed in general with those from the previously conducted workshop/studies on the source apportionment of PM health effects in terms of number of major contributing sources, estimated source profiles, and contributions. However, some of the adverse source-specific health effects identified in the previous studies were not statistically significant in our analysis, which probably resulted because we incorporated parameter uncertainty in estimated source contributions that has been ignored in the previous studies into the estimation of health effects parameters. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The Risk of Developing Diabetes Mellitus in Patients with Psoriatic Arthritis: A Cohort Study.

    PubMed

    Eder, Lihi; Chandran, Vinod; Cook, Richard; Gladman, Dafna D

    2017-03-01

    To estimate the prevalence of diabetes mellitus (DM) in patients with psoriatic arthritis (PsA) in comparison with the general population and to assess whether the level of disease activity over time predicts the development of DM in these patients. A cohort analysis was conducted in patients followed in a large PsA clinic from 1978 to 2014. The prevalence of DM in the patients was compared with the general population of Ontario, Canada, and the age-standardized prevalence ratio (SPR) was calculated. For the assessment of risk factors for DM, time-weighted arithmetic mean (AM) levels of PsA-related disease activity measures were assessed as predictors for the development of DM. Multivariable Cox proportional hazards models were used to compute HR for incident DM after controlling for potential confounders. A total of 1305 patients were included in the analysis. The SPR of DM in PsA compared with the general population in Ontario was 1.43 (p = 0.002). Of the 1065 patients who were included in the time-to-event analysis, 73 patients were observed to develop DM. Based on multivariable analyses, AM tender joint count (HR 1.53, 95% CI 1.08-2.18, p = 0.02) and AM erythrocyte sedimentation rate (HR 1.21, 95% CI 1.03-1.41, p = 0.02) predicted the development of DM. The prevalence of DM is higher in patients with PsA compared with the general population. Patients with elevated levels of disease activity are at higher risk of developing DM.

  1. Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆

    PubMed Central

    Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny

    2014-01-01

    There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702

  2. Deterministic annealing for density estimation by multivariate normal mixtures

    NASA Astrophysics Data System (ADS)

    Kloppenburg, Martin; Tavan, Paul

    1997-03-01

    An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.

  3. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  4. Copula-based analysis of rhythm

    NASA Astrophysics Data System (ADS)

    García, J. E.; González-López, V. A.; Viola, M. L. Lanfredi

    2016-06-01

    In this paper we establish stochastic profiles of the rhythm for three languages: English, Japanese and Spanish. We model the increase or decrease of the acoustical energy, collected into three bands coming from the acoustic signal. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination of the partitions corresponding to the three marginal processes, one for each band of energy, and the partition coming from to the multivariate Markov chain. Then, all the partitions are linked using a copula, in order to estimate the transition probabilities.

  5. Estimated incidence of erythema migrans in five regions of France and ecological correlations with environmental characteristics.

    PubMed

    Mariet, Anne-Sophie; Retel, Olivier; Avocat, Hélène; Serre, Anne; Schapman, Lucie; Schmitt, Marielle; Charron, Martine; Monnet, Elisabeth

    2013-09-01

    While several studies conducted on Lyme borreliosis (LB) risk in the United States showed an association with environmental characteristics, most of European studies considered solely the effect of climate characteristics. The aims of this study were to estimate incidence of erythema migrans (EM) in five regions of France and to analyze associations with several environmental characteristics of the place of residence. LB surveillance networks of general practitioners (GPs) were set up for a period of 2 years in five regions of France. Participating GPs reported all patients with EM during the study period. Data were pooled according to a standardized EM case definition. For each area with a participating GP, age-standardized incidence rates and ratios were estimated. Associations with altitude, indicators of landscape composition, and indicators of landscape configuration were tested with multivariate Poisson regression. Standardized estimated incidence rates of EM per 10(5) person-years were 8.8 [95% confidence interval (CI)=7.9-9.7] in Aquitaine, 40.0 (95% CI 36.4-43.6) in Limousin, 76.0 (95% CI 72.9-79.1) in the three participating départements of Rhône-Alpes, 46.1 (95% CI 43.0-49.2) in Franche-Comté, and 87.7 (95% CI 84.6-90.8) in Alsace. In multivariate analysis, age-adjusted incidence rates increased with the altitude (p<0.0001) and decreased with forest patch density (p<0.0001). The marked variations in EM risk among the five regions were partly related to differences in landscape and environmental characteristics. The latter may point out potential risk areas and provide information for targeting preventive actions.

  6. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes

    PubMed Central

    2014-01-01

    Background Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. Methods The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Results Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Conclusions Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately. PMID:25047164

  7. Exact Scheffé-type confidence intervals for output from groundwater flow models: 1. Use of hydrogeologic information

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.

  8. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    PubMed Central

    Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281

  9. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    PubMed

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  10. A multivariate fall risk assessment model for VHA nursing homes using the minimum data set.

    PubMed

    French, Dustin D; Werner, Dennis C; Campbell, Robert R; Powell-Cope, Gail M; Nelson, Audrey L; Rubenstein, Laurence Z; Bulat, Tatjana; Spehar, Andrea M

    2007-02-01

    The purpose of this study was to develop a multivariate fall risk assessment model beyond the current fall Resident Assessment Protocol (RAP) triggers for nursing home residents using the Minimum Data Set (MDS). Retrospective, clustered secondary data analysis. National Veterans Health Administration (VHA) long-term care nursing homes (N = 136). The study population consisted of 6577 national VHA nursing home residents who had an annual assessment during FY 2005, identified from the MDS, as well as an earlier annual or admission assessment within a 1-year look-back period. A dichotomous multivariate model of nursing home residents coded with a fall on selected fall risk characteristics from the MDS, estimated with general estimation equations (GEE). There were 17 170 assessments corresponding to 6577 long-term care nursing home residents. The increased odds ratio (OR) of being classified as a faller relative to the omitted "dependent" category of activities of daily living (ADL) ranged from OR = 1.35 for "limited" ADL category up to OR = 1.57 for "extensive-2" ADL (P < .0001). Unsteady gait more than doubles the odds of being a faller (OR = 2.63, P < .0001). The use of assistive devices such as canes, walkers, or crutches, or the use of wheelchairs increases the odds of being a faller (OR = 1.17, P < .0005) or (OR = 1.19, P < .0002), respectively. Foot problems may also increase the odds of being a faller (OR = 1.26, P < .0016). Alzheimer's or other dementias also increase the odds of being classified as a faller (OR = 1.18, P < .0219) or (OR=1.22, P < .0001), respectively. In addition, anger (OR = 1.19, P < .0065); wandering (OR = 1.53, P < .0001); or use of antipsychotic medications (OR = 1.15, P < .0039), antianxiety medications (OR = 1.13, P < .0323), or antidepressant medications (OR = 1.39, P < .0001) was also associated with the odds of being a faller. This national study in one of the largest managed healthcare systems in the United States has empirically confirmed the relative importance of certain risk factors for falls in long-term care settings. The model incorporated an ADL index and adjusted for case mix by including only long-term care nursing home residents. The study offers clinicians practical estimates by combining multiple univariate MDS elements in an empirically based, multivariate fall risk assessment model.

  11. Detecting event-related changes of multivariate phase coupling in dynamic brain networks.

    PubMed

    Canolty, Ryan T; Cadieu, Charles F; Koepsell, Kilian; Ganguly, Karunesh; Knight, Robert T; Carmena, Jose M

    2012-04-01

    Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.

  12. A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research.

    PubMed

    Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila

    2015-11-01

    Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  13. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  14. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  15. Effects of intranasal oxytocin on symptoms of schizophrenia: A multivariate Bayesian meta-analysis.

    PubMed

    Williams, Donald R; Bürkner, Paul-Christian

    2017-01-01

    Schizophrenia is a heterogeneous disorder in which psychiatric symptoms are classified into two general subgroups-positive and negative symptoms. Current antipsychotic drugs are effective for treating positive symptoms, whereas negative symptoms are less responsive. Since the neuropeptide oxytocin (OT) has been shown to mediate social behavior in animals and humans, it has been used as an experimental therapeutic for treating schizophrenia and in particular negative symptoms which includes social deficits. Through eight randomized controlled trials (RCTs) and three meta-analyses, evidence for an effect of intranasal OT (IN-OT) has been inconsistent. We therefore conducted an updated meta-analysis that offers several advantages when compared to those done previously: (1) We used a multivariate analysis which allows for comparisons between symptoms and accounts for correlations between symptoms; (2) We controlled for baseline scores; (3) We used a fully Bayesian framework that allows for assessment of evidence in favor of the null hypothesis using Bayes factors; and (4) We addressed inconsistencies in the primary studies and previous meta-analyses. Eight RCTs (n=238) were included in the present study and we found that oxytocin did not improve any aspect of symptomology in schizophrenic patients and there was moderate evidence in favor of the null (no effect of oxytocin) for negative symptoms. Multivariate comparisons between symptom types revealed that oxytocin was not especially beneficial for treating negative symptoms. The effect size estimates were not moderated, publication bias was absent, and our estimates were robust to sensitivity analyses. These results suggest that IN-OT is not an effective therapeutic for schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Lifetime risks for aneurysmal subarachnoid haemorrhage: multivariable risk stratification.

    PubMed

    Vlak, Monique H M; Rinkel, Gabriel J E; Greebe, Paut; Greving, Jacoba P; Algra, Ale

    2013-06-01

    The overall incidence of aneurysmal subarachnoid haemorrhage (aSAH) in western populations is around 9 per 100 000 person-years, which confers to a lifetime risk of around half per cent. Risk factors for aSAH are usually expressed as relative risks and suggest that absolute risks vary considerably according to risk factor profiles, but such estimates are lacking. We aimed to estimate incidence and lifetime risks of aSAH according to risk factor profiles. We used data from 250 patients admitted with aSAH and 574 sex-matched and age-matched controls, who were randomly retrieved from general practitioners files. We determined independent prognostic factors with multivariable logistic regression analyses and assessed discriminatory performance using the area under the receiver operating characteristic curve. Based on the prognostic model we predicted incidences and lifetime risks of aSAH for different risk factor profiles. The four strongest independent predictors for aSAH, namely current smoking (OR 6.0; 95% CI 4.1 to 8.6), a positive family history for aSAH (4.0; 95% CI 2.3 to 7.0), hypertension (2.4; 95% CI 1.5 to 3.8) and hypercholesterolaemia (0.2; 95% CI 0.1 to 0.4), were used in the final prediction model. This model had an area under the receiver operating characteristic curve of 0.73 (95% CI 0.69 to 0.76). Depending on sex, age and the four predictors, the incidence of aSAH ranged from 0.4/100 000 to 298/100 000 person-years and lifetime risk between 0.02% and 7.2%. The incidence and lifetime risk of aSAH in the general population varies widely according to risk factor profiles. Whether persons with high risks benefit from screening should be assessed in cost-effectiveness studies.

  17. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    PubMed

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  19. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    PubMed

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  20. Fighting With Siblings and With Peers Among Urban High School Students.

    PubMed

    Johnson, Renee M; Duncan, Dustin T; Rothman, Emily F; Gilreath, Tamika D; Hemenway, David; Molnar, Beth E; Azrael, Deborah

    2015-08-01

    Understanding the determinants of fighting is important for prevention efforts. Unfortunately, there is little research on how sibling fighting is related to peer fighting. Therefore, the aim of this study was to evaluate the association between sibling fighting and peer fighting. Data are from the Boston Youth Survey 2008, a school-based sample of youth in Boston, MA. To estimate the association between sibling fighting and peer fighting, we ran four multivariate regression models and estimated adjusted prevalence ratios and 95% confidence intervals. We fit generalized estimating equation models to account for the fact that students were clustered within schools. Controlling for school clustering, race/ethnicity, sex, school failure, substance use, and caregiver aggression, youth who fought with siblings were 2.49 times more likely to have reported fighting with peers. To the extent that we can confirm that sibling violence is associated with aggressive behavior, we should incorporate it into violence prevention programming. © The Author(s) 2014.

  1. The factors associated to psychosocial stress among general practitioners in Lithuania. Cross-sectional study

    PubMed Central

    Vanagas, Giedrius; Bihari-Axelsson, Susanna

    2005-01-01

    Background There are number of studies showing that general practice is one of the most stressful workplace among health care workers. Since Baltic States regained independence in 1990, the reform of the health care system took place in which new role and more responsibilities were allocated to general practitioners' in Lithuania. This study aimed to explore the psychosocial stress level among Lithuanian general practitioner's and examine the relationship between psychosocial stress and work characteristics. Methods The cross-sectional study of 300 Lithuanian General practitioners. Psychosocial stress was investigated with a questionnaire based on the Reeder scale. Job demands were investigated with the R. Karasek scale. The analysis included descriptive statistics; interrelationship analysis between characteristics and multivariate logistic regression to estimate odds ratios for each of the independent variables in the model. Results Response rate 66% (N = 197). Our study highlighted highest prevalence of psychosocial stress among widowed, single and female general practitioners. Lowest prevalence of psychosocial stress was among males and older age general practitioners. Psychosocial stress occurs when job demands are high and job decision latitude is low (χ2 = 18,9; p < 0,01). The multivariate analysis shows that high job demands (OR 4,128; CI 2,102–8,104; p < 0,001), patient load more than 18 patients per day (OR 5,863; CI 1,549–22,188; p < 0,01) and young age of GP's (OR 6,874; CI 1,292–36,582; p < 0,05) can be assigned as significant predictors for psychosocial stress. Conclusion One half of respondents suffering from work related psychosocial stress. High psychological workload demands combined with low decision latitude has the greatest impact to stress caseness among GP's. High job demands, high patient load and young age of GP's can be assigned as significant predictors of psychosocial stress among GP's. PMID:15946388

  2. Marginal versus joint Box-Cox transformation with applications to percentile curve construction for IgG subclasses and blood pressures.

    PubMed

    He, Xuming; Ng, K W; Shi, Jian

    2003-02-15

    When age-specific percentile curves are constructed for several correlated variables, the marginal method of handling one variable at a time has typically been used. We address the question, frequently asked by practitioners, of whether we can achieve efficiency gains by joint estimation. We focus on a simple but common method of Box-Cox transformation and assess the statistical impact of a joint transformation to multivariate normality on the percentile curve estimation for correlated variables. We find that there is little gain from the joint transformation for estimating percentiles around the median but a noticeable reduction in variances is possible for estimating extreme percentiles that are usually of main interest in medical and biological applications. Our study is motivated by problems in constructing percentile charts for IgG subclasses of children and for blood pressures in adult populations, both of which are discussed in the paper as examples, and yet our general findings are applicable to a wide range of other problems. Copyright 2003 John Wiley & Sons, Ltd.

  3. Simple and Multivariate Relationships Between Spiritual Intelligence with General Health and Happiness.

    PubMed

    Amirian, Mohammad-Elyas; Fazilat-Pour, Masoud

    2016-08-01

    The present study examined simple and multivariate relationships of spiritual intelligence with general health and happiness. The employed method was descriptive and correlational. King's Spiritual Quotient scales, GHQ-28 and Oxford Happiness Inventory, are filled out by a sample consisted of 384 students, which were selected using stratified random sampling from the students of Shahid Bahonar University of Kerman. Data are subjected to descriptive and inferential statistics including correlations and multivariate regressions. Bivariate correlations support positive and significant predictive value of spiritual intelligence toward general health and happiness. Further analysis showed that among the Spiritual Intelligence' subscales, Existential Critical Thinking Predicted General Health and Happiness, reversely. In addition, happiness was positively predicted by generation of personal meaning and transcendental awareness. The findings are discussed in line with the previous studies and the relevant theoretical background.

  4. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    PubMed

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Copula-based prediction of economic movements

    NASA Astrophysics Data System (ADS)

    García, J. E.; González-López, V. A.; Hirsh, I. D.

    2016-06-01

    In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.

  6. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.

    PubMed

    Shafizadeh-Moghadam, Hossein; Valavi, Roozbeh; Shahabi, Himan; Chapi, Kamran; Shirzadi, Ataollah

    2018-07-01

    In this research, eight individual machine learning and statistical models are implemented and compared, and based on their results, seven ensemble models for flood susceptibility assessment are introduced. The individual models included artificial neural networks, classification and regression trees, flexible discriminant analysis, generalized linear model, generalized additive model, boosted regression trees, multivariate adaptive regression splines, and maximum entropy, and the ensemble models were Ensemble Model committee averaging (EMca), Ensemble Model confidence interval Inferior (EMciInf), Ensemble Model confidence interval Superior (EMciSup), Ensemble Model to estimate the coefficient of variation (EMcv), Ensemble Model to estimate the mean (EMmean), Ensemble Model to estimate the median (EMmedian), and Ensemble Model based on weighted mean (EMwmean). The data set covered 201 flood events in the Haraz watershed (Mazandaran province in Iran) and 10,000 randomly selected non-occurrence points. Among the individual models, the Area Under the Receiver Operating Characteristic (AUROC), which showed the highest value, belonged to boosted regression trees (0.975) and the lowest value was recorded for generalized linear model (0.642). On the other hand, the proposed EMmedian resulted in the highest accuracy (0.976) among all models. In spite of the outstanding performance of some models, nevertheless, variability among the prediction of individual models was considerable. Therefore, to reduce uncertainty, creating more generalizable, more stable, and less sensitive models, ensemble forecasting approaches and in particular the EMmedian is recommended for flood susceptibility assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sampling effort affects multivariate comparisons of stream assemblages

    USGS Publications Warehouse

    Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.

    2002-01-01

    Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.

  8. Multivariate Generalizations of Student's t-Distribution. ONR Technical Report. [Biometric Lab Report No. 90-3.

    ERIC Educational Resources Information Center

    Gibbons, Robert D.; And Others

    In the process of developing a conditionally-dependent item response theory (IRT) model, the problem arose of modeling an underlying multivariate normal (MVN) response process with general correlation among the items. Without the assumption of conditional independence, for which the underlying MVN cdf takes on comparatively simple forms and can be…

  9. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  10. An improved method for bivariate meta-analysis when within-study correlations are unknown.

    PubMed

    Hong, Chuan; D Riley, Richard; Chen, Yong

    2018-03-01

    Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Is levator hiatus distension associated with peripheral ligamentous laxity during pregnancy?

    PubMed

    Gachon, Bertrand; Fritel, Xavier; Fradet, Laetitia; Decatoire, Arnaud; Lacouture, Patrick; Panjo, Henri; Pierre, Fabrice; Desseauve, David

    2017-08-01

    The impact of pregnancy on pelvic floor disorders remains poorly understood. During pregnancy, an increase in ligamentous laxity and pelvic organ mobility is often reported. Our main objective was to investigate a possible association between peripheral ligamentous laxity and levator hiatus (LH) distension during pregnancy. This was a prospective longitudinal study of 26 pregnant women followed up from the first to the third trimester. We collected the following information: occurrence of pelvic organ prolapse (POP) symptoms (score higher than 0 for the POP section of the Pelvic Floor Distress Inventory 20 questions score), 4D perineal ultrasound scan results with LH distension assessment and measurement of metacarpophalangeal joint mobility (MCP laxity). The association between MCP laxity and LH distension was estimated by mixed multilevel linear regression. The associations between MCP laxity and categorical parameters were estimated in a multivariate analysis using a generalized estimating equation model. MCP laxity and LH distension were correlated with a correlation coefficient of 0.26 (p = 0.02), and 6.8% of the LH distension variance was explained by MCP laxity. In the multivariate analysis, MCP laxity was associated with POP symptoms with an odds ratio at 1.05 (95% CI 1.01-1.11) for an increase of 1° in MCP laxity. LH distension and peripheral ligamentous laxity are significantly associated during pregnancy. However, the relationship is weak, and the results need to be confirmed in larger populations and with more specific techniques such as elastography to directly assess the elastic properties of the pelvic floor muscles.

  12. Comparison of noninvasive assessments of central blood pressure using general transfer function and late systolic shoulder of the radial pressure wave.

    PubMed

    Wohlfahrt, Peter; Krajcoviechová, Alena; Seidlerová, Jitka; Mayer, Otto; Filipovsky, Jan; Cífková, Renata

    2014-02-01

    Central systolic blood pressure (cSBP) can be derived by the general transfer function of the radial pressure wave, as used in the SphygmoCor device, or by regression equation from directly measured late systolic shoulder of the radial pressure wave (pSBP2), as used in the Omron HEM-9000AI device. The aim of this study was to compare the SphygmoCor estimates of cSBP with 2 estimates of cSBP provided by the Omron HEM-9000AI (cSBP, pSBP2) in a large cohort of the white population. In 391 patients aged 52.3±13.5 years (46% men) from the Czech post-MONICA Study, cSBP was measured using the SphygmoCor and Omron HEM-9000AI devices in random order. Omron cSBP and pSBP2 were perfectly correlated (r = 1.0; P < 0.0001). There was a strong correlation (r = 0.97; P < 0.0001) between Omron and SphygmoCor cSBP estimates, but Omron estimate was 13.1±4.7mm Hg higher than SphygmoCor cSBP. On the other hand, Omron pSBP2 strongly correlated with SphygmoCor cSBP (r = 0.97; P < 0.0001) and was 1.7±4.2mm Hg lower than SphygmoCor cSBP. In multivariable analysis, anthropometric and cardiovascular risk factors explained only 10% of the variance of the cSBP difference between devices while explaining 52% of the systolic blood pressure amplification variance. Estimation of cSBP based on the late systolic shoulder of the radial wave provides a comparable accuracy with the validated general transfer function. When comparing Omron HEM-9000AI and SphygmoCor estimates of cSBP, Omron pSBP2 should be used. The difference between both devices in cSBP may be explained by differences in calibration.

  13. A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

    PubMed

    Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E

    2017-11-10

    A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Do HIV Prevalence Trends in ANC Surveillance Represent Trends in the General Population in the ART Era? The Case of Manicaland, East Zimbabwe

    PubMed Central

    Gregson, Simon; Dharmayat, Kanika; Pereboom, Monique; Takaruza, Albert; Mugurungi, Owen; Schur, Nadine; Nyamukapa, Constance A.

    2016-01-01

    Objective National estimates of HIV trends in generalised epidemics rely on HIV prevalence data from antenatal clinic (ANC) surveillance. We investigate whether HIV prevalence trends in ANC data reflect trends in men and women in the general population during the scale-up of anti-retroviral treatment (ART) in Manicaland, Zimbabwe. Methods Trends in HIV prevalence in local ANC attendees and adults aged 15-49yrs in towns, agricultural estates, and villages were compared using five rounds of parallel ANC (N≈1,200) and general-population surveys (N≈10,000) and multi-variable log-linear regression. Changes in the age-pattern of HIV prevalence and the age-distribution of ANC attendees were compared with those in the general population. Age-specific pregnancy prevalence rates were compared by HIV infection and ART status. Results Cumulatively, from 1998-2000 to 2009-2011, HIV prevalence fell by 60.0% (95% CI, 51.1%-67.3%) in ANC surveillance data and by 34.3% (30.8%-37.7%) in the general population. Most of the difference arose following the introduction of ART (2006-2011). The estates and villages reflected this overall pattern but HIV prevalence in the towns was lower at local ANCs than in the general population, largely due to attendance by pregnant women from outlying (lower prevalence) areas. The ageing of people living with HIV in the general population (52.4% aged >35yrs, 2009-2011) was under-represented in the ANC data (12.6%) due to lower fertility in older and HIV-infected women. Conclusion After the introduction of ART in Manicaland, HIV prevalence declined more steeply in ANC surveillance data than in the general population. Models used for HIV estimates must reflect this change in bias. PMID:26372390

  15. Evaluation of costs associated with tolvaptan-mediated length-of-stay reduction among heart failure patients with hyponatremia in the US, based on the EVEREST trial.

    PubMed

    Chiong, Jun R; Kim, Sonnie; Lin, Jay; Christian, Rudell; Dasta, Joseph F

    2012-01-01

    The Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) trial showed that tolvaptan use improved heart failure (HF) signs and symptoms without serious adverse events. To evaluate the potential cost savings associated with tolvaptan usage among hospitalized hyponatremic HF patients. The Healthcare Cost and Utilization Project (HCUP) 2008 Nationwide Inpatient Sample (NIS) database was used to estimate hospital cost and length of stay (LOS), for diagnosis-related group (DRG) hospitalizations of adult (age ≥18 years) HF patients with complications and comorbidities or major complications and comorbidities. EVEREST trial data for patients with hyponatremia were used to estimate tolvaptan-associated LOS reductions. A cost offset model was constructed to evaluate the impact of tolvaptan on hospital cost and LOS, with univariate and multivariate Monte Carlo sensitivity analyses. Tolvaptan use among hyponatremic EVEREST trial HF patients was associated with shorter hospital LOS than placebo patients (9.72 vs 11.44 days, respectively); 688,336 hospitalizations for HF DRGs were identified from the HCUP NIS database, with a mean LOS of 5.4 days and mean total hospital costs of $8415. Using an inpatient tolvaptan treatment duration of 4 days with a wholesale acquisition cost of $250 per day, the cost offset model estimated a LOS reduction among HF hospitalizations of 0.81 days and an estimated total cost saving of $265 per admission. Univariate and multivariate sensitivity analysis demonstrated that cost reduction associated with tolvaptan usage is consistent among variations of model variables. The estimated LOS reduction and cost savings projected by the cost offset model suggest a clinical and economic benefit to tolvaptan use in hyponatremic HF patients. The EVEREST trial data may not generalize well to the US population. Clinical trial patient profiles and relative LOS reductions may not be applicable to real-world patient populations.

  16. Inter-Hospital Transfer is Associated with Increased Mortality and Costs in Severe Sepsis and Septic Shock: An Instrumental Variables Approach

    PubMed Central

    Mohr, Nicholas M.; Harland, Karisa K.; Shane, Dan M.; Ahmed, Azeemuddin; Fuller, Brian M.; Torner, James C.

    2016-01-01

    Purpose The objective of this study was to evaluate the impact of regionalization on sepsis survival, to describe the role of inter-hospital transfer in rural sepsis care, and to measure the cost of inter-hospital transfer in a predominantly rural state. Materials and Methods Observational case-control study using statewide administrative claims data from 2005-2014 in a predominantly rural Midwestern state. Mortality and marginal costs were estimated with multivariable generalized estimating equations (GEE) models and with instrumental variables models. Results A total of 18,246 patients were included, of which 59% were transferred between hospitals. Transferred patients had higher mortality and longer hospital length-of-stay than non-transferred patients. Using a multivariable GEE model to adjust for potentially confounding factors, inter-hospital transfer was associated with increased mortality (aOR 1.7, 95%CI 1.5 – 1.9). Using an instrumental variables model, transfer was associated with a 9.2% increased risk of death. Transfer was associated with additional costs of $6,897 (95%CI $5,769-8,024). Even when limiting to only those patients who received care in the largest hospitals, transfer was still associated with $5,167 (95%CI $3,696-6,638) in additional cost. Conclusions The majority of rural sepsis patients are transferred, and these transferred patients have higher mortality and significantly increased cost of care. PMID:27546770

  17. Association of Coronary Artery Calcification with Estimated Coronary Heart Disease Risk from Prediction Models in a Community-Based Sample of Japanese Men: The Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA).

    PubMed

    Fujiyoshi, Akira; Arima, Hisatomi; Tanaka-Mizuno, Sachiko; Hisamatsu, Takahashi; Kadowaki, Sayaka; Kadota, Aya; Zaid, Maryam; Sekikawa, Akira; Yamamoto, Takashi; Horie, Minoru; Miura, Katsuyuki; Ueshima, Hirotsugu

    2017-12-05

    The clinical significance of coronary artery calcification (CAC) is not fully determined in general East Asian populations where background coronary heart disease (CHD) is less common than in USA/Western countries. We cross-sectionally assessed the association between CAC and estimated CHD risk as well as each major risk factor in general Japanese men. Participants were 996 randomly selected Japanese men aged 40-79 y, free of stroke, myocardial infarction, or revascularization. We examined an independent relationship between each risk factor used in prediction models and CAC score ≥100 by logistic regression. We then divided the participants into quintiles of estimated CHD risk per prediction model to calculate odds ratio of having CAC score ≥100. Receiver operating characteristic curve and c-index were used to examine discriminative ability of prevalent CAC for each prediction model. Age, smoking status, and systolic blood pressure were significantly associated with CAC score ≥100 in the multivariable analysis. The odds of having CAC score ≥100 were higher for those in higher quintiles in all prediction models (p-values for trend across quintiles <0.0001 for all models). All prediction models showed fair and similar discriminative abilities to detect CAC score ≥100, with similar c-statistics (around 0.70). In a community-based sample of Japanese men free of CHD and stroke, CAC score ≥100 was significantly associated with higher estimated CHD risk by prediction models. This finding supports the potential utility of CAC as a biomarker for CHD in a general Japanese male population.

  18. Hot spots of multivariate extreme anomalies in Earth observations

    NASA Astrophysics Data System (ADS)

    Flach, M.; Sippel, S.; Bodesheim, P.; Brenning, A.; Denzler, J.; Gans, F.; Guanche, Y.; Reichstein, M.; Rodner, E.; Mahecha, M. D.

    2016-12-01

    Anomalies in Earth observations might indicate data quality issues, extremes or the change of underlying processes within a highly multivariate system. Thus, considering the multivariate constellation of variables for extreme detection yields crucial additional information over conventional univariate approaches. We highlight areas in which multivariate extreme anomalies are more likely to occur, i.e. hot spots of extremes in global atmospheric Earth observations that impact the Biosphere. In addition, we present the year of the most unusual multivariate extreme between 2001 and 2013 and show that these coincide with well known high impact extremes. Technically speaking, we account for multivariate extremes by using three sophisticated algorithms adapted from computer science applications. Namely an ensemble of the k-nearest neighbours mean distance, a kernel density estimation and an approach based on recurrences is used. However, the impact of atmosphere extremes on the Biosphere might largely depend on what is considered to be normal, i.e. the shape of the mean seasonal cycle and its inter-annual variability. We identify regions with similar mean seasonality by means of dimensionality reduction in order to estimate in each region both the `normal' variance and robust thresholds for detecting the extremes. In addition, we account for challenges like heteroscedasticity in Northern latitudes. Apart from hot spot areas, those anomalies in the atmosphere time series are of particular interest, which can only be detected by a multivariate approach but not by a simple univariate approach. Such an anomalous constellation of atmosphere variables is of interest if it impacts the Biosphere. The multivariate constellation of such an anomalous part of a time series is shown in one case study indicating that multivariate anomaly detection can provide novel insights into Earth observations.

  19. A Comparison of the Bootstrap-F, Improved General Approximation, and Brown-Forsythe Multivariate Approaches in a Mixed Repeated Measures Design

    ERIC Educational Resources Information Center

    Seco, Guillermo Vallejo; Izquierdo, Marcelino Cuesta; Garcia, M. Paula Fernandez; Diez, F. Javier Herrero

    2006-01-01

    The authors compare the operating characteristics of the bootstrap-F approach, a direct extension of the work of Berkovits, Hancock, and Nevitt, with Huynh's improved general approximation (IGA) and the Brown-Forsythe (BF) multivariate approach in a mixed repeated measures design when normality and multisample sphericity assumptions do not hold.…

  20. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir

    2017-06-01

    We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.

  1. The effects of incremental costs of smoking and obesity on health care costs among adults: a 7-year longitudinal study.

    PubMed

    Moriarty, James P; Branda, Megan E; Olsen, Kerry D; Shah, Nilay D; Borah, Bijan J; Wagie, Amy E; Egginton, Jason S; Naessens, James M

    2012-03-01

    To provide the simultaneous 7-year estimates of incremental costs of smoking and obesity among employees and dependents in a large health care system. We used a retrospective cohort aged 18 years or older with continuous enrollment during the study period. Longitudinal multivariate cost analyses were performed using generalized estimating equations with demographic adjustments. The annual incremental mean costs of smoking by age group ranged from $1274 to $1401. The incremental costs of morbid obesity II by age group ranged from $5467 to $5530. These incremental costs drop substantially when comorbidities are included. Obesity and smoking have large long-term impacts on health care costs of working-age adults. Controlling comorbidities impacted incremental costs of obesity but may lead to underestimation of the true incremental costs because obesity is a risk factor for developing chronic conditions.

  2. Estimating multivariate response surface model with data outliers, case study in enhancing surface layer properties of an aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Widodo, Edy; Kariyam

    2017-03-01

    To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.

  3. A simplified parsimonious higher order multivariate Markov chain model with new convergence condition

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.

  4. Borrowing of strength and study weights in multivariate and network meta-analysis.

    PubMed

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2017-12-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).

  5. Borrowing of strength and study weights in multivariate and network meta-analysis

    PubMed Central

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2016-01-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254

  6. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  7. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  8. Concurrent generation of multivariate mixed data with variables of dissimilar types.

    PubMed

    Amatya, Anup; Demirtas, Hakan

    2016-01-01

    Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.

  9. Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.

    PubMed

    Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter

    2013-11-01

    Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Information spreading by a combination of MEG source estimation and multivariate pattern classification.

    PubMed

    Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.

  11. Information spreading by a combination of MEG source estimation and multivariate pattern classification

    PubMed Central

    Sato, Masashi; Yamashita, Okito; Sato, Masa-aki

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968

  12. Gender comparisons of medical students' psychosocial profiles.

    PubMed

    Hojat, M; Glaser, K; Xu, G; Veloski, J J; Christian, E B

    1999-05-01

    This study was designed to compare male and female medical students on selected personality attributes that could influence their academic attainment and personal success. Participants were 1157 medical students (743 men, 414 women) who completed a set of psychosocial questionnaires measuring intensity and chronicity of loneliness, general anxiety, test anxiety, neuroticism, depression, extraversion, self-esteem, locus of control, perceptions of parents, general health and appraisals of stressful life events. Data were analysed by employing multivariate and univariate analysis of variance and chi-square analysis. Jefferson Medical College. Medical students. Men scored significantly higher on the intensity of loneliness, and women scored higher on general anxiety, test anxiety and neuroticism scales, but the magnitudes of the effect size estimates were not large. No significant gender difference was observed on measures of chronicity of loneliness, depression, extraversion, self-esteem, external locus of control, perception of general health and perceptions of the mother and the father. Women who experienced stressful life events, such as death in the family or personal illness, appraised these events more negatively than did their male counterparts. Implications of the findings for medical education and practice are discussed.

  13. Assessment of the agreement between the Framingham and DAD risk equations for estimating cardiovascular risk in adult Africans living with HIV infection: a cross-sectional study.

    PubMed

    Noumegni, Steve Raoul; Ama, Vicky Jocelyne Moor; Assah, Felix K; Bigna, Jean Joel; Nansseu, Jobert Richie; Kameni, Jenny Arielle M; Katte, Jean-Claude; Dehayem, Mesmin Y; Kengne, Andre Pascal; Sobngwi, Eugene

    2017-01-01

    The Absolute cardiovascular disease (CVD) risk evaluation using multivariable CVD risk models is increasingly advocated in people with HIV, in whom existing models remain largely untested. We assessed the agreement between the general population derived Framingham CVD risk equation and the HIV-specific Data collection on Adverse effects of anti-HIV Drugs (DAD) CVD risk equation in HIV-infected adult Cameroonians. This cross-sectional study involved 452 HIV infected adults recruited at the HIV day-care unit of the Yaoundé Central Hospital, Cameroon. The 5-year projected CVD risk was estimated for each participant using the DAD and Framingham CVD risk equations. Agreement between estimates from these equations was assessed using the spearman correlation and Cohen's kappa coefficient. The mean age of participants (80% females) was 44.4 ± 9.8 years. Most participants (88.5%) were on antiretroviral treatment with 93.3% of them receiving first-line regimen. The most frequent cardiovascular risk factors were abdominal obesity (43.1%) and dyslipidemia (33.8%). The median estimated 5-year CVD risk was 0.6% (25th-75th percentiles: 0.3-1.3) using the DAD equation and 0.7% (0.2-2.0) with the Framingham equation. The Spearman correlation between the two estimates was 0.93 ( p  < 0.001). The kappa statistic was 0.61 (95% confident interval: 0.54-0.67) for the agreement between the two equations in classifying participants across risk categories defined as low, moderate, high and very high. Most participants had a low-to-moderate estimated CVD risk, with acceptable level of agreement between the general and HIV-specific equations in ranking CVD risk.

  14. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  15. Improved Accuracy of Automated Estimation of Cardiac Output Using Circulation Time in Patients with Heart Failure.

    PubMed

    Dajani, Hilmi R; Hosokawa, Kazuya; Ando, Shin-Ichi

    2016-11-01

    Lung-to-finger circulation time of oxygenated blood during nocturnal periodic breathing in heart failure patients measured using polysomnography correlates negatively with cardiac function but possesses limited accuracy for cardiac output (CO) estimation. CO was recalculated from lung-to-finger circulation time using a multivariable linear model with information on age and average overnight heart rate in 25 patients who underwent evaluation of heart failure. The multivariable model decreased the percentage error to 22.3% relative to invasive CO measured during cardiac catheterization. This improved automated noninvasive CO estimation using multiple variables meets a recently proposed performance criterion for clinical acceptability of noninvasive CO estimation, and compares very favorably with other available methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Multivariate Meta-Analysis Using Individual Participant Data

    ERIC Educational Resources Information Center

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2015-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…

  17. A model-based approach to wildland fire reconstruction using sediment charcoal records

    USGS Publications Warehouse

    Itter, Malcolm S.; Finley, Andrew O.; Hooten, Mevin B.; Higuera, Philip E.; Marlon, Jennifer R.; Kelly, Ryan; McLachlan, Jason S.

    2017-01-01

    Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history, including the identification of past wildland fires. One challenge of applying sediment charcoal records to infer fire history is the separation of charcoal associated with local fire occurrence and charcoal originating from regional fire activity. Despite a variety of methods to identify local fires from sediment charcoal records, an integrated statistical framework for fire reconstruction is lacking. We develop a Bayesian point process model to estimate the probability of fire associated with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A multivariate extension of the model combines records from multiple lakes to reduce uncertainty in local fire identification and estimate a regional mean fire return interval. The univariate and multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean fire return intervals (100–350 years) with reduced uncertainty under the multivariate model due to improved estimation of regional charcoal deposition. The point process model offers an integrated statistical framework for paleofire reconstruction and extends existing methods to infer regional fire history from multiple lake records with uncertainty following directly from posterior distributions.

  18. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  19. Gaussianization for fast and accurate inference from cosmological data

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2016-06-01

    We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.

  20. Dietary Sodium Consumption Predicts Future Blood Pressure and Incident Hypertension in the Japanese Normotensive General Population

    PubMed Central

    Takase, Hiroyuki; Sugiura, Tomonori; Kimura, Genjiro; Ohte, Nobuyuki; Dohi, Yasuaki

    2015-01-01

    Background Although there is a close relationship between dietary sodium and hypertension, the concept that persons with relatively high dietary sodium are at increased risk of developing hypertension compared with those with relatively low dietary sodium has not been studied intensively in a cohort. Methods and Results We conducted an observational study to investigate whether dietary sodium intake predicts future blood pressure and the onset of hypertension in the general population. Individual sodium intake was estimated by calculating 24-hour urinary sodium excretion from spot urine in 4523 normotensive participants who visited our hospital for a health checkup. After a baseline examination, they were followed for a median of 1143 days, with the end point being development of hypertension. During the follow-up period, hypertension developed in 1027 participants (22.7%). The risk of developing hypertension was higher in those with higher rather than lower sodium intake (hazard ratio 1.25, 95% CI 1.04 to 1.50). In multivariate Cox proportional hazards regression analysis, baseline sodium intake and the yearly change in sodium intake during the follow-up period (as continuous variables) correlated with the incidence of hypertension. Furthermore, both the yearly increase in sodium intake and baseline sodium intake showed significant correlations with the yearly increase in systolic blood pressure in multivariate regression analysis after adjustment for possible risk factors. Conclusions Both relatively high levels of dietary sodium intake and gradual increases in dietary sodium are associated with future increases in blood pressure and the incidence of hypertension in the Japanese general population. PMID:26224048

  1. A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP)

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.

    2016-08-01

    Drought is among the costliest natural hazards worldwide and extreme drought events in recent years have caused huge losses to various sectors. Drought prediction is therefore critically important for providing early warning information to aid decision making to cope with drought. Due to the complicated nature of drought, it has been recognized that the univariate drought indicator may not be sufficient for drought characterization and hence multivariate drought indices have been developed for drought monitoring. Alongside the substantial effort in drought monitoring with multivariate drought indices, it is of equal importance to develop a drought prediction method with multivariate drought indices to integrate drought information from various sources. This study proposes a general framework for multivariate multi-index drought prediction that is capable of integrating complementary prediction skills from multiple drought indices. The Multivariate Ensemble Streamflow Prediction (MESP) is employed to sample from historical records for obtaining statistical prediction of multiple variables, which is then used as inputs to achieve multivariate prediction. The framework is illustrated with a linearly combined drought index (LDI), which is a commonly used multivariate drought index, based on climate division data in California and New York in the United States with different seasonality of precipitation. The predictive skill of LDI (represented with persistence) is assessed by comparison with the univariate drought index and results show that the LDI prediction skill is less affected by seasonality than the meteorological drought prediction based on SPI. Prediction results from the case study show that the proposed multivariate drought prediction outperforms the persistence prediction, implying a satisfactory performance of multivariate drought prediction. The proposed method would be useful for drought prediction to integrate drought information from various sources for early drought warning.

  2. Prevalence of vitreous floaters in a community sample of smartphone users.

    PubMed

    Webb, Blake F; Webb, Jadon R; Schroeder, Mary C; North, Carol S

    2013-01-01

    To estimate the prevalence and risk factors for vitreous floaters in the general population. An electronic survey was administered through a smartphone app asking various demographic and health questions, including whether users experience floaters in their field of vision. Multivariate logistic regression analysis was used to determine risk factors. A total of 603 individuals completed the survey, with 76% reporting that they see floaters, and 33% reporting that floaters caused noticeable impairment in vision. Myopes were 3.5 times more likely (P=0.0004), and hyperopes 4.4 times more likely (P=0.0069) to report moderate to severe floaters compared to those with normal vision. Floater prevalence was not significantly affected by respondent age, race, gender, and eye color. Vitreous floaters were found to be a very common phenomenon in this non-clinical general population sample, and more likely to be impairing in myopes and hyperopes.

  3. Prevalence of vitreous floaters in a community sample of smartphone users

    PubMed Central

    Webb, Blake F.; Webb, Jadon R.; Schroeder, Mary C.; North, Carol S.

    2013-01-01

    AIM To estimate the prevalence and risk factors for vitreous floaters in the general population. METHODS An electronic survey was administered through a smartphone app asking various demographic and health questions, including whether users experience floaters in their field of vision. Multivariate logistic regression analysis was used to determine risk factors. RESULTS A total of 603 individuals completed the survey, with 76% reporting that they see floaters, and 33% reporting that floaters caused noticeable impairment in vision. Myopes were 3.5 times more likely (P=0.0004), and hyperopes 4.4 times more likely (P=0.0069) to report moderate to severe floaters compared to those with normal vision. Floater prevalence was not significantly affected by respondent age, race, gender, and eye color. CONCLUSION Vitreous floaters were found to be a very common phenomenon in this non-clinical general population sample, and more likely to be impairing in myopes and hyperopes. PMID:23826541

  4. Test battery for measuring the perception and recognition of facial expressions of emotion

    PubMed Central

    Wilhelm, Oliver; Hildebrandt, Andrea; Manske, Karsten; Schacht, Annekathrin; Sommer, Werner

    2014-01-01

    Despite the importance of perceiving and recognizing facial expressions in everyday life, there is no comprehensive test battery for the multivariate assessment of these abilities. As a first step toward such a compilation, we present 16 tasks that measure the perception and recognition of facial emotion expressions, and data illustrating each task's difficulty and reliability. The scoring of these tasks focuses on either the speed or accuracy of performance. A sample of 269 healthy young adults completed all tasks. In general, accuracy and reaction time measures for emotion-general scores showed acceptable and high estimates of internal consistency and factor reliability. Emotion-specific scores yielded lower reliabilities, yet high enough to encourage further studies with such measures. Analyses of task difficulty revealed that all tasks are suitable for measuring emotion perception and emotion recognition related abilities in normal populations. PMID:24860528

  5. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution

    PubMed Central

    Lo, Kenneth

    2011-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375

  6. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution.

    PubMed

    Lo, Kenneth; Gottardo, Raphael

    2012-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.

  7. A Bayesian approach to multivariate measurement system assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Michael Scott

    This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.

  8. A Bayesian approach to multivariate measurement system assessment

    DOE PAGES

    Hamada, Michael Scott

    2016-07-01

    This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.

  9. Univariate Analysis of Multivariate Outcomes in Educational Psychology.

    ERIC Educational Resources Information Center

    Hubble, L. M.

    1984-01-01

    The author examined the prevalence of multiple operational definitions of outcome constructs and an estimate of the incidence of Type I error rates when univariate procedures were applied to multiple variables in educational psychology. Multiple operational definitions of constructs were advocated and wider use of multivariate analysis was…

  10. Irritable bowel syndrome is concentrated in people with higher educations in Iran: an inequality analysis.

    PubMed

    Mansouri, Asieh; Rarani, Mostafa Amini; Fallahi, Mosayeb; Alvandi, Iman

    2017-01-01

    Like any other health-related disorder, irritable bowel syndrome (IBS) has a differential distribution with respect to socioeconomic factors. This study aimed to estimate and decompose educational inequalities in the prevalence of IBS. Sampling was performed using a multi-stage random cluster sampling approach. The data of 1,850 residents of Kish Island aged 15 years or older were included, and the determinants of IBS were identified using a generalized estimating equation regression model. The concentration index of educational inequality in cases of IBS was estimated and decomposed as the specific inequality index. The prevalence of IBS in this study was 21.57% (95% confidence interval [CI], 19.69 to 23.44%). The concentration index of IBS was 0.20 (95% CI, 0.14 to 0.26). A multivariable regression model revealed that age, sex, level of education, marital status, anxiety, and poor general health were significant determinants of IBS. In the decomposition analysis, level of education (89.91%), age (-11.99%), and marital status (9.11%) were the three main contributors to IBS inequality. Anxiety and poor general health were the next two contributors to IBS inequality, and were responsible for more than 12% of the total observed inequality. The main contributors of IBS inequality were education level, age, and marital status. Given the high percentage of anxious individuals among highly educated, young, single, and divorced people, we can conclude that all contributors to IBS inequality may be partially influenced by psychological factors. Therefore, programs that promote the development of mental health to alleviate the abovementioned inequality in this population are highly warranted.

  11. Predictors of adherence to treatment in women with fibromyalgia.

    PubMed

    Dobkin, Patricia L; Sita, Aurelio; Sewitch, Maida J

    2006-01-01

    The goal of this study was to identify predictors of general and medication adherence in women with fibromyalgia (FM). Participants were 142 women recruited from tertiary care hospitals or the community and 10 rheumatologists. Participants' demographic, clinical, and psychosocial characteristics, as well as patient-physician discordance, were assessed at the index visit. Adherence was assessed 6 months later. Multivariable generalized estimating equations were used to identify predictors of general adherence and adherence to medication. The average age of participants was 50.9 years (SD=10.2) and the median duration of FM was 32 months. Participants reported extensive use of health services and medications. The mean score for general adherence was 61.0 (SD=22.4; range 0-100) and 52.9% of the cohort reported at least one form of behavior reflecting nonadherence to medications. More general adherence was significantly predicted by lower patient-physician discordance on patient well-being and lower patient psychological distress. Medication adherence was significantly predicted by higher affective pain and lower patient psychological distress. Adherence is influenced by both clinical (patient-physician discordance and pain) and psychological (distress) factors in women with FM. Improvements in these domains may improve adherence in FM.

  12. Incidence and risk factors for surgical site infection in general surgeries 1

    PubMed Central

    de Carvalho, Rafael Lima Rodrigues; Campos, Camila Cláudia; Franco, Lúcia Maciel de Castro; Rocha, Adelaide De Mattia; Ercole, Flávia Falci

    2017-01-01

    ABSTRACT Objective: to estimate the incidence of surgical site infection in general surgeries at a large Brazilian hospital while identifying risk factors and prevalent microorganisms. Method: non-concurrent cohort study with 16,882 information of patients undergoing general surgery from 2008 to 2011. Data were analyzed by descriptive, bivariate and multivariate analysis. Results: the incidence of surgical site infection was 3.4%. The risk factors associated with surgical site infection were: length of preoperative hospital stay more than 24 hours; duration of surgery in hours; wound class clean-contaminated, contaminated and dirty/infected; and ASA index classified into ASA II, III and IV/V. Staphyloccocus aureus and Escherichia coli were identified. Conclusion: the incidence was lower than that found in the national studies on general surgeries. These risk factors corroborate those presented by the National Nosocomial Infection Surveillance System Risk Index, by the addition of the length of preoperative hospital stay. The identification of the actual incidence of surgical site infection in general surgeries and associated risk factors may support the actions of the health team in order to minimize the complications caused by surgical site infection. PMID:29211190

  13. Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.

    PubMed

    Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz

    2014-02-01

    Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.

  14. Potential use of multiple surveillance data in the forecast of hospital admissions

    PubMed Central

    Lau, Eric H.Y.; Ip, Dennis K.M.; Cowling, Benjamin J.

    2013-01-01

    Objective This paper describes the potential use of multiple influenza surveillance data to forecast hospital admissions for respiratory diseases. Introduction A sudden surge in hospital admissions in public hospital during influenza peak season has been a challenge to healthcare and manpower planning. In Hong Kong, the timing of influenza peak seasons are variable and early short-term indication of possible surge may facilitate preparedness which could be translated into strategies such as early discharge or reallocation of extra hospital beds. In this study we explore the potential use of multiple routinely collected syndromic data in the forecast of hospital admissions. Methods A multivariate dynamic linear time series model was fitted to multiple syndromic data including influenza-like illness (ILI) rates among networks of public and private general practitioners (GP), and school absenteeism rates, plus drop-in fever count data from designated flu clinics (DFC) that were created during the pandemic. The latent process derived from the model has been used as a measure of the influenza activity [1]. We compare the cross-correlations between estimated influenza level based on multiple surveillance data and GP ILI data, versus accident and emergency hospital admissions with principal diagnoses of respiratory diseases and pneumonia & influenza (P&I). Results The estimated influenza activity has higher cross-correlation with respiratory and P&I admissions (ρ=0.66 and 0.73 respectively) compared to that of GP ILI rates (Table 1). Cross correlations drop distinctly after lag 2 for both estimated influenza activity and GP ILI rates. Conclusions The use of a multivariate method to integrate information from multiple sources of influenza surveillance data may have the potential to improve forecasting of admission surge of respiratory diseases.

  15. Longitudinal flying qualities criteria for single-pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Bar-Gill, A.

    1983-01-01

    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

  16. Spatial and spectral interpolation of ground-motion intensity measure observations

    USGS Publications Warehouse

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  17. Human papillomavirus vaccination in Auckland: reducing ethnic and socioeconomic inequities.

    PubMed

    Poole, Tracey; Goodyear-Smith, Felicity; Petousis-Harris, Helen; Desmond, Natalie; Exeter, Daniel; Pointon, Leah; Jayasinha, Ranmalie

    2012-12-17

    The New Zealand HPV publicly funded immunisation programme commenced in September 2008. Delivery through a school based programme was anticipated to result in higher coverage rates and reduced inequalities compared to vaccination delivered through other settings. The programme provided for on-going vaccination of girls in year 8 with an initial catch-up programme through general practices for young women born after 1 January 1990 until the end of 2010. To assess the uptake of the funded HPV vaccine through school based vaccination programmes in secondary schools and general practices in 2009, and the factors associated with coverage by database matching. Retrospective quantitative analysis of secondary anonymised data School-Based Vaccination Service and National Immunisation Register databases of female students from secondary schools in Auckland District Health Board catchment area. Data included student and school demographic and other variables. Binary logistic regression was used to estimate odds ratios and significance for univariables. Multivariable logistic regression estimated strength of association between individual factors and initiation and completion, adjusted for all other factors. The programme achieved overall coverage of 71.5%, with Pacific girls highest at 88% and Maori at 78%. Girls higher socioeconomic status were more likely be vaccinated in general practice. School-based vaccination service targeted at ethic sub-populations provided equity for the Maori and Pacific student who achieved high levels of vaccination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Insulin resistance index (HOMA-IR) levels in a general adult population: curves percentile by gender and age. The EPIRCE study.

    PubMed

    Gayoso-Diz, Pilar; Otero-Gonzalez, Alfonso; Rodriguez-Alvarez, María Xosé; Gude, Francisco; Cadarso-Suarez, Carmen; García, Fernando; De Francisco, Angel

    2011-10-01

    To describe the distribution of HOMA-IR levels in a general nondiabetic population and its relationships with metabolic and lifestyles characteristics. Cross-sectional study. Data from 2246 nondiabetic adults in a random Spanish population sample, stratified by age and gender, were analyzed. Assessments included a structured interview, physical examination, and blood sampling. Generalized additive models (GAMs) were used to assess the effect of lifestyle habits and clinical and demographic measurements on HOMA-IR. Multivariate GAMs and quantile regression analyses of HOMA-IR were carried out separately in men and women. This study shows refined estimations of HOMA-IR levels by age, body mass index, and waist circumference in men and women. HOMA-IR levels were higher in men (2.06) than women (1.95) (P=0.047). In women, but not men, HOMA-IR and age showed a significant nonlinear association (P=0.006), with increased levels above fifty years of age. We estimated HOMA-IR curves percentile in men and women. Age- and gender-adjusted HOMA-IR levels are reported in a representative Spanish adult non-diabetic population. There are gender-specific differences, with increased levels in women over fifty years of age that may be related with changes in body fat distribution after menopause. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Multivariate Error Covariance Estimates by Monte-Carlo Simulation for Assimilation Studies in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.

    2004-01-01

    One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.

  20. Estimating and Testing the Sources of Evoked Potentials in the Brain.

    ERIC Educational Resources Information Center

    Huizenga, Hilde M.; Molenaar, Peter C. M.

    1994-01-01

    The source of an event-related brain potential (ERP) is estimated from multivariate measures of ERP on the head under several mathematical and physical constraints on the parameters of the source model. Statistical aspects of estimation are discussed, and new tests are proposed. (SLD)

  1. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  2. Model diagnostics in reduced-rank estimation

    PubMed Central

    Chen, Kun

    2016-01-01

    Reduced-rank methods are very popular in high-dimensional multivariate analysis for conducting simultaneous dimension reduction and model estimation. However, the commonly-used reduced-rank methods are not robust, as the underlying reduced-rank structure can be easily distorted by only a few data outliers. Anomalies are bound to exist in big data problems, and in some applications they themselves could be of the primary interest. While naive residual analysis is often inadequate for outlier detection due to potential masking and swamping, robust reduced-rank estimation approaches could be computationally demanding. Under Stein's unbiased risk estimation framework, we propose a set of tools, including leverage score and generalized information score, to perform model diagnostics and outlier detection in large-scale reduced-rank estimation. The leverage scores give an exact decomposition of the so-called model degrees of freedom to the observation level, which lead to exact decomposition of many commonly-used information criteria; the resulting quantities are thus named information scores of the observations. The proposed information score approach provides a principled way of combining the residuals and leverage scores for anomaly detection. Simulation studies confirm that the proposed diagnostic tools work well. A pattern recognition example with hand-writing digital images and a time series analysis example with monthly U.S. macroeconomic data further demonstrate the efficacy of the proposed approaches. PMID:28003860

  3. Axial cervical vertebrae-based multivariate regression model for the estimation of skeletal-maturation status.

    PubMed

    Yang, Y-M; Lee, J; Kim, Y-I; Cho, B-H; Park, S-B

    2014-08-01

    This study aimed to determine the viability of using axial cervical vertebrae (ACV) as biological indicators of skeletal maturation and to build models that estimate ossification level with improved explanatory power over models based only on chronological age. The study population comprised 74 female and 47 male patients with available hand-wrist radiographs and cone-beam computed tomography images. Generalized Procrustes analysis was used to analyze the shape, size, and form of the ACV regions of interest. The variabilities of these factors were analyzed by principal component analysis. Skeletal maturation was then estimated using a multiple regression model. Separate models were developed for male and female participants. For the female estimation model, the adjusted R(2) explained 84.8% of the variability of the Sempé maturation level (SML), representing a 7.9% increase in SML explanatory power over that using chronological age alone (76.9%). For the male estimation model, the adjusted R(2) was over 90%, representing a 1.7% increase relative to the reference model. The simplest possible ACV morphometric information provided a statistically significant explanation of the portion of skeletal-maturation variability not dependent on chronological age. These results verify that ACV is a strong biological indicator of ossification status. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Model diagnostics in reduced-rank estimation.

    PubMed

    Chen, Kun

    2016-01-01

    Reduced-rank methods are very popular in high-dimensional multivariate analysis for conducting simultaneous dimension reduction and model estimation. However, the commonly-used reduced-rank methods are not robust, as the underlying reduced-rank structure can be easily distorted by only a few data outliers. Anomalies are bound to exist in big data problems, and in some applications they themselves could be of the primary interest. While naive residual analysis is often inadequate for outlier detection due to potential masking and swamping, robust reduced-rank estimation approaches could be computationally demanding. Under Stein's unbiased risk estimation framework, we propose a set of tools, including leverage score and generalized information score, to perform model diagnostics and outlier detection in large-scale reduced-rank estimation. The leverage scores give an exact decomposition of the so-called model degrees of freedom to the observation level, which lead to exact decomposition of many commonly-used information criteria; the resulting quantities are thus named information scores of the observations. The proposed information score approach provides a principled way of combining the residuals and leverage scores for anomaly detection. Simulation studies confirm that the proposed diagnostic tools work well. A pattern recognition example with hand-writing digital images and a time series analysis example with monthly U.S. macroeconomic data further demonstrate the efficacy of the proposed approaches.

  5. Boosted Multivariate Trees for Longitudinal Data

    PubMed Central

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  6. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  7. Improving the realism of hydrologic model through multivariate parameter estimation

    NASA Astrophysics Data System (ADS)

    Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis

    2017-04-01

    Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10.1002/2016WR019430

  8. Multivariate assessment of event-related potentials with the t-CWT method.

    PubMed

    Bostanov, Vladimir

    2015-11-05

    Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.

  9. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    ERIC Educational Resources Information Center

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  10. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  11. Analyzing Multivariate Repeated Measures Designs: A Comparison of Two Approximate Degrees of Freedom Procedures

    ERIC Educational Resources Information Center

    Lix, Lisa M.; Algina, James; Keselman, H. J.

    2003-01-01

    The approximate degrees of freedom Welch-James (WJ) and Brown-Forsythe (BF) procedures for testing within-subjects effects in multivariate groups by trials repeated measures designs were investigated under departures from covariance homogeneity and normality. Empirical Type I error and power rates were obtained for least-squares estimators and…

  12. Controlled Multivariate Evaluation of Open Education: Application of a Critical Model.

    ERIC Educational Resources Information Center

    Sewell, Alan F.; And Others

    This paper continues previous reports of a controlled multivariate evaluation of a junior high school open-education program. A new method of estimating program objectives and implementation is presented, together with the nature and degree of obtained student outcomes. Open-program students were found to approve more highly of their learning…

  13. Model transformations for state-space self-tuning control of multivariable stochastic systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.

    1988-01-01

    The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.

  14. Multivariate meta-analysis using individual participant data.

    PubMed

    Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R

    2015-06-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

  15. A flexible model for multivariate interval-censored survival times with complex correlation structure.

    PubMed

    Falcaro, Milena; Pickles, Andrew

    2007-02-10

    We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.

  16. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  17. A Meta-Analysis of the Relative Risk of Mortality for Type 1 Diabetes Patients Compared to the General Population: Exploring Temporal Changes in Relative Mortality

    PubMed Central

    Lung, Tom W. C.; Hayes, Alison J.; Herman, William H.; Si, Lei; Palmer, Andrew J.; Clarke, Philip M.

    2014-01-01

    Aims Type 1 diabetes has been associated with an elevated relative risk (RR) of mortality compared to the general population. To review published studies on the RR of mortality of Type 1 diabetes patients compared to the general population, we conducted a meta-analysis and examined the temporal changes in the RR of mortality over time. Methods Systematic review of studies reporting RR of mortality for Type 1 diabetes compared to the general population. We conducted meta-analyses using a DerSimonian and Laird random effects model to obtain the average effect and the distribution of RR estimates. Sub-group meta-analyses and multivariate meta-regression analysis was performed to examine heterogeneity. Summary RR with 95% CIs was calculated using a random-effects model. Results 26 studies with a total of 88 subpopulations were included in the meta-analysis and overall RR of mortality was 3.82 (95% CI 3.41, 3.4.29) compared to the general population. Observations using data prior to 1971 had a much larger estimated RR (5.80 (95% CI 4.20, 8.01)) when compared to: data between; 1971 and 1980 (5.06 (95% CI 3.44, 7.45)); 1981–90 (3.59 (95% CI 3.15, 4.09)); and those after 1990 (3.11 (95% CI 2.47, 3.91)); suggesting mortality of Type 1 diabetes patients when compared to the general population have been improving over time. Similarly, females (4.54 (95% CI 3.79–5.45)) had a larger RR estimate when compared to males (3.25 (95% CI 2.82–3.73) and the meta-regression found evidence for temporal trends and sex (p<0.01) accounting for heterogeneity between studies. Conclusions Type 1 diabetes patients’ mortality has declined at a faster rate than the general population. However, the largest relative improvements have occurred prior to 1990. Emphasis on intensive blood glucose control alongside blood pressure control and statin therapy may translate into further reductions in mortality in coming years. PMID:25426948

  18. The role of area-level deprivation and gender in participation in population-based faecal immunochemical test (FIT) colorectal cancer screening.

    PubMed

    Clarke, Nicholas; McNamara, Deirdre; Kearney, Patricia M; O'Morain, Colm A; Shearer, Nikki; Sharp, Linda

    2016-12-01

    This study aimed to investigate the effects of sex and deprivation on participation in a population-based faecal immunochemical test (FIT) colorectal cancer screening programme. The study population included 9785 individuals invited to participate in two rounds of a population-based biennial FIT-based screening programme, in a relatively deprived area of Dublin, Ireland. Explanatory variables included in the analysis were sex, deprivation category of area of residence and age (at end of screening). The primary outcome variable modelled was participation status in both rounds combined (with "participation" defined as having taken part in either or both rounds of screening). Poisson regression with a log link and robust error variance was used to estimate relative risks (RR) for participation. As a sensitivity analysis, data were stratified by screening round. In both the univariable and multivariable models deprivation was strongly associated with participation. Increasing affluence was associated with higher participation; participation was 26% higher in people resident in the most affluent compared to the most deprived areas (multivariable RR=1.26: 95% CI 1.21-1.30). Participation was significantly lower in males (multivariable RR=0.96: 95%CI 0.95-0.97) and generally increased with increasing age (trend per age group, multivariable RR=1.02: 95%CI, 1.01-1.02). No significant interactions between the explanatory variables were found. The effects of deprivation and sex were similar by screening round. Deprivation and male gender are independently associated with lower uptake of population-based FIT colorectal cancer screening, even in a relatively deprived setting. Development of evidence-based interventions to increase uptake in these disadvantaged groups is urgently required. Copyright © 2016. Published by Elsevier Inc.

  19. Prospective inverse associations of sex hormone concentrations in men with biomarkers of inflammation and oxidative stress.

    PubMed

    Haring, Robin; Baumeister, Sebastian E; Völzke, Henry; Dörr, Marcus; Kocher, Thomas; Nauck, Matthias; Wallaschofski, Henri

    2012-01-01

    The suggested associations between sex hormone concentrations and inflammatory biomarkers in men originate from cross-sectional studies and small-scale clinical trials. But prior studies have not investigated longitudinal associations. Overall, 1344 men aged 20-79 years from the population-based cohort Study of Health in Pomerania were followed up for 5.0 (median) years. We used multivariable regression models to analyze cross-sectional and longitudinal associations of serum sex hormone concentrations (total testosterone [TT], sex hormone-binding globulin [SHBG], calculated free testosterone [free T], and dehydroepiandrosterone sulfate [DHEAS]) with biomarkers of inflammation (fibrinogen, high-sensitive C-reactive protein [hsCRP], and white blood cell count [WBC]) and oxidative stress (γ-glutamyl transferase [GGT]) using ordinary least square regression and generalized estimating equation models, respectively. Cross-sectional models revealed borderline associations of sex hormone concentrations with hsCRP, WBC, and GGT levels that were not retained after multivariable adjustment. Longitudinal multivariable analyses revealed an inverse association of baseline TT, free T, and DHEAS concentrations with change in fibrinogen levels (per SD decrement in TT, 0.25 [95% confidence interval, 0.04-0.45]; in free T, 0.30 [0.09-0.51]; and in DHEAS, 0.23 [0.11-0.36]). Furthermore, baseline DHEAS concentrations were inversely associated with change in WBC levels (per SD decrement, 0.53 [0.24-0.82]). Baseline TT, SHBG, free T, and DHEAS concentrations were also inversely associated with change in GGT after multivariable adjustment. The present study is the first to demonstrate prospective inverse associations between sex hormone concentrations and markers of inflammation and oxidative stress in men. Additional studies are warranted to elucidate potential mechanisms underlying the revealed associations.

  20. Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.

    PubMed

    Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin

    2018-06-01

    Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Development Of A Multivariate Prognostic Model For Pain And Activity Limitation In People With Low Back Disorders Receiving Physiotherapy.

    PubMed

    Ford, Jon J; Richards BPhysio, Matt C; Surkitt BPhysio, Luke D; Chan BPhysio, Alexander Yp; Slater, Sarah L; Taylor, Nicholas F; Hahne, Andrew J

    2018-05-28

    To identify predictors for back pain, leg pain and activity limitation in patients with early persistent low back disorders. Prospective inception cohort study; Setting: primary care private physiotherapy clinics in Melbourne, Australia. 300 adults aged 18-65 years with low back and/or referred leg pain of ≥6-weeks and ≤6-months duration. Not applicable. Numerical rating scales for back pain and leg pain as well as the Oswestry Disability Scale. Prognostic factors included sociodemographics, treatment related factors, subjective/physical examination, subgrouping factors and standardized questionnaires. Univariate analysis followed by generalized estimating equations were used to develop a multivariate prognostic model for back pain, leg pain and activity limitation. Fifty-eight prognostic factors progressed to the multivariate stage where 15 showed significant (p<0.05) associations with at least one of the three outcomes. There were five indicators of positive outcome (two types of low back disorder subgroups, paresthesia below waist, walking as an easing factor and low transversus abdominis tone) and 10 indicators of negative outcome (both parents born overseas, deep leg symptoms, longer sick leave duration, high multifidus tone, clinically determined inflammation, higher back and leg pain severity, lower lifting capacity, lower work capacity and higher pain drawing percentage coverage). The preliminary model identifying predictors of low back disorders explained up to 37% of the variance in outcome. This study evaluated a comprehensive range of prognostic factors reflective of both the biomedical and psychosocial domains of low back disorders. The preliminary multivariate model requires further validation before being considered for clinical use. Copyright © 2018. Published by Elsevier Inc.

  2. Geostatistics and petroleum geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.

    1988-01-01

    This book examines purpose and use of geostatistics in exploration and development of oil and gas with an emphasis on appropriate and pertinent case studies. It present an overview of geostatistics. Topics covered include: The semivariogram; Linear estimation; Multivariate geostatistics; Nonlinear estimation; From indicator variables to nonparametric estimation; and More detail, less certainty; conditional simulation.

  3. Describing the Elephant: Structure and Function in Multivariate Data.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1986-01-01

    There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family of models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain. (Author)

  4. Bias in child maltreatment self-reports using Interactive Voice Response

    PubMed Central

    Kepple, Nancy J.; Freisthler, Bridget; Johnson-Motoyama, Michelle

    2014-01-01

    Few methods estimate the prevalence of child maltreatment in the general population due to concerns about socially desirable responding and mandated reporting laws. Innovative methods, such as Interactive Voice Response (IVR), may obtain better estimates that address these concerns. This study examined the utility of Interactive Voice Response (IVR) for child maltreatment behaviors by assessing differences between respondents who completed and did not complete a survey using IVR technology. A mixed-mode telephone survey was conducted in English and Spanish in 50 cities in California during 2009. Caregivers (n = 3,023) self-reported abusive and neglectful parenting behaviors for a focal child under the age of 13 using Computer-Assisted Telephone Interviewing and IVR. We used Hierarchical Generalized Linear Models to compare survey completion by caregivers nested within cities for the full sample and age-specific ranges. For demographic characteristics, caregivers born in the United States were more likely to complete the survey when controlling for covariates. Parenting stress, provision of physical needs, and provision of supervisory needs were not associated with survey completion in the full multivariate model. For caregivers of children 0 to 4 years (n = 838), those reporting they could often or always hear their child from another room had a higher likelihood of survey completion. The findings suggest IVR could prove to be useful for future surveys that aim to estimate abusive and/or neglectful parenting behaviors given the limited bias observed for demographic characteristics and problematic parenting behaviors. Further research should expand upon its utility to advance estimation rates. PMID:24819534

  5. Estimation of railroad capacity using parametric methods.

    DOT National Transportation Integrated Search

    2013-12-01

    This paper reviews different methodologies used for railroad capacity estimation and presents a user-friendly method to measure capacity. The objective of this paper is to use multivariate regression analysis to develop a continuous relation of the d...

  6. Do classroom ventilation rates in California elementary schools influence standardized test scores? Results from a prospective study.

    PubMed

    Mendell, M J; Eliseeva, E A; Davies, M M; Lobscheid, A

    2016-08-01

    Limited evidence has associated lower ventilation rates (VRs) in schools with reduced student learning or achievement. We analyzed longitudinal data collected over two school years from 150 classrooms in 28 schools within three California school districts. We estimated daily classroom VRs from real-time indoor carbon dioxide measured by web-connected sensors. School districts provided individual-level scores on standard tests in Math and English, and classroom-level demographic data. Analyses assessing learning effects used two VR metrics: average VRs for 30 days prior to tests, and proportion of prior daily VRs above specified thresholds during the year. We estimated relationships between scores and VR metrics in multivariate models with generalized estimating equations. All school districts had median school-year VRs below the California VR standard. Most models showed some positive associations of VRs with test scores; however, estimates varied in magnitude and few 95% confidence intervals excluded the null. Combined-district models estimated statistically significant increases of 0.6 points (P = 0.01) on English tests for each 10% increase in prior 30-day VRs. Estimated increases in Math were of similar magnitude but not statistically significant. Findings suggest potential small positive associations between classroom VRs and learning. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  7. A mixed-effects regression model for longitudinal multivariate ordinal data.

    PubMed

    Liu, Li C; Hedeker, Donald

    2006-03-01

    A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.

  8. Multivariate random-parameters zero-inflated negative binomial regression model: an application to estimate crash frequencies at intersections.

    PubMed

    Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan

    2014-09-01

    Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Estimation of parameters in Shot-Noise-Driven Doubly Stochastic Poisson processes using the EM algorithm--modeling of pre- and postsynaptic spike trains.

    PubMed

    Mino, H

    2007-01-01

    To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.

  10. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  11. The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples

    ERIC Educational Resources Information Center

    Avetisyan, Marianna; Fox, Jean-Paul

    2012-01-01

    In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…

  12. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Treesearch

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  13. Outlier Detection in Hyperspectral Imagery Using Closest Distance to Center with Ellipsoidal Multivariate Trimming

    DTIC Science & Technology

    2011-01-01

    where r << P. The use of PCA for finding outliers in multivariate data is surveyed by Gnanadesikan and Kettenring16 and Rao.17 As alluded to earlier...1984. 16. Gnanadesikan R and Kettenring JR. Robust estimates, residu­ als, and outlier detection with multiresponse data. Biometrics 1972; 28: 81–124

  14. Dietary Sodium Consumption Predicts Future Blood Pressure and Incident Hypertension in the Japanese Normotensive General Population.

    PubMed

    Takase, Hiroyuki; Sugiura, Tomonori; Kimura, Genjiro; Ohte, Nobuyuki; Dohi, Yasuaki

    2015-07-29

    Although there is a close relationship between dietary sodium and hypertension, the concept that persons with relatively high dietary sodium are at increased risk of developing hypertension compared with those with relatively low dietary sodium has not been studied intensively in a cohort. We conducted an observational study to investigate whether dietary sodium intake predicts future blood pressure and the onset of hypertension in the general population. Individual sodium intake was estimated by calculating 24-hour urinary sodium excretion from spot urine in 4523 normotensive participants who visited our hospital for a health checkup. After a baseline examination, they were followed for a median of 1143 days, with the end point being development of hypertension. During the follow-up period, hypertension developed in 1027 participants (22.7%). The risk of developing hypertension was higher in those with higher rather than lower sodium intake (hazard ratio 1.25, 95% CI 1.04 to 1.50). In multivariate Cox proportional hazards regression analysis, baseline sodium intake and the yearly change in sodium intake during the follow-up period (as continuous variables) correlated with the incidence of hypertension. Furthermore, both the yearly increase in sodium intake and baseline sodium intake showed significant correlations with the yearly increase in systolic blood pressure in multivariate regression analysis after adjustment for possible risk factors. Both relatively high levels of dietary sodium intake and gradual increases in dietary sodium are associated with future increases in blood pressure and the incidence of hypertension in the Japanese general population. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. [Relationship between employees' management factor of visual display terminal (VDT) work time and 28-item General Health Questionnaire (GHQ-28) at one Japanese IT company's computer worksite].

    PubMed

    Sugimura, Hisamichi; Horiguchi, Itsuko; Shimizu, Takashi; Marui, Eiji

    2007-09-01

    We studied 1365 male workers at a Japanese computer worksite in 2004 to determine the relationship between employees' time management factor of visual display terminal (VDT) work and General Health Questionnaire (GHQ) score. We developed questionnaires concerning age, management factor of VDT work time (total daily VDT work time, duration of continuous work), other work-related conditions (commuting time, job rank, type of job, hours of monthly overtime), lifestyle (smoking, alcohol consumption, exercise, having breakfast, sleeping hours), and the Japanese version of 28-item General Health Questionnaire (GHQ). Multivariate logistic regression analyses were performed to estimate the odds ratios (ORs) of the high-GHQ groups (>6.0) associated with age and the time management factor of VDT work. Multivariate logistic regression analyses indicated lower ORs for certain groups: workers older than 50 years old had significantly a lower OR than those younger than 30 years old; workers sleeping less than 6 h showed a lower OR than those sleeping more than 6 h. In contrast, significantly higher ORs were shown for workers with continuous work durations of more than 3 h compared with those with less than 1 h, those with more than 25 h/mo overtime compared with those with less, those doing VDT work of more than 7.5 h/day compared with those doing less than 4.5 h/day, and those with more than 25 h/mo of overtime compared with those with less. Male Japanese computer workers' GHQ scores are significantly associated with time management factors of VDT work.

  16. Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators.

    PubMed

    Astolfi, L; Cincotti, F; Mattia, D; De Vico Fallani, F; Tocci, A; Colosimo, A; Salinari, S; Marciani, M G; Hesse, W; Witte, H; Ursino, M; Zavaglia, M; Babiloni, F

    2008-03-01

    The directed transfer function (DTF) and the partial directed coherence (PDC) are frequency-domain estimators that are able to describe interactions between cortical areas in terms of the concept of Granger causality. However, the classical estimation of these methods is based on the multivariate autoregressive modelling (MVAR) of time series, which requires the stationarity of the signals. In this way, transient pathways of information transfer remains hidden. The objective of this study is to test a time-varying multivariate method for the estimation of rapidly changing connectivity relationships between cortical areas of the human brain, based on DTF/PDC and on the use of adaptive MVAR modelling (AMVAR) and to apply it to a set of real high resolution EEG data. This approach will allow the observation of rapidly changing influences between the cortical areas during the execution of a task. The simulation results indicated that time-varying DTF and PDC are able to estimate correctly the imposed connectivity patterns under reasonable operative conditions of signal-to-noise ratio (SNR) ad number of trials. An SNR of five and a number of trials of at least 20 provide a good accuracy in the estimation. After testing the method by the simulation study, we provide an application to the cortical estimations obtained from high resolution EEG data recorded from a group of healthy subject during a combined foot-lips movement and present the time-varying connectivity patterns resulting from the application of both DTF and PDC. Two different cortical networks were detected with the proposed methods, one constant across the task and the other evolving during the preparation of the joint movement.

  17. Univariate and multivariate spatial models of health facility utilisation for childhood fevers in an area on the coast of Kenya.

    PubMed

    Ouma, Paul O; Agutu, Nathan O; Snow, Robert W; Noor, Abdisalan M

    2017-09-18

    Precise quantification of health service utilisation is important for the estimation of disease burden and allocation of health resources. Current approaches to mapping health facility utilisation rely on spatial accessibility alone as the predictor. However, other spatially varying social, demographic and economic factors may affect the use of health services. The exclusion of these factors can lead to the inaccurate estimation of health facility utilisation. Here, we compare the accuracy of a univariate spatial model, developed only from estimated travel time, to a multivariate model that also includes relevant social, demographic and economic factors. A theoretical surface of travel time to the nearest public health facility was developed. These were assigned to each child reported to have had fever in the Kenya demographic and health survey of 2014 (KDHS 2014). The relationship of child treatment seeking for fever with travel time, household and individual factors from the KDHS2014 were determined using multilevel mixed modelling. Bayesian information criterion (BIC) and likelihood ratio test (LRT) tests were carried out to measure how selected factors improve parsimony and goodness of fit of the time model. Using the mixed model, a univariate spatial model of health facility utilisation was fitted using travel time as the predictor. The mixed model was also used to compute a multivariate spatial model of utilisation, using travel time and modelled surfaces of selected household and individual factors as predictors. The univariate and multivariate spatial models were then compared using the receiver operating area under the curve (AUC) and a percent correct prediction (PCP) test. The best fitting multivariate model had travel time, household wealth index and number of children in household as the predictors. These factors reduced BIC of the time model from 4008 to 2959, a change which was confirmed by the LRT test. Although there was a high correlation of the two modelled probability surfaces (Adj R 2  = 88%), the multivariate model had better AUC compared to the univariate model; 0.83 versus 0.73 and PCP 0.61 versus 0.45 values. Our study shows that a model that uses travel time, as well as household and individual-level socio-demographic factors, results in a more accurate estimation of use of health facilities for the treatment of childhood fever, compared to one that relies on only travel time.

  18. Methods for estimating confidence intervals in interrupted time series analyses of health interventions.

    PubMed

    Zhang, Fang; Wagner, Anita K; Soumerai, Stephen B; Ross-Degnan, Dennis

    2009-02-01

    Interrupted time series (ITS) is a strong quasi-experimental research design, which is increasingly applied to estimate the effects of health services and policy interventions. We describe and illustrate two methods for estimating confidence intervals (CIs) around absolute and relative changes in outcomes calculated from segmented regression parameter estimates. We used multivariate delta and bootstrapping methods (BMs) to construct CIs around relative changes in level and trend, and around absolute changes in outcome based on segmented linear regression analyses of time series data corrected for autocorrelated errors. Using previously published time series data, we estimated CIs around the effect of prescription alerts for interacting medications with warfarin on the rate of prescriptions per 10,000 warfarin users per month. Both the multivariate delta method (MDM) and the BM produced similar results. BM is preferred for calculating CIs of relative changes in outcomes of time series studies, because it does not require large sample sizes when parameter estimates are obtained correctly from the model. Caution is needed when sample size is small.

  19. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  20. Irritable bowel syndrome is concentrated in people with higher educations in Iran: an inequality analysis

    PubMed Central

    2017-01-01

    OBJECTIVES Like any other health-related disorder, irritable bowel syndrome (IBS) has a differential distribution with respect to socioeconomic factors. This study aimed to estimate and decompose educational inequalities in the prevalence of IBS. METHODS Sampling was performed using a multi-stage random cluster sampling approach. The data of 1,850 residents of Kish Island aged 15 years or older were included, and the determinants of IBS were identified using a generalized estimating equation regression model. The concentration index of educational inequality in cases of IBS was estimated and decomposed as the specific inequality index. RESULTS The prevalence of IBS in this study was 21.57% (95% confidence interval [CI], 19.69 to 23.44%). The concentration index of IBS was 0.20 (95% CI, 0.14 to 0.26). A multivariable regression model revealed that age, sex, level of education, marital status, anxiety, and poor general health were significant determinants of IBS. In the decomposition analysis, level of education (89.91%), age (−11.99%), and marital status (9.11%) were the three main contributors to IBS inequality. Anxiety and poor general health were the next two contributors to IBS inequality, and were responsible for more than 12% of the total observed inequality. CONCLUSIONS The main contributors of IBS inequality were education level, age, and marital status. Given the high percentage of anxious individuals among highly educated, young, single, and divorced people, we can conclude that all contributors to IBS inequality may be partially influenced by psychological factors. Therefore, programs that promote the development of mental health to alleviate the abovementioned inequality in this population are highly warranted. PMID:28171714

  1. Non-parametric directionality analysis - Extension for removal of a single common predictor and application to time series.

    PubMed

    Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob

    2016-08-01

    The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Applicant Characteristics Associated With Selection for Ranking at Independent Surgery Residency Programs.

    PubMed

    Dort, Jonathan M; Trickey, Amber W; Kallies, Kara J; Joshi, Amit R T; Sidwell, Richard A; Jarman, Benjamin T

    2015-01-01

    This study evaluated characteristics of applicants selected for interview and ranked by independent general surgery residency programs and assessed independent program application volumes, interview selection, rank list formation, and match success. Demographic and academic information was analyzed for 2014-2015 applicants. Applicant characteristics were compared by ranking status using univariate and multivariable statistical techniques. Characteristics independently associated with whether or not an applicant was ranked were identified using multivariable logistic regression modeling with backward stepwise variable selection and cluster-correlated robust variance estimates to account for correlations among individuals who applied to multiple programs. The Electronic Residency Application Service was used to obtain applicant data and program match outcomes at 33 independent surgery programs. All applicants selected to interview at 33 participating independent general surgery residency programs were included in the study. Applicants were 60% male with median age of 26 years. Birthplace was well distributed. Most applicants (73%) had ≥1 academic publication. Median United States Medical Licensing Exams (USMLE) Step 1 score was 228 (interquartile range: 218-240), and median USMLE Step 2 clinical knowledge score was 241 (interquartile range: 231-250). Residency programs in some regions more often ranked applicants who attended medical school within the same region. On multivariable analysis, significant predictors of ranking by an independent residency program were: USMLE scores, medical school region, and birth region. Independent programs received an average of 764 applications (range: 307-1704). On average, 12% interviews, and 81% of interviewed applicants were ranked. Most programs (84%) matched at least 1 applicant ranked in their top 10. Participating independent programs attract a large volume of applicants and have high standards in the selection process. This information can be used by surgery residency applicants to gauge their candidacy at independent programs. Independent programs offer a select number of interviews, rank most applicants that they interview, and successfully match competitive applicants. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Investigation of under-ascertainment in epidemiological studies based in general practice.

    PubMed

    Sethi, D; Wheeler, J; Rodrigues, L C; Fox, S; Roderick, P

    1999-02-01

    One of the aims of the Study of Infectious Intestinal Disease (IID) in England is to estimate the incidence of IID presenting to general practice. This sub-study aims to estimate and correct the degree of under-ascertainment in the national study. Cases of presumed IID which presented to general practice in the national study had been ascertained by their GP. In 26 general practices, cases with computerized diagnoses suggestive of IID were identified retrospectively. Cases which fulfilled the case definition of IID and should have been ascertained to the coordinating centre but were not, represented the under-ascertainment. Logistic regression modelling was used to identify independent factors which influenced under-ascertainment. The records of 2021 patients were examined, 1514 were eligible and should have been ascertained but only 974 (64%) were. There was variation in ascertainment between the practices (30% to 93%). Patient-related factors independently associated with ascertainment were: i) vomiting only as opposed to diarrhoea with and without vomiting (OR 0.37) and ii) consultation in the surgery as opposed to at home (OR 2.18). Practice-related factors independently associated with ascertainment were: i) participation in the enumeration study component (OR 1.78), ii) a larger number of partners (OR 0.3 for 7-8 partners); iii) rural location (OR 2.27) and iv) previous research experience (OR 1.92). Predicted ascertainment percentages were calculated according to practice characteristics. Under-ascertainment of IID was substantial (36%) and non-random and had to be corrected. Practice characteristics influencing variation in ascertainment were identified and a multivariate model developed to identify adjustment factors which could be applied to individual practices. Researchers need to be aware of factors which influence ascertainment in acute epidemiological studies based in general practice.

  4. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  5. Predictors of Nonadherence to Antiretroviral Therapy among HIV-Infected Adults in Dar es Salaam, Tanzania.

    PubMed

    Muya, Aisa N; Geldsetzer, Pascal; Hertzmark, Ellen; Ezeamama, Amara E; Kawawa, Hawa; Hawkins, Claudia; Sando, David; Chalamilla, Guerino; Fawzi, Wafaie; Spiegelman, Donna

    2015-01-01

    Adherence rates of ≥95% to antiretroviral therapy (ART) are necessary to maintain viral suppression in HIV-infected individuals. We identified predictors of nonadherence to scheduled antiretroviral drug pickup appointments in a large HIV care and treatment program in Tanzania. We performed a prospective cohort study of 44, 204 HIV-infected adults on ART between November 2004 and September 2012. Multivariate generalized estimating equation for repeated binary data was used to estimate the relative risk and 95% confidence intervals of nonadherence. Nonadherence was significantly greater among patients with high CD4 counts, high body mass indices, males, younger patients, patients with longer durations on ART, and those with perceived low social support. Targeted interventions should be developed to improve ART adherence among healthier, younger, and more experienced patients who are on ART for longer durations within HIV care and treatment programs. Social support for patients on ART should be emphasized. © The Author(s) 2014.

  6. Epidemiological characteristics of reported sporadic and outbreak cases of E. coli O157 in people from Alberta, Canada (2000-2002): methodological challenges of comparing clustered to unclustered data.

    PubMed

    Pearl, D L; Louie, M; Chui, L; Doré, K; Grimsrud, K M; Martin, S W; Michel, P; Svenson, L W; McEwen, S A

    2008-04-01

    Using multivariable models, we compared whether there were significant differences between reported outbreak and sporadic cases in terms of their sex, age, and mode and site of disease transmission. We also determined the potential role of administrative, temporal, and spatial factors within these models. We compared a variety of approaches to account for clustering of cases in outbreaks including weighted logistic regression, random effects models, general estimating equations, robust variance estimates, and the random selection of one case from each outbreak. Age and mode of transmission were the only epidemiologically and statistically significant covariates in our final models using the above approaches. Weighing observations in a logistic regression model by the inverse of their outbreak size appeared to be a relatively robust and valid means for modelling these data. Some analytical techniques, designed to account for clustering, had difficulty converging or producing realistic measures of association.

  7. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: isohyetal maps

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Istok, Jonathan D.

    1992-01-01

    Values of average annual precipitation (AAP) may be important for hydrologic characterization of a potential high-level nuclear-waste repository site at Yucca Mountain, Nevada. Reliable measurements of AAP are sparse in the vicinity of Yucca Mountain, and estimates of AAP were needed for an isohyetal mapping over a 2600-square-mile watershed containing Yucca Mountain. Estimates were obtained with a multivariate geostatistical model developed using AAP and elevation data from a network of 42 precipitation stations in southern Nevada and southeastern California. An additional 1531 elevations were obtained to improve estimation accuracy. Isohyets representing estimates obtained using univariate geostatistics (kriging) defined a smooth and continuous surface. Isohyets representing estimates obtained using multivariate geostatistics (cokriging) defined an irregular surface that more accurately represented expected local orographic influences on AAP. Cokriging results included a maximum estimate within the study area of 335 mm at an elevation of 7400 ft, an average estimate of 157 mm for the study area, and an average estimate of 172 mm at eight locations in the vicinity of the potential repository site. Kriging estimates tended to be lower in comparison because the increased AAP expected for remote mountainous topography was not adequately represented by the available sample. Regression results between cokriging estimates and elevation were similar to regression results between measured AAP and elevation. The position of the cokriging 250-mm isohyet relative to the boundaries of pinyon pine and juniper woodlands provided indirect evidence of improved estimation accuracy because the cokriging result agreed well with investigations by others concerning the relationship between elevation, vegetation, and climate in the Great Basin. Calculated estimation variances were also mapped and compared to evaluate improvements in estimation accuracy. Cokriging estimation variances were reduced by an average of 54% relative to kriging variances within the study area. Cokriging reduced estimation variances at the potential repository site by 55% relative to kriging. The usefulness of an existing network of stations for measuring AAP within the study area was evaluated using cokriging variances, and twenty additional stations were located for the purpose of improving the accuracy of future isohyetal mappings. Using the expanded network of stations, the maximum cokriging estimation variance within the study area was reduced by 78% relative to the existing network, and the average estimation variance was reduced by 52%.

  8. Estimating correlation between multivariate longitudinal data in the presence of heterogeneity.

    PubMed

    Gao, Feng; Philip Miller, J; Xiong, Chengjie; Luo, Jingqin; Beiser, Julia A; Chen, Ling; Gordon, Mae O

    2017-08-17

    Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often assume that all individuals are drawn from a single homogenous population where the individual trajectories are distributed smoothly around population average. Using longitudinal mean deviation (MD) and visual acuity (VA) from the Ocular Hypertension Treatment Study (OHTS), we demonstrated strategies to better understand the correlation between multivariate longitudinal data in the presence of potential heterogeneity. Conditional correlation (i.e., marginal correlation given random effects) was calculated to describe how the association between longitudinal outcomes evolved over time within specific subpopulation. The impact of heterogeneity on correlation was also assessed by simulated data. There was a significant positive correlation in both random intercepts (ρ = 0.278, 95% CI: 0.121-0.420) and random slopes (ρ = 0.579, 95% CI: 0.349-0.810) between longitudinal MD and VA, and the strength of correlation constantly increased over time. However, conditional correlation and simulation studies revealed that the correlation was induced primarily by participants with rapid deteriorating MD who only accounted for a small fraction of total samples. Conditional correlation given random effects provides a robust estimate to describe the correlation between multivariate longitudinal data in the presence of unobserved heterogeneity (NCT00000125).

  9. Validity and Reliability of the Brazilian Version of the Rapid Estimate of Adult Literacy in Dentistry--BREALD-30.

    PubMed

    Junkes, Monica C; Fraiz, Fabian C; Sardenberg, Fernanda; Lee, Jessica Y; Paiva, Saul M; Ferreira, Fernanda M

    2015-01-01

    The aim of the present study was to translate, perform the cross-cultural adaptation of the Rapid Estimate of Adult Literacy in Dentistry to Brazilian-Portuguese language and test the reliability and validity of this version. After translation and cross-cultural adaptation, interviews were conducted with 258 parents/caregivers of children in treatment at the pediatric dentistry clinics and health units in Curitiba, Brazil. To test the instrument's validity, the scores of Brazilian Rapid Estimate of Adult Literacy in Dentistry (BREALD-30) were compared based on occupation, monthly household income, educational attainment, general literacy, use of dental services and three dental outcomes. The BREALD-30 demonstrated good internal reliability. Cronbach's alpha ranged from 0.88 to 0.89 when words were deleted individually. The analysis of test-retest reliability revealed excellent reproducibility (intraclass correlation coefficient = 0.983 and Kappa coefficient ranging from moderate to nearly perfect). In the bivariate analysis, BREALD-30 scores were significantly correlated with the level of general literacy (rs = 0.593) and income (rs = 0.327) and significantly associated with occupation, educational attainment, use of dental services, self-rated oral health and the respondent's perception regarding his/her child's oral health. However, only the association between the BREALD-30 score and the respondent's perception regarding his/her child's oral health remained significant in the multivariate analysis. The BREALD-30 demonstrated satisfactory psychometric properties and is therefore applicable to adults in Brazil.

  10. Validity and Reliability of the Brazilian Version of the Rapid Estimate of Adult Literacy in Dentistry – BREALD-30

    PubMed Central

    Junkes, Monica C.; Fraiz, Fabian C.; Sardenberg, Fernanda; Lee, Jessica Y.; Paiva, Saul M.; Ferreira, Fernanda M.

    2015-01-01

    Objective The aim of the present study was to translate, perform the cross-cultural adaptation of the Rapid Estimate of Adult Literacy in Dentistry to Brazilian-Portuguese language and test the reliability and validity of this version. Methods After translation and cross-cultural adaptation, interviews were conducted with 258 parents/caregivers of children in treatment at the pediatric dentistry clinics and health units in Curitiba, Brazil. To test the instrument's validity, the scores of Brazilian Rapid Estimate of Adult Literacy in Dentistry (BREALD-30) were compared based on occupation, monthly household income, educational attainment, general literacy, use of dental services and three dental outcomes. Results The BREALD-30 demonstrated good internal reliability. Cronbach’s alpha ranged from 0.88 to 0.89 when words were deleted individually. The analysis of test-retest reliability revealed excellent reproducibility (intraclass correlation coefficient = 0.983 and Kappa coefficient ranging from moderate to nearly perfect). In the bivariate analysis, BREALD-30 scores were significantly correlated with the level of general literacy (rs = 0.593) and income (rs = 0.327) and significantly associated with occupation, educational attainment, use of dental services, self-rated oral health and the respondent’s perception regarding his/her child's oral health. However, only the association between the BREALD-30 score and the respondent’s perception regarding his/her child's oral health remained significant in the multivariate analysis. Conclusion The BREALD-30 demonstrated satisfactory psychometric properties and is therefore applicable to adults in Brazil. PMID:26158724

  11. Maternal characteristics predicting young girls' disruptive behavior.

    PubMed

    van der Molen, Elsa; Hipwell, Alison E; Vermeiren, Robert; Loeber, Rolf

    2011-01-01

    Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls' disruptive behavior. The current study used five waves of parent- and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate generalized estimating equation analyses indicated that European American race, mother's prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls' disruptive behavior, providing support for the timing and focus of the prevention of girls' disruptive behavior.

  12. Recent im/migration to Canada linked to unmet health needs among sex workers in Vancouver, Canada: Findings of a longitudinal study

    PubMed Central

    Sou, Julie; Goldenberg, Shira M.; Duff, Putu; Nguyen, Paul; Shoveller, Jean; Shannon, Kate

    2017-01-01

    Despite universal health care in Canada, sex workers (SW) and im/migrants experience suboptimal health care access. In this analysis, we examined the correlates of unmet health needs among SWs in Metro Vancouver over time. Data from a longitudinal cohort of women SWs (AESHA) was used. Of 742 SWs, 25.5% reported unmet health needs at least once over the 4-year study period. In multivariable logistic regression using generalized estimating equations, recent im/migration had the strongest impact on unmet health needs; long-term im/migration, policing, and trauma were also important determinants. Legal and social supports to promote im/migrant SWs’ access to health care are recommended. PMID:28300492

  13. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  14. Practical robustness measures in multivariable control system analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.

    1981-01-01

    The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.

  15. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupšys, P.

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  16. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The choice of prior distribution for a covariance matrix in multivariate meta-analysis: a simulation study.

    PubMed

    Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L

    2015-12-30

    Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography.

    PubMed

    Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan

    2017-08-15

    There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interior renovation of a general practitioner office leads to a perceptual bias on patient experience for over one year.

    PubMed

    Gauthey, Jérôme; Tièche, Raphaël; Streit, Sven

    2018-01-01

    Measuring patient experience is key when assessing quality of care but can be biased: A perceptual bias occurs when renovations of the interior design of a general practitioner (GP) office improves how patients assessed quality of care. The aim was to assess the length of perceptual bias and if it could be reproduced after a second renovation. A GP office with 2 GPs in Switzerland was renovated twice within 3 years. We assessed patient experience at baseline, 2 months and 14 months after the first and 3 months after the second renovation. Each time, we invited a sample of 180 consecutive patients that anonymously graded patient experience in 4 domains: appearance of the office; qualities of medical assistants and GPs; and general satisfaction. We compared crude mean scores per domain from baseline until follow-up. In a multivariate model, we adjusted for patient's age, gender and for how long patients had been their GP. At baseline, patients aged 60.9 (17.7) years, 52% females. After the first renovation, we found a regression to the baseline level of patient experience after 14 months except for appearance of the office (p<0.001). After the second renovation, patient experience improved again in appearance of the office (p = 0.008), qualities of the GP (p = 0.008), and general satisfaction (p = 0.014). Qualities of the medical assistant showed a slight improvement (p = 0.068). Results were unchanged in the multivariate model. Interior renovation of a GP office probably causes a perceptual bias for >1 year that improves how patients rate quality of care. This bias could be reproduced after a second renovation strengthening a possible causal relationship. These findings imply to appropriately time measurement of patient experience to at least one year after interior renovation of GP practices to avoid environmental changes influences the estimates when measuring patient experience.

  20. Interior renovation of a general practitioner office leads to a perceptual bias on patient experience for over one year

    PubMed Central

    2018-01-01

    Introduction Measuring patient experience is key when assessing quality of care but can be biased: A perceptual bias occurs when renovations of the interior design of a general practitioner (GP) office improves how patients assessed quality of care. The aim was to assess the length of perceptual bias and if it could be reproduced after a second renovation. Methods A GP office with 2 GPs in Switzerland was renovated twice within 3 years. We assessed patient experience at baseline, 2 months and 14 months after the first and 3 months after the second renovation. Each time, we invited a sample of 180 consecutive patients that anonymously graded patient experience in 4 domains: appearance of the office; qualities of medical assistants and GPs; and general satisfaction. We compared crude mean scores per domain from baseline until follow-up. In a multivariate model, we adjusted for patient’s age, gender and for how long patients had been their GP. Results At baseline, patients aged 60.9 (17.7) years, 52% females. After the first renovation, we found a regression to the baseline level of patient experience after 14 months except for appearance of the office (p<0.001). After the second renovation, patient experience improved again in appearance of the office (p = 0.008), qualities of the GP (p = 0.008), and general satisfaction (p = 0.014). Qualities of the medical assistant showed a slight improvement (p = 0.068). Results were unchanged in the multivariate model. Conclusions Interior renovation of a GP office probably causes a perceptual bias for >1 year that improves how patients rate quality of care. This bias could be reproduced after a second renovation strengthening a possible causal relationship. These findings imply to appropriately time measurement of patient experience to at least one year after interior renovation of GP practices to avoid environmental changes influences the estimates when measuring patient experience. PMID:29462196

  1. Bicycle Use and Cyclist Safety Following Boston’s Bicycle Infrastructure Expansion, 2009–2012

    PubMed Central

    Angriman, Federico; Bellows, Alexandra L.; Taylor, Kathryn

    2016-01-01

    Objectives. To evaluate changes in bicycle use and cyclist safety in Boston, Massachusetts, following the rapid expansion of its bicycle infrastructure between 2007 and 2014. Methods. We measured bicycle lane mileage, a surrogate for bicycle infrastructure expansion, and quantified total estimated number of commuters. In addition, we calculated the number of reported bicycle accidents from 2009 to 2012. Bicycle accident and injury trends over time were assessed via generalized linear models. Multivariable logistic regression was used to examine factors associated with bicycle injuries. Results. Boston increased its total bicycle lane mileage from 0.034 miles in 2007 to 92.2 miles in 2014 (P < .001). The percentage of bicycle commuters increased from 0.9% in 2005 to 2.4% in 2014 (P = .002) and the total percentage of bicycle accidents involving injuries diminished significantly, from 82.7% in 2009 to 74.6% in 2012. The multivariable logistic regression analysis showed that for every 1-year increase in time from 2009 to 2012, there was a 14% reduction in the odds of being injured in an accident. Conclusions. The expansion of Boston’s bicycle infrastructure was associated with increases in both bicycle use and cyclist safety. PMID:27736203

  2. Perceived Devaluation and STI Testing Uptake among a Cohort of Street-Involved Youth in a Canadian Setting.

    PubMed

    Karamouzian, Mohammad; Shoveller, Jean; Dong, Huiru; Gilbert, Mark; Kerr, Thomas; DeBeck, Kora

    2017-10-01

    Perceived devaluation has been shown to have adverse effects on the mental and physical health outcomes of people who use drugs. However, the impact of perceived devaluation on sexually transmitted infections (STI) testing uptake among street-involved youth, who face multiple and intersecting stigmas due to their association with drug use and risky sexual practices, has not been fully characterized. Data were obtained between December 2013 and November 2014 from a cohort of street-involved youth who use illicit drugs aged 14-26 in Vancouver, British Columbia. Multivariable generalized estimating equations were constructed to assess the independent relationship between perceived devaluation and STI testing uptake. Among 300 street-involved youth, 87.0% reported a high perceived devaluation score at baseline. In the multivariable analysis, high perceived devaluation was negatively associated with STI testing uptake after adjustment for potential confounders (Adjusted Odds Ratio = 0.38, 95% Confidence Interval 0.15-0.98). Perceived devaluation was high among street-involved youth in our sample and appears to have adverse effects on STI testing uptake. HIV prevention and care programs should be examined and improved to better meet the special needs of street-involved youth in non-stigmatizing ways.

  3. Reprint of: Relationship between cataract severity and socioeconomic status.

    PubMed

    Wesolosky, Jason D; Rudnisky, Christopher J

    2015-06-01

    To determine the relationship between cataract severity and socioeconomic status (SES). Retrospective, observational case series. A total of 1350 eyes underwent phacoemulsification cataract extraction by a single surgeon using an Alcon Infiniti system. Cataract severity was measured using phaco time in seconds. SES was measured using area-level aggregate census data: median income, education, proportion of common-law couples, and employment rate. Preoperative best corrected visual acuity was obtained and converted to logarithm of the minimum angle of resolution values. For patients undergoing bilateral surgery, the generalized estimating equation was used to account for the correlation between eyes. Univariate analyses were performed using simple regression, and multivariate analyses were performed to account for variables with significant relationships (p < 0.05) on univariate testing. Sensitivity analyses were performed to assess the effect of including patient age in the controlled analyses. Multivariate analyses demonstrated that cataracts were more severe when the median income was lower (p = 0.001) and the proportion of common-law couples living in a patient's community (p = 0.012) and the unemployment rate (p = 0.002) were higher. These associations persisted even when controlling for patient age. Patients of lower SES have more severe cataracts. Copyright © 2015. Published by Elsevier Inc.

  4. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Parmar, Kulwinder Singh

    2016-03-01

    This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.

  5. Estimates and Determinants of Sexual Violence Against Women in the Democratic Republic of Congo

    PubMed Central

    Palermo, Tia; Bredenkamp, Caryn

    2011-01-01

    Objectives. We sought to provide data-based estimates of sexual violence in the Democratic Republic of Congo (DRC) and describe risk factors for such violence. Methods. We used nationally representative household survey data from 3436 women selected to answer the domestic violence module who took part in the 2007 DRC Demographic and Health Survey along with population estimates to estimate levels of sexual violence. We used multivariate logistic regression to analyze correlates of sexual violence. Results. Approximately 1.69 to 1.80 million women reported having been raped in their lifetime (with 407 397–433 785 women reporting having been raped in the preceding 12 months), and approximately 3.07 to 3.37 million women reported experiencing intimate partner sexual violence. Reports of sexual violence were largely independent of individual-level background factors. However, compared with women in Kinshasa, women in Nord-Kivu were significantly more likely to report all types of sexual violence. Conclusions. Not only is sexual violence more generalized than previously thought, but our findings suggest that future policies and programs should focus on abuse within families and eliminate the acceptance of and impunity surrounding sexual violence nationwide while also maintaining and enhancing efforts to stop militias from perpetrating rape. PMID:21566049

  6. Controlling for endogeneity in attributable costs of vancomycin-resistant enterococci from a Canadian hospital.

    PubMed

    Lloyd-Smith, Patrick

    2017-12-01

    Decisions regarding the optimal provision of infection prevention and control resources depend on accurate estimates of the attributable costs of health care-associated infections. This is challenging given the skewed nature of health care cost data and the endogeneity of health care-associated infections. The objective of this study is to determine the hospital costs attributable to vancomycin-resistant enterococci (VRE) while accounting for endogeneity. This study builds on an attributable cost model conducted by a retrospective cohort study including 1,292 patients admitted to an urban hospital in Vancouver, Canada. Attributable hospital costs were estimated with multivariate generalized linear models (GLMs). To account for endogeneity, a control function approach was used. The analysis sample included 217 patients with health care-associated VRE. In the standard GLM, the costs attributable to VRE are $17,949 (SEM, $2,993). However, accounting for endogeneity, the attributable costs were estimated to range from $14,706 (SEM, $7,612) to $42,101 (SEM, $15,533). Across all model specifications, attributable costs are 76% higher on average when controlling for endogeneity. VRE was independently associated with increased hospital costs, and controlling for endogeneity lead to higher attributable cost estimates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Vehicle Sprung Mass Estimation for Rough Terrain

    DTIC Science & Technology

    2011-03-01

    distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended

  8. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-08-17

    Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. FACTOR ANALYTIC MODELS OF CLUSTERED MULTIVARIATE DATA WITH INFORMATIVE CENSORING

    EPA Science Inventory

    This paper describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster-level latent variables related to the primary outcomes and to the censorin...

  10. MULTIVARIATE RECEPTOR MODELS-CURRENT PRACTICE AND FUTURE TRENDS. (R826238)

    EPA Science Inventory

    Multivariate receptor models have been applied to the analysis of air quality data for sometime. However, solving the general mixture problem is important in several other fields. This paper looks at the panoply of these models with a view of identifying common challenges and ...

  11. MULTIVARIATERESIDUES : A Mathematica package for computing multivariate residues

    NASA Astrophysics Data System (ADS)

    Larsen, Kasper J.; Rietkerk, Robbert

    2018-01-01

    Multivariate residues appear in many different contexts in theoretical physics and algebraic geometry. In theoretical physics, they for example give the proper definition of generalized-unitarity cuts, and they play a central role in the Grassmannian formulation of the S-matrix by Arkani-Hamed et al. In realistic cases their evaluation can be non-trivial. In this paper we provide a Mathematica package for efficient evaluation of multivariate residues based on methods from computational algebraic geometry.

  12. Estimating Demand for and Supply of Pediatric Preventive Dental Care for Children and Identifying Dental Care Shortage Areas, Georgia, 2015.

    PubMed

    Cao, Shanshan; Gentili, Monica; Griffin, Paul M; Griffin, Susan O; Harati, Pravara; Johnson, Ben; Serban, Nicoleta; Tomar, Scott

    Demand for dental care is expected to outpace supply through 2025. The objectives of this study were to determine the extent of pediatric dental care shortages in Georgia and to develop a general method for estimation that can be applied to other states. We estimated supply and demand for pediatric preventive dental care for the 159 counties in Georgia in 2015. We compared pediatric preventive dental care shortage areas (where demand exceeded twice the supply) designated by our methods with dental health professional shortage areas designated by the Health Resources & Services Administration. We estimated caries risk from a multivariate analysis of National Health and Nutrition Examination Survey data and national census data. We estimated county-level demand based on the time needed to perform preventive dental care services and the proportion of time that dentists spend on pediatric preventive dental care services from the Medical Expenditure Panel Survey. Pediatric preventive dental care supply exceeded demand in Georgia in 75 counties: the average annual county-level pediatric preventive dental care demand was 16 866 hours, and the supply was 32 969 hours. We identified 41 counties as pediatric dental care shortage areas, 14 of which had not been designated by the Health Resources & Services Administration. Age- and service-specific information on dental care shortage areas could result in more efficient provider staffing and geographic targeting.

  13. Directly assessing interpersonal RSA influences in the frequency domain: An illustration with generalized partial directed coherence.

    PubMed

    Liu, Siwei; Gates, Kathleen M; Blandon, Alysia Y

    2018-06-01

    Despite recent research indicating that interpersonal linkage in physiology is a common phenomenon during social interactions, and the well-established role of respiratory sinus arrhythmia (RSA) in socially facilitative physiological regulation, little research has directly examined interpersonal influences in RSA, perhaps due to methodological challenges in analyzing multivariate RSA data. In this article, we aim to bridge this methodological gap by introducing a new method for quantifying interpersonal RSA influences. Specifically, we show that a frequency-domain statistic, generalized partial directed coherence (gPDC), can be used to capture lagged relations in RSA between social partners without first estimating RSA for each person. We illustrate its utility by examining the relation between gPDC and marital conflict in a sample of married couples. Finally, we discuss how gPDC complements existing methods in the time domain and provide guidelines for choosing among these different statistical techniques. © 2018 Society for Psychophysiological Research.

  14. Perioperative risk factors for mortality and length of hospitalization in mares with dystocia undergoing general anesthesia: A retrospective study

    PubMed Central

    Rioja, Eva; Cernicchiaro, Natalia; Costa, Maria Carolina; Valverde, Alexander

    2012-01-01

    This study investigated associations between perioperative factors and probability of death and length of hospitalization of mares with dystocia that survived following general anesthesia. Demographics and perioperative characteristics from 65 mares were reviewed retrospectively and used in a risk factor analysis. Mortality rate was 21.5% during the first 24 h post-anesthesia. The mean ± standard deviation number of days of hospitalization of surviving mares was 6.3 ± 5.4 d. Several factors were found in the univariable analysis to be significantly associated (P < 0.1) with increased probability of perianesthetic death, including: low preoperative total protein, high temperature and severe dehydration on presentation, prolonged dystocia, intraoperative hypotension, and drugs used during recovery. Type of delivery and day of the week the surgery was performed were significantly associated with length of hospitalization in the multivariable mixed effects model. The study identified some risk factors that may allow clinicians to better estimate the probability of mortality and morbidity in these mares. PMID:23115362

  15. Sleep apnoea and chronic headache.

    PubMed

    Sand, T; Hagen, K; Schrader, H

    2003-03-01

    The objective of this study was to estimate prevalence of headache and body pain among patients referred for suspected sleep apnoea syndrome compared with the occurrence in a large population-based study (the Nord-Trøndelag Health Study). Between 1995 and 1998, ambulatory polysomnography was successfully performed in 421 consecutive patients, 324 of whom completed a questionnaire about sleep-related habits, headache and body pain. Headache and neck pain were more likely among patients admitted for polysomnography compared with the general population (n = 41 340). In the multivariate analyses, this association was mainly restricted to those with frequent complaints (> or =7 days per month). Chronic headache (headache > or = 15 days per month) was seven times more common among individuals with and without confirmed obstructive sleep apnoea syndrome than in the general population. There was no linear dose-response relationship between headache and neck pain and severity of apnoea or oxygen desaturation. Thus, hypoxia per se is less likely to explain the high headache prevalence among patients admitted for polysomnography.

  16. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    PubMed

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P < 0.001), higher CSFP (P < 0.001), and wider retinal veins (P = 0.001) or, as a corollary, with a higher vein-to-artery diameter ratio in multivariable analysis. Wider retinal vein diameters are associated with higher estimated CSFP and vice versa. In arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  18. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas

    PubMed Central

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-01-01

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R2 of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R2 between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R2 value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R2 and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible. PMID:27367708

  19. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas.

    PubMed

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-06-28

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R² of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R² between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R² value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R² and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible.

  20. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  1. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  2. The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects

    ERIC Educational Resources Information Center

    Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle

    2011-01-01

    Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…

  3. A Multivariate Solution of the Multivariate Ranking and Selection Problem

    DTIC Science & Technology

    1980-02-01

    Taneja (1972)), a ’a for a vector of constants c (Krishnaiah and Rizvi (1966)), the generalized variance ( Gnanadesikan and Gupta (1970)), iegier (1976...Olk-in, I. and Sobel, M. (1977). Selecting and Ordering Populations: A New Statistical Methodology, John Wiley & Sons, Inc., New York. Gnanadesikan

  4. MULTIVARIATE ANALYSIS ON LEVELS OF SELECTED METALS, PARTICULATE MATTER, VOC, AND HOUSEHOLD CHARACTERISTICS AND ACTIVITIES FROM THE MIDWESTERN STATES NHEXAS

    EPA Science Inventory

    Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...

  5. Multivariate Relationships between Statistics Anxiety and Motivational Beliefs

    ERIC Educational Resources Information Center

    Baloglu, Mustafa; Abbassi, Amir; Kesici, Sahin

    2017-01-01

    In general, anxiety has been found to be associated with motivational beliefs and the current study investigated multivariate relationships between statistics anxiety and motivational beliefs among 305 college students (60.0% women). The Statistical Anxiety Rating Scale, the Motivated Strategies for Learning Questionnaire, and a set of demographic…

  6. Measuring Treasury Bond Portfolio Risk and Portfolio Optimization with a Non-Gaussian Multivariate Model

    NASA Astrophysics Data System (ADS)

    Dong, Yijun

    The research about measuring the risk of a bond portfolio and the portfolio optimization was relatively rare previously, because the risk factors of bond portfolios are not very volatile. However, this condition has changed recently. The 2008 financial crisis brought high volatility to the risk factors and the related bond securities, even if the highly rated U.S. treasury bonds. Moreover, the risk factors of bond portfolios show properties of fat-tailness and asymmetry like risk factors of equity portfolios. Therefore, we need to use advanced techniques to measure and manage risk of bond portfolios. In our paper, we first apply autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model with multivariate normal tempered stable (MNTS) distribution innovations to predict risk factors of U.S. treasury bonds and statistically demonstrate that MNTS distribution has the ability to capture the properties of risk factors based on the goodness-of-fit tests. Then based on empirical evidence, we find that the VaR and AVaR estimated by assuming normal tempered stable distribution are more realistic and reliable than those estimated by assuming normal distribution, especially for the financial crisis period. Finally, we use the mean-risk portfolio optimization to minimize portfolios' potential risks. The empirical study indicates that the optimized bond portfolios have better risk-adjusted performances than the benchmark portfolios for some periods. Moreover, the optimized bond portfolios obtained by assuming normal tempered stable distribution have improved performances in comparison to the optimized bond portfolios obtained by assuming normal distribution.

  7. Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus123

    PubMed Central

    Tobias, Deirdre K; Zhang, Cuilin; Chavarro, Jorge; Bowers, Katherine; Rich-Edwards, Janet; Rosner, Bernard; Mozaffarian, Dariush; Hu, Frank B

    2012-01-01

    Background: Previous studies observed inverse associations of adherence to the alternate Mediterranean (aMED), Dietary Approaches to Stop Hypertension (DASH), and alternate Healthy Eating Index (aHEI) dietary patterns with risk of type 2 diabetes; however, their associations with gestational diabetes mellitus (GDM) risk are unknown. Objective: This study aimed to assess usual prepregnancy adherence to well-known dietary patterns and GDM risk. Design: Our study included 21,376 singleton live births reported from 15,254 participants of the Nurses’ Health Study II cohort between 1991 and 2001. Pregnancies were free of prepregnancy chronic disease or previous GDM. Prepregnancy dietary pattern adherence scores were computed based on participants’ usual intake of the patterns’ components, assessed with a validated food-frequency questionnaire. Multivariable logistic regressions with generalized estimating equations were used to estimate the RRs and 95% CIs. Results: Incident first-time GDM was reported in 872 pregnancies. All 3 scores were inversely associated with GDM risk after adjustment for several covariables. In a comparison of the multivariable risk of GDM in participants in the fourth and first quartiles of dietary pattern adherence scores, aMED was associated with a 24% lower risk (RR: 0.76; 95% CI: 0.60, 0.95; P-trend = 0.004), DASH with a 34% lower risk (RR: 0.66; 95% CI: 0.53, 0.82; P-trend = 0.0005), and aHEI with a 46% lower risk (RR: 0.54; 95% CI: 0.43, 0.68; P-trend < 0.0001). Conclusion: Prepregnancy adherence to healthful dietary patterns is significantly associated with a lower risk of GDM. PMID:22760563

  8. Does the Presence of Blood in the Catheter or the Degree of Difficulty of Embryo Transfer Affect Live Birth?

    PubMed

    Plowden, Torie C; Hill, Micah J; Miles, Shana M; Hoyt, Benjamin; Yauger, Belinda; Segars, James H; Csokmay, John M; Chason, Rebecca J

    2017-05-01

    The technique used for embryo transfer (ET) can affect implantation. Prior research that evaluated the effect of postprocedural blood of the transfer catheter tip have yielded mixed results, and it is unclear whether this is actually a marker of difficulty of the transfer. Our objective was to estimate the effect of blood at the time of ET and the difficulty of ET on live birth rates (LBR). This retrospective cohort study utilized generalized estimating equations (GEEs) with nesting for repeated cycles for all analyses. Univariate modeling was performed and a final multivariate (adjusted) GEE model accounted for all significant confounders. Embryo transfers were subjectively graded (easy, medium, or hard) by a physician at the time of transfer. The presence of blood at ET was associated with more difficult ETs, retained embryos, and presence of mucous in the catheter. In the univariate analysis, ET with blood was not associated with live birth, while the degree of difficulty for ET had a negative impact on LBR. In the final multivariate GEE model, which accounts for repeated cycles from a patient, the only factors associated with an increased LBR were the degree of difficulty of the ET, female age, and blastocyst transfer. After controlling for confounding variables, the presence of blood in the transfer catheter was not associated with the likelihood of pregnancy and thus was not an independent predictor of cycle outcome. This indicates that the difficulty of the transfer itself was a strong negative predictor of pregnancy.

  9. "Life history space": a multivariate analysis of life history variation in extant and extinct Malagasy lemurs.

    PubMed

    Catlett, Kierstin K; Schwartz, Gary T; Godfrey, Laurie R; Jungers, William L

    2010-07-01

    Studies of primate life history variation are constrained by the fact that all large-bodied extant primates are haplorhines. However, large-bodied strepsirrhines recently existed. If we can extract life history information from their skeletons, these species can contribute to our understanding of primate life history variation. This is particularly important in light of new critiques of the classic "fast-slow continuum" as a descriptor of variation in life history profiles across mammals in general. We use established dental histological methods to estimate gestation length and age at weaning for five extinct lemur species. On the basis of these estimates, we reconstruct minimum interbirth intervals and maximum reproductive rates. We utilize principal components analysis to create a multivariate "life history space" that captures the relationships among reproductive parameters and brain and body size in extinct and extant lemurs. Our data show that, whereas large-bodied extinct lemurs can be described as "slow" in some fashion, they also varied greatly in their life history profiles. Those with relatively large brains also weaned their offspring late and had long interbirth intervals. These were not the largest of extinct lemurs. Thus, we distinguish size-related life history variation from variation that linked more strongly to ecological factors. Because all lemur species larger than 10 kg, regardless of life history profile, succumbed to extinction after humans arrived in Madagascar, we argue that large body size increased the probability of extinction independently of reproductive rate. We also provide some evidence that, among lemurs, brain size predicts reproductive rate better than body size. (c) 2010 Wiley-Liss, Inc.

  10. Developing population models with data from marked individuals

    USGS Publications Warehouse

    Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,

    2016-01-01

    Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.

  11. Time Series Model Identification by Estimating Information.

    DTIC Science & Technology

    1982-11-01

    principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R

  12. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    Treesearch

    Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo

    2009-01-01

    We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...

  13. Transient multivariable sensor evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Heifetz, Alexander

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  14. Determining the Relationship Between Moral Waivers and Marine Corps Unsuitability Attrition

    DTIC Science & Technology

    2008-03-01

    observed characteristics. However, econometric research indicates that the magnitude of interaction effects estimated via probit or logit models may...1997 to 2005. Multivariate probit models were used to analyze the effects of moral waivers on unsatisfactory service separations. 15. NUMBER OF...files from fiscal years 1997 to 2005. Multivariate probit models were used to analyze the effects of moral waivers on unsatisfactory service

  15. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  16. A new test of multivariate nonlinear causality

    PubMed Central

    Bai, Zhidong; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong

    2018-01-01

    The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power. PMID:29304085

  17. Space-time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation.

    PubMed

    Carroll, Rachel; Lawson, Andrew B; Kirby, Russell S; Faes, Christel; Aregay, Mehreteab; Watjou, Kevin

    2017-01-01

    Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables. In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina. Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation. Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A new test of multivariate nonlinear causality.

    PubMed

    Bai, Zhidong; Hui, Yongchang; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong

    2018-01-01

    The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power.

  19. Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods

    Treesearch

    Umesh P. Agarwal; Richard R. Reiner; Sally A. Ralph

    2013-01-01

    Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment...

  20. The Graphical Display of Simulation Results, with Applications to the Comparison of Robust IRT Estimators of Ability.

    ERIC Educational Resources Information Center

    Thissen, David; Wainer, Howard

    Simulation studies of the performance of (potentially) robust statistical estimation produce large quantities of numbers in the form of performance indices of the various estimators under various conditions. This report presents a multivariate graphical display used to aid in the digestion of the plentiful results in a current study of Item…

  1. Using small area estimation and Lidar-derived variables for multivariate prediction of forest attributes

    Treesearch

    F. Mauro; Vicente Monleon; H. Temesgen

    2015-01-01

    Small area estimation (SAE) techniques have been successfully applied in forest inventories to provide reliable estimates for domains where the sample size is small (i.e. small areas). Previous studies have explored the use of either Area Level or Unit Level Empirical Best Linear Unbiased Predictors (EBLUPs) in a univariate framework, modeling each variable of interest...

  2. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  3. Order-restricted inference for multivariate longitudinal data with applications to the natural history of hearing loss.

    PubMed

    Rosen, Sophia; Davidov, Ori

    2012-07-20

    Multivariate outcomes are often measured longitudinally. For example, in hearing loss studies, hearing thresholds for each subject are measured repeatedly over time at several frequencies. Thus, each patient is associated with a multivariate longitudinal outcome. The multivariate mixed-effects model is a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, it is known that hearing thresholds, at every frequency, increase with age. Moreover, this age-related threshold elevation is monotone in frequency, that is, the higher the frequency, the higher, on average, is the rate of threshold elevation. This means that there is a natural ordering among the different frequencies in the rate of hearing loss. In practice, this amounts to imposing a set of constraints on the different frequencies' regression coefficients modeling the mean effect of time and age at entry to the study on hearing thresholds. The aforementioned constraints should be accounted for in the analysis. The result is a multivariate longitudinal model with restricted parameters. We propose estimation and testing procedures for such models. We show that ignoring the constraints may lead to misleading inferences regarding the direction and the magnitude of various effects. Moreover, simulations show that incorporating the constraints substantially improves the mean squared error of the estimates and the power of the tests. We used this methodology to analyze a real hearing loss study. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Schröter, Kai; Merz, Bruno

    2016-05-01

    Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  5. Estimating the Classification Efficiency of a Test Battery.

    ERIC Educational Resources Information Center

    De Corte, Wilfried

    2000-01-01

    Shows how a theorem proven by H. Brogden (1951, 1959) can be used to estimate the allocation average (a predictor based classification of a test battery) assuming that the predictor intercorrelations and validities are known and that the predictor variables have a joint multivariate normal distribution. (SLD)

  6. A General Multivariate Latent Growth Model with Applications to Student Achievement

    ERIC Educational Resources Information Center

    Bianconcini, Silvia; Cagnone, Silvia

    2012-01-01

    The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context, the analysis of student performance and capabilities plays a fundamental role. In this work, the authors propose a multivariate latent growth model for studying the performances of a…

  7. A general program to compute the multivariable stability margin for systems with parametric uncertainty

    NASA Technical Reports Server (NTRS)

    Sanchez Pena, Ricardo S.; Sideris, Athanasios

    1988-01-01

    A computer program implementing an algorithm for computing the multivariable stability margin to check the robust stability of feedback systems with real parametric uncertainty is proposed. The authors present in some detail important aspects of the program. An example is presented using lateral directional control system.

  8. Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM

    ERIC Educational Resources Information Center

    Mair, Patrick; Satorra, Albert; Bentler, Peter M.

    2012-01-01

    This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…

  9. Personal contact with HIV-positive persons is associated with reduced HIV-related stigma: cross-sectional analysis of general population surveys from 26 countries in sub-Saharan Africa.

    PubMed

    Chan, Brian T; Tsai, Alexander C

    2017-01-11

    HIV-related stigma hampers treatment and prevention efforts worldwide. Effective interventions to counter HIV-related stigma are greatly needed. Although the "contact hypothesis" suggests that personal contact with persons living with HIV (PLHIV) may reduce stigmatizing attitudes in the general population, empirical evidence in support of this hypothesis is lacking. Our aim was to estimate the association between personal contact with PLHIV and HIV-related stigma among the general population of sub-Saharan Africa. Social distance and anticipated stigma were operationalized using standard HIV-related stigma questions contained in the Demographic and Health Surveys and AIDS Indicator Surveys of 26 African countries between 2003 and 2008. We fitted multivariable logistic regression models with country-level fixed effects, specifying social distance as the dependent variable and personal contact with PLHIV as the primary explanatory variable of interest. We analyzed data from 206,717 women and 91,549 men living in 26 sub-Saharan African countries. We estimated a statistically significant negative association between personal contact with PLHIV and desires for social distance (adjusted odds ratio [AOR] = 0.80; p  < 0.001; 95% Confidence Interval [CI], 0.73-0.88). In a sensitivity analysis, a similar finding was obtained with a model that used a community-level variable for personal contact with PLHIV (AOR = 0.92; p  < 0.001; 95% CI, 0.89-0.95). Personal contact with PLHIV was associated with reduced desires for social distance among the general population of sub-Saharan Africa. More contact interventions should be developed and tested to reduce the stigma of HIV.

  10. Personal contact with HIV-positive persons is associated with reduced HIV-related stigma: cross-sectional analysis of general population surveys from 26 countries in sub-Saharan Africa

    PubMed Central

    Chan, Brian T; Tsai, Alexander C

    2017-01-01

    Abstract Introduction: HIV-related stigma hampers treatment and prevention efforts worldwide. Effective interventions to counter HIV-related stigma are greatly needed. Although the “contact hypothesis” suggests that personal contact with persons living with HIV (PLHIV) may reduce stigmatizing attitudes in the general population, empirical evidence in support of this hypothesis is lacking. Our aim was to estimate the association between personal contact with PLHIV and HIV-related stigma among the general population of sub-Saharan Africa. Methods: Social distance and anticipated stigma were operationalized using standard HIV-related stigma questions contained in the Demographic and Health Surveys and AIDS Indicator Surveys of 26 African countries between 2003 and 2008. We fitted multivariable logistic regression models with country-level fixed effects, specifying social distance as the dependent variable and personal contact with PLHIV as the primary explanatory variable of interest. Results: We analyzed data from 206,717 women and 91,549 men living in 26 sub-Saharan African countries. We estimated a statistically significant negative association between personal contact with PLHIV and desires for social distance (adjusted odds ratio [AOR] = 0.80; p < 0.001; 95% Confidence Interval [CI], 0.73–0.88). In a sensitivity analysis, a similar finding was obtained with a model that used a community-level variable for personal contact with PLHIV (AOR = 0.92; p < 0.001; 95% CI, 0.89–0.95). Conclusions: Personal contact with PLHIV was associated with reduced desires for social distance among the general population of sub-Saharan Africa. More contact interventions should be developed and tested to reduce the stigma of HIV. PMID:28362067

  11. Do People Taking Flu Vaccines Need Them the Most?

    PubMed Central

    Gu, Qian; Sood, Neeraj

    2011-01-01

    Background A well targeted flu vaccine strategy can ensure that vaccines go to those who are at the highest risk of getting infected if unvaccinated. However, prior research has not explicitly examined the association between the risk of flu infection and vaccination rates. Purpose This study examines the relationship between the risk of flu infection and the probability of getting vaccinated. Methods Nationally representative data from the US and multivariate regression models were used to estimate what individual characteristics are associated with (1) the risk of flu infection when unvaccinated and (2) flu vaccination rates. These results were used to estimate the correlation between the probability of infection and the probability of getting vaccinated. Separate analyses were performed for the general population and the high priority population that is at increased risk of flu related complications. Results We find that the high priority population was more likely to get vaccinated compared to the general population. However, within both the high priority and general populations the risk of flu infection when unvaccinated was negatively correlated with vaccination rates (r = −0.067, p<0.01). This negative association between the risk of infection when unvaccinated and the probability of vaccination was stronger for the high priority population (r = −0.361, p<0.01). Conclusions There is a poor match between those who get flu vaccines and those who have a high risk of flu infection within both the high priority and general populations. Targeting vaccination to people with low socioeconomic status, people who are engaged in unhealthy behaviors, working people, and families with kids will likely improve effectiveness of flu vaccine policy. PMID:22164202

  12. Occupations and amyotrophic lateral sclerosis: are jobs exposed to the general public at higher risk?

    PubMed

    D'Ovidio, F; d'Errico, A; Calvo, A; Costa, G; Chiò, A

    2017-08-01

    Aim of this study was to assess whether previous employment in certain occupations could be a risk factor for Amyotrophic Lateral Sclerosis (ALS) incidence. This topic has been explored by several studies, but no risk factor has been firmly identified. The study population consisted of all subjects over 30 years old resident in Turin in 1996 who worked or were unemployed at 1991 Italian census (n = 284 406), followed up for ALS occurrence from 1996 to 2014. The risk of ALS was estimated in relation to the occupation held in 1991, using the Italian classification of occupations at the greatest detail. The association between occupations and ALS risk was estimated through Huber-White sandwich multivariate Poisson regression models adjusted for age, gender, education and marital status. During the follow-up, 208 subjects developed ALS. ALS risk was significantly associated with previous employment as bank teller (IRR = 7.33), general practitioner (IRR = 4.61) and sales representative (IRR = 3.06). Categorizing all occupations as exposed or unexposed to direct contact with general public, it was found that previous employment in this group of occupations increased significantly ALS risk (IRR = 1.51), mainly driven by occupations in direct contact with customers (IRR = 1.79). The study results indicate that ALS risk may be increased by previous employment in occupations implying direct contact with the general public, in particular customers. A possible explanation of this finding, partly supported by the literature, is that workers in contact with the public could be more exposed to certain infections, which would increase their ALS risk. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  13. Multivariate space-time modelling of multiple air pollutants and their health effects accounting for exposure uncertainty.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, E Marian

    2018-03-30

    The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  14. Preliminary Multivariable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  15. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  16. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer.

    PubMed

    Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B

    2014-12-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. Copyright © 2014 Walling et al.

  17. A Multivariate Analysis of Genetic Constraints to Life History Evolution in a Wild Population of Red Deer

    PubMed Central

    Walling, Craig A.; Morrissey, Michael B.; Foerster, Katharina; Clutton-Brock, Tim H.; Pemberton, Josephine M.; Kruuk, Loeske E. B.

    2014-01-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. PMID:25278555

  18. Correlates and Prevalence of Menthol Cigarette Use Among Adults With Serious Mental Illness

    PubMed Central

    Young-Wolff, Kelly C.; Hickman, Norval J.; Kim, Romina; Gali, Kathleen

    2015-01-01

    Introduction: With a focus on protecting vulnerable groups from initiating and continuing tobacco use, the FDA has been considering the regulation of menthol in cigarettes. Using a large sample of adult smokers with serious mental illness (SMI) in the San Francisco Bay Area, we examined demographic and clinical correlates of menthol use, and we compared the prevalence of menthol use among our study participants to that of adult smokers in the general population in California. Methods: Adult smokers with SMI (N = 1,042) were recruited from 7 acute inpatient psychiatric units in the San Francisco Bay Area. Demographic, tobacco, and clinical correlates of menthol use were examined with bivariate and multivariate logistic regression analyses, and prevalence of menthol use was compared within racial/ethnic groups to California population estimates from the 2008–2011 National Survey on Drug Use and Health. Results: A sample majority (57%) reported smoking menthol cigarettes. Multivariate logistic regression analyses indicated that adult smokers with SMI who were younger, who had racial/ethnic minority status, who had fewer perceived interpersonal problems, and who had greater psychotic symptoms also had a significantly greater likelihood of menthol use. Smokers with SMI had a higher prevalence of menthol use relative to the general population in California overall (24%). Conclusions: Individuals with SMI—particularly those who are younger, have racial/ethnic minority status, and have been diagnosed with a psychotic disorder—are vulnerable to menthol cigarette use. FDA regulation of menthol may prevent initiation and may encourage cessation among smokers with SMI. PMID:25190706

  19. Rank-based methods for modeling dependence between loss triangles.

    PubMed

    Côté, Marie-Pier; Genest, Christian; Abdallah, Anas

    2016-01-01

    In order to determine the risk capital for their aggregate portfolio, property and casualty insurance companies must fit a multivariate model to the loss triangle data relating to each of their lines of business. As an inadequate choice of dependence structure may have an undesirable effect on reserve estimation, a two-stage inference strategy is proposed in this paper to assist with model selection and validation. Generalized linear models are first fitted to the margins. Standardized residuals from these models are then linked through a copula selected and validated using rank-based methods. The approach is illustrated with data from six lines of business of a large Canadian insurance company for which two hierarchical dependence models are considered, i.e., a fully nested Archimedean copula structure and a copula-based risk aggregation model.

  20. Maternal Characteristics Predicting Young Girls’ Disruptive Behavior

    PubMed Central

    van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf

    2011-01-01

    Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls’ disruptive behavior. The current study used five waves of parent and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years. Multivariate Generalized Estimating Equation (GEE) analyses indicated that European American race, mother’s prenatal nicotine use, maternal depression, maternal conduct problems prior to age 15, and low maternal warmth explained unique variance. Maladaptive parenting partly mediated the effects of maternal depression and maternal conduct problems. Both current and early maternal risk factors have an impact on young girls’ disruptive behavior, providing support for the timing and focus of the prevention of girls’ disruptive behavior. PMID:21391016

  1. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.

  2. Recent im/migration to Canada linked to unmet health needs among sex workers in Vancouver, Canada: Findings of a longitudinal study.

    PubMed

    Sou, Julie; Goldenberg, Shira M; Duff, Putu; Nguyen, Paul; Shoveller, Jean; Shannon, Kate

    2017-05-01

    Despite universal health care in Canada, sex workers (SWs) and im/migrants experience suboptimal health care access. In this analysis, we examined the correlates of unmet health needs among SWs in Metro Vancouver over time. Data from a longitudinal cohort of women SWs (An Evaluation of Sex Workers Health Access [AESHA]) were used. Of 742 SWs, 25.5% reported unmet health needs at least once over the 4-year study period. In multivariable logistic regression using generalized estimating equations, recent im/migration had the strongest impact on unmet health needs; long-term im/migration, policing, and trauma were also important determinants. Legal and social supports to promote im/migrant SWs' access to health care are recommended.

  3. Estimating risk of foreign exchange portfolio: Using VaR and CVaR based on GARCH-EVT-Copula model

    NASA Astrophysics Data System (ADS)

    Wang, Zong-Run; Chen, Xiao-Hong; Jin, Yan-Bo; Zhou, Yan-Ju

    2010-11-01

    This paper introduces GARCH-EVT-Copula model and applies it to study the risk of foreign exchange portfolio. Multivariate Copulas, including Gaussian, t and Clayton ones, were used to describe a portfolio risk structure, and to extend the analysis from a bivariate to an n-dimensional asset allocation problem. We apply this methodology to study the returns of a portfolio of four major foreign currencies in China, including USD, EUR, JPY and HKD. Our results suggest that the optimal investment allocations are similar across different Copulas and confidence levels. In addition, we find that the optimal investment concentrates on the USD investment. Generally speaking, t Copula and Clayton Copula better portray the correlation structure of multiple assets than Normal Copula.

  4. Comparison of different statistical methods for estimation of extreme sea levels with wave set-up contribution

    NASA Astrophysics Data System (ADS)

    Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme

    2013-04-01

    Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.

  5. Estimation of Genetic Parameters from Longitudinal Records of Body Weight of Berkshire Pigs

    PubMed Central

    Lee, Dong-Hee; Do, Chang-Hee

    2012-01-01

    Direct and maternal genetic heritabilities and their correlations with body weight at 5 stages in the life span of purebred Berkshire pigs, from birth to harvest, were estimated to scrutinize body weight development with the records for 5,088 purebred Berkshire pigs in a Korean farm, using the REML based on an animal model. Body weights were measured at birth (Birth), at weaning (Weaning: mean 22.9 d), at the beginning of a performance test (On: mean 72.7 d), at the end of a performance test (Off: mean 152.4 d), and at harvest (Finish: mean 174.3 d). Ordinary polynomials and Legendre with order 1, 2, and 3 were adopted to adjust body weight with age in the multivariate animal models. Legendre with order 3 fitted best concerning prediction error deviation (PED) and yielded the lowest AIC for multivariate analysis of longitudinal body weights. Direct genetic correlations between body weight at Birth and body weight at Weaning, On, Off, and Finish were 0.48, 0.36, 0.10, and 0.10, respectively. The estimated maternal genetic correlations of body weight at Finish with body weight at Birth, Weaning, On, and Off were 0.39, 0.49, 0.65, and 0.90, respectively. Direct genetic heritabilities progressively increased from birth to harvest and were 0.09, 0.11, 0.20, 0.31, and 0.43 for body weight at Birth, Weaning, On, Off, and Finish, respectively. Maternal genetic heritabilities generally decreased and were 0.26, 0.34, 0.15, 0.10, and 0.10 for body weight at Birth, Weaning, On, Off, and Finish, respectively. As pigs age, maternal genetic effects on growth are reduced and pigs begin to rely more on the expression of their own genes. Although maternal genetic effects on body weight may not be large, they are sustained through life. PMID:25049624

  6. Utah Cancer Survivors: A Comprehensive Comparison of Health-Related Outcomes Between Survivors and Individuals Without a History of Cancer.

    PubMed

    Fowler, Brynn; Ding, Qian; Pappas, Lisa; Wu, Yelena P; Linder, Lauri; Yancey, Jeff; Wright, Jennifer; Clayton, Margaret; Kepka, Deanna; Kirchhoff, Anne C

    2018-02-01

    Assessments of cancer survivors' health-related needs are often limited to national estimates. State-specific information is vital to inform state comprehensive cancer control efforts developed to support patients and providers. We investigated demographics, health status/quality of life, health behaviors, and health care characteristics of long-term Utah cancer survivors compared to Utahans without a history of cancer. Utah Behavioral Risk Factor Surveillance System (BRFSS) 2009 and 2010 data were used. Individuals diagnosed with cancer within the past 5 years were excluded. Multivariable survey weighted logistic regressions and computed predictive marginals were used to estimate age-adjusted percentages and 95 % confidence intervals (CI). A total of 11,320 eligible individuals (727 cancer survivors, 10,593 controls) were included. Respondents were primarily non-Hispanic White (95.3 % of survivors, 84.1 % of controls). Survivors were older (85 % of survivors ≥40 years of age vs. 47 % of controls). Survivors reported the majority of their cancer survivorship care was managed by primary care physicians or non-cancer specialists (93.5 %, 95 % CI = 87.9-99.1). Furthermore, 71.1 % (95 % CI = 59.2-82.9) of survivors reported that they did not receive a cancer treatment summary. In multivariable estimates, fair/poor general health was more common among survivors compared to controls (17.8 %, 95 % CI = 12.5-23.1 vs. 14.2 %, 95 % CI = 12.4-16.0). Few survivors in Utah receive follow-up care from a cancer specialist. Provider educational efforts are needed to promote knowledge of cancer survivor issues. Efforts should be made to improve continuity in follow-up care that addresses the known issues of long-term survivors that preclude optimal quality of life, resulting in a patient-centered approach to survivorship.

  7. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  8. Considerations in cross-validation type density smoothing with a look at some data

    NASA Technical Reports Server (NTRS)

    Schuster, E. F.

    1982-01-01

    Experience gained in applying nonparametric maximum likelihood techniques of density estimation to judge the comparative quality of various estimators is reported. Two invariate data sets of one hundered samples (one Cauchy, one natural normal) are considered as well as studies in the multivariate case.

  9. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  10. Specifying and Refining a Complex Measurement Model.

    ERIC Educational Resources Information Center

    Levy, Roy; Mislevy, Robert J.

    This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…

  11. Algorithms for System Identification and Source Location.

    NASA Astrophysics Data System (ADS)

    Nehorai, Arye

    This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.

  12. Higher clinical performance during a surgical clerkship is independently associated with matriculation of medical students into general surgery.

    PubMed

    Daly, Shaun C; Deal, Rebecca A; Rinewalt, Daniel E; Francescatti, Amanda B; Luu, Minh B; Millikan, Keith W; Anderson, Mary C; Myers, Jonathan A

    2014-04-01

    The purpose of our study was to determine the predictive impact of individual academic measures for the matriculation of senior medical students into a general surgery residency. Academic records were evaluated for third-year medical students (n = 781) at a single institution between 2004 and 2011. Cohorts were defined by student matriculation into either a general surgery residency program (n = 58) or a non-general surgery residency program (n = 723). Multivariate logistic regression was performed to evaluate independently significant academic measures. Clinical evaluation raw scores were predictive of general surgery matriculation (P = .014). In addition, multivariate modeling showed lower United States Medical Licensing Examination Step 1 scores to be independently associated with matriculation into general surgery (P = .007). Superior clinical aptitude is independently associated with general surgical matriculation. This is in contrast to the negative correlation United States Medical Licensing Examination Step 1 scores have on general surgery matriculation. Recognizing this, surgical clerkship directors can offer opportunities for continued surgical education to students showing high clinical aptitude, increasing their likelihood of surgical matriculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: Multivariate analysis of task-free fMRI.

    PubMed

    Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D

    2015-11-01

    Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox-Gastaut phenotype. Abnormal function of these areas is likely to be important in explaining the intellectual problems characteristic of this disorder. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  14. Measures of dependence for multivariate Lévy distributions

    NASA Astrophysics Data System (ADS)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  15. Multivariable feedback design - Concepts for a classical/modern synthesis

    NASA Technical Reports Server (NTRS)

    Doyle, J. C.; Stein, G.

    1981-01-01

    This paper presents a practical design perspective on multivariable feedback control problems. It reviews the basic issue - feedback design in the face of uncertainties - and generalizes known single-input, single-output (SISO) statements and constraints of the design problem to multiinput, multioutput (MIMO) cases. Two major MIMO design approaches are then evaluated in the context of these results.

  16. Analysis of Forest Foliage Using a Multivariate Mixture Model

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A.; Peterson, David L.; Johnson, L. F.; Ganapol, B.

    1997-01-01

    Data with wet chemical measurements and near infrared spectra of ground leaf samples were analyzed to test a multivariate regression technique for estimating component spectra which is based on a linear mixture model for absorbance. The resulting unmixed spectra for carbohydrates, lignin, and protein resemble the spectra of extracted plant starches, cellulose, lignin, and protein. The unmixed protein spectrum has prominent absorption spectra at wavelengths which have been associated with nitrogen bonds.

  17. POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models

    PubMed Central

    Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.

    2014-01-01

    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516

  18. Improved estimation of PM2.5 using Lagrangian satellite-measured aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Olivas Saunders, Rolando

    Suspended particulate matter (aerosols) with aerodynamic diameters less than 2.5 mum (PM2.5) has negative effects on human health, plays an important role in climate change and also causes the corrosion of structures by acid deposition. Accurate estimates of PM2.5 concentrations are thus relevant in air quality, epidemiology, cloud microphysics and climate forcing studies. Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument has been used as an empirical predictor to estimate ground-level concentrations of PM2.5 . These estimates usually have large uncertainties and errors. The main objective of this work is to assess the value of using upwind (Lagrangian) MODIS-AOD as predictors in empirical models of PM2.5. The upwind locations of the Lagrangian AOD were estimated using modeled backward air trajectories. Since the specification of an arrival elevation is somewhat arbitrary, trajectories were calculated to arrive at four different elevations at ten measurement sites within the continental United States. A systematic examination revealed trajectory model calculations to be sensitive to starting elevation. With a 500 m difference in starting elevation, the 48-hr mean horizontal separation of trajectory endpoints was 326 km. When the difference in starting elevation was doubled and tripled to 1000 m and 1500m, the mean horizontal separation of trajectory endpoints approximately doubled and tripled to 627 km and 886 km, respectively. A seasonal dependence of this sensitivity was also found: the smallest mean horizontal separation of trajectory endpoints was exhibited during the summer and the largest separations during the winter. A daily average AOD product was generated and coupled to the trajectory model in order to determine AOD values upwind of the measurement sites during the period 2003-2007. Empirical models that included in situ AOD and upwind AOD as predictors of PM2.5 were generated by multivariate linear regressions using the least squares method. The multivariate models showed improved performance over the single variable regression (PM2.5 and in situ AOD) models. The statistical significance of the improvement of the multivariate models over the single variable regression models was tested using the extra sum of squares principle. In many cases, even when the R-squared was high for the multivariate models, the improvement over the single models was not statistically significant. The R-squared of these multivariate models varied with respect to seasons, with the best performance occurring during the summer months. A set of seasonal categorical variables was included in the regressions to exploit this variability. The multivariate regression models that included these categorical seasonal variables performed better than the models that didn't account for seasonal variability. Furthermore, 71% of these regressions exhibited improvement over the single variable models that was statistically significant at a 95% confidence level.

  19. HTLV-I in the general population of Salvador, Brazil: a city with African ethnic and sociodemographic characteristics.

    PubMed

    Dourado, Inês; Alcantara, Luiz C J; Barreto, Maurício L; da Gloria Teixeira, Maria; Galvão-Castro, Bernardo

    2003-12-15

    The city of Salvador has the highest prevalence of HTLV-I among blood donors in Brazil. To study the prevalence of HTLV-I among the general population of Salvador, 30 "sentinel surveillance areas" were selected for the investigation of various infectious diseases, and 1385 individuals within these areas were surveyed according to a simple random sample procedure. ELISA was used to screen plasma samples for antibodies to HTLV-I, and the positive samples were tested by a confirmatory assay (Western blotting). The overall prevalence of HTLV-I was 1.76% (23/1385). Infection rates were 1.2% for males and 2.0% for females. Specific prevalence demonstrated an increasing linear trend with age. No one younger than 13 years of age was infected. Multivariate analysis estimated adjusted odds ratios for the association of HTLV-I with age of 9.7 (3.3; 30.4) for females and 12.3 (1.47; 103.1) for males. Less education and income might be associated with HTLV-I infection in females. Phylogenetic analysis of the long terminal repeat fragments showed that most of the samples belonged to the Latin American cluster of the Transcontinental subgroup (Cosmopolitan subtype). For the entire city of Salvador, it is estimated that approximately 40000 individuals are infected with HTLV-I. Our results suggest multiple post-Colombian introductions of African HTLV-Ia strains in Salvador.

  20. Statistical process control of cocrystallization processes: A comparison between OPLS and PLS.

    PubMed

    Silva, Ana F T; Sarraguça, Mafalda Cruz; Ribeiro, Paulo R; Santos, Adenilson O; De Beer, Thomas; Lopes, João Almeida

    2017-03-30

    Orthogonal partial least squares regression (OPLS) is being increasingly adopted as an alternative to partial least squares (PLS) regression due to the better generalization that can be achieved. Particularly in multivariate batch statistical process control (BSPC), the use of OPLS for estimating nominal trajectories is advantageous. In OPLS, the nominal process trajectories are expected to be captured in a single predictive principal component while uncorrelated variations are filtered out to orthogonal principal components. In theory, OPLS will yield a better estimation of the Hotelling's T 2 statistic and corresponding control limits thus lowering the number of false positives and false negatives when assessing the process disturbances. Although OPLS advantages have been demonstrated in the context of regression, its use on BSPC was seldom reported. This study proposes an OPLS-based approach for BSPC of a cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored on-line with near infrared spectroscopy and compares the fault detection performance with the same approach based on PLS. A series of cocrystallization batches with imposed disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-based BSPC methods. Results demonstrated that OPLS was generally superior in terms of sensibility and specificity in most situations. In some abnormal batches, it was found that the imposed disturbances were only detected with OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluating the role of admixture in cancer therapy via in vitro drug response and multivariate genome-wide associations

    PubMed Central

    Jack, John; Havener, Tammy M; McLeod, Howard L; Motsinger-Reif, Alison A; Foster, Matthew

    2015-01-01

    Aim: We investigate the role of ethnicity and admixture in drug response across a broad group of chemotherapeutic drugs. Also, we generate hypotheses on the genetic variants driving differential drug response through multivariate genome-wide association studies. Methods: Immortalized lymphoblastoid cell lines from 589 individuals (Hispanic or non-Hispanic/Caucasian) were used to investigate dose-response for 28 chemotherapeutic compounds. Univariate and multivariate statistical models were used to elucidate associations between genetic variants and differential drug response as well as the role of ethnicity in drug potency and efficacy. Results & Conclusion: For many drugs, the variability in drug response appears to correlate with self-reported race and estimates of genetic ancestry. Additionally, multivariate genome-wide association analyses offered interesting hypotheses governing these differential responses. PMID:26314407

  2. Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces.

    PubMed

    Uehara, Takashi; Sartori, Matteo; Tanaka, Toshihisa; Fiori, Simone

    2017-06-01

    The estimation of covariance matrices is of prime importance to analyze the distribution of multivariate signals. In motor imagery-based brain-computer interfaces (MI-BCI), covariance matrices play a central role in the extraction of features from recorded electroencephalograms (EEGs); therefore, correctly estimating covariance is crucial for EEG classification. This letter discusses algorithms to average sample covariance matrices (SCMs) for the selection of the reference matrix in tangent space mapping (TSM)-based MI-BCI. Tangent space mapping is a powerful method of feature extraction and strongly depends on the selection of a reference covariance matrix. In general, the observed signals may include outliers; therefore, taking the geometric mean of SCMs as the reference matrix may not be the best choice. In order to deal with the effects of outliers, robust estimators have to be used. In particular, we discuss and test the use of geometric medians and trimmed averages (defined on the basis of several metrics) as robust estimators. The main idea behind trimmed averages is to eliminate data that exhibit the largest distance from the average covariance calculated on the basis of all available data. The results of the experiments show that while the geometric medians show little differences from conventional methods in terms of classification accuracy in the classification of electroencephalographic recordings, the trimmed averages show significant improvement for all subjects.

  3. Image analysis-based modelling for flower number estimation in grapevine.

    PubMed

    Millan, Borja; Aquino, Arturo; Diago, Maria P; Tardaguila, Javier

    2017-02-01

    Grapevine flower number per inflorescence provides valuable information that can be used for assessing yield. Considerable research has been conducted at developing a technological tool, based on image analysis and predictive modelling. However, the behaviour of variety-independent predictive models and yield prediction capabilities on a wide set of varieties has never been evaluated. Inflorescence images from 11 grapevine Vitis vinifera L. varieties were acquired under field conditions. The flower number per inflorescence and the flower number visible in the images were calculated manually, and automatically using an image analysis algorithm. These datasets were used to calibrate and evaluate the behaviour of two linear (single-variable and multivariable) and a nonlinear variety-independent model. As a result, the integrated tool composed of the image analysis algorithm and the nonlinear approach showed the highest performance and robustness (RPD = 8.32, RMSE = 37.1). The yield estimation capabilities of the flower number in conjunction with fruit set rate (R 2  = 0.79) and average berry weight (R 2  = 0.91) were also tested. This study proves the accuracy of flower number per inflorescence estimation using an image analysis algorithm and a nonlinear model that is generally applicable to different grapevine varieties. This provides a fast, non-invasive and reliable tool for estimation of yield at harvest. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Mapping CHU9D Utility Scores from the PedsQLTM 4.0 SF-15.

    PubMed

    Mpundu-Kaambwa, Christine; Chen, Gang; Russo, Remo; Stevens, Katherine; Petersen, Karin Dam; Ratcliffe, Julie

    2017-04-01

    The Pediatric Quality of Life Inventory™ 4.0 Short Form 15 Generic Core Scales (hereafter the PedsQL) and the Child Health Utility-9 Dimensions (CHU9D) are two generic instruments designed to measure health-related quality of life in children and adolescents in the general population and paediatric patient groups living with specific health conditions. Although the PedsQL is widely used among paediatric patient populations, presently it is not possible to directly use the scores from the instrument to calculate quality-adjusted life-years (QALYs) for application in economic evaluation because it produces summary scores which are not preference-based. This paper examines different econometric mapping techniques for estimating CHU9D utility scores from the PedsQL for the purpose of calculating QALYs for cost-utility analysis. The PedsQL and the CHU9D were completed by a community sample of 755 Australian adolescents aged 15-17 years. Seven regression models were estimated: ordinary least squares estimator, generalised linear model, robust MM estimator, multivariate factorial polynomial estimator, beta-binomial estimator, finite mixture model and multinomial logistic model. The mean absolute error (MAE) and the mean squared error (MSE) were used to assess predictive ability of the models. The MM estimator with stepwise-selected PedsQL dimension scores as explanatory variables had the best predictive accuracy using MAE and the equivalent beta-binomial model had the best predictive accuracy using MSE. Our mapping algorithm facilitates the estimation of health-state utilities for use within economic evaluations where only PedsQL data is available and is suitable for use in community-based adolescents aged 15-17 years. Applicability of the algorithm in younger populations should be assessed in further research.

  5. Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation

    PubMed Central

    Meyer, Karin

    2016-01-01

    Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681

  6. Postcraniometric sex and ancestry estimation in South Africa: a validation study.

    PubMed

    Liebenberg, Leandi; Krüger, Gabriele C; L'Abbé, Ericka N; Stull, Kyra E

    2018-05-24

    With the acceptance of the Daubert criteria as the standards for best practice in forensic anthropological research, more emphasis is being placed on the validation of published methods. Methods, both traditional and novel, need to be validated, adjusted, and refined for optimal performance within forensic anthropological analyses. Recently, a custom postcranial database of modern South Africans was created for use in Fordisc 3.1. Classification accuracies of up to 85% for ancestry estimation and 98% for sex estimation were achieved using a multivariate approach. To measure the external validity and report more realistic performance statistics, an independent sample was tested. The postcrania from 180 black, white, and colored South Africans were measured and classified using the custom postcranial database. A decrease in accuracy was observed for both ancestry estimation (79%) and sex estimation (95%) of the validation sample. When incorporating both sex and ancestry simultaneously, the method achieved 70% accuracy, and 79% accuracy when sex-specific ancestry analyses were run. Classification matrices revealed that postcrania were more likely to misclassify as a result of ancestry rather than sex. While both sex and ancestry influence the size of an individual, sex differences are more marked in the postcranial skeleton and are therefore easier to identify. The external validity of the postcranial database was verified and therefore shown to be a useful tool for forensic casework in South Africa. While the classification rates were slightly lower than the original method, this is expected when a method is generalized.

  7. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  8. Electroencephalography signatures of attention-deficit/hyperactivity disorder: clinical utility.

    PubMed

    Alba, Guzmán; Pereda, Ernesto; Mañas, Soledad; Méndez, Leopoldo D; González, Almudena; González, Julián J

    2015-01-01

    The techniques and the most important results on the use of electroencephalography (EEG) to extract different measures are reviewed in this work, which can be clinically useful to study subjects with attention-deficit/hyperactivity disorder (ADHD). First, we discuss briefly and in simple terms the EEG analysis and processing techniques most used in the context of ADHD. We review techniques that both analyze individual EEG channels (univariate measures) and study the statistical interdependence between different EEG channels (multivariate measures), the so-called functional brain connectivity. Among the former ones, we review the classical indices of absolute and relative spectral power and estimations of the complexity of the channels, such as the approximate entropy and the Lempel-Ziv complexity. Among the latter ones, we focus on the magnitude square coherence and on different measures based on the concept of generalized synchronization and its estimation in the state space. Second, from a historical point of view, we present the most important results achieved with these techniques and their clinical utility (sensitivity, specificity, and accuracy) to diagnose ADHD. Finally, we propose future research lines based on these results.

  9. Racial Differences in Perceptions of Air Pollution Health Risk: Does Environmental Exposure Matter?

    PubMed Central

    Chakraborty, Jayajit; Collins, Timothy W.; Grineski, Sara E.; Maldonado, Alejandra

    2017-01-01

    This article extends environmental risk perception research by exploring how potential health risk from exposure to industrial and vehicular air pollutants, as well as other contextual and socio-demographic factors, influence racial/ethnic differences in air pollution health risk perception. Our study site is the Greater Houston metropolitan area, Texas, USA—a racially/ethnically diverse area facing high levels of exposure to pollutants from both industrial and transportation sources. We integrate primary household-level survey data with estimates of excess cancer risk from ambient exposure to industrial and on-road mobile source emissions of air toxics obtained from the U.S. Environmental Protection Agency. Statistical analysis is based on multivariate generalized estimation equation models which account for geographic clustering of surveyed households. Our results reveal significantly higher risk perceptions for non-Hispanic Black residents and those exposed to greater cancer risk from industrial pollutants, and also indicate that gender influences the relationship between race/ethnicity and air pollution risk perception. These findings highlight the need to incorporate measures of environmental health risk exposure in future analysis of social disparities in risk perception. PMID:28125059

  10. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    NASA Astrophysics Data System (ADS)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  11. Risk factors for bladder cancer in a cohort exposed to aromatic amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, P.A.; Ringen, K.; Hemstreet, G.P.

    1986-11-01

    Occupational and nonoccupational risk factors for bladder cancer were analyzed in a cohort of 1385 workers with known exposure to a potent bladder carcinogen, beta-naphthylamine. Bladder cancer was approximately seven times (95% confidence interval (CI) = 3.9, 12.4) more likely in exposed rather than nonexposed individuals, yet, otherwise, the groups were generally similar in other exogenous or hereditary risk factors. A total of 13 cases of bladder cancer were identified. After the first year of a screening program involving 380 members of the cohort, 9 of the 13 cases of bladder cancer and 36 persons with atypical bladder cytology, histology,more » or pathology were compared with 335 noncases for distributions of different variables. Occupational variables were significant in a multivariate model that controlled for age, cigarette smoking history, and source of drinking water. The estimated odds ratio for the association for bladder cancer and the duration of employment, when controlling of these other variables, is 4.3 (95% CI = 1.8, 10.3). In addition to the occupational factors, age was significant in the multivariate analysis. Other potential risk factors, such as consumption of coffee or artificial sweeteners, use of phenacetin, or decreased use of vitamin A were not found to be significantly different in cases and noncases.« less

  12. Noise and drift analysis of non-equally spaced timing data

    NASA Technical Reports Server (NTRS)

    Vernotte, F.; Zalamansky, G.; Lantz, E.

    1994-01-01

    Generally, it is possible to obtain equally spaced timing data from oscillators. The measurement of the drifts and noises affecting oscillators is then performed by using a variance (Allan variance, modified Allan variance, or time variance) or a system of several variances (multivariance method). However, in some cases, several samples, or even several sets of samples, are missing. In the case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in time. Nevertheless, since some observations are very close together (one minute) and since the timing data sequence is very long (more than ten years), information on both short-term and long-term stability is available. Unfortunately, a direct variance analysis is not possible without interpolating missing data. Different interpolation algorithms (linear interpolation, cubic spline) are used to calculate variances in order to verify that they neither lose information nor add erroneous information. A comparison of the results of the different algorithms is given. Finally, the multivariance method was adapted to the measurement sequence of the millisecond pulsar timing data: the responses of each variance of the system are calculated for each type of noise and drift, with the same missing samples as in the pulsar timing sequence. An estimation of precision, dynamics, and separability of this method is given.

  13. Relationship between cataract severity and socioeconomic status.

    PubMed

    Wesolosky, Jason D; Rudnisky, Christopher J

    2013-12-01

    To determine the relationship between cataract severity and socioeconomic status (SES). Retrospective, observational case series. A total of 1350 eyes underwent phacoemulsification cataract extraction by a single surgeon using an Alcon Infiniti system. Cataract severity was measured using phaco time in seconds. SES was measured using area-level aggregate census data: median income, education, proportion of common-law couples, and employment rate. Preoperative best corrected visual acuity was obtained and converted to logarithm of the minimum angle of resolution values. For patients undergoing bilateral surgery, the generalized estimating equation was used to account for the correlation between eyes. Univariate analyses were performed using simple regression, and multivariate analyses were performed to account for variables with significant relationships (p < 0.05) on univariate testing. Sensitivity analyses were performed to assess the effect of including patient age in the controlled analyses. Multivariate analyses demonstrated that cataracts were more severe when the median income was lower (p = 0.001) and the proportion of common-law couples living in a patient's community (p = 0.012) and the unemployment rate (p = 0.002) were higher. These associations persisted even when controlling for patient age. Patients of lower SES have more severe cataracts. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  14. Homelessness among a cohort of women in street-based sex work: the need for safer environment interventions.

    PubMed

    Duff, Putu; Deering, Kathleen; Gibson, Kate; Tyndall, Mark; Shannon, Kate

    2011-08-12

    Drawing on data from a community-based prospective cohort study in Vancouver, Canada, we examined the prevalence and individual, interpersonal and work environment correlates of homelessness among 252 women in street-based sex work. Bivariate and multivariate logistic regression using generalized estimating equations (GEE) was used to examine the individual, interpersonal and work environment factors that were associated with homelessness among street-based sex workers. Among 252 women, 43.3% reported homelessness over an 18-month follow-up period. In the multivariable GEE logistic regression analysis, younger age (adjusted odds ratio [aOR] = 0.93; 95%confidence interval [95%CI] 0.93-0.98), sexual violence by non-commercial partners (aOR = 2.14; 95%CI 1.06-4.34), servicing a higher number of clients (10+ per week vs < 10) (aOR = 1.68; 95%CI 1.05-2.69), intensive, daily crack use (aOR = 1.65; 95%CI 1.11-2.45), and servicing clients in public spaces (aOR = 1.52; CI 1.00-2.31) were independently associated with sleeping on the street. These findings indicate a critical need for safer environment interventions that mitigate the social and physical risks faced by homeless FSWs and increase access to safe, secure housing for women.

  15. Be the Volume: A Classroom Activity to Visualize Volume Estimation

    ERIC Educational Resources Information Center

    Mikhaylov, Jessica

    2011-01-01

    A hands-on activity can help multivariable calculus students visualize surfaces and understand volume estimation. This activity can be extended to include the concepts of Fubini's Theorem and the visualization of the curves resulting from cross-sections of the surface. This activity uses students as pillars and a sheet or tablecloth for the…

  16. On measuring bird habitat: influence of observer variability and sample size

    Treesearch

    William M. Block; Kimberly A. With; Michael L. Morrison

    1987-01-01

    We studied the effects of observer variability when estimating vegetation characteristics at 75 0.04-ha bird plots. Observer estimates were significantly different for 31 of 49 variables. Multivariate analyses showed significant interobserver differences for five of the seven classes of variables studied. Variable classes included the height, number, and diameter of...

  17. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  18. Estimation and Control for Linear Systems with Additive Cauchy Noise

    DTIC Science & Technology

    2013-12-17

    man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The

  19. Permutation Tests of Hierarchical Cluster Analyses of Carrion Communities and Their Potential Use in Forensic Entomology.

    PubMed

    van der Ham, Joris L

    2016-05-19

    Forensic entomologists can use carrion communities' ecological succession data to estimate the postmortem interval (PMI). Permutation tests of hierarchical cluster analyses of these data provide a conceptual method to estimate part of the PMI, the post-colonization interval (post-CI). This multivariate approach produces a baseline of statistically distinct clusters that reflect changes in the carrion community composition during the decomposition process. Carrion community samples of unknown post-CIs are compared with these baseline clusters to estimate the post-CI. In this short communication, I use data from previously published studies to demonstrate the conceptual feasibility of this multivariate approach. Analyses of these data produce series of significantly distinct clusters, which represent carrion communities during 1- to 20-day periods of the decomposition process. For 33 carrion community samples, collected over an 11-day period, this approach correctly estimated the post-CI within an average range of 3.1 days. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate statistical modeling techniques, demonstrated advantages for estimating the TP concentration in a large lake and had a strong potential for universal application for the TP concentration estimation in large lake waters worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  2. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    PubMed

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  3. Bayesian statistics and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koch, K. R.

    2018-03-01

    The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.

  4. Newly graduated nurses' occupational commitment and its associations with professional competence and work-related factors.

    PubMed

    Numminen, Olivia; Leino-Kilpi, Helena; Isoaho, Hannu; Meretoja, Riitta

    2016-01-01

    To explore newly graduated nurses' occupational commitment and its associations with their self-assessed professional competence and other work-related factors. As a factor affecting nurse turnover, newly graduated nurses' occupational commitment and its associations with work-related factors needs exploring to retain adequate workforce. Nurses' commitment has mainly been studied as organisational commitment, but newly graduated nurses' occupational commitment and its association with work-related factors needs further studying. This study used descriptive, cross-sectional, correlation design. A convenience sample of 318 newly graduated nurses in Finland participated responding to an electronic questionnaire. Statistical software, NCSS version 9, was used in data analysis. Frequencies, percentages, ranges, means and standard deviations summarised the data. Multivariate Analyses of Variance estimated associations between occupational commitment and work-related variables. IBM SPSS Amos version 22 estimated the model fit of Occupational Commitment Scale and Nurse Competence Scale. Newly graduated nurses' occupational commitment was good, affective commitment reaching the highest mean score. There was a significant difference between the nurse groups in favour of nurses at higher competence levels in all subscales except in limited alternatives occupational commitment. Multivariate analyses revealed significant associations between subscales of commitment and competence, turnover intentions, job satisfaction, earlier professional education and work sector, competence counting only through affective dimension. The association between occupational commitment and low turnover intentions and satisfaction with nursing occupation was strong. Higher general competence indicated higher overall occupational commitment. Managers' recognition of the influence of all dimensions of occupational commitment in newly graduated nurses' professional development is important. Follow-up studies of newly graduated nurses' commitment, its relationship with quality care, managers' role in enhancing commitment and evaluation of the impact of interventions on improving commitment need further studying. © 2015 John Wiley & Sons Ltd.

  5. Longitudinal regret after treatment for low- and intermediate-risk prostate cancer.

    PubMed

    Hurwitz, Lauren M; Cullen, Jennifer; Kim, Daniel J; Elsamanoudi, Sally; Hudak, Jane; Colston, Maryellen; Travis, Judith; Kuo, Huai-Ching; Rice, Kevin R; Porter, Christopher R; Rosner, Inger L

    2017-11-01

    Prostate cancer patients diagnosed with low- and intermediate-risk disease have several treatment options. Decisional regret after treatment is a concern, especially when poor oncologic outcomes or declines in health-related quality of life (HRQoL) occur. This study assessed determinants of longitudinal decisional regret in prostate cancer patients attending a multidisciplinary clinic and treated with radical prostatectomy (RP), external beam radiation therapy (EBRT), brachytherapy (BT), or active surveillance (AS). Patients newly diagnosed with prostate cancer at the Walter Reed National Military Medical Center who attended a multidisciplinary clinic were enrolled into a prospective study from 2006 to 2014. The Decision Regret Scale was administered at 6, 12, 24, and 36 months posttreatment. HRQoL was also assessed at regular intervals using the Expanded Prostate Cancer Index Composite and 36-item RAND Medical Outcomes Study Short Form questionnaires. Adjusted probabilities of reporting regret were estimated via multivariable logistic regression fitted with generalized estimating equations. A total of 652 patients met the inclusion criteria (395 RP, 141 EBRT, 41 BT, 75 AS). Decisional regret was consistently low after all of these treatments. In multivariable models, only African American race (odds ratio, 1.67; 95% confidence interval, 1.12-2.47) was associated with greater regret across time. Age and control preference were marginally associated with regret. Regret scores were similar between RP patients who did and did not experience biochemical recurrence. Declines in HRQoL were weakly correlated with greater decisional regret. In the context of a multidisciplinary clinic, decisional regret did not differ significantly between treatment groups but was greater in African Americans and those reporting poorer HRQoL. Cancer 2017;123:4252-4258. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. Socio-economic marginalization in the structural production of vulnerability to violence among people who use illicit drugs

    PubMed Central

    RICHARDSON, Lindsey A.; LONG, Cathy; DeBECK, Kora; NGUYEN, Paul; MILLOY, M-J S.; WOOD, Evan; KERR, Thomas H.

    2015-01-01

    Objective Many people who use illicit drugs (PWUD) face challenges to their financial stability. Resulting activities that PWUD undertake to generate income may increase their vulnerability to violence. We therefore examined the relationship between income generation and exposure to violence across a wide range of income generating activities among HIV-positive and HIV-negative PWUD living in Vancouver, Canada. Methods Data were derived from cohorts of HIV-seropositive and HIV-seronegative PWUD (n=1876) between December 2005 and November 2012. We estimated the relationship between different types of income generation and suffering any kind of violence using bivariate and multivariate generalized estimating equations (GEE), as well as the characteristics of violent interactions. Results Exposure to violence was reported among 977 (52%) study participants over the study period. In multivariate models controlling for socio-demographic characteristics, mental health status, and drug use patterns, violence was independently and positively associated with participation in street-based income generation activities (i.e., recycling, squeegeeing, and panhandling; adjusted odds ratio [AOR]=1.39, 95% confidence interval [CI]=1.23–1.57), sex work (AOR=1.23, 95%CI=1.00–1.50), drug dealing (AOR=1.63, 95%CI=1.44–1.84), and theft and other acquisitive criminal activity (AOR=1.51, 95%CI=1.27–1.80). Engagement in regular, self or temporary employment was not associated with being exposed to violence. Strangers were the most common perpetrators of violence (46.7%) and beatings the most common type of exposure (70.8%). Conclusions These results suggest that economic activities expose individuals to contexts associated with social and structural vulnerability to violence. The creation of safe economic opportunities that minimize vulnerability to violence among PWUD is therefore urgently required. PMID:25691275

  7. Gender, position of authority, and the risk of depression and post-traumatic stress disorder among a national sample of U.S. Reserve Component Personnel

    PubMed Central

    Cohen, Gregory H.; Sampson, Laura A.; Fink, David S.; Wang, Jing; Russell, Dale; Gifford, Robert; Fullerton, Carol; Ursano, Robert; Galea, Sandro

    2016-01-01

    BACKGROUND Recent United States military operations in Iraq and Afghanistan have seen dramatic increases in the proportion of women serving, and the breadth of their occupational roles. General population studies suggest that women, compared to men, and persons with lower, as compared to higher, social position may be at greater risk of post-traumatic stress disorder (PTSD) and depression. However, these relations remain unclear in military populations. Accordingly, we aimed to estimate the effects of (1) gender, (2) military authority (i.e., rank) and (3) the interaction of gender and military authority upon: (a) risk of most-recent-deployment-related PTSD, and (b) risk of depression since most-recent-deployment. METHODS Using a nationally representative sample of 1024 previously deployed Reserve Component personnel surveyed in 2010, we constructed multivariable logistic regression models to estimate effects of interest. RESULTS Weighted multivariable logistic regression models demonstrated no statistically significant associations between gender or authority, and either PTSD or depression. Interaction models demonstrated multiplicative statistical interaction between gender and authority for PTSD (beta= −2.37;p=0.01), and depression (beta=-1.21; p=0.057). Predicted probabilities of PTSD and depression, respectively, were lowest in male officers (0.06, 0.09), followed by male enlisted (0.07, 0.14), female enlisted (0.07, 0.15), and female officers (0.30, 0.25). CONCLUSIONS Female officers in the Reserve Component may be at greatest risk for PTSD and depression following deployment, relative to their male and enlisted counterparts, and this relation is not explained by deployment trauma exposure. Future studies may fruitfully examine whether social support, family responsibilities peri-deployment, or contradictory class status may explain these findings. PMID:26899583

  8. Prescribing potentially inappropriate medication (PIM) in Germany's elderly as indicated by the PRISCUS list. An analysis based on regional claims data.

    PubMed

    Schubert, Ingrid; Küpper-Nybelen, Jutta; Ihle, Peter; Thürmann, Petra

    2013-07-01

    The aim of this study was to estimate the prevalence of potentially inappropriate medication (PIM) in the elderly as indicated by Germany's recently published list (PRISCUS) and to assess factors independently associated with PIM prescribing, both overall and separately for therapeutic groups. Claims data analysis (Health Insurance Sample AOK Hesse/KV Hesse, 18.75% random sample of insurants from AOK Hesse, Germany) is used in the study. The study population is composed of 73,665 insurants >64 years of age continuously insured in the last quarter of 2009 and either continuously insured or deceased in 2010. Prevalence estimates are standardized to the population of Germany (31 December 2010). The variables age, sex, polypharmacy, hospital stay and nursing care are assessed for their independent association with general PIM prescription and among 11 therapeutic subgroups using multivariate logistic regression analysis. In 2010, 22.0% of the elderly received at least one PIM prescription (men: 18.3%, women: 24.8%). The highest PIM prevalence was observed for antidepressants (6.5%), antihypertensives (3.8%) and antiarrhythmic drugs (3.5%). Amitriptyline, tetrazepam, doxepin, acetyldigoxin, doxazosin and etoricoxib were the most frequently prescribed PIMs. Multivariate analyses indicate that women (OR 1.39; 95% CI: 1.34-1.44) and persons with extreme polypharmacy (≥10 vs. <5 drugs: OR 5.16; 95% CI: 4.87-5.47) were at higher risk for receiving a PRISCUS-PIM. Risk analysis for therapeutic groups shows divergent associations. PRISCUS-PIMs are widely used. Educational programs should focus on drugs with high treatment prevalence and call professionals' attention to those elderly patients who are at special risk for inappropriate medication. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  10. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  11. Preeclampsia and Long-term Renal Function in Women Who Underwent Kidney Transplantation.

    PubMed

    Vannevel, Valerie; Claes, Kathleen; Baud, David; Vial, Yvan; Golshayan, Delaviz; Yoon, Eugene W; Hodges, Ryan; Le Nepveu, Anne; Kerr, Peter G; Kennedy, Claire; Higgins, Mary; Resch, Elisabeth; Klaritsch, Philipp; Van Mieghem, Tim

    2018-01-01

    Preeclampsia often complicates pregnancies after maternal kidney transplantation. We aimed to assess whether preeclampsia is associated with kidney function decline either during the pregnancy or in the long term. We performed an international multicenter retrospective cohort study. Renal function at conception, pregnancy outcomes, and short- and long-term graft outcomes were collected for women who were pregnant after renal transplantation and had transplant and obstetric care at the participating centers. In women who had multiple pregnancies during the study period, only the last pregnancy was included. Univariate and multivariable analyses were performed. We retrieved pregnancy outcomes and long-term renal outcomes for 52 women. Chronic hypertension was present at baseline in 27%. Mean estimated glomerular filtration rate (GFR) at start of pregnancy was 52.4±17.5 mL/min/1.73 m. Mean estimated GFR at delivery was 47.6±21.6 mL/min/1.73 m, which was significantly lower than at conception (P=.03). Twenty women (38%) developed preeclampsia. In multivariable analysis, women who developed preeclampsia had a 10.7-mL/min/1.73 m higher drop in estimated GFR between conception and delivery than women who did not develop preeclampsia (P=.02). Long-term estimated GFR follow-up was obtained at a median of 5.8 years (range 1.3-27.5 years). Mean estimated GFR at last follow-up was 38±23 mL/kg/1.73 m. Seventeen women (33%) experienced graft loss over the follow-up period. Incidence of graft loss was similar in women with and without preeclampsia in their last pregnancy (30% and 34%, respectively; P=.99). In multivariable analysis, the decrease in estimated GFR between conception and last follow-up was similar in women who experienced preeclampsia during pregnancy and those who did not (difference -2.69 mL/min/1.73 m, P=.65). Preeclampsia commonly complicates pregnancies after renal transplantation but is not associated with long-term renal dysfunction or graft loss.

  12. The risk of passive regurgitation during general anaesthesia in a population of referred dogs in the UK.

    PubMed

    Lamata, Cecilia; Loughton, Verity; Jones, Monie; Alibhai, Hatim; Armitage-Chan, Elizabeth; Walsh, Karen; Brodbelt, David

    2012-05-01

    To evaluate the risk of passive regurgitation during anaesthesia, and to identify major factors associated with this in dogs attending the Queen Mother Hospital for Animals (QMHA), the Royal Veterinary College. A case-control study nested within the cohort of dogs undergoing anaesthesia with inhalation agents. All dogs undergoing general anaesthesia at the referral hospital between October 2006 and September 2008 (4271 cases). All dogs anaesthetized at the QMHA during the study period were included. Regurgitating cases were defined as dogs for which reflux material was observed at the external nares or in the mouth, either during anaesthesia or before return to normal consciousness immediately after general anaesthesia. The risk of regurgitation was estimated and risk factors for regurgitation were evaluated with multivariable logistic regression (p < 0.05). The overall risk of regurgitation was 0.96% (41 cases out of 4271 anaesthetics, 95% confidence interval [95% CI] 0.67-1.25%). Exclusion of animals where pre-existing disease was considered a contributing factor to regurgitation (n = 14) resulted in a risk of passive regurgitation of 0.63% (27 cases of 4257 anaesthetics, 95% CI 0.40-0.87%). In the multivariable logistic regression model, procedure and patient weight were significantly associated with regurgitation. Dogs undergoing orthopaedic surgery were 26.7 times more likely to regurgitate compared to dogs undergoing only diagnostic procedures. Dogs weighing more than 40 kg were approximately five times more likely to regurgitate than those weighing <20 kg. This study highlights the rare but important occurrence of perioperative regurgitation and identifies that dogs undergoing orthopaedic procedures, and those weighing more than 40 kg, are particularly at risk. Further work is required to evaluate the reasons for these observations. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  13. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  14. Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure.

    PubMed

    Fieuws, Steffen; Willems, Guy; Larsen-Tangmose, Sara; Lynnerup, Niels; Boldsen, Jesper; Thevissen, Patrick

    2016-03-01

    When an estimate of age is needed, typically multiple indicators are present as found in skeletal or dental information. There exists a vast literature on approaches to estimate age from such multivariate data. Application of Bayes' rule has been proposed to overcome drawbacks of classical regression models but becomes less trivial as soon as the number of indicators increases. Each of the age indicators can lead to a different point estimate ("the most plausible value for age") and a prediction interval ("the range of possible values"). The major challenge in the combination of multiple indicators is not the calculation of a combined point estimate for age but the construction of an appropriate prediction interval. Ignoring the correlation between the age indicators results in intervals being too small. Boldsen et al. (2002) presented an ad-hoc procedure to construct an approximate confidence interval without the need to model the multivariate correlation structure between the indicators. The aim of the present paper is to bring under attention this pragmatic approach and to evaluate its performance in a practical setting. This is all the more needed since recent publications ignore the need for interval estimation. To illustrate and evaluate the method, Köhler et al. (1995) third molar scores are used to estimate the age in a dataset of 3200 male subjects in the juvenile age range.

  15. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation.

    PubMed

    Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai

    2017-10-01

    Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.

  17. Multivariate interactive digital analysis system /MIDAS/ - A new fast multispectral recognition system

    NASA Technical Reports Server (NTRS)

    Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.

    1973-01-01

    The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.

  18. Multivariate approach in popcorn genotypes using the Ward-MLM strategy: morpho-agronomic analysis and incidence of Fusarium spp.

    PubMed

    Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F

    2017-02-08

    The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.

  19. Large signal-to-noise ratio quantification in MLE for ARARMAX models

    NASA Astrophysics Data System (ADS)

    Zou, Yiqun; Tang, Xiafei

    2014-06-01

    It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.

  20. The influence of demographic, physical, behavioral, and dietary factors on hemoglobin adduct levels of acrylamide and glycidamide in the general U.S. population.

    PubMed

    Duke, Tina J; Ruestow, Peter S; Marsh, Gary M

    2018-03-24

    This study aims to better understand the individual characteristics and dietary factors that affect the relationship between estimated consumption of acrylamide and measured acrylamide hemoglobin adduct levels (HbAA) and glycidamide hemoglobin adduct levels (HbGA). Acrylamide levels in individual food items, estimated by the U.S. Food and Drug Administration, were linked to data collected in the 2003-2004 National Health and Nutrition Examination Survey. Multivariable linear regression was used to evaluate the relationship between estimated consumption of acrylamide and HbAA. A significant association between acrylamide intake and HbAA was observed, after adjustment for gender, race/ethnicity, smoking status, age, and BMI (R 2 = 0.34). Across quartiles of acrylamide consumption, HbAA and HbGA levels increased monotonically. Among nonsmokers, an evaluation of three heavily consumed, high AA concentration foods showed a positive trend between the consumed amount of fried potatoes and HbAA in children, adolescents, and adults. A significant positive trend between the consumed amount of potato chips or coffee was indicated in adolescents, adults, and seniors. Consumption of some individual foods affects HbAA concentrations more strongly and in an age-dependent manner. Our results suggest that effective dietary guidelines for controlling acrylamide intake should be subpopulation specific.

  1. Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States.

    PubMed

    Belote, R Travis; Carroll, Carlos; Martinuzzi, Sebastián; Michalak, Julia; Williams, John W; Williamson, Matthew A; Aplet, Gregory H

    2018-06-21

    Addressing uncertainties in climate vulnerability remains a challenge for conservation planning. We evaluate how confidence in conservation recommendations may change with agreement among alternative climate projections and metrics of climate exposure. We assessed agreement among three multivariate estimates of climate exposure (forward velocity, backward velocity, and climate dissimilarity) using 18 alternative climate projections for the contiguous United States. For each metric, we classified maps into quartiles for each alternative climate projections, and calculated the frequency of quartiles assigned for each gridded location (high quartile frequency = more agreement among climate projections). We evaluated recommendations using a recent climate adaptation heuristic framework that recommends emphasizing various conservation strategies to land based on current conservation value and expected climate exposure. We found that areas where conservation strategies would be confidently assigned based on high agreement among climate projections varied substantially across regions. In general, there was more agreement in forward and backward velocity estimates among alternative projections than agreement in estimates of local dissimilarity. Consensus of climate predictions resulted in the same conservation recommendation assignments in a few areas, but patterns varied by climate exposure metric. This work demonstrates an approach for explicitly evaluating alternative predictions in geographic patterns of climate change.

  2. Penalized spline estimation for functional coefficient regression models.

    PubMed

    Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan

    2010-04-01

    The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.

  3. Patient understanding of medical jargon: a survey study of U.S. medical students.

    PubMed

    LeBlanc, Thomas W; Hesson, Ashley; Williams, Andrew; Feudtner, Chris; Holmes-Rovner, Margaret; Williamson, Lillie D; Ubel, Peter A

    2014-05-01

    With increasing exposure, medical students may forget that technical jargon is unfamiliar to laypeople. To investigate this possibility, authors assessed student perceptions of patient understanding across different years in medical school. 533 students at 4 U.S. medical schools rated the proportion of patients likely to understand each of twenty-one different jargon terms. Students were either in the first month of their first year, the middle of their first year, or the middle of their fourth year of medical school. Fourth-year students were slightly more pessimistic about patients' understanding compared to new first-year students (mean percent understanding of 55.1% vs. 58.6%, p=0.004). Students both over- and under-estimated patient understanding of specific words compared to published estimates. In a multivariate model, other factors did not explain these differences. Students do not generally presume that patients understand medical jargon. In many cases they actually underestimate patients' understanding, and these estimates may become more pessimistic longitudinally. Jargon use in communication with patients does not appear to stem from unrealistic presumptions about patients' understanding or from desensitization to jargon during medical school. Training about patient knowledge of medical jargon may be a useful addition to communication skills curricula. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Comparison of 3 measures of physical activity and associations with blood pressure, HDL, and body composition in a sample of adolescents.

    PubMed

    Hearst, Mary O; Sirard, John R; Lytle, Leslie; Dengel, Donald R; Berrigan, David

    2012-01-01

    The association of physical activity (PA), measured 3 ways, and biomarkers were compared in a sample of adolescents. PA data were collected on 2 cohorts of adolescents (N = 700) in the Twin Cities, Minnesota, 2007-2008. PA was measured using 2 survey questions [Modified Activity Questionnaire (MAQ)], the 3-Day Physical Activity Recall (3DPAR), and accelerometers. Biomarkers included systolic (SBP) and diastolic blood pressure (DBP), lipids, percent body fat (%BF), and body mass index (BMI) percentile. Bivariate relationships among PA measures and biomarkers were examined followed by generalized estimating equations for multivariate analysis. The 3 measures were significantly correlated with each other (r = .22-.36, P < .001). Controlling for study, puberty, age, and gender, all 3 PA measures were associated with %BF (MAQ = -1.93, P < .001; 3DPAR = -1.64, P < .001; accelerometer = -1.06, P = .001). The MAQ and accelerometers were negatively associated with BMI percentile. None of the 3 PA measures were significantly associated with SBP or lipids. The percentage of adolescents meeting the national PA recommendations varied by instrument. All 3 instruments demonstrated consistent findings when estimating associations with %BF, but were different for prevalence estimates. Researchers must carefully consider the intended use of PA data when choosing a measurement instrument.

  5. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  6. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods

    PubMed Central

    Stürmer, Til; Joshi, Manisha; Glynn, Robert J.; Avorn, Jerry; Rothman, Kenneth J.; Schneeweiss, Sebastian

    2006-01-01

    Objective Propensity score analyses attempt to control for confounding in non-experimental studies by adjusting for the likelihood that a given patient is exposed. Such analyses have been proposed to address confounding by indication, but there is little empirical evidence that they achieve better control than conventional multivariate outcome modeling. Study design and methods Using PubMed and Science Citation Index, we assessed the use of propensity scores over time and critically evaluated studies published through 2003. Results Use of propensity scores increased from a total of 8 papers before 1998 to 71 in 2003. Most of the 177 published studies abstracted assessed medications (N=60) or surgical interventions (N=51), mainly in cardiology and cardiac surgery (N=90). Whether PS methods or conventional outcome models were used to control for confounding had little effect on results in those studies in which such comparison was possible. Only 9 out of 69 studies (13%) had an effect estimate that differed by more than 20% from that obtained with a conventional outcome model in all PS analyses presented. Conclusions Publication of results based on propensity score methods has increased dramatically, but there is little evidence that these methods yield substantially different estimates compared with conventional multivariable methods. PMID:16632131

  7. Genetic association between milk yield, stayability, and mastitis in Holstein cows under tropical conditions.

    PubMed

    Irano, Natalia; Bignardi, Annaiza Braga; El Faro, Lenira; Santana, Mário Luiz; Cardoso, Vera Lúcia; Albuquerque, Lucia Galvão

    2014-03-01

    The objective of this study was to estimate genetic parameters for milk yield, stayability, and the occurrence of clinical mastitis in Holstein cows, as well as studying the genetic relationship between them, in order to provide subsidies for the genetic evaluation of these traits. Records from 5,090 Holstein cows with calving varying from 1991 to 2010, were used in the analysis. Two standard multivariate analyses were carried out, one containing the trait of accumulated 305-day milk yields in the first lactation (MY1), stayability (STAY) until the third lactation, and clinical mastitis (CM), as well as the other traits, considering accumulated 305-day milk yields (Y305), STAY, and CM, including the first three lactations as repeated measures for Y305 and CM. The covariance components were obtained by a Bayesian approach. The heritability estimates obtained by multivariate analysis with MY1 were 0.19, 0.28, and 0.13 for MY1, STAY, and CM, respectively, whereas using the multivariate analysis with the Y305, the estimates were 0.19, 0.31, and 0.14, respectively. The genetic correlations between MY1 and STAY, MY1 and CM, and STAY and CM, respectively, were 0.38, 0.12, and -0.49. The genetic correlations between Y305 and STAY, Y305 and CM, and STAY and CM, respectively, were 0.66, -0.25, and -0.52.

  8. Estimation of (co)variances for genomic regions of flexible sizes: application to complex infectious udder diseases in dairy cattle

    PubMed Central

    2012-01-01

    Background Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances, either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic selection or to gain further insight into the genomic architecture of related traits such as mammary disease traits in dairy cattle. Methods Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model with a common prior distribution for the marker allele substitution effects and estimation of the hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level, per chromosome, and in regions of 100 SNP on a chromosome. Results Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because of the part-whole relationship between these traits. The chromosome-wise genomic proportions of the total variance differed between traits, with some chromosomes explaining higher or lower values than expected in relation to chromosome size. Few chromosomes showed pleiotropic effects and only chromosome 19 had a clear effect on all traits, indicating the presence of QTL with a general effect on mastitis resistance. The region-wise patterns of genomic variances differed between traits. Peaks indicating QTL were identified but were not very distinctive because a common prior for the marker effects was used. There was a clear difference in the region-wise patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of pleiotropic QTL. Conclusions The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances of mastitis resistance traits in dairy cattle using multivariate genomic models. PMID:22640006

  9. A Study of Effects of MultiCollinearity in the Multivariable Analysis

    PubMed Central

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.

    2015-01-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257

  10. A Study of Effects of MultiCollinearity in the Multivariable Analysis.

    PubMed

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W

    2014-10-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.

  11. Domestic violence and treatment seeking: a longitudinal study of low-income women and mental health/substance abuse care.

    PubMed

    Cheng, Tyrone C; Lo, Celia C

    2014-01-01

    A study with 591 low-income women examined domestic violence's role in treatment seeking for mental health or substance abuse problems. (The women resided in one of two California counties.) Following Aday's behavioral model of health services utilization, the secondary data analysis considered the women's need, enabling, and predisposing factors. Generalized estimating equations analyzed the women's longitudinal records of treatment seeking. Results showed that those in the sample who were likely to seek treatment had experienced three or more controlling behaviors and only one abusive behavior. Multivariate data analysis showed treatment-seeking women were likely to be white and older; responsible for few dependent children; not graduates of high school; employed; not participating in Medicaid; diagnosed; and perceiving a need for treatment. The implications of these results for services and policies are discussed.

  12. Novel health monitoring method using an RGB camera.

    PubMed

    Hassan, M A; Malik, A S; Fofi, D; Saad, N; Meriaudeau, F

    2017-11-01

    In this paper we present a novel health monitoring method by estimating the heart rate and respiratory rate using an RGB camera. The heart rate and the respiratory rate are estimated from the photoplethysmography (PPG) and the respiratory motion. The method mainly operates by using the green spectrum of the RGB camera to generate a multivariate PPG signal to perform multivariate de-noising on the video signal to extract the resultant PPG signal. A periodicity based voting scheme (PVS) was used to measure the heart rate and respiratory rate from the estimated PPG signal. We evaluated our proposed method with a state of the art heart rate measuring method for two scenarios using the MAHNOB-HCI database and a self collected naturalistic environment database. The methods were furthermore evaluated for various scenarios at naturalistic environments such as a motion variance session and a skin tone variance session. Our proposed method operated robustly during the experiments and outperformed the state of the art heart rate measuring methods by compensating the effects of the naturalistic environment.

  13. Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.

    PubMed

    Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak

    2015-01-01

    This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.

  14. Integrating Growth Variability of the Ilium, Fifth Lumbar Vertebra, and Clavicle with Multivariate Adaptive Regression Splines Models for Subadult Age Estimation.

    PubMed

    Corron, Louise; Marchal, François; Condemi, Silvana; Telmon, Norbert; Chaumoitre, Kathia; Adalian, Pascal

    2018-05-31

    Subadult age estimation should rely on sampling and statistical protocols capturing development variability for more accurate age estimates. In this perspective, measurements were taken on the fifth lumbar vertebrae and/or clavicles of 534 French males and females aged 0-19 years and the ilia of 244 males and females aged 0-12 years. These variables were fitted in nonparametric multivariate adaptive regression splines (MARS) models with 95% prediction intervals (PIs) of age. The models were tested on two independent samples from Marseille and the Luis Lopes reference collection from Lisbon. Models using ilium width and module, maximum clavicle length, and lateral vertebral body heights were more than 92% accurate. Precision was lower for postpubertal individuals. Integrating punctual nonlinearities of the relationship between age and the variables and dynamic prediction intervals incorporated the normal increase in interindividual growth variability (heteroscedasticity of variance) with age for more biologically accurate predictions. © 2018 American Academy of Forensic Sciences.

  15. Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model

    PubMed Central

    Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak

    2015-01-01

    This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels. PMID:26351652

  16. Relative Performance of Rescaling and Resampling Approaches to Model Chi Square and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Johnathan; Hancock, Gregory R.

    Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…

  17. Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient

    ERIC Educational Resources Information Center

    Krishnamoorthy, K.; Xia, Yanping

    2008-01-01

    The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…

  18. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    PubMed

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.

  19. Survival advantage in black versus white men with CKD: effect of estimated GFR and case mix.

    PubMed

    Kovesdy, Csaba P; Quarles, L Darryl; Lott, Evan H; Lu, Jun Ling; Ma, Jennie Z; Molnar, Miklos Z; Kalantar-Zadeh, Kamyar

    2013-08-01

    Black dialysis patients have significantly lower mortality compared with white patients, in contradistinction to the higher mortality seen in blacks in the general population. It is unclear whether a similar paradox exists in patients with non-dialysis-dependent chronic kidney disease (CKD), and if it does, what its underlying reasons are. Historical cohort. 518,406 white and 52,402 black male US veterans with non-dialysis-dependent CKD stages 3-5. Black race. We examined overall and CKD stage-specific all-cause mortality using parametric survival models. The effect of sociodemographic characteristics, comorbid conditions, and laboratory characteristics on the observed differences was explored in multivariable models. During a median follow-up of 4.7 years, 172,093 patients died (mortality rate, 71.0 [95% CI, 70.6-71.3] per 1,000 patient-years). Black race was associated with significantly lower crude mortality (HR, 0.95; 95% CI, 0.94-0.97; P < 0.001). The survival advantage was attenuated after adjustment for age (HR, 1.14; 95% CI, 1.12-1.16), but was magnified after full multivariable adjustment (HR, 0.72; 95% CI, 0.70-0.73; P < 0.001). The unadjusted survival advantage of blacks was more prominent in those with more advanced stages of CKD, but CKD stage-specific differences were attenuated by multivariable adjustment. Exclusively male patients. Black patients with CKD have lower mortality compared with white patients. The survival advantage seen in blacks is accentuated in patients with more advanced stages of CKD, which may be explained by changes in case-mix and laboratory characteristics occurring during the course of kidney disease. Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc.

  20. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models

    NASA Astrophysics Data System (ADS)

    Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.

    2007-01-01

    Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.

  1. Survival Advantage in Black Versus White Men With CKD: Effect of Estimated GFR and Case Mix

    PubMed Central

    Kovesdy, Csaba P.; Quarles, L. Darryl; Lott, Evan H.; Lu, Jun Ling; Ma, Jennie Z.; Molnar, Miklos Z.; Kalantar-Zadeh, Kamyar

    2013-01-01

    Background Black dialysis patients have significantly lower mortality compared to white patients, in contradistinction to the higher mortality seen in blacks in the general population. It is unclear if a similar paradox exists in non–dialysis-dependent CKD, and if it does, what its underlying reasons are. Study Design Historical cohort. Setting & Participants 518,406 white and 52,402 black male US veterans with non-dialysis dependent CKD stages 3–5. Predictor Black race. Outcomes & Measurements We examined overall and CKD stage-specific all-cause mortality using parametric survival models. The effect of sociodemographic characteristics, comorbidities and laboratory characteristics on the observed differences was explored in multivariable models. Results Over a median follow-up of 4.7 years 172,093 patients died (mortality rate, 71.0 [95% CI, 70.6–71.3] per 1000 patient-years). Black race was associated with significantly lower crude mortality (HR, 0.95; 95% CI, 0.94–0.97; p<0.001). The survival advantage was attenuated after adjustment for age (HR, 1.14; 95% CI, 1.12–1.16), but was even magnified after full multivariable adjustment (HR, 0.72; 95% CI, 0.70–0.73; p<0.001). The unadjusted survival advantage of blacks was more prominent in those with more advanced stages of CKD, but CKD stage-specific differences were attenuated by multivariable adjustment. Limitations Exclusively male patients. Conclusions Black patients with CKD have lower mortality compared to white patients. The survival advantage seen in blacks is accentuated in patients with more advanced stages of CKD, which may be explained by changes in case mix and laboratory characteristics occurring during the course of kidney disease. PMID:23369826

  2. The role of footwear in the prevention of foot lesions in patients with NIDDM. Conventional wisdom or evidence-based practice?

    PubMed

    Litzelman, D K; Marriott, D J; Vinicor, F

    1997-02-01

    To conduct a prospective evaluation of footwear characteristics as predictors of diabetic foot wounds. A total of 352 patients with NIDDM enrolled in a randomized controlled trial aimed at preventing diabetic foot lesions in an academic general medicine practice were studied. Foot wounds (n = 63) were modeled univariately and multivariably using generalized estimating equations. The dependent variable was a wound classified as a 1.2 or greater according to the Seattle Wound Classification System, indicating at least a superficial or healing minor lesion with no functional interruption of the protective cutaneous barrier. Independent variables included detailed measures of style and material of patients' indoor and outdoor shoes, appropriate length and width, sock fibers, whether the patient had bought new shoes in the past 6 months, and if the patient had been recommended for special shoes. Modeling controlled for intervention status and physiological measures (baseline wound, monofilament abnormalities, and serum HDL level). Initial screening (P < 0.20) suggested that a recommendation for special shoes, shoe length, and shoe width were indicative of wounds at follow-up (odds ratios [ORs] 2.19, 1.84, 1.86, respectively), while having bought shoes in the past 6 months was associated with no wound at follow-up (OR 0.60). The final multivariable model included only the recommendation for special shoes (OR 2.19; 95% CI 1.07-4.49). Many variables commonly cited as protective measures in footwear for diabetic patients were not prospectively predictive when controlling for physiological risk factors. Rigorous analyses are needed to examine the many assumptions regarding footwear recommendations for diabetic patients.

  3. Testing key predictions of the associative account of mirror neurons in humans using multivariate pattern analysis.

    PubMed

    Oosterhof, Nikolaas N; Wiggett, Alison J; Cross, Emily S

    2014-04-01

    Cook et al. overstate the evidence supporting their associative account of mirror neurons in humans: most studies do not address a key property, action-specificity that generalizes across the visual and motor domains. Multivariate pattern analysis (MVPA) of neuroimaging data can address this concern, and we illustrate how MVPA can be used to test key predictions of their account.

  4. Multivariate selection and intersexual genetic constraints in a wild bird population.

    PubMed

    Poissant, J; Morrissey, M B; Gosler, A G; Slate, J; Sheldon, B C

    2016-10-01

    When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra- and intersex additive genetic (co)variances and sex-specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex-specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex-specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross-sex genetic correlation = -0.003, 95% CI = -0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex-specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    PubMed

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  6. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  7. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    PubMed

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Bias correction in the hierarchical likelihood approach to the analysis of multivariate survival data.

    PubMed

    Jeon, Jihyoun; Hsu, Li; Gorfine, Malka

    2012-07-01

    Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.

  9. Multivariate statistical approach to estimate mixing proportions for unknown end members

    USGS Publications Warehouse

    Valder, Joshua F.; Long, Andrew J.; Davis, Arden D.; Kenner, Scott J.

    2012-01-01

    A multivariate statistical method is presented, which includes principal components analysis (PCA) and an end-member mixing model to estimate unknown end-member hydrochemical compositions and the relative mixing proportions of those end members in mixed waters. PCA, together with the Hotelling T2 statistic and a conceptual model of groundwater flow and mixing, was used in selecting samples that best approximate end members, which then were used as initial values in optimization of the end-member mixing model. This method was tested on controlled datasets (i.e., true values of estimates were known a priori) and found effective in estimating these end members and mixing proportions. The controlled datasets included synthetically generated hydrochemical data, synthetically generated mixing proportions, and laboratory analyses of sample mixtures, which were used in an evaluation of the effectiveness of this method for potential use in actual hydrological settings. For three different scenarios tested, correlation coefficients (R2) for linear regression between the estimated and known values ranged from 0.968 to 0.993 for mixing proportions and from 0.839 to 0.998 for end-member compositions. The method also was applied to field data from a study of end-member mixing in groundwater as a field example and partial method validation.

  10. Probabilistic estimates of drought impacts on agricultural production

    NASA Astrophysics Data System (ADS)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  11. Conditional survival estimates improve over time for patients with advanced melanoma: results from a population-based analysis.

    PubMed

    Xing, Yan; Chang, George J; Hu, Chung-Yuan; Askew, Robert L; Ross, Merrick I; Gershenwald, Jeffrey E; Lee, Jeffrey E; Mansfield, Paul F; Lucci, Anthony; Cormier, Janice N

    2010-05-01

    Conditional survival (CS) has emerged as a clinically relevant measure of prognosis for cancer survivors. The objective of this analysis was to provide melanoma-specific CS estimates to help clinicians promote more informed patient decision making. Patients with melanoma and at least 5 years of follow-up were identified from the Surveillance Epidemiology and End Results registry (1988-2000). By using the methods of Kaplan and Meier, stage-specific, 5-year CS estimates were independently calculated for survivors for each year after diagnosis. Stage-specific multivariate Cox regression models including baseline survivor functions were used to calculate adjusted melanoma-specific CS for different subgroups of patients further stratified by age, gender, race, marital status, anatomic tumor location, and tumor histology. Five-year CS estimates for patients with stage I disease remained constant at 97% annually, while for patients with stages II, III, and IV disease, 5-year CS estimates from time 0 (diagnosis) to 5 years improved from 72% to 86%, 51% to 87%, and 19% to 84%, respectively. Multivariate CS analysis revealed that differences in stages II through IV CS based on age, gender, and race decreased over time. Five-year melanoma-specific CS estimates improve dramatically over time for survivors with advanced stages of disease. These prognostic data are critical to patients for both treatment and nontreatment related life decisions. (c) 2010 American Cancer Society.

  12. Estimating brain connectivity when few data points are available: Perspectives and limitations.

    PubMed

    Antonacci, Yuri; Toppi, Jlenia; Caschera, Stefano; Anzolin, Alessandra; Mattia, Donatella; Astolfi, Laura

    2017-07-01

    Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in which current methods fail, due to the lack of enough data points. We tested the performances of this new approach, in comparison with the classical approach based on ordinary least squares (OLS), by means of a simulation study implementing different ground-truth networks, under different network sizes and different levels of data points. Simulation results showed that the new approach provides better performances, in terms of accuracy of the parameters estimation and false positives/false negatives rates, in all conditions related to a low data points/model dimension ratio, and may thus be exploited to estimate and validate estimated patterns at single-trial level or when short time data segments are available.

  13. Self-tuning multivariable pole placement control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1992-01-01

    This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.

  14. Comparison of connectivity analyses for resting state EEG data

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo

    2017-06-01

    Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.

  15. Celebrity suicides and their differential influence on suicides in the general population: a national population-based study in Korea.

    PubMed

    Myung, Woojae; Won, Hong-Hee; Fava, Maurizio; Mischoulon, David; Yeung, Albert; Lee, Dongsoo; Kim, Doh Kwan; Jeon, Hong Jin

    2015-04-01

    Although evidence suggests that there is an increase in suicide rates in the general population following celebrity suicide, the rates are heterogeneous across celebrities and countries. It is unclear which is the more vulnerable population according to the effect sizes of celebrity suicides to general population. All suicide victims in the general population verified by the Korea National Statistical Office and suicides of celebrity in South Korea were included for 7 years from 2005 to 2011. Effect sizes were estimated by comparing rates of suicide in the population one month before and after each celebrity suicide. The associations between suicide victims and celebrities were examined. Among 94,845 suicide victims, 17,209 completed suicide within one month after 13 celebrity suicides. Multivariate logistic regression analyses revealed that suicide victims who died after celebrity suicide were significantly likely to be of age 20-39, female, and to die by hanging. These qualities were more strongly associated among those who followed celebrity suicide with intermediate and high effect sizes than lower. Younger suicide victims were significantly associated with higher effect size, female gender, white collar employment, unmarried status, higher education, death by hanging, and night-time death. Characteristics of celebrities were significantly associated with those of general population in hanging method and gender. Individuals who commit suicide after a celebrity suicide are likely to be younger, female, and prefer hanging as method of suicide, which are more strongly associated in higher effect sizes of celebrity suicide.

  16. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms

    NASA Astrophysics Data System (ADS)

    Schaffrin, Burkhard; Felus, Yaron A.

    2008-06-01

    The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model ( Y- E Y = ( X- E X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler-Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335-342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.

  17. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  18. Pooled Analysis of Individual Patient Data on Concurrent Chemoradiotherapy for Stage III Non-Small-Cell Lung Cancer in Elderly Patients Compared With Younger Patients Who Participated in US National Cancer Institute Cooperative Group Studies.

    PubMed

    Stinchcombe, Thomas E; Zhang, Ying; Vokes, Everett E; Schiller, Joan H; Bradley, Jeffrey D; Kelly, Karen; Curran, Walter J; Schild, Steven E; Movsas, Benjamin; Clamon, Gerald; Govindan, Ramaswamy; Blumenschein, George R; Socinski, Mark A; Ready, Neal E; Akerley, Wallace L; Cohen, Harvey J; Pang, Herbert H; Wang, Xiaofei

    2017-09-01

    Purpose Concurrent chemoradiotherapy is standard treatment for patients with stage III non-small-cell lung cancer. Elderly patients may experience increased rates of adverse events (AEs) or less benefit from concurrent chemoradiotherapy. Patients and Methods Individual patient data were collected from 16 phase II or III trials conducted by US National Cancer Institute-supported cooperative groups of concurrent chemoradiotherapy alone or with consolidation or induction chemotherapy for stage III non-small-cell lung cancer from 1990 to 2012. Overall survival (OS), progression-free survival, and AEs were compared between patients age ≥ 70 (elderly) and those younger than 70 years (younger). Unadjusted and adjusted hazard ratios (HRs) for survival time and CIs were estimated by single-predictor and multivariable frailty Cox models. Unadjusted and adjusted odds ratio (ORs) for AEs and CIs were obtained from single-predictor and multivariable generalized linear mixed-effect models. Results A total of 2,768 patients were classified as younger and 832 as elderly. In unadjusted and multivariable models, elderly patients had worse OS (HR, 1.20; 95% CI, 1.09 to 1.31 and HR, 1.17; 95% CI, 1.07 to 1.29, respectively). In unadjusted and multivariable models, elderly and younger patients had similar progression-free survival (HR, 1.01; 95% CI, 0.93 to 1.10 and HR, 1.00; 95% CI, 0.91 to 1.09, respectively). Elderly patients had a higher rate of grade ≥ 3 AEs in unadjusted and multivariable models (OR, 1.35; 95% CI, 1.07 to 1.70 and OR, 1.38; 95% CI, 1.10 to 1.74, respectively). Grade 5 AEs were significantly higher in elderly compared with younger patients (9% v 4%; P < .01). Fewer elderly compared with younger patients completed treatment (47% v 57%; P < .01), and more discontinued treatment because of AEs (20% v 13%; P < .01), died during treatment (7.8% v 2.9%; P < .01), and refused further treatment (5.8% v 3.9%; P = .02). Conclusion Elderly patients in concurrent chemoradiotherapy trials experienced worse OS, more toxicity, and had a higher rate of death during treatment than younger patients.

  19. Unplanned 30-Day Readmissions in a General Internal Medicine Hospitalist Service at a Comprehensive Cancer Center.

    PubMed

    Manzano, Joanna-Grace M; Gadiraju, Sahitya; Hiremath, Adarsh; Lin, Heather Yan; Farroni, Jeff; Halm, Josiah

    2015-09-01

    Hospital readmissions are considered by the Centers for Medicare and Medicaid as a metric for quality of health care delivery. Robust data on the readmission profile of patients with cancer are currently insufficient to determine whether this measure is applicable to cancer hospitals as well. To address this knowledge gap, we estimated the unplanned readmission rate and identified factors influencing unplanned readmissions in a hospitalist service at a comprehensive cancer center. We retrospectively analyzed unplanned 30-day readmission of patients discharged from the General Internal Medicine Hospitalist Service at a comprehensive cancer center between April 1, 2012, and September 30, 2012. Multiple independent variables were studied using univariable and multivariable logistic regression models, with generalized estimating equations to identify risk factors associated with readmissions. We observed a readmission rate of 22.6% in our cohort. The median time to unplanned readmission was 10 days. Unplanned readmission was more likely in patients with metastatic cancer and those with three or more comorbidities. Patients discharged to hospice were less likely to be readmitted (all P values < .01). We observed a high unplanned readmission rate among our population of patients with cancer. The risk factors identified appear to be related to severity of illness and open up opportunities for improving coordination with primary care physicians, oncologists, and other specialists to manage comorbidities, or perhaps transition appropriate patients to palliative care. Our findings will be instrumental for developing targeted interventions to help reduce readmissions at our hospital. Our data also provide direction for appropriate application of readmission quality measures in cancer hospitals. Copyright © 2015 by American Society of Clinical Oncology.

  20. Venous thromboembolism and subsequent permanent work-related disability

    PubMed Central

    Brækkan, Sigrid K.; Grosse, Scott D.; Okoroh, Ekwutosi M.; Tsai, James; Cannegieter, Suzanne C.; Næss, Inger Anne; Krokstad, Steinar; Hansen, John-Bjarne; Skjeldestad, Finn Egil

    2016-01-01

    Background The burden of venous thromboembolism (VTE) related to permanent work-related disability has never been assessed among a general population. Therefore, we aimed to estimate the risk of work-related disability in subjects with incident VTE compared with those without VTE in a population-based cohort. Methods From the Tromsø Study and the Nord-Trøndelag Health Study (HUNT), Norway, 66005 individuals aged 20–65 years were enrolled in 1994–1997 and followed to December 31, 2008. Incident VTE events among the study participants were identified and validated, and information on work-related disability was obtained from the Norwegian National Insurance Administration database. Cox-regression models using age as time-scale and VTE as time-varying exposure were used to estimate hazard ratios (HR) with 95% confidence intervals (CI) adjusted for sex, BMI, smoking, education level, marital status, history of cancer, diabetes, cardiovascular disease and self-rated general health. Results During follow-up, 384 subjects had a first VTE and 9862 participants were granted disability pension. The crude incidence rate of work-related disability after VTE was 37.5 (95%CI: 29.7–47.3) per 1000 person-years, versus 13.5 (13.2–13.7) per 1000 person-years among those without VTE. Subjects with unprovoked VTE had a 52% higher risk of work-related disability than those without VTE (HR 1.52, 95%CI 1.09–2.14) after multivariable adjustment, and the association appeared to be driven by deep vein thrombosis. Conclusion VTE was associated with subsequent work-related disability in a cohort recruited from the general working-age population. Our findings suggest that indirect costs due to loss of work time may add to the economic burden of VTE. PMID:27411161

  1. Cancer Risk After Pediatric Solid Organ Transplantation.

    PubMed

    Yanik, Elizabeth L; Smith, Jodi M; Shiels, Meredith S; Clarke, Christina A; Lynch, Charles F; Kahn, Amy R; Koch, Lori; Pawlish, Karen S; Engels, Eric A

    2017-05-01

    The effects of pediatric solid organ transplantation on cancer risk may differ from those observed in adult recipients. We described cancers in pediatric recipients and compared incidence to the general population. The US transplant registry was linked to 16 cancer registries to identify cancer diagnoses among recipients <18 years old at transplant. Standardized incidence ratios (SIRs) were estimated by dividing observed cancer counts among recipients by expected counts based on the general population rates. Cox regression was used to estimate the associations between recipient characteristics and non-Hodgkin's lymphoma (NHL) risk. Among 17 958 pediatric recipients, 392 cancers were diagnosed, of which 279 (71%) were NHL. Compared with the general population, incidence was significantly increased for NHL (SIR = 212, 95% confidence interval [CI] = 188-238), Hodgkin's lymphoma (SIR = 19, 95% CI = 13-26), leukemia (SIR = 4, 95% CI = 2-7), myeloma (SIR = 229, 95% CI = 47-671), and cancers of the liver, soft tissue, ovary, vulva, testis, bladder, kidney, and thyroid. NHL risk was highest during the first year after transplantation among recipients <5 years old at transplant (SIR = 313), among recipients seronegative for Epstein-Barr virus (EBV) at transplant (SIR = 446), and among intestine transplant recipients (SIR = 1280). In multivariable analyses, seronegative EBV status, the first year after transplantation, intestine transplantation, and induction immunosuppression were independently associated with higher NHL incidence. Pediatric recipients have a markedly increased risk for many cancers. NHL constitutes the majority of diagnosed cancers, with the highest risk occurring in the first year after transplantation. NHL risk was high in recipients susceptible to primary EBV infection after transplant and in intestine transplant recipients, perhaps due to EBV transmission in the donor organ. Copyright © 2017 by the American Academy of Pediatrics.

  2. Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data

    Treesearch

    Ronald E. McRoberts; Grant M. Domke; Qi Chen; Erik Næsset; Terje Gobakken

    2016-01-01

    The relatively small sampling intensities used by national forest inventories are often insufficient to produce the desired precision for estimates of population parameters unless the estimation process is augmented with auxiliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a non-parametric,multivariate approach...

  3. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo; Andrew O. Finley; Heikkinen Juha

    2007-01-01

    The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest...

  4. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  5. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases.

    PubMed

    Hackstadt, Amber J; Peng, Roger D

    2014-11-01

    Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects.

  6. Misspecification of Cox regression models with composite endpoints

    PubMed Central

    Wu, Longyang; Cook, Richard J

    2012-01-01

    Researchers routinely adopt composite endpoints in multicenter randomized trials designed to evaluate the effect of experimental interventions in cardiovascular disease, diabetes, and cancer. Despite their widespread use, relatively little attention has been paid to the statistical properties of estimators of treatment effect based on composite endpoints. We consider this here in the context of multivariate models for time to event data in which copula functions link marginal distributions with a proportional hazards structure. We then examine the asymptotic and empirical properties of the estimator of treatment effect arising from a Cox regression model for the time to the first event. We point out that even when the treatment effect is the same for the component events, the limiting value of the estimator based on the composite endpoint is usually inconsistent for this common value. We find that in this context the limiting value is determined by the degree of association between the events, the stochastic ordering of events, and the censoring distribution. Within the framework adopted, marginal methods for the analysis of multivariate failure time data yield consistent estimators of treatment effect and are therefore preferred. We illustrate the methods by application to a recent asthma study. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22736519

  7. Generalized t-statistic for two-group classification.

    PubMed

    Komori, Osamu; Eguchi, Shinto; Copas, John B

    2015-06-01

    In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.

  8. U.S. truck driver anthropometric study and multivariate anthropometric models for cab designs.

    PubMed

    Guan, Jinhua; Hsiao, Hongwei; Bradtmiller, Bruce; Kau, Tsui-Ying; Reed, Matthew R; Jahns, Steven K; Loczi, Josef; Hardee, H Lenora; Piamonte, Dominic Paul T

    2012-10-01

    This study presents data from a large-scale anthropometric study of U.S. truck drivers and the multivariate anthropometric models developed for the design of next-generation truck cabs. Up-to-date anthropometric information of the U.S. truck driver population is needed for the design of safe and ergonomically efficient truck cabs. We collected 35 anthropometric dimensions for 1,950 truck drivers (1,779 males and 171 females) across the continental United States using a sampling plan designed to capture the appropriate ethnic, gender, and age distributions of the truck driver population. Truck drivers are heavier than the U.S.general population, with a difference in mean body weight of 13.5 kg for males and 15.4 kg for females. They are also different in physique from the U.S. general population. In addition, the current truck drivers are heavier and different in physique compared to their counterparts of 25 to 30 years ago. The data obtained in this study provide more accurate anthropometric information for cab designs than do the current U.S. general population data or truck driver data collected 25 to 30 years ago. Multivariate anthropometric models, spanning 95% of the current truck driver population on the basis of a set of 12 anthropometric measurements, have been developed to facilitate future cab designs. The up-to-date truck driver anthropometric data and multivariate anthropometric models will benefit the design of future truck cabs which, in turn, will help promote the safety and health of the U.S. truck drivers.

  9. Nearest neighbors by neighborhood counting.

    PubMed

    Wang, Hui

    2006-06-01

    Finding nearest neighbors is a general idea that underlies many artificial intelligence tasks, including machine learning, data mining, natural language understanding, and information retrieval. This idea is explicitly used in the k-nearest neighbors algorithm (kNN), a popular classification method. In this paper, this idea is adopted in the development of a general methodology, neighborhood counting, for devising similarity functions. We turn our focus from neighbors to neighborhoods, a region in the data space covering the data point in question. To measure the similarity between two data points, we consider all neighborhoods that cover both data points. We propose to use the number of such neighborhoods as a measure of similarity. Neighborhood can be defined for different types of data in different ways. Here, we consider one definition of neighborhood for multivariate data and derive a formula for such similarity, called neighborhood counting measure or NCM. NCM was tested experimentally in the framework of kNN. Experiments show that NCM is generally comparable to VDM and its variants, the state-of-the-art distance functions for multivariate data, and, at the same time, is consistently better for relatively large k values. Additionally, NCM consistently outperforms HEOM (a mixture of Euclidean and Hamming distances), the "standard" and most widely used distance function for multivariate data. NCM has a computational complexity in the same order as the standard Euclidean distance function and NCM is task independent and works for numerical and categorical data in a conceptually uniform way. The neighborhood counting methodology is proven sound for multivariate data experimentally. We hope it will work for other types of data.

  10. Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study.

    PubMed

    Ning, Jing; Rahbar, Mohammad H; Choi, Sangbum; Piao, Jin; Hong, Chuan; Del Junco, Deborah J; Rahbar, Elaheh; Fox, Erin E; Holcomb, John B; Wang, Mei-Cheng

    2017-08-01

    In comparative effectiveness studies of multicomponent, sequential interventions like blood product transfusion (plasma, platelets, red blood cells) for trauma and critical care patients, the timing and dynamics of treatment relative to the fragility of a patient's condition is often overlooked and underappreciated. While many hospitals have established massive transfusion protocols to ensure that physiologically optimal combinations of blood products are rapidly available, the period of time required to achieve a specified massive transfusion standard (e.g. a 1:1 or 1:2 ratio of plasma or platelets:red blood cells) has been ignored. To account for the time-varying characteristics of transfusions, we use semiparametric rate models for multivariate recurrent events to estimate blood product ratios. We use latent variables to account for multiple sources of informative censoring (early surgical or endovascular hemorrhage control procedures or death). The major advantage is that the distributions of latent variables and the dependence structure between the multivariate recurrent events and informative censoring need not be specified. Thus, our approach is robust to complex model assumptions. We establish asymptotic properties and evaluate finite sample performance through simulations, and apply the method to data from the PRospective Observational Multicenter Major Trauma Transfusion study.

  11. Using multivariate generalizability theory to assess the effect of content stratification on the reliability of a performance assessment.

    PubMed

    Keller, Lisa A; Clauser, Brian E; Swanson, David B

    2010-12-01

    In recent years, demand for performance assessments has continued to grow. However, performance assessments are notorious for lower reliability, and in particular, low reliability resulting from task specificity. Since reliability analyses typically treat the performance tasks as randomly sampled from an infinite universe of tasks, these estimates of reliability may not be accurate. For tests built according to a table of specifications, tasks are randomly sampled from different strata (content domains, skill areas, etc.). If these strata remain fixed in the test construction process, ignoring this stratification in the reliability analysis results in an underestimate of "parallel forms" reliability, and an overestimate of the person-by-task component. This research explores the effect of representing and misrepresenting the stratification appropriately in estimation of reliability and the standard error of measurement. Both multivariate and univariate generalizability studies are reported. Results indicate that the proper specification of the analytic design is essential in yielding the proper information both about the generalizability of the assessment and the standard error of measurement. Further, illustrative D studies present the effect under a variety of situations and test designs. Additional benefits of multivariate generalizability theory in test design and evaluation are also discussed.

  12. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  13. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  14. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  15. A bootstrap estimation scheme for chemical compositional data with nondetects

    USGS Publications Warehouse

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  16. The Interface Between Theory and Data in Structural Equation Models

    USGS Publications Warehouse

    Grace, James B.; Bollen, Kenneth A.

    2006-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.

  17. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    PubMed

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  18. The Fourier decomposition method for nonlinear and non-stationary time series analysis

    PubMed Central

    Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-01-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of ‘Fourier intrinsic band functions’ (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time–frequency–energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms. PMID:28413352

  19. Quantitative methods for analysing cumulative effects on fish migration success: a review.

    PubMed

    Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G

    2012-07-01

    It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  20. Multivariate survivorship analysis using two cross-sectional samples.

    PubMed

    Hill, M E

    1999-11-01

    As an alternative to survival analysis with longitudinal data, I introduce a method that can be applied when one observes the same cohort in two cross-sectional samples collected at different points in time. The method allows for the estimation of log-probability survivorship models that estimate the influence of multiple time-invariant factors on survival over a time interval separating two samples. This approach can be used whenever the survival process can be adequately conceptualized as an irreversible single-decrement process (e.g., mortality, the transition to first marriage among a cohort of never-married individuals). Using data from the Integrated Public Use Microdata Series (Ruggles and Sobek 1997), I illustrate the multivariate method through an investigation of the effects of race, parity, and educational attainment on the survival of older women in the United States.

Top