Robust Adaptive Control of Multivariable Nonlinear Systems
2011-03-28
Systems: Challenge Problem Integration and NASA s Integrated Resilient Aircraft Control . We also revealed some similarities with the disturbance ... observer (DOB) controllers and identified the main features in the difference between them. The key feature of this difference is that the estimation loop
NASA Astrophysics Data System (ADS)
Chang, Wei-Der; Yan, Jun-Juh
2006-10-01
In this paper, we propose a novel genetic algorithm (GA) with a multi-crossover fashion to estimate the associated coefficients for a class of nonlinear discrete-time multivariable dynamical systems. Unlike the traditional crossover method of using two chromosomes, the proposed method uses three chromosomes to achieve a crossover. According to the adjusting direction by crossing three chromosomes, more excellent offspring can be produced. To solve the identification problem of multivariable nonlinear discrete-time systems, each of estimated system coefficients represents a gene, and a collection of genes is referred to as a chromosome in the view of GA. The chromosomes in the population are then evolved using the proposed multi-crossover method. An illustrative example of multivariable nonlinear systems is given to demonstrate the effectiveness, as compared with the traditional crossover method, of the proposed method.
A Signal Transmission Technique for Stability Analysis of Multivariable Non-Linear Control Systems
NASA Technical Reports Server (NTRS)
Jackson, Mark; Zimpfer, Doug; Adams, Neil; Lindsey, K. L. (Technical Monitor)
2000-01-01
Among the difficulties associated with multivariable, non-linear control systems is the problem of assessing closed-loop stability. Of particular interest is the class of non-linear systems controlled with on/off actuators, such as spacecraft thrusters or electrical relays. With such systems, standard describing function techniques are typically too conservative, and time-domain simulation analysis is prohibitively extensive, This paper presents an open-loop analysis technique for this class of non-linear systems. The technique is centered around an innovative use of multivariable signal transmission theory to quantify the plant response to worst case control commands. The technique has been applied to assess stability of thruster controlled flexible space structures. Examples are provided for Space Shuttle attitude control with attached flexible payloads.
A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Grunberg, D. B.
1986-01-01
A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.
Constructing networks from a dynamical system perspective for multivariate nonlinear time series.
Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael
2016-03-01
We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Horton, Rebecca B; McConico, Morgan; Landry, Currie; Tran, Tho; Vogt, Frank
2012-10-09
Innovations in chemometrics are required for studies of chemical systems which are governed by nonlinear responses to chemical parameters and/or interdependencies (coupling) among these parameters. Conventional and linear multivariate models have limited use for quantitative and qualitative investigations of such systems because they are based on the assumption that the measured data are simple superpositions of several input parameters. 'Predictor Surfaces' were developed for studies of more chemically complex systems such as biological materials in order to ensure accurate quantitative analyses and proper chemical modeling for in-depth studies of such systems. Predictor Surfaces are based on approximating nonlinear multivariate model functions by multivariate Taylor expansions which inherently introduce the required coupled and higher-order predictor variables. As proof-of-principle for the Predictor Surfaces' capabilities, an application from environmental analytical chemistry was chosen. Microalgae cells are known to sensitively adapt to changes in environmental parameters such as pollution and/or nutrient availability and thus have potential as novel in situ sensors for environmental monitoring. These adaptations of the microalgae cells are reflected in their chemical signatures which were then acquired by means of FT-IR spectroscopy. In this study, the concentrations of three nutrients, namely inorganic carbon and two nitrogen containing ions, were chosen. Biological considerations predict that changes in nutrient availability produce a nonlinear response in the cells' biomass composition; it is also known that microalgae need certain nutrient mixes to thrive. The nonlinear Predictor Surfaces were demonstrated to be more accurate in predicting the values of these nutrients' concentrations than principal component regression. For qualitative chemical studies of biological systems, the Predictor Surfaces themselves are a novel tool as they visualize
Estimating structure of multivariate systems with genetic algorithms for nonlinear prediction
NASA Astrophysics Data System (ADS)
Suzuki, Tomoya; Ueoka, Yuta; Sato, Haruki
2009-12-01
Although we can often observe time-series data of many elements, these elements do not always interact with each other. This paper proposes a scheme to estimate the interdependency among observed elements only by time-series data, which is useful for selecting essential elements to optimize multivariate prediction model. Because this estimation is a sort of combinatorial optimization problems, we applied the genetic algorithm as a method to moderate this problem. Through some simulations, we confirmed performance of our method, which can identify interaction of multivariate system and can improve its prediction accuracy. Especially, our method can be applied to predict real foreign-exchange markets even if system has nonstational property and its structure changes dynamically.
Automated fault diagnosis in nonlinear multivariable systems using a learning methodology.
Trunov, A B; Polycarpou, M M
2000-01-01
The paper presents a robust fault diagnosis scheme for detecting and approximating state and output faults occurring in a class of nonlinear multiinput-multioutput dynamical systems. Changes in the system dynamics due to a fault are modeled as nonlinear functions of the control input and measured output variables. Both state and output faults can be modeled as slowly developing (incipient) or abrupt, with each component of the state/output fault vector being represented by a separate time profile. The robust fault diagnosis scheme utilizes on-line approximators and adaptive nonlinear filtering techniques to obtain estimates of the fault functions. Robustness with respect to modeling uncertainties, fault sensitivity and stability properties of the learning scheme are rigorously derived and the theoretical results are illustrated by a simulation example of a fourth-order satellite model.
Hwang, Chih-Lyang; Jan, Chau
2016-02-01
At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.
Recursive identification and tracking of parameters for linear and nonlinear multivariable systems
NASA Technical Reports Server (NTRS)
Sidar, M.
1975-01-01
The problem of identifying constant and variable parameters in multi-input, multi-output, linear and nonlinear systems is considered, using the maximum likelihood approach. An iterative algorithm, leading to recursive identification and tracking of the unknown parameters and the noise covariance matrix, is developed. Agile tracking, and accurate and unbiased identified parameters are obtained. Necessary conditions for a globally, asymptotically stable identification process are provided; the conditions proved to be useful and efficient. Among different cases studied, the stability derivatives of an aircraft were identified and some of the results are shown as examples.
1968-01-01
one). Examples abound of systems with numerous controlled variables, and the modern tendency is toward ever greater utilization of systems and plants of this kind. We call them multivariable control systems (MCS).
NASA Technical Reports Server (NTRS)
Callier, F. M.; Desoer, C. A.
1974-01-01
The loop transformation technique (Sandberg, 1965; Zames, 1966, Willems, 1971), and the fixed point theorem (Schwartz, 1970) are used to derive the L(superscript-p) stability for a class of multivariable nonlinear time-varying feedback systems which are open-loop unstable. The application of the fixed point theorem in L(superscript-p) shows that the nonlinear feedback system has one and only one solution for any pair of inputs in L(superscript-p), that the solutions are continuously dependent on the inputs, and that the closed loop system is L(superscript-p)-stable for any p ranging from 1 to infinity.
Multi-application controls: Robust nonlinear multivariable aerospace controls applications
NASA Technical Reports Server (NTRS)
Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob
1994-01-01
This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented
Multivariable nonlinear identification of smart buildings
NASA Astrophysics Data System (ADS)
Kim, Yeesock; Kim, Young Hoon; Lee, Seongsoo
2015-10-01
This paper presents a new multi-input-multi-output (MIMO) fuzzy model for nonlinear system identification (SI) of smart structures under a variety of random forces. The fuzzy SI model is developed through the integration of wavelet transform (WT), multiple MIMO linear autoregressive exogenous (ARX) input models, Takagi-Sugeno (TS) fuzzy model, weighted linear least squares, and data clustering algorithms: MIMO WARX-TS fuzzy model. To demonstrate the effectiveness of the MIMO WARX-TS fuzzy model, a three-story building equipped with a magnetorheological (MR) damper under a variety of random signals is investigated. To train the proposed model, an artificial earthquake and control forces are used as input signals while displacement and acceleration responses are used as outputs. To validate the trained model, four real recorded earthquake signals are used. It is shown from the simulation that the proposed MIMO WARX-TS fuzzy identification algorithm is effective in estimating nonlinear behavior of a building-MR damper system under a variety of seismic excitations.
Nonlinear independent component analysis and multivariate time series analysis
NASA Astrophysics Data System (ADS)
Storck, Jan; Deco, Gustavo
1997-02-01
We derive an information-theory-based unsupervised learning paradigm for nonlinear independent component analysis (NICA) with neural networks. We demonstrate that under the constraint of bounded and invertible output transfer functions the two main goals of unsupervised learning, redundancy reduction and maximization of the transmitted information between input and output (Infomax-principle), are equivalent. No assumptions are made concerning the kind of input and output distributions, i.e. the kind of nonlinearity of correlations. An adapted version of the general NICA network is used for the modeling of multivariate time series by unsupervised learning. Given time series of various observables of a dynamical system, our net learns their evolution in time by extracting statistical dependencies between past and present elements of the time series. Multivariate modeling is obtained by making present value of each time series statistically independent not only from their own past but also from the past of the other series. Therefore, in contrast to univariate methods, the information lying in the couplings between the observables is also used and a detection of higher-order cross correlations is possible. We apply our method to time series of the two-dimensional Hénon map and to experimental time series obtained from the measurements of axial velocities in different locations in weakly turbulent Taylor-Couette flow.
NASA Technical Reports Server (NTRS)
Callier, F. M.; Desoer, C. A.
1973-01-01
A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.
Guaranteed robustness properties of multivariable, nonlinear, stochastic optimal regulators
NASA Technical Reports Server (NTRS)
Tsitsiklis, J. N.; Athans, M.
1983-01-01
The robustness of optimal regulators for nonlinear, deterministic and stochastic, multi-input dynamical systems is studied under the assumption that all state variables can be measured. It is shown that, under mild assumptions, such nonlinear regulators have a guaranteed infinite gain margin; moreover, they have a guaranteed 50 percent gain reduction margin and a 60 degree phase margin, in each feedback channel, provided that the system is linear in the control and the penalty to the control is quadratic, thus extending the well-known properties of LQ regulators to nonlinear optimal designs. These results are also valid for infinite horizon, average cost, stochastic optimal control problems.
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1981-01-01
Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.
ERIC Educational Resources Information Center
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Filtering by nonlinear systems.
Campos Cantón, E; González Salas, J S; Urías, J
2008-12-01
Synchronization of nonlinear systems forced by external signals is formalized as the response of a nonlinear filter. Sufficient conditions for a nonlinear system to behave as a filter are given. Some examples of generalized chaos synchronization are shown to actually be special cases of nonlinear filtering.
Thumati, Balaje T; Jagannathan, S
2010-03-01
In this paper, a novel, unified model-based fault-detection and prediction (FDP) scheme is developed for nonlinear multiple-input-multiple-output (MIMO) discrete-time systems. The proposed scheme addresses both state and output faults by considering separate time profiles. The faults, which could be incipient or abrupt, are modeled using input and output signals of the system. The fault-detection (FD) scheme comprises online approximator in discrete time (OLAD) with a robust adaptive term. An output residual is generated by comparing the FD estimator output with that of the measured system output. A fault is detected when this output residual exceeds a predefined threshold. Upon detecting the fault, the robust adaptive terms and the OLADs are initiated wherein the OLAD approximates the unknown fault dynamics online while the robust adaptive terms help in ensuring asymptotic stability of the FD design. Using the OLAD outputs, a fault diagnosis scheme is introduced. A stable parameter update law is developed not only to tune the OLAD parameters but also to estimate the time to failure (TTF), which is considered as a first step for prognostics. The asymptotic stability of the FDP scheme enhances the detection and TTF accuracy. The effectiveness of the proposed approach is demonstrated using a fourth-order MIMO satellite system.
Multivariable control systems with saturating actuators antireset windup strategies
NASA Technical Reports Server (NTRS)
Kapasouris, P.; Athans, M.
1985-01-01
Preliminary, promising, results for introducing antireset windup (ARW) properties in multivariable feedback control systems with multiple saturating actuator nonlinearities and integrating actions are presented. The ARW method introduces simple nonlinear feedback around the integrators. The multiloop circle criterion is used to derive sufficient conditions for closed-loop stability that employ frequency-domain singular value tests. The improvement in transient response due to the ARW feedback is demonstrated using a 2-input 2-outpurt control system based upon F-404 jet engine dynamics.
NASA Astrophysics Data System (ADS)
Kannan, Rohit; Tangirala, Arun K.
2014-06-01
Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
Multivariate optimization of production systems
Carroll, J.A.; Horne, R.N. )
1992-07-01
This paper reports that mathematically, optimization involves finding the extreme values of a function. Given a function of several variables, Z = {integral}({rvec x}{sub 1}, {rvec x}{sub 2},{rvec x}{sub 3},{yields}x{sub n}), an optimization scheme will find the combination of these variables that produces an extreme value in the function, whether it is a minimum or a maximum value. Many examples of optimization exist. For instance, if a function gives and investor's expected return on the basis of different investments, numerical optimization of the function will determine the mix of investments that will yield the maximum expected return. This is the basis of modern portfolio theory. If a function gives the difference between a set of data and a model of the data, numerical optimization of the function will produce the best fit of the model to the data. This is the basis for nonlinear parameter estimation. Similar examples can be given for network analysis, queuing theory, decision analysis, etc.
Multivariable Control System Design for a Submarine,
1984-05-01
Open Loop Singular Values for the 5 and 1S Knot Linear Modelo *~~* b % % V’ , * % ~ .%~ C 9 ~ V. --.- V. V.-.--.--46..- S. 77’ Model S20R5 20- 10- -0...Control, Addison-Wesley, 1976, pp 65-86. 14. Kevin Boettcher, Analysis of Multivariable Control Systems with Structured Uncertainty, Area Examination
Multivariate analysis: greater insights into complex systems
Technology Transfer Automated Retrieval System (TEKTRAN)
Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...
Estimating the decomposition of predictive information in multivariate systems.
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
Estimating the decomposition of predictive information in multivariate systems
NASA Astrophysics Data System (ADS)
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
An integrated multivariable artificial pancreas control system.
Turksoy, Kamuran; Quinn, Lauretta T; Littlejohn, Elizabeth; Cinar, Ali
2014-05-01
The objective was to develop a closed-loop (CL) artificial pancreas (AP) control system that uses continuous measurements of glucose concentration and physiological variables, integrated with a hypoglycemia early alarm module to regulate glucose concentration and prevent hypoglycemia. Eleven open-loop (OL) and 9 CL experiments were performed. A multivariable adaptive artificial pancreas (MAAP) system was used for the first 6 CL experiments. An integrated multivariable adaptive artificial pancreas (IMAAP) system consisting of MAAP augmented with a hypoglycemia early alarm system was used during the last 3 CL experiments. Glucose values and physical activity information were measured and transferred to the controller every 10 minutes and insulin suggestions were entered to the pump manually. All experiments were designed to be close to real-life conditions. Severe hypoglycemic episodes were seen several times during the OL experiments. With the MAAP system, the occurrence of severe hypoglycemia was decreased significantly (P < .01). No hypoglycemia was seen with the IMAAP system. There was also a significant difference (P < .01) between OL and CL experiments with regard to percentage of glucose concentration (54% vs 58%) that remained within target range (70-180 mg/dl). Integration of an adaptive control and hypoglycemia early alarm system was able to keep glucose concentration values in target range in patients with type 1 diabetes. Postprandial hypoglycemia and exercise-induced hypoglycemia did not occur when this system was used. Physical activity information improved estimation of the blood glucose concentration and effectiveness of the control system.
Bayati, Basil S; Eckhoff, Philip A
2012-12-01
We perform a high-order analytical expansion of the epidemiological susceptible-infectious-recovered multivariate master equation and include terms up to and beyond single-particle fluctuations. It is shown that higher order approximations yield qualitatively different results than low-order approximations, which is incident to the influence of additional nonlinear fluctuations. The fluctuations can be related to a meaningful physical parameter, the basic reproductive number, which is shown to dictate the rate of divergence in absolute terms from the ordinary differential equations more so than the total number of persons in the system. In epidemiological terms, the effect of single-particle fluctuations ought to be taken into account as the reproductive number approaches unity.
Nonlinear systems in medicine.
Higgins, John P.
2002-01-01
Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states. PMID:14580107
Inferring direct directed-information flow from multivariate nonlinear time series
NASA Astrophysics Data System (ADS)
Jachan, Michael; Henschel, Kathrin; Nawrath, Jakob; Schad, Ariane; Timmer, Jens; Schelter, Björn
2009-07-01
Estimating the functional topology of a network from multivariate observations is an important task in nonlinear dynamics. We introduce the nonparametric partial directed coherence that allows disentanglement of direct and indirect connections and their directions. We illustrate the performance of the nonparametric partial directed coherence by means of a simulation with data from synchronized nonlinear oscillators and apply it to real-world data from a patient suffering from essential tremor.
Abdolmaleki, Azizeh; Ghasemi, Jahan B; Shiri, Fereshteh; Pirhadi, Somayeh
2015-01-01
Data manipulation and maximum efficient extraction of useful information need a range of searching, modeling, mathematical, and statistical approaches. Hence, an adequate multivariate characterization is the first necessary step in investigation and the results are interpreted after multivariate analysis. Multivariate data analysis is capable of not only large dataset management but also interpret them surely and rapidly. Application of chemometrics and cheminformatics methods may be useful for design and discovery of new drug compounds. In this review, we present a variety of information sources on chemometrics, which we consider useful in different fields of drug design. This review describes exploratory analysis (PCA), classification and multivariate calibration (PCR, PLS) methods to data analysis. It summarizes the main facts of linear and nonlinear multivariate data analysis in drug discovery and provides an introduction to manipulation of data in this field. It handles the fundamental aspects of basic concepts of multivariate methods, principles of projections (PCA and PLS) and introduces the popular modeling and classification techniques. Enough theory behind these methods, more particularly concerning the chemometrics tools is included for those with little experience in multivariate data analysis techniques such as PCA, PLS, SIMCA, etc. We describe each method by avoiding unnecessary equations, and details of calculation algorithms. It provides a synopsis of the method followed by cases of applications in drug design (i.e., QSAR) and some of the features for each method.
Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.
Lin, Tsung-I; Wang, Wan-Lun
2017-03-20
In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches.
Compensator improvement for multivariable control systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.
1977-01-01
A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.
Faes, Luca; Nollo, Giandomenico; Porta, Alberto
2011-05-01
We present an approach, framed in information theory, to assess nonlinear causality between the subsystems of a whole stochastic or deterministic dynamical system. The approach follows a sequential procedure for nonuniform embedding of multivariate time series, whereby embedding vectors are built progressively on the basis of a minimization criterion applied to the entropy of the present state of the system conditioned to its past states. A corrected conditional entropy estimator compensating for the biasing effect of single points in the quantized hyperspace is used to guarantee the existence of a minimum entropy rate at which to terminate the procedure. The causal coupling is detected according to the Granger notion of predictability improvement, and is quantified in terms of information transfer. We apply the approach to simulations of deterministic and stochastic systems, showing its superiority over standard uniform embedding. Effects of quantization, data length, and noise contamination are investigated. As practical applications, we consider the assessment of cardiovascular regulatory mechanisms from the analysis of heart period, arterial pressure, and respiration time series, and the investigation of the information flow across brain areas from multichannel scalp electroencephalographic recordings.
NASA Astrophysics Data System (ADS)
Faes, Luca; Nollo, Giandomenico; Porta, Alberto
2011-05-01
We present an approach, framed in information theory, to assess nonlinear causality between the subsystems of a whole stochastic or deterministic dynamical system. The approach follows a sequential procedure for nonuniform embedding of multivariate time series, whereby embedding vectors are built progressively on the basis of a minimization criterion applied to the entropy of the present state of the system conditioned to its past states. A corrected conditional entropy estimator compensating for the biasing effect of single points in the quantized hyperspace is used to guarantee the existence of a minimum entropy rate at which to terminate the procedure. The causal coupling is detected according to the Granger notion of predictability improvement, and is quantified in terms of information transfer. We apply the approach to simulations of deterministic and stochastic systems, showing its superiority over standard uniform embedding. Effects of quantization, data length, and noise contamination are investigated. As practical applications, we consider the assessment of cardiovascular regulatory mechanisms from the analysis of heart period, arterial pressure, and respiration time series, and the investigation of the information flow across brain areas from multichannel scalp electroencephalographic recordings.
Apparatus and system for multivariate spectral analysis
Keenan, Michael R.; Kotula, Paul G.
2003-06-24
An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.
NASA Astrophysics Data System (ADS)
Evans, M. N.; Smerdon, J. E.; Kaplan, A.; Tolwinski-Ward, S. E.; González-Rouco, J. F.
2014-12-01
Climate field reconstructions (CFRs) of the global annual surface air temperature (SAT) field and associated global area-weighted mean annual temperature (GMAT) are derived in a collection of pseudoproxy experiments for the past millennium. Pseudoproxies are modeled from temperature (T), precipitation (P), T+P, and VS-Lite (VSL), a nonlinear and multivariate proxy system model for tree ring widths. Spatial patterns of reconstruction skill and spectral bias for the T+P and VSL-derived CFRs are similar to those previously shown using temperature-only pseudoproxies but demonstrate overall degraded skill and spectral bias for SAT reconstruction. Analysis of GMAT spectra nevertheless suggests that the true GMAT frequency spectrum is resolved by those pseudoproxies (T, T+P, and VSL) that contain some temperature information. The results suggest that mixed temperature and moisture-responding paleoclimate data may produce actual GMAT reconstructions with skill, error, and spectral characteristics like those expected from univariate and linear temperature responders, but spatially resolved CFR results should be analyzed cautiously.
Coupled nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Sun, Hongyan
In this dissertation, we study coupled nonlinear dynamical systems that exhibit new types of complex behavior. We numerically and analytically examine a variety of dynamical models, ranging from systems of ordinary differential equations (ODE) with novel elements of feedback to systems of partial differential equations (PDE) that model chemical pattern formation. Chaos, dynamical uncertainty, synchronization, and spatiotemporal pattern formation constitute the primary topics of the dissertation. Following the introduction in Chapter 1, we study chaos and dynamical uncertainty in Chapter 2 with coupled Lorenz systems and demonstrate the existence of extreme complexity in high-dimensional ODE systems. In Chapter 3, we demonstrate that chaos synchronization can be achieved by mutual and multiplicative coupling of dynamical systems. Chapter 4 and 5 focus on pattern formation in reaction-diffusion systems, and we investigate segregation and integration behavior of populations in competitive and cooperative environments, respectively.
Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
Montzka, Carsten; Pauwels, Valentijn R. N.; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry
2012-01-01
More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a
Multivariate and multiscale data assimilation in terrestrial systems: a review.
Montzka, Carsten; Pauwels, Valentijn R N; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry
2012-11-26
More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a
NASA Astrophysics Data System (ADS)
Sarhadi, Ali; Burn, Donald H.; Johnson, Fiona; Mehrotra, Raj; Sharma, Ashish
2016-05-01
Accurate projection of global warming on the probabilistic behavior of hydro-climate variables is one of the main challenges in climate change impact assessment studies. Due to the complexity of climate-associated processes, different sources of uncertainty influence the projected behavior of hydro-climate variables in regression-based statistical downscaling procedures. The current study presents a comprehensive methodology to improve the predictive power of the procedure to provide improved projections. It does this by minimizing the uncertainty sources arising from the high-dimensionality of atmospheric predictors, the complex and nonlinear relationships between hydro-climate predictands and atmospheric predictors, as well as the biases that exist in climate model simulations. To address the impact of the high dimensional feature spaces, a supervised nonlinear dimensionality reduction algorithm is presented that is able to capture the nonlinear variability among projectors through extracting a sequence of principal components that have maximal dependency with the target hydro-climate variables. Two soft-computing nonlinear machine-learning methods, Support Vector Regression (SVR) and Relevance Vector Machine (RVM), are engaged to capture the nonlinear relationships between predictand and atmospheric predictors. To correct the spatial and temporal biases over multiple time scales in the GCM predictands, the Multivariate Recursive Nesting Bias Correction (MRNBC) approach is used. The results demonstrate that this combined approach significantly improves the downscaling procedure in terms of precipitation projection.
Linearization of Nonlinear Systems.
1986-11-24
series. IEEE Trans. Circuits Syst., CAS-32(11):1150-1171, November 1985. [BC85b] S. Boyd and L. 0. Chua. Uniqueness of circuits and systems containing...Control and Information Sciences vol. 58, p10 1- 1 19 , June 1983. [BC85c] S. Boyd and L. 0. Chua. Volterra series for nonlinear circuits . In Proc. IEEE...ISCAS, Tokyo, June 1985. [BCD84] S. Boyd, L. 0. Chua, and C. A. Desoer . Analytical foundations of Volterra series. IMA Journal of Mathematical
An intelligent system for multivariate statistical process monitoring and diagnosis.
Tatara, Eric; Cinar, Ali
2002-04-01
A knowledge-based system (KBS) was designed for automated system identification, process monitoring, and diagnosis of sensor faults. The real-time KBS consists of a supervisory system using G2 KBS development software linked with external statistical modules for system identification and sensor fault diagnosis. The various statistical techniques were prototyped in MATLAB, converted to ANSI C code, and linked with the G2 Standard Interface. The KBS automatically performs all operations of data collection, identification, monitoring, and sensor fault diagnosis with little or no input from the user. Navigation throughout the KBS is via menu buttons on each user-accessible screen. Selected process variables are displayed on charts showing the history of the variables over a period of time. Multivariate statistical tests and contribution plots are also shown graphically. The KBS was evaluated using simulation studies with a polymerization reactor through a nonlinear dynamic model. Both normal operation conditions as well as conditions of process disturbances were observed to evaluate the KBS performance. Specific user-defined disturbances were added to the simulation, and the KBS correctly diagnosed both process and sensor faults when present.
Pan, Wenxiu; Zhao, Jiewen; Chen, Quansheng
2015-01-01
An optical sensor system, namely NIR laser scatter imaging system, was developed for rapid and noninvasive classification of foodborne pathogens. This developed system was used for images acquisition. The current study is focused on exploring the potential of this system combined with multivariate calibrations in classifying three categories of popular bacteria. Initially, normalization and Zernike moments extraction were performed, and the resultant translation, scale and rotation invariances were applied as the characteristic variables for subsequent discriminant analysis. Both linear (LDA, KNN and PLSDA) and nonlinear (BPANN, SVM and OSELM) pattern recognition methods were employed comparatively for modeling, and optimized by cross validation. Experimental results showed that the performances of nonlinear tools were superior to those of linear tools, especially for OSELM model with 95% discrimination rate in the prediction set. The overall results showed that it is extremely feasible for rapid and noninvasive classifying foodborne pathogens using this developed system combined with appropriate multivariate calibration. PMID:25860918
NASA Technical Reports Server (NTRS)
Turner, L. R.
1960-01-01
The problem of solving systems of nonlinear equations has been relatively neglected in the mathematical literature, especially in the textbooks, in comparison to the corresponding linear problem. Moreover, treatments that have an appearance of generality fail to discuss the nature of the solutions and the possible pitfalls of the methods suggested. Probably it is unrealistic to expect that a unified and comprehensive treatment of the subject will evolve, owing to the great variety of situations possible, especially in the applied field where some requirement of human or mechanical efficiency is always present. Therefore we attempt here simply to pose the problem and to describe and partially appraise the methods of solution currently in favor.
Multivariable robust control of a proton exchange membrane fuel cell system
NASA Astrophysics Data System (ADS)
Wang, Fu-Cheng; Chen, Hsuan-Tsung; Yang, Yee-Pien; Yen, Jia-Yush
This paper applies multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system. From the system point of view, a PEMFC can be modeled as a two-input-two-output system, where the inputs are air and hydrogen flow rates and the outputs are cell voltage and current. By fixing the output resistance, we aimed to control the cell voltage output by regulating the air and hydrogen flow rates. Due to the nonlinear characteristics of this system, multivariable robust controllers were designed to provide robust performance and to reduce the hydrogen consumption of this system. The study was carried out in three parts. Firstly, the PEMFC system was modeled as multivariable transfer function matrices using identification techniques, with the un-modeled dynamics treated as system uncertainties and disturbances. Secondly, robust control algorithms were utilized to design multivariable H ∞ controllers to deal with system uncertainty and performance requirements. Finally, the designed robust controllers were implemented to control the air and hydrogen flow rates. From the experimental results, multivariable robust control is shown to provide steady output responses and significantly reduce hydrogen consumption.
A Bayesian approach to multivariate measurement system assessment
Hamada, Michael Scott
2016-07-01
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
Minimal inversion, command matching and disturbance decoupling in multivariable systems
NASA Technical Reports Server (NTRS)
Seraji, H.
1989-01-01
The present treatment of the related problems of minimal inversion and perfect output control in linear multivariable systems uses a simple analytical expression for the inverse of a square multivariate system's transfer-function matrix to construct a minimal-order inverse of the system. Because the poles of the minimal-order inverse are the transmission zeros of the system, necessary and sufficient conditions for the inverse system's stability are simply stated in terms of the zero polynomial of the original system. A necessary and sufficient condition for the existence of the required controllers is that the plant zero polynomial be neither identical to zero nor unstable.
NASA Astrophysics Data System (ADS)
Okou, Francis A.; Akhrif, Ouassima; Dessaint, Louis A.; Bouchard, Derrick
2013-05-01
This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigma-modification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.
Steady-state decoupling and design of linear multivariable systems
NASA Technical Reports Server (NTRS)
Thaler, G. J.
1974-01-01
A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.
NASA Astrophysics Data System (ADS)
Deng, Linhua
2015-07-01
Three nonlinear analysis techniques, including cross-recurrence plot, line of synchronization, and cross-wavelet transform, are proposed to estimate the coherent phase vibrations of nonlinear and non-stationary time series. The case study utilizes the monthly averages of sunspot areas during the time interval from May 1874 to August 2014. The following prominent results are found: (1) the phase-leading hemisphere of long-term sunspot areas has changed twice in the past 140 years, indicating that the hemispheric imbalances and apparent phase differences on both hemispheres are a prevalent behavior and are not anomalous; (2) the alternating regularity of hemispheric asynchronism exhibits a cyclical pattern of 4.5+3.5 cycles, and the magnetic flux excess in a certain hemisphere during the ascending branch of a cycle can be taken as an indication of the phase-leading hemisphere in this cycle. We firmly believe that powerful nonlinear approaches are more advanced than classical linear methods when they are combined to determine the dynamic complexity of nonlinear physical systems.
Design of multivariable feedback control systems via spectral assignment
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Marefat, M.
1983-01-01
The applicability of spectral assignment techniques to the design of multivariable feedback control systems was investigated. A fractional representation design procedure for unstable plants is presented and illustrated with an example. A computer aided design software package implementing eigenvalue/eigenvector design procedures is described. A design example which illustrates the use of the program is explained.
Stabilization of linear multivariable systems by output feedback.
NASA Technical Reports Server (NTRS)
Mcbrinn, D. E.; Roy, R. J.
1972-01-01
A method is developed for improving the stability of linear multivariable systems using output feedback. The technique, which utilizes a gradient approach, has been mechanized in a digital computer program. Illustrative results are given for a seven-state two-feedback model of the Saturn V booster.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Yagang; Liu, Yurong; Zhang, Weidong
2016-01-01
In this paper, an H2 analytical decoupling control scheme with multivariable disturbance observer for both stable and unstable multi-input/multi-output (MIMO) systems with multiple time delays is proposed. Compared with conventional control strategies, the main merit is that the proposed control scheme can improve the system performances effectively when the MIMO processes with severe model mismatches and strong external disturbances. Besides, the design method has three additional advantages. First, the derived controller and observer are given in analytical forms, the design procedure is simple. Second, the orders of the designed controller and observer are low, they can be implemented easily in practice. Finally, the performance and robustness can be adjusted easily by tuning the parameters in the designed controller and observer. It is useful for practical application. Simulations are provided to illustrate the effectiveness of the proposed control scheme.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
Kourkoutas, Dimitrios; Georgopoulos, Gerasimos; Maragos, Antonios; Apostolakis, Ioannis; Tsekouras, George; Karanasiou, Irene S; Papaconstantinou, Dimitrios; Iliakis, Evaggelos; Moschos, Michael
2009-01-01
Purpose: In this paper a new nonlinear multivariable regression method is presented in order to investigate the relationship between the central corneal thickness (CCT) and the Heidelberg Retina Tomograph (HRTII) optic nerve head (ONH) topographic measurements, in patients with established glaucoma. Methods: Forty nine eyes of 49 patients with glaucoma were included in this study. Inclusion criteria were patients with (a) HRT II ONH imaging of good quality (SD < 30 μm), (b) reliable Humphrey visual field tests (30-2 program), and (c) bilateral CCT measurements with ultrasonic contact pachymetry. Patients were classified as glaucomatous based on visual field and/or ONH damage. The relationship between CCT and topographic parameters was analyzed by using the new nonlinear multivariable regression model. Results: In the entire group, CCT was 549.78 ± 33.08 μm (range: 484–636 μm); intraocular pressure (IOP) was 16.4 ± 2.67 mmHg (range: 11–23 mmHg); MD was −3.80 ± 4.97 dB (range: 4.04 – [−20.4] dB); refraction was −0.78 ± 2.46 D (range: −6.0 D to +3.0 D). The new nonlinear multivariable regression model we used indicated that CCT was significantly related (R2 = 0.227, p < 0.01) with rim volume nasally and type of diagnosis. Conclusions: By using the new nonlinear multivariable regression model, in patients with established glaucoma, our data showed that there is a statistically significant correlation between CCT and HRTII ONH structural measurements, in glaucoma patients. PMID:19668584
A method for designing robust multivariable feedback systems
NASA Technical Reports Server (NTRS)
Milich, David Albert; Athans, Michael; Valavani, Lena; Stein, Gunter
1988-01-01
A new methodology is developed for the synthesis of linear, time-invariant (LTI) controllers for multivariable LTI systems. The aim is to achieve stability and performance robustness of the feedback system in the presence of multiple unstructured uncertainty blocks; i.e., to satisfy a frequency-domain inequality in terms of the structured singular value. The design technique is referred to as the Causality Recovery Methodology (CRM). Starting with an initial (nominally) stabilizing compensator, the CRM produces a closed-loop system whose performance-robustness is at least as good as, and hopefully superior to, that of the original design. The robustness improvement is obtained by solving an infinite-dimensional, convex optimization program. A finite-dimensional implementation of the CRM was developed, and it was applied to a multivariate design example.
Piotrowski, Robert
2015-01-01
The problem of tracking dissolved oxygen is one of the most complex and fundamental issues related to biological processes. The dissolved oxygen level in aerobic tanks has a significant influence on the behavior and activity of microorganisms. Aerated tanks are supplied with air from an aeration system (blowers, pipes, throttling valves, and diffusers). It is a complex, dynamic system governed by nonlinear hybrid dynamics. Control of the aeration system is also difficult in terms of control of the dissolved oxygen. In this article, a two-level multivariable control system for tracking dissolved oxygen and controlling an aeration system is designed. A nonlinear model predictive control algorithm was applied to design controllers for each level. This overall hierarchical control system was validated by simulation based on real data records provided by a water resource recovery facility located in Kartuzy, Northern Poland. The effect of control system parameters and disturbances was also investigated.
A tensor approach to modeling of nonhomogeneous nonlinear systems
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Sain, M.
1980-01-01
Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.
1980-02-26
above papers shows how the "finite horizon time" feedback stabilization technique discussed in Section Ill-A can be extended to derive stabilizing ... control laws for the linear differential system with delayed controls: x = Ax(t) - 0 u(t) + B 1u(t - h). The second of the above papers shows how the
Diagonal dominance using function minimization algorithms. [multivariable control system design
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1977-01-01
A new approach to the design of multivariable control systems using the inverse Nyquist array method is proposed. The technique utilizes a conjugate direction function minimization algorithm to achieve dominance over a specified frequency range by minimizing the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal term of the inverse open loop transfer function matrix. The technique is easily implemented in either a batch or interactive computer mode and will yield diagonalization when previously suggested methods fail. The proposed method has been successfully applied to design a control system for a sixteenth order state model of the F-100 turbofan engine with three inputs.
Multivariable control system design using eigenstructure assignment based on LMI
NASA Astrophysics Data System (ADS)
Wu, Mei; Liu, Xiaogang; Chen, Lan
2005-11-01
This paper describes a novel method of applying linear matrix inequalities (LMIs) to eigenstructure assignment (EA) approach for design of multivariable control system. Since the degree of freedom is available in EA using state or output feedback, respectively, numerous researchers have exercised this degree of freedom to make the system have good insensitively to perturbations in the system parameter matrices. We derive a series of equations to enhance system performance such as robust stability and parameter sensitivity according to left-over freedom in eigenvector and the solution of the lateral aircraft control system design is also derived using the proposed method, meanwhile, we find that this kind of design method can be classified into an optimization question and can be solved by inner point method using LMI. The implementation and verification of the control system is also presented. Simulation results on the aircraft demonstrate the good performance of the proposed control approach.
Nonlinear systems approach to control system design
NASA Technical Reports Server (NTRS)
Meyer, G.
1984-01-01
Consider some of the control system design methods for plants with nonlinear dynamics. If the nonlinearity is weak relative to the size of the operating region, then the linear methods apply directly. Fixed-gain design may be feasible even for significant nonlinearities. It may be possible to find a single gain which provides adequate control of the linear models at several perturbation points. If the nonlinearity is restricted to a sector, that fact may be used to obtain a fixed-gain controller. Otherwise, a gain may have to be associated with each perturbation point Pi. A gain schedule K(p(v)) is obtained by connecting the perturbation points by a function, say p(v), of the scheduling parameter v (i.e., speed). When the scheduling parameter must be multidimensional, this approach is difficult; the objective is to develop an easier procedure.
Differential flatness properties and multivariable adaptive control of ovarian system dynamics
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-12-01
The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.
Noise in Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Moss, Frank; McClintock, P. V. E.
2009-08-01
List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.
Feng, Xin; Winters, Jack M
2011-01-01
Individualizing a neurorehabilitation training protocol requires understanding the performance of subjects with various capabilities under different task settings. We use multivariate regression to evaluate the performance of subjects with stroke-induced hemiparesis in trajectory tracking tasks using a force-reflecting joystick. A nonlinear effect was consistently shown in both dimensions of force field strength and impairment level for selected kinematic performance measures, with greatest sensitivity at lower force fields. This suggests that the form of a force field may play a different "role" for subjects with various impairment levels, and confirms that to achieve optimized therapeutic benefit, it is necessary to personalize interfaces.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Burken, John J.
1997-01-01
Safety and productivity of the initial flight test phase of a new vehicle have been enhanced by developing the ability to measure the stability margins of the combined control system and vehicle in flight. One shortcoming of performing this analysis is the long duration of the excitation signal required to provide results over a wide frequency range. For flight regimes such as high angle of attack or hypersonic flight, the ability to maintain flight condition for this time duration is difficult. Significantly reducing the required duration of the excitation input is possible by tailoring the input to excite only the frequency range where the lowest stability margin is expected. For a multiple-input/multiple-output system, the inputs can be simultaneously applied to the control effectors by creating each excitation input with a unique set of frequency components. Chirp-Z transformation algorithms can be used to match the analysis of the results to the specific frequencies used in the excitation input. This report discusses the application of a tailored excitation input to a high-fidelity X-31A linear model and nonlinear simulation. Depending on the frequency range, the results indicate the potential to significantly reduce the time required for stability measurement.
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-07-27
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-01-01
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338
Multivariate data assimilation in an integrated hydrological modelling system
NASA Astrophysics Data System (ADS)
Madsen, Henrik; Zhang, Donghua; Ridler, Marc; Refsgaard, Jens Christian; Høgh Jensen, Karsten
2016-04-01
The immensely increasing availability of in-situ and remotely sensed hydrological data has offered new opportunities for monitoring and forecasting water resources by combining observation data with hydrological modelling. Efficient multivariate data assimilation in integrated groundwater - surface water hydrological modelling systems are required to fully utilize and optimally combine the different types of observation data. A particular challenge is the assimilation of observation data of different hydrological variables from different monitoring instruments, representing a wide range of spatial and temporal scales and different levels of uncertainty. A multivariate data assimilation framework has been implemented in the MIKE SHE integrated hydrological modelling system by linking the MIKE SHE code with a generic data assimilation library. The data assimilation library supports different state-of-the-art ensemble-based Kalman filter methods, and includes procedures for localisation, joint state, parameter and model error estimation, and bias-aware filtering. Furthermore, it supports use of different stochastic error models to describe model and measurement errors. Results are presented that demonstrate the use of the data assimilation framework for assimilation of different data types in a catchment-scale MIKE SHE model.
Theoretical constraints in the design of multivariable control systems
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Mook, D. J.
1993-01-01
The theoretical constraints inherent in the design of multivariable control systems were defined and investigated. These constraints are manifested by the system transmission zeros that limit or bound the areas in which closed loop poles and individual transfer function zeros may be placed. These constraints were investigated primarily in the context of system decoupling or non-interaction. It was proven that decoupling requires the placement of closed loop poles at the system transmission zeros. Therefore, the system transmission zeros must be minimum phase to guarantee a stable decoupled system. Once decoupling has been accomplished, the remaining part of the system exhibits transmission zeros at infinity, so nearly complete design freedom is possible in terms of placing both poles and zeros of individual closed loop transfer functions. A general, dynamic inversion model following system architecture was developed that encompasses both the implicit and explicit configuration. Robustness properties are developed along with other attributes of this type of system. Finally, a direct design is developed for the longitudinal-vertical degrees of freedom of aircraft motion to show how a direct lift flap can be used to improve the pitch-heave maneuvering coordination for enhanced flying qualities.
Investigation of a Nonlinear Control System
NASA Technical Reports Server (NTRS)
Flugge-Lotz, I; Taylor, C F; Lindberg, H E
1958-01-01
A discontinuous variation of coefficients of the differential equation describing the linear control system before nonlinear elements are added is studied in detail. The nonlinear feedback is applied to a second-order system. Simulation techniques are used to study performance of the nonlinear control system and to compare it with the linear system for a wide variety of inputs. A detailed quantitative study of the influence of relay delays and of a transport delay is presented.
On stability theory. [of nonlinear feedback control systems
NASA Technical Reports Server (NTRS)
Safonov, M. G.; Athans, M.
1979-01-01
It is found that under mild assumptions, feedback system stability can be concluded if one can 'topologically separate' the infinite-dimensional function space containing the system's dynamical input-output relations into two regions, one region containing the dynamical input-output relation of the 'feedforward' element of the system and the other region containing the dynamical output-input relation of the 'feedback' element. Nonlinear system stability criteria of both the input-output type and the state-space (Liapunov) type are interpreted in this context. The abstract generality and conceptual simplicity afforded by the topological separation perspective clarifies some of the basic issues underlying stability theory and serves to suggest improvements in existing stability criteria. A generalization of Zames' (1966) conic-relation stability criterion is proved, laying the foundation for improved multivariable generalizations of the frequency-domain circle stability criterion for nonlinear systems.
Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems
NASA Astrophysics Data System (ADS)
Watkins, Edward Francis
1995-01-01
A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.
Harinath, Eranda; Mann, George K I
2008-06-01
This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.
NASA Astrophysics Data System (ADS)
Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao
2015-07-01
The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.
Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.
Multivariable Techniques for High-Speed Research Flight Control Systems
NASA Technical Reports Server (NTRS)
Newman, Brett A.
1999-01-01
This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.
Nonlinear Dynamics of Parametrically Excited Gyroscopic Systems
Namachchivaya. N.S.
2001-06-01
The primary objective of this project is to determine how some of the powerful geometric methods of dynamical systems can be applied to study nonlinear gyroscopic systems. We proposed to develop techniques to predict local and global behavior and instability mechanisms and to analyze the interactions between noise, stability, and nonlinearities inherent in gyroscopic systems. In order to obtain these results we use the method of normal forms, global bifurcation techniques, and various other dynamical systems tools.
Nonlinear waves in PT -symmetric systems
NASA Astrophysics Data System (ADS)
Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.
2016-07-01
Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.
A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data
Proust, Cécile; Jacqmin-Gadda, Hélène; Taylor, Jérémy M.G.; Ganiayre, Julien; Commenges, Daniel
2006-01-01
Summary Cognition is not directly measurable. It is assessed using psychometric tests which can be viewed as quantitative measures of cognition with error. The aim of this paper is to propose a model to describe the evolution in continuous time of unobserved cognition in the elderly and assess the impact of covariates directly on it. The latent cognitive process is defined using a linear mixed model including a Brownian motion and time-dependent covariates. The observed psychometric tests are considered as the results of parametrized nonlinear transformations of it at discrete occasions. Estimation of the parameters contained both in the transformations and in the linear mixed model is achieved by maximizing the observed likelihood and graphical methods are performed to assess the goodness-of-fit of the model. The method is applied to data from PAQUID, a French prospective cohort study of ageing. La cognition n’est pas directement mesurable. Elle est évaluée à l’aide d’une batterie de tests psychométriques qui peuvent être considérés comme des mesures quantitatives bruitées de la cognition. L’objectif de cet article est de proposer un modèle permettant de décrire la cognition non observée chez les personnes âgées et d’évaluer l’impact de variables explicatives directement dessus. Le processus latent défini en temps continu et représentant la cognition est modélisé par un modèle linéaire mixte prenant en compte des variables dépendantes du temps et les tests psychométriques sont ensuite définis comme des transformations nonlinéaires paramétrées du processus latent. L’estimation des paramètres à la fois dans le modèles mixte et dans les transformations nonlinéaires est obtenue en maximisant la vraisemblance observée et des méthodes graphiques sont utilisées pour évaluer l’adéquation du modèle. La méthode est appliquée aux données de la cohorte prospective française PAQUID. PMID:17156275
NASA Technical Reports Server (NTRS)
Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.
1973-01-01
The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.
NASA Technical Reports Server (NTRS)
Young, G.
1982-01-01
A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.
Stabilization of nonlinear systems using linear observers
NASA Technical Reports Server (NTRS)
Strane, R. E.; Vogt, W. G.
1974-01-01
It is shown that a linear observer can always be employed to stabilize a nonlinear system which contains a true Popov type nonlinearity in the closed interval from 0 to k, where k is finite, provided the nonlinear function and a completely observable output of the linear portion are available as inputs to the observer. Taking into consideration the case in which a completely observable output is not available from the linear portion, stabilization is shown to be possible if the original linear approximation of the system is asymptotically stable.
Patterns in a Nonlinear Optical System
NASA Astrophysics Data System (ADS)
Arecchi, F. T.; Ramazza, P. L.
We discuss the general features of patten formation in nonlinear optics, regarding the system sizes along the coordinates longitudinal and transverse to the wavefront propagation as the crucial parameters in determining the possible dynamical behaviours. As a specific example of optical pattern forming system, we review the phenomena observed in a prototypical nonlinear interferometer formed by a Kerr-like medium with optical feedback. Particular attention is devoted to the role of nonlocal interactions in determining the pattern forming scenarios observed.
Dynamical systems approaches to nonlinear problems in systems and circuits
Salam, F.M.A.; Levi, M.L.
1988-01-01
Applications of dynamical-systems analysis to nonlinear circuits and physical systems are discussed in reviews and reports. Topics addressed include general analytical methods, general simulation methods, nonlinear circuits and systems in electrical engineering, control systems, solids and vibrations, and mechanical systems. Consideration is given to the applicability of the Mel'nikov method to highly dissipative systems, damping in nonlinear solid mechanics, a three-dimensional rotation instrument for displaying strange attractors, a chaotic saddle catastrophe in forced oscillators, soliton experiments in annular Josephson junctions, local bifurcation control, periodic and chaotic motions of a buckled beam experiencing parametric and external excitation, and robust nonlinear computed torque control for robot manipulators.
The effect of system nonlinearities on system noise statistics
NASA Technical Reports Server (NTRS)
Robinson, L. H., Jr.
1971-01-01
The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.
Automated reverse engineering of nonlinear dynamical systems.
Bongard, Josh; Lipson, Hod
2007-06-12
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated "reverse engineering" approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.
A distributed system for visualizing and analyzing multivariate and multidisciplinary data
NASA Technical Reports Server (NTRS)
Jacobson, Allan S.; Allen, Mark A.; Bailey, Michael J.; Blom, Ronald G.; Blume, Leo; Elson, Lee S.
1991-01-01
Viewgraphs on a distributed system for visualizing and analyzing multivariate and multidisciplinary data are presented. Topics covered include: program objectives; and the linked windows interactive data system (LinkWinds).
Arnautovic, D.; Medanic, J.
1987-12-01
A methodology for the design of decentralized multivariable excitation and controllers in multimachine power systems is developed using projective controls. The existing methodology, is extended to permit the coordinated design of AVR and PSS controllers in power systems.
Nonlinear dynamical system approaches towards neural prosthesis
Torikai, Hiroyuki; Hashimoto, Sho
2011-04-19
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
Nonlinear characteristics of an autoparametric vibration system
NASA Astrophysics Data System (ADS)
Yan, Zhimiao; Taha, Haithem E.; Tan, Ting
2017-03-01
The nonlinear characteristics of an autoparametric vibration system are investigated. This system consists of a base structure and a cantilever beam with a tip mass. The dynamic equations for the system are derived using the extended Hamilton's principle. The method of multiple scales (MMS) is used to determine an approximate analytical solution of the nonlinear governing equations and, hence, analyze the stability and bifurcation of the system. Compared with the numerical simulation, the first-order MMS is not sufficient. A Lagrangian-based approach is proposed to perform a second-order analysis, which is applicable to a large class of nonlinear systems. The effects of the amplitude and frequency of the external force, damping and frequency of the attached cantilever beam, and the tip mass on the nonlinear responses of the autoparametric vibration system are determined. The results show that this system exhibits many interesting nonlinear phenomena including saturation, jumps, hysteresis and different kinds of bifurcations, such as saddle-node, supercritical pitchfork and subcritical pitchfork bifurcations. Power spectra, phase portraits and Poincare maps are employed to analyze the unstable behavior and the associated Hopf bifurcation and chaos. Depending on the application of such a system, its dynamical behaviors could be exploited or avoided.
Nonlinear vibrating system identification via Hilbert decomposition
NASA Astrophysics Data System (ADS)
Feldman, Michael; Braun, Simon
2017-02-01
This paper deals with the identification of nonlinear vibration systems, based on measured signals for free and forced vibration regimes. Two categories of time domain signal are analyzed, one of a fast inter-modulation signal and a second as composed of several mono-components. To some extent, this attempts to imitate analytic studies of such systems, with its two major analysis groups - the perturbation and the harmonic balance methods. Two appropriate signal processing methods are then investigated, one based on demodulation and the other on signal decomposition. The Hilbert Transform (HT) has been shown to enable effective and simple methods of analysis. We show that precise identification of the nonlinear parameters can be obtained, contrary to other average HT based methods where only approximation parameters are obtained. The effectiveness of the proposed methods is demonstrated for the precise nonlinear system identification, using both the signal demodulation and the signal decomposition methods. Following the exposition of the tools used, both the signal demodulation as well as decomposition are applied to classical examples of nonlinear systems. Cases of nonlinear stiffness and damping forces are analyzed. These include, among other, an asymmetric Helmholtz oscillator, a backlash with nonlinear turbulent square friction, and a Duffing oscillator with dry friction.
Multivariate permutation entropy and its application for complexity analysis of chaotic systems
NASA Astrophysics Data System (ADS)
He, Shaobo; Sun, Kehui; Wang, Huihai
2016-11-01
To measure the complexity of multivariate systems, the multivariate permutation entropy (MvPE) algorithm is proposed. It is employed to measure complexity of multivariate system in the phase space. As an application, MvPE is applied to analyze the complexity of chaotic systems, including hyperchaotic Hénon map, fractional-order simplified Lorenz system and financial chaotic system. Results show that MvPE algorithm is effective for analyzing the complexity of the multivariate systems. It also shows that fractional-order system does not become more complex with derivative order varying. Compared with PE, MvPE has better robustness for noise and sampling interval, and the results are not affected by different normalization methods.
Systems of Nonlinear Hyperbolic Partial Differential Equations
1997-12-01
McKinney) Travelling wave solutions of the modified Korteweg - deVries -Burgers Equation . J. Differential Equations , 116 (1995), 448-467. 4. (with D.G...SUBTITLE Systems of Nonlinear Hyperbolic Partial Differential Equations 6. AUTHOR’S) Michael Shearer PERFORMING ORGANIZATION NAMES(S) AND...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This project concerns properties of wave propagation in partial differential equations that are nonlinear
Connective stability of nonlinear matrix systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1974-01-01
Consideration of stability under structural perturbations of free dynamic systems described by the differential equation dx/dt = A(t,x)x, where the matrix A(t,x) has time-varying nonlinear elements. The concept of 'connective stability' is introduced to study the structural properties of competitive-cooperative nonlinear matrix systems. It is shown that stability reliability in such systems is high and that they remain stable despite time-varying (including 'on-off') interaction among individual agents present in the system. The results obtained can be used to study stability aspects of mathematical models arising in as diverse fields as economics, biology, arms races, and transistor circuits.
Damage detection in initially nonlinear systems
Bornn, Luke; Farrar, Charles; Park, Gyuhae
2009-01-01
The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment.
Augmented nonlinear differentiator design and application to nonlinear uncertain systems.
Shao, Xingling; Liu, Jun; Li, Jie; Cao, Huiliang; Shen, Chong; Zhang, Xiaoming
2017-03-01
In this paper, an augmented nonlinear differentiator (AND) based on sigmoid function is developed to calculate the noise-less time derivative under noisy measurement condition. The essential philosophy of proposed AND in achieving high attenuation of noise effect is established by expanding the signal dynamics with extra state variable representing the integrated noisy measurement, then with the integral of measurement as input, the augmented differentiator is formulated to improve the estimation quality. The prominent advantages of the present differentiation technique are: (i) better noise suppression ability can be achieved without appreciable delay; (ii) the improved methodology can be readily extended to construct augmented high-order differentiator to obtain multiple derivatives. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, the robust control problems of nonlinear uncertain systems, including a numerical example and a mass spring system, are addressed to demonstrate the effectiveness of AND in precisely estimating the disturbance and providing the unavailable differential estimate to implement output feedback based controller.
Parametric Identification of Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Feeny, Brian
2002-01-01
In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.
Asymmetric wave propagation in nonlinear systems.
Lepri, Stefano; Casati, Giulio
2011-04-22
A mechanism for asymmetric (nonreciprocal) wave transmission is presented. As a reference system, we consider a layered nonlinear, nonmirror-symmetric model described by the one-dimensional discrete nonlinear Schrödinger equation with spatially varying coefficients embedded in an otherwise linear lattice. We construct a class of exact extended solutions such that waves with the same frequency and incident amplitude impinging from left and right directions have very different transmission coefficients. This effect arises already for the simplest case of two nonlinear layers and is associated with the shift of nonlinear resonances. Increasing the number of layers considerably increases the complexity of the family of solutions. Finally, numerical simulations of asymmetric wave packet transmission are presented which beautifully display the rectifying effect.
Multipulses in discrete Hamiltonian nonlinear systems.
Kevrekidis, P G
2001-08-01
In this work, the behavior of multipulses in discrete Hamiltonian nonlinear systems is investigated. The discrete nonlinear Schrödinger equation is used as the benchmark system for this study. A singular perturbation methodology as well as a variational approach are implemented in order to identify the dominant factors in the discrete problem. The results of the two methodologies are shown to coincide in assessing the interplay of discreteness and exponential tail-tail pulse interaction. They also allow one to understand why, contrary to what is believed for their continuum siblings, discrete systems can sustain (static) multipulse configurations, a conclusion that is subsequently verified by numerical experiment.
Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz
2014-02-01
Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.
System interaction with linear and nonlinear characteristics
Lin, C.W. ); Tseng, W.S. )
1991-01-01
This book is covered under some of the following topics: seismic margins in piping systems, vibrational power flow in a cylindrical shell, inelastic pipework dynamics and aseismic design, an efficient method for dynamic analysis of a linearly elastic piping system with nonlinear supports.
System characterization in nonlinear random vibration
Paez, T.L.; Gregory, D.L.
1986-01-01
Linear structural models are frequently used for structural system characterization and analysis. In most situations they can provide satisfactory results, but under some circumstances they are insufficient for system definition. The present investigation proposes a model for nonlinear structure characterization, and demonstrates how the functions describing the model can be identified using a random vibration experiment. Further, it is shown that the model is sufficient to completely characterize the stationary random vibration response of a structure that has a harmonic frequency generating form of nonlinearity. An analytical example is presented to demonstrate the plausibility of the model.
State Identification in Nonlinear Systems
Holloway, James Paul
2005-02-06
A state estimation method based on finding a system state that causes a model to match a set of system measurements is regularized by requiring that sudden changes in system state be avoided. The required optimization is accomplished by a pattern search algorithm. The method does not require derivative information or linearization of the model. Is has been applied to a 10 dimensional model of a fast reactor system.
Evolutionary quantitative genetics of nonlinear developmental systems.
Morrissey, Michael B
2015-08-01
In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.
A new method for observing the running states of a single-variable nonlinear system.
Meng, Yu; Chen, Hong; Chen, Cheng
2015-03-01
In order to timely grasp a single variable nonlinear system running states, a new method called Scatter Point method is put forward in this paper. It can be used to observe or monitor the running states of a single variable nonlinear system in real-time. In this paper, the definition of the method is given at first, and then its working principle is expounded theoretically, after this, some physical experiments based on Chua's nonlinear system are conducted. At the same time, many scatter point graphs are measured by a general analog oscilloscope. The motion, number, and distribution of these scatter points shown on the oscilloscope screen can directly reflect the current states of the tested system. The experimental results further confirm that the method is effective and practical, in which the system running states are not easily lost. In addition, this method is not only suitable for single variable systems but also for multivariable systems.
Decoupling in linear time-varying multivariable systems
NASA Technical Reports Server (NTRS)
Sankaran, V.
1973-01-01
The necessary and sufficient conditions for the decoupling of an m-input, m-output, linear time varying dynamical system by state variable feedback is described. The class of feedback matrices which decouple the system are illustrated. Systems which do not satisfy these results are described and systems with disturbances are considered. Some examples are illustrated to clarify the results.
Statistical mechanics of a discrete nonlinear system
Rasmussen; Cretegny; Kevrekidis; Gronbech-Jensen
2000-04-24
Statistical mechanics of the discrete nonlinear Schrodinger equation is studied by means of analytical and numerical techniques. The lower bound of the Hamiltonian permits the construction of standard Gibbsian equilibrium measures for positive temperatures. Beyond the line of T = infinity, we identify a phase transition through a discontinuity in the partition function. The phase transition is demonstrated to manifest itself in the creation of breatherlike localized excitations. Interrelation between the statistical mechanics and the nonlinear dynamics of the system is explored numerically in both regimes.
Optimized spectral estimation for nonlinear synchronizing systems
NASA Astrophysics Data System (ADS)
Sommerlade, Linda; Mader, Malenka; Mader, Wolfgang; Timmer, Jens; Thiel, Marco; Grebogi, Celso; Schelter, Björn
2014-03-01
In many fields of research nonlinear dynamical systems are investigated. When more than one process is measured, besides the distinct properties of the individual processes, their interactions are of interest. Often linear methods such as coherence are used for the analysis. The estimation of coherence can lead to false conclusions when applied without fulfilling several key assumptions. We introduce a data driven method to optimize the choice of the parameters for spectral estimation. Its applicability is demonstrated based on analytical calculations and exemplified in a simulation study. We complete our investigation with an application to nonlinear tremor signals in Parkinson's disease. In particular, we analyze electroencephalogram and electromyogram data.
Stochastic Satbility and Performance Robustness of Linear Multivariable Systems
NASA Technical Reports Server (NTRS)
Ryan, Laurie E.; Stengel, Robert F.
1990-01-01
Stochastic robustness, a simple technique used to estimate the robustness of linear, time invariant systems, is applied to a single-link robot arm control system. Concepts behind stochastic stability robustness are extended to systems with estimators and to stochastic performance robustness. Stochastic performance robustness measures based on classical design specifications are introduced, and the relationship between stochastic robustness measures and control system design parameters are discussed. The application of stochastic performance robustness, and the relationship between performance objectives and design parameters are demonstrated by means of example. The results prove stochastic robustness to be a good overall robustness analysis method that can relate robustness characteristics to control system design parameters.
Indirect learning control for nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Simple method of designing centralized PI controllers for multivariable systems based on SSGM.
Dhanya Ram, V; Chidambaram, M
2015-05-01
A method is given to design multivariable PI/PID controllers for stable and unstable multivariable systems. The method needs only the steady state gain matrix (SSGM). The method is based on the static decoupler design followed by SISO PI/PID controllers design and combining the resulted decoupler and the diagonal PI(D) controllers as the centralized controllers. The result of the present method is shown to be equivalent to the empirical method proposed by Davison EJ. Multivariable tuning regulators: the feed-forward and robust control of general servo-mechanism problem. IEEE Trans Autom Control 1976;21:35-41. Three simulation examples are given. The performance of the controllers is compared with that of the reported centralized controller based on the multivariable transfer function matrix.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.
1974-01-01
A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.
Nonlinear amplitude approximation for bilinear systems
NASA Astrophysics Data System (ADS)
Jung, Chulwoo; D'Souza, Kiran; Epureanu, Bogdan I.
2014-06-01
An efficient method to predict vibration amplitudes at the resonant frequencies of dynamical systems with piecewise-linear nonlinearity is developed. This technique is referred to as bilinear amplitude approximation (BAA). BAA constructs a single vibration cycle at each resonant frequency to approximate the periodic steady-state response of the system. It is postulated that the steady-state response is piece-wise linear and can be approximated by analyzing the response over two time intervals during which the system behaves linearly. Overall the dynamics is nonlinear, but the system is in a distinct linear state during each of the two time intervals. Thus, the approximated vibration cycle is constructed using linear analyses. The equation of motion for analyzing the vibration of each state is projected along the overlapping space spanned by the linear mode shapes active in each of the states. This overlapping space is where the vibratory energy is transferred from one state to the other when the system switches from one state to the other. The overlapping space can be obtained using singular value decomposition. The space where the energy is transferred is used together with transition conditions of displacement and velocity compatibility to construct a single vibration cycle and to compute the amplitude of the dynamics. Since the BAA method does not require numerical integration of nonlinear models, computational costs are very low. In this paper, the BAA method is first applied to a single-degree-of-freedom system. Then, a three-degree-of-freedom system is introduced to demonstrate a more general application of BAA. Finally, the BAA method is applied to a full bladed disk with a crack. Results comparing numerical solutions from full-order nonlinear analysis and results obtained using BAA are presented for all systems.
Computer-Aided Decisions in Human Services: Expert Systems and Multivariate Models.
ERIC Educational Resources Information Center
Sicoly, Fiore
1989-01-01
This comparison of two approaches to the development of computerized supports for decision making--expert systems and multivariate models--focuses on computerized systems that assist professionals with tasks related to diagnosis or classification in human services. Validation of both expert systems and statistical models is emphasized. (39…
Tauler, R
2007-07-09
Although alternating least squares algorithms have revealed extremely useful and flexible to solve multivariate curve resolution problems, other approaches based on non-linear optimization algorithms using non-linear constraints are possible. Once the subspaces defined by PCA solutions are identified, appropriate rotation and perturbation of these solutions can produce solutions fulfilling the constraints obeyed by the physical nature of the investigated systems. In order to perform such a rotation, an optimization algorithm based in the fulfillment of constraints and some examples of application in chemistry and environmental chemistry are given. It is shown that the solutions obtained either by alternating least squares or by the new proposed algorithm are rather similar and that they are both within the boundaries of the band of feasible solutions obtained by an algorithm previously developed to estimate them.
On stabilisability of nonlinear systems on time scales
NASA Astrophysics Data System (ADS)
Bartosiewicz, Zbigniew; Piotrowska, Ewa
2013-01-01
In this article, stabilisability of nonlinear finite-dimensional control systems on arbitrary time scales is studied. The classical results on stabilisation of nonlinear continuous-time and discrete-time systems are extended to systems on arbitrary time scales with bounded graininess function. It is shown that uniform exponential stability of the linear approximation of a nonlinear system implies uniform exponential stability of the nonlinear system. Then this result is used to show a similar implication for uniform exponential stabilisability.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena
1993-01-01
This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.
Nonlinear plants, factorizations and stable feedback systems
NASA Technical Reports Server (NTRS)
Desoer, Charles A.; Kabuli, M. Guntekin
1987-01-01
For nonlinear plants represented by causal maps defined over extended spaces, right factorization and normalized right-coprime factorization concepts are discussed in terms of well-posed stable feedback systems. This setup covers continuous-time, discrete-time, time-invariant or time-varying input-output maps. The nonlinear maps are factored in terms of causal bounded-input bounded-output stable maps. In factored form, all instabilities of the original map are represented by the inverse of a causal stable `denominator' map. The existence of maps with right factorizations and normalized right-coprime factorizations is shown using a well-posed stable unity-feedback system. In the case where one of the subsystems has a normalized right-coprime factorization, the stability of the feedback system is equivalent to the stability of the pseudostate map.
Connectance and stability of nonlinear symplectic systems
NASA Astrophysics Data System (ADS)
Laveder, D.; Cosentino, M.; Lega, Elena; Froeschlé, C.
2008-09-01
We have revisited the problem of the transition from ordered to chaotic motion for increasing number of degrees of freedom in nonlinear symplectic maps. Following the pioneer work of Froeschlé (Phys. Rev. A 18, 277 281, 1978) we investigate such systems as a function of the number of couplings among the equations of motion, i.e. as a function of a parameter called connectance since the seminal paper of Gardner and Ashby (Nature 228, 784, 1970) about linear systems. We compare two different models showing that in the nonlinear case the connectance has to be intended as the fraction of explicit dynamical couplings among degrees of freedom, rather than the fraction of non-zero elements in a given matrix. The chaoticity increases then with the connectance until the system is fully coupled.
Consensus tracking for multiagent systems with nonlinear dynamics.
Dong, Runsha
2014-01-01
This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results.
Finite-time consensus of time-varying nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Liu, Qingrong; Liang, Zhishan
2016-08-01
This paper investigates the problem of leader-follower finite-time consensus for a class of time-varying nonlinear multi-agent systems. The dynamics of each agent is assumed to be represented by a strict feedback nonlinear system, where nonlinearities satisfy Lipschitz growth conditions with time-varying gains. The main design procedure is outlined as follows. First, it is shown that the leader-follower consensus problem is equivalent to a conventional control problem of multi-variable high-dimension systems. Second, by introducing a state transformation, the control problem is converted into the construction problem of two dynamic equations. Third, based on the Lyapunov stability theorem, the global finite-time stability of the closed-loop control system is proved, and the finite-time consensus of the concerned multi-agent systems is thus guaranteed. An example is given to verify the effectiveness of the proposed consensus protocol algorithm.
NASA Technical Reports Server (NTRS)
Lefkowitz, C. P.; Tekawy, J. A.; Pujara, P. K.; Safonov, M. G.
1989-01-01
AUTOCON is an automated computer-aided design tool for the synthesis and optimization of linear multivariable control systems based upon user-defined control parameter optimization. Violations in stability and performance requirements are computed from constraints on Single Input/Single Output (SISO) open- and closed-loop transfer function frequency responses, and from constraints on the singular-value frequency responses of Multiple Input/Multiple Output (MIMO) transfer functions, for all critical plant variations. Optimum nonlinear programming algorithms are used in the search for local constrained solutions in which violations in stability and performance are caused either to vanish or be minimized for a proper selection of the control parameters. Classical control system stability and performance design can, in this way, be combined with modern multivariable robustness methods to offer general frequency response loop-shaping via a computer-aided design tool. Complete Nichols, Nyquist, Bode, singular-value Bode magnitude and transient response plots are produced, including user-defined boundary responses. AUTOCON is used to synthesize and optimize the lateral/directional flight control system for a typical high-performance aircraft.
Nonlinear dynamic macromodeling techniques for audio systems
NASA Astrophysics Data System (ADS)
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Multivariable adaptive identification and control for artificial pancreas systems.
Turksoy, Kamuran; Quinn, Laurie; Littlejohn, Elizabeth; Cinar, Ali
2014-03-01
A constrained weighted recursive least squares method is proposed to provide recursive models with guaranteed stability and better performance than models based on regular identification methods in predicting the variations of blood glucose concentration in patients with Type 1 Diabetes. Use of physiological information from a sports armband improves glucose concentration prediction and enables earlier recognition of the effects of physical activity on glucose concentration. Generalized predictive controllers (GPC) based on these recursive models are developed. The performance of GPC for artificial pancreas systems is illustrated by simulations with UVa-Padova simulator and clinical studies. The controllers developed are good candidates for artificial pancreas systems with no announcements from patients.
An Introduction to Multivariable Flight Control System Design
1992-10-01
bound is always equal to p(M), but the maximization of p(UM) is not convex. Local maxima can occur, making a global solution difficult. The...function between 0 and ficu . for the ideal model (dashed line) and for the closed loop system (solid line) at the design cordition. The magnitude responses
A summary of spectral synthesis procedures for multivariable systems
NASA Technical Reports Server (NTRS)
Liberty, S. R.; Mielke, R. R.; Maynard, R. A.
1979-01-01
A new approach to the eigensystem assignment problem is presented. The approach utilizes a null-space formulation of the eigenvalue/eigenvector assignment problem to simultaneously realize arbitrary eigenvalue specifications, approximate desired modal behavior, and achieve low eigensystem sensitivity with respect to plant parameter variations. The methods are applied to the design of regulator and integral plus proportional servo control systems.
Model reduction of systems with localized nonlinearities.
Segalman, Daniel Joseph
2006-03-01
An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.
Robust H ∞ control of a nonlinear uncertain system via a stable nonlinear output feedback controller
NASA Astrophysics Data System (ADS)
Harno, Hendra G.; Petersen, Ian R.
2011-04-01
A new approach to solving a nonlinear robust H ∞ control problem using a stable nonlinear output feedback controller is presented in this article. The class of nonlinear uncertain systems being considered is characterised in terms of integral quadratic constraints and global Lipschitz conditions describing the admissible uncertainties and nonlinearities, respectively. The nonlinear controller is able to exploit the plant nonlinearities through the inclusion of a copy of the known plant nonlinearities in the controller. The H ∞ control objective is to obtain an absolutely stable closed-loop system with a specified disturbance attenuation level. The solution to this control problem involves stabilising solutions to parametrised algebraic Riccati equations. We apply a differential evolution algorithm to solve a non-convex nonlinear optimisation problem arising in the controller synthesis.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Multivariable control of a twin lift helicopter system using the LQG/LTR design methodology
NASA Technical Reports Server (NTRS)
Rodriguez, A. A.; Athans, M.
1986-01-01
Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.
1991-09-01
GRAFSTAT from IBM Research; I am grateful to Dr . Peter Welch for supplying GRAFSTAT. To P.A.W. Lewis, Thank you for your support, confidence and...34Multivariate Adaptive Regression Splines", Annals of Statistics, v. 19, no. 2, pp. 1-142, 1991. Geib , A., Applied Optimal Estimation, M.I.T. Press, Cambridge
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1974-01-01
The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
Robust Control of Multivariable and Large Scale Systems.
1986-03-14
a double Bezout identity to obtain the coefficients of K. (Youla, Jabr, and Bongiorno (1976), Desoer , Liu, Murray, and Saeks (1980) ). For simplicity...and M. Vidyasagar, "Feedback Systems: Input-Output Properties", New York: Academic Press, 1975. [D4] C.A. Desoer and W.S. Chan, "The feedback...interconnection of linear time-invariant sys- tems," J. Franklin Inst., 300, 1975, pp. 335-351. [D51 C.A. Desoer , R.W. Liu, J. Murray, and R. Saeks
Using Fisher information to track stability in multivariate systems
Derrible, Sybil; Eason, Tarsha; Cabezas, Heriberto
2016-01-01
With the current proliferation of data, the proficient use of statistical and mining techniques offer substantial benefits to capture useful information from any dataset. As numerous approaches make use of information theory concepts, here, we discuss how Fisher information (FI) can be applied to sustainability science problems and used in data mining applications by analysing patterns in data. FI was developed as a measure of information content in data, and it has been adapted to assess order in complex system behaviour. The main advantage of the approach is the ability to collapse multiple variables into an index that can be used to assess stability and track overall trends in a system, including its regimes and regime shifts. Here, we provide a brief overview of FI theory, followed by a simple step-by-step numerical example on how to compute FI. Furthermore, we introduce an open source Python library that can be freely downloaded from GitHub and we use it in a simple case study to evaluate the evolution of FI for the global-mean temperature from 1880 to 2015. Results indicate significant declines in FI starting in 1978, suggesting a possible regime shift. PMID:28018650
Using Fisher information to track stability in multivariate systems.
Ahmad, Nasir; Derrible, Sybil; Eason, Tarsha; Cabezas, Heriberto
2016-11-01
With the current proliferation of data, the proficient use of statistical and mining techniques offer substantial benefits to capture useful information from any dataset. As numerous approaches make use of information theory concepts, here, we discuss how Fisher information (FI) can be applied to sustainability science problems and used in data mining applications by analysing patterns in data. FI was developed as a measure of information content in data, and it has been adapted to assess order in complex system behaviour. The main advantage of the approach is the ability to collapse multiple variables into an index that can be used to assess stability and track overall trends in a system, including its regimes and regime shifts. Here, we provide a brief overview of FI theory, followed by a simple step-by-step numerical example on how to compute FI. Furthermore, we introduce an open source Python library that can be freely downloaded from GitHub and we use it in a simple case study to evaluate the evolution of FI for the global-mean temperature from 1880 to 2015. Results indicate significant declines in FI starting in 1978, suggesting a possible regime shift.
Singularity perturbed zero dynamics of nonlinear systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.
1992-01-01
Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.
Approximations of nonlinear systems having outputs
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Su, R.
1985-01-01
For a nonlinear system with output derivative x = f(x) and y = h(x), two types of linearizations about a point x(0) in state space are considered. One is the usual Taylor series approximation, and the other is defined by linearizing the appropriate Lie derivatives of the output with respect to f about x(0). The latter is called the obvservation model and appears to be quite natural for observation. It is noted that there is a coordinate system in which these two kinds of linearizations agree. In this coordinate system, a technique to construct an observer is introduced.
NASA Astrophysics Data System (ADS)
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-01
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.
Feng, Jie; Wang, Zhe; Li, Lizhi; Li, Zheng; Ni, Weidou
2013-03-01
A nonlinearized multivariate dominant factor-based partial least-squares (PLS) model was applied to coal elemental concentration measurement. For C concentration determination in bituminous coal, the intensities of multiple characteristic lines of the main elements in coal were applied to construct a comprehensive dominant factor that would provide main concentration results. A secondary PLS thereafter applied would further correct the model results by using the entire spectral information. In the dominant factor extraction, nonlinear transformation of line intensities (based on physical mechanisms) was embedded in the linear PLS to describe nonlinear self-absorption and inter-element interference more effectively and accurately. According to the empirical expression of self-absorption and Taylor expansion, nonlinear transformations of atomic and ionic line intensities of C were utilized to model self-absorption. Then, the line intensities of other elements, O and N, were taken into account for inter-element interference, considering the possible recombination of C with O and N particles. The specialty of coal analysis by using laser-induced breakdown spectroscopy (LIBS) was also discussed and considered in the multivariate dominant factor construction. The proposed model achieved a much better prediction performance than conventional PLS. Compared with our previous, already improved dominant factor-based PLS model, the present PLS model obtained the same calibration quality while decreasing the root mean square error of prediction (RMSEP) from 4.47 to 3.77%. Furthermore, with the leave-one-out cross-validation and L-curve methods, which avoid the overfitting issue in determining the number of principal components instead of minimum RMSEP criteria, the present PLS model also showed better performance for different splits of calibration and prediction samples, proving the robustness of the present PLS model.
Theoretical constraints in the design of multivariable control systems
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Mook, D. Joseph; Depena, Juan
1991-01-01
The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.
Non-linear dynamic compensation system
NASA Technical Reports Server (NTRS)
Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)
1992-01-01
A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.
Controllability of non-linear biochemical systems.
Ervadi-Radhakrishnan, Anandhi; Voit, Eberhard O
2005-07-01
Mathematical methods of biochemical pathway analysis are rapidly maturing to a point where it is possible to provide objective rationale for the natural design of metabolic systems and where it is becoming feasible to manipulate these systems based on model predictions, for instance, with the goal of optimizing the yield of a desired microbial product. So far, theory-based metabolic optimization techniques have mostly been applied to steady-state conditions or the minimization of transition time, using either linear stoichiometric models or fully kinetic models within biochemical systems theory (BST). This article addresses the related problem of controllability, where the task is to steer a non-linear biochemical system, within a given time period, from an initial state to some target state, which may or may not be a steady state. For this purpose, BST models in S-system form are transformed into affine non-linear control systems, which are subjected to an exact feedback linearization that permits controllability through independent variables. The method is exemplified with a small glycolytic-glycogenolytic pathway that had been analyzed previously by several other authors in different contexts.
NONLINEAR TIDES IN CLOSE BINARY SYSTEMS
Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh
2012-06-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' {approx}> 10-100 M{sub Circled-Plus} at orbital periods P Almost-Equal-To 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P {approx}< 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N Almost-Equal-To 10{sup 3}[P/10 days] for a solar-type star) and drives them as a single coherent unit with
Luan, Xiaoli; Chen, Qiang; Liu, Fei
2014-09-01
This article presents a new scheme to design full matrix controller for high dimensional multivariable processes based on equivalent transfer function (ETF). Differing from existing ETF method, the proposed ETF is derived directly by exploiting the relationship between the equivalent closed-loop transfer function and the inverse of open-loop transfer function. Based on the obtained ETF, the full matrix controller is designed utilizing the existing PI tuning rules. The new proposed ETF model can more accurately represent the original processes. Furthermore, the full matrix centralized controller design method proposed in this paper is applicable to high dimensional multivariable systems with satisfactory performance. Comparison with other multivariable controllers shows that the designed ETF based controller is superior with respect to design-complexity and obtained performance.
NASA Astrophysics Data System (ADS)
Zhang, Xing-Hui; Xie, Xue-Jun
2014-03-01
This paper studies the state feedback control problem for a class of nonlinear systems with high-order and low-order nonlinearities. The introduction of the sign function together with the method of adding a power integrator and Lyapunov stability theorem makes the closed-loop system globally asymptotically stable. Exploiting the idea of how to deal with growth nonlinearities with both high order and low order being relaxed to some intervals is the focus of this work.
Particle systems and nonlinear Landau damping
Villani, Cédric
2014-03-15
Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.
Feedback nonlinear discrete-time systems
NASA Astrophysics Data System (ADS)
Yu, Miao; Wang, Jiasen; Qi, Donglian
2014-11-01
In this paper, we design an adaptive iterative learning control method for a class of high-order nonlinear output feedback discrete-time systems with random initial conditions and iteration-varying desired trajectories. An n-step ahead predictor approach is employed to estimate future outputs. The discrete Nussbaum gain method is incorporated into the control design to deal with unknown control directions. The proposed control algorithm ensures that the tracking error converges to zero asymptotically along the iterative learning axis except for the beginning outputs affected by random initial conditions. A numerical simulation is carried out to demonstrate the efficacy of the presented control laws.
Design of suboptimal regulators for nonlinear systems
NASA Technical Reports Server (NTRS)
Balaram, J.; Saridis, G. N.
1985-01-01
An optimal feedback control law is preferred for the regulation of a deterministic nonlinear system. In this paper, a practical, iterative design method leading to a sequence of suboptimal control laws with successively improved performance is presented. The design method requires the determination of an upper bound to the performance of each successive control law. This is obtained by solving a partial differential inequality by means of a linear programming technique. Robustness properties and the application of the design method to the control of a robot manipulator arm are also presented.
A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering
NASA Technical Reports Server (NTRS)
Carroll, R. L.; Lindorff, D. P.
1973-01-01
An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.
Impulse position control algorithms for nonlinear systems
NASA Astrophysics Data System (ADS)
Sesekin, A. N.; Nepp, A. N.
2015-11-01
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
Impulse position control algorithms for nonlinear systems
Sesekin, A. N.; Nepp, A. N.
2015-11-30
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
Consensus Tracking for Multiagent Systems with Nonlinear Dynamics
2014-01-01
This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results. PMID:25197689
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach.
Nonlinear Behavior in Optical and Other Systems
1987-09-01
numerical analysis). Others will be devoted to ’state of the art ’ discussions of specific problems (e.g. nonlinear waveguides, Anderson localization). It is...Nonlinearity and Statistical Physics. Approximate Cost of Workshop: $5,312. STATE OF THE ART DEVELOPMfENTS IN NONLINEAR OPTICS Organizers: J. Moloney, A... Art Developments in Nonlinear Optics V. List of Preprints and Reprints with Abstracts ANTICIPATED WORKSHOPS 1987 - 1988 I. Workshop on Singularities
Quantum dynamics of nonlinear cavity systems
NASA Astrophysics Data System (ADS)
Nation, Paul David
In this work we investigate the quantum dynamics of three different configurations of nonlinear cavity systems. We begin by carrying out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprising a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing an external flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we consider the use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. We will show that biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. As a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process. Finally, we investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviation occurs once the pump mode (black hole) has released nearly half of its initial energy in the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum
Passive dynamic controllers for nonlinear mechanical systems
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.
1991-01-01
A methodology for model-independant controller design for controlling large angular motion of multi-body dynamic systems is outlined. The controlled system may consist of rigid and flexible components that undergo large rigid body motion and small elastic deformations. Control forces/torques are applied to drive the system and at the same time suppress the vibration due to flexibility of the components. The proposed controller consists of passive second-order systems which may be designed with little knowledge of the system parameter, even if the controlled system is nonlinear. Under rather general assumptions, the passive design assures that the closed loop system has guaranteed stability properties. Unlike positive real controller design, stabilization can be accomplished without direct velocity feedback. In addition, the second-order passive design allows dynamic feedback controllers with considerable freedom to tune for desired system response, and to avoid actuator saturation. After developing the basic mathematical formulation of the design methodology, simulation results are presented to illustrate the proposed approach to a flexible six-degree-of-freedom manipulator.
Buchholz, Anika; Sauerbrei, Willi
2011-03-01
The focus of many medical applications is to model the impact of several factors on time to an event. A standard approach for such analyses is the Cox proportional hazards model. It assumes that the factors act linearly on the log hazard function (linearity assumption) and that their effects are constant over time (proportional hazards (PH) assumption). Variable selection is often required to specify a more parsimonious model aiming to include only variables with an influence on the outcome. As follow-up increases the effect of a variable often gets weaker, which means that it varies in time. However, spurious time-varying effects may also be introduced by mismodelling other parts of the multivariable model, such as omission of an important covariate or an incorrect functional form of a continuous covariate. These issues interact. To check whether the effect of a variable varies in time several tests for non-PH have been proposed. However, they are not sufficient to derive a model, as appropriate modelling of the shape of time-varying effects is required. In three examples we will compare five recently published strategies to assess whether and how the effects of covariates from a multivariable model vary in time. For practical use we will give some recommendations.
Faes, Luca; Nollo, Giandomenico; Erla, Silvia; Papadelis, Christos; Braun, Christoph; Porta, Alberto
2010-01-01
This study introduces a new approach for the detection of nonlinear Granger causality between dynamical systems. The approach is based on embedding the multivariate (MV) time series measured from the systems X and Y by means of a sequential, non-uniform procedure, and on using the corrected conditional entropy (CCE) as unpredictability measure. The causal coupling from X to Y is quantified as the relative decrease of CCE measured after allowing the series of X to enter the embedding procedure for the description of Y. The ability of the approach to quantify nonlinear causality is assessed on MV time series measured from simulated dynamical systems with unidirectional coupling (the Rössler-Lorenz deterministic system) and bidirectional coupling (two coupled stochastic systems). The method is then applied to real magnetoencephalographic data measured during a visuo-tactile cognitive experiment, showing values of causal coupling consistent with the hypothesis of a cross-processing of different sensory modalities.
Nonlinear dynamic analysis of flexible multibody systems
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Kang, Nam Kook
1991-01-01
Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.
Application of nonlinear time series models to driven systems
Hunter, N.F. Jr.
1990-01-01
In our laboratory we have been engaged in an effort to model nonlinear systems using time series methods. Our objectives have been, first, to understand how the time series response of a nonlinear system unfolds as a function of the underlying state variables, second, to model the evolution of the state variables, and finally, to predict nonlinear system responses. We hope to address the relationship between model parameters and system parameters in the near future. Control of nonlinear systems based on experimentally derived parameters is also a planned topic of future research. 28 refs., 15 figs., 2 tabs.
Optimal uniform-damping ratio controller for sequential design of multivariable systems
NASA Technical Reports Server (NTRS)
Shieh, Leang G.; Liu, Zhen; Sunkel, John W.
1991-01-01
An optimal uniform-damping ratio controller is developed for the sequential design of a multivariable control system so that the designed closed-loop poles of the respective multivariable system and reduced-order observer are exactly placed on the negative real axis and/or the boundaries of desired sectors with constant-damping ratios. The functions in the quadratic performance index to be minimized are chosen as a combination of the weighted outputs, reduced states and inputs. Also, the optimal uniform-damping ratio controller is a combination of optimal output-feedback and optimal reduced-order state-feedback controllers. A numerical example is given to demonstrate the design procedure.
A multivariate analysis approach for the Imaging Atmospheric Cerenkov Telescopes System H.E.S.S
Dubois, F.; Lamanna, G.
2008-12-24
We present a multivariate classification approach applied to the analysis of data from the H.E.S.S. Very High Energy (VHE){gamma}-ray IACT stereoscopic system. This approach combines three complementary analysis methods already successfully applied in the H.E.S.S. data analysis. The proposed approach, with the combined effective estimator X{sub eff}, is conceived to improve the signal-to-background ratio and therefore particularly relevant to the morphological studies of faint extended sources.
On state representations of nonlinear implicit systems
NASA Astrophysics Data System (ADS)
Pereira da Silva, Paulo Sergio; Batista, Simone
2010-03-01
This work considers a semi-implicit system Δ, that is, a pair (S, y), where S is an explicit system described by a state representation ? , where x(t) ∈ ℝ n and u(t) ∈ ℝ m , which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) ∈ ℝ l . An input candidate is a set of functions v = (v 1, …, v s ), which may depend on time t, on x, and on u and its derivatives up to a finite order. The problem of finding a (local) proper state representation ż = g(t, z, v) with input v for the implicit system Δ is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Δ. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Lévine, Martin, and Rouchon (1999) ('A Lie-Bäcklund Approach to Equivalence and Flatness of Nonlinear Systems', IEEE Transactions on Automatic Control, 44(5), (922-937)).
Exploring lipids with nonlinear optical microscopy in multiple biological systems
NASA Astrophysics Data System (ADS)
Alfonso-Garcia, Alba
Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by
Application of multi-variable control for automatic frequency controller of HVDC transmission system
Sanpei, Masatoshi ); Kakehi, Atsuyuki; Takeda, Hideo )
1994-04-01
In an HVDC transmission system that links two ac power systems, the automatic frequency controller (AFC) calculates power to be interchanged between the two ac systems according to their frequencies thereby improving the frequency characteristics of the two power systems. This paper introduces a newly developed dc AFC system, which applies a multi-variable control to the dc system-based frequency control. It is capable of controlling the frequencies of the two ac systems optimally while maintaining their stability. This system was developed for one of Japan's HVDC transmission facilities and produced good results in a combined test using a power system simulator. The field installation will be completed in March 1993, when the AFC system will enter service.
Asymmetric Heat Conduction in Nonlinear Systems
NASA Astrophysics Data System (ADS)
Hu, Bambi
2008-12-01
Heat conduction is an old yet important problem. Since Fourier introduced the law bearing his name two hundred years ago, a first-principle derivation of this law from statistical mechanics is still lacking. Worse still, the validity of this law in low dimensions, and the necessary and sufficient conditions for its validity are still far from clear. In this talk I'll give a review of recent works done on this subject. I'll also report our latest work on asymmetric heat conduction in nonlinear systems. The study of heat condution is not only of theoretical interest but also of practical interest. The study of electric conduction has led to the invention of such important electric devices such as electric diodes and transistors. The study of heat conduction may also lead to the invention of thermal diodes and transistors in the future. Note from Publisher: This article contains the abstract only.
Bifurcations and Patterns in Nonlinear Dissipative Systems
Guenter Ahlers
2005-05-27
This project consists of experimental investigations of heat transport, pattern formation, and bifurcation phenomena in non-linear non-equilibrium fluid-mechanical systems. These issues are studies in Rayleigh-B\\'enard convection, using both pure and multicomponent fluids. They are of fundamental scientific interest, but also play an important role in engineering, materials science, ecology, meteorology, geophysics, and astrophysics. For instance, various forms of convection are important in such diverse phenomena as crystal growth from a melt with or without impurities, energy production in solar ponds, flow in the earth's mantle and outer core, geo-thermal stratifications, and various oceanographic and atmospheric phenomena. Our work utilizes computer-enhanced shadowgraph imaging of flow patterns, sophisticated digital image analysis, and high-resolution heat transport measurements.
Nonlinear identification of MDOF systems using Volterra series approximation
NASA Astrophysics Data System (ADS)
Prawin, J.; Rao, A. Rama Mohan
2017-02-01
Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Meanwhile, the presence of non-linearity in the system can lead to a wide range of structural behavior, for example, jumps, limit cycles, internal resonances, modal coupling, super and sub-harmonic resonances, etc. In this paper, we present a Volterra series approximation approach based on the adaptive filter concept for nonlinear identification of multi-degree of freedom systems, without sacrificing the benefits associated with the traditional Volterra series approach. The effectiveness of the proposed approach is demonstrated using two classical single degrees of freedom systems (breathing crack problem and Duffing Holmes oscillator) and later we extend to multi-degree of freedom systems.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.
1975-01-01
The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.
Adaptive control for a class of second-order nonlinear systems with unknown input nonlinearities.
Zhang, T; Guay, M
2003-01-01
An adaptive controller is developed for a class of second-order nonlinear dynamic systems with input nonlinearities using artificial neural networks (ANN). The unknown input nonlinearities are continuous and monotone and satisfy a sector constraint. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function, which depends on both system states and control input variable, is used for the development of a control law and a learning algorithm. The proposed adaptive controller guarantees the stability of the closed-loop system and convergence of the output tracking error to an adjustable neighbour of the origin.
NASA Technical Reports Server (NTRS)
Balas, M. J.
1980-01-01
This paper presents a theory of nonlinear state observers for nonlinear and bilinear distributed parameter systems. Convergence results are proved for these observers. Linear feedback control derived from such state observers is applied to the distributed parameter system and conditions are presented for closed-loop stability. The emphasis is on finite dimensional state observers and controllers (which can be implemented with on-line computers) and conditions for their successful operation with infinite dimensional distributed parameter systems.
NASA Astrophysics Data System (ADS)
Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.
2016-10-01
The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.
A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP)
Guo, Diansheng; Chen, Jin; MacEachren, Alan M.; Liao, Ke
2011-01-01
The research reported here integrates computational, visual, and cartographic methods to develop a geovisual analytic approach for exploring and understanding spatio-temporal and multivariate patterns. The developed methodology and tools can help analysts investigate complex patterns across multivariate, spatial, and temporal dimensions via clustering, sorting, and visualization. Specifically, the approach involves a self-organizing map, a parallel coordinate plot, several forms of reorderable matrices (including several ordering methods), a geographic small multiple display, and a 2-dimensional cartographic color design method. The coupling among these methods leverages their independent strengths and facilitates a visual exploration of patterns that are difficult to discover otherwise. The visualization system we developed supports overview of complex patterns and, through a variety of interactions, enables users to focus on specific patterns and examine detailed views. We demonstrate the system with an application to the IEEE InfoVis 2005 Contest data set, which contains time-varying, geographically referenced, and multivariate data for technology companies in the US. PMID:17073369
Nonlinear behavior in small neural systems
NASA Astrophysics Data System (ADS)
Wheeler, Diek Winters
This work addresses the nonlinear behavior of one or two model neurons under the influence of different stimuli, whether they be forms of chaos control or varieties of added noise. This is a step towards the ultimate objective of exploring the notion that a neural system might utilize a mechanism such as a memory-searching chaotic attractor to locate and retrieve stable-memory limit cycles. The biological realism of the Hopfield neuron models is discussed, and the concept of an ``effective'' neuron is introduced. The dynamical effects of adding inertial/inductance terms to an effective-neuron system are presented along with arguments for the biological relevance of such terms. A two neuron system with one or two inertial terms added is shown to exhibit chaos. The chaos is confirmed by Lyapunov exponents, power spectra, and phase-space plots. The effects of multiplicative and additive noise on the dynamics of a two effective-neuron system are investigated. One of the neurons possesses an added inertial term so the system is able to generate chaotic dynamics. The multiplicative noise is added to the connection parameter J 11, and the additive noise is added to the equation for U 2 like an external driving force. Using J11 as a bifurcation parameter, the system is examined as it passes from limit cycle dynamics to chaotic dynamics. Both types of noise are found to lower the bifurcation point with respect to its deterministic value, and both cause the dynamics to expand in phase space. For equivalent levels of noise, additive noise is found to have a stronger effect on the dynamics than multiplicative noise. The bifurcation points are explored by means of ensembles of the largest Lyapunov exponents derived from the stochastic dynamics. A brief overview is presented of the current state of control theory in chaotic systems. One control method, Hübler's [74] technique of using aperiodic forces to drive nonlinear oscillators to resonance, is analyzed. The technique is
Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Wang, Rongpeng; Ren, Zhaohui; Wen, Bangchun
2017-03-01
In this paper, the nonlinear dynamics of a parametrically excited coupled vehicle-bridge vibration system (CVBVS) is investigated, and the coupled system is subjected to a time-dependent transverse load including a constant value together with a harmonic time-variant component. The dynamic equations of the CVBVS are established by using the generalized Lagrange's equation. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the continuous governing equation. The influences of parametric excitation with nonlinear support stiffness, mass ratio, excitation amplitude and position relation on the dynamic behaviors are studied for the interaction between vehicle and the bridge. The analysis results indicate that the nonlinear dynamic characteristics are strongly attributed to the interaction of the coupled system. Nonlinear support stiffness of foundation and mass ratio can lead to complex dynamic behaviors such as jump discontinuous phenomenon, periodic, quasi-periodic and chaotic motions. Vibration amplitude increases depending on the position, where the maximum vibration displacement does not occur at the center of the bridge. The excitation amplitude has an obvious influence on the nonlinear dynamic behaviors and the increase of the excitation amplitude makes the vibration strengthen. The bifurcation diagram and 3-D frequency spectrum are used to analyze the complex nonlinear dynamic behaviors of the CVBVS. The presented results can provide an insight to the understanding of the vibration characteristics of the coupled vehicle-bridge vibration system in engineering.
Spline approximations for nonlinear hereditary control systems
NASA Technical Reports Server (NTRS)
Daniel, P. L.
1982-01-01
A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.
A PID de-tuned method for multivariable systems, applied for HVAC plant
NASA Astrophysics Data System (ADS)
Ghazali, A. B.
2015-09-01
A simple yet effective de-tuning of PID parameters for multivariable applications has been described. Although the method is felt to have wider application it is simulated in a 3-input/ 2-output building energy management system (BEMS) with known plant dynamics. The controller performances such as the sum output squared error and total energy consumption when the system is at steady state conditions are studied. This tuning methodology can also be extended to reduce the number of PID controllers as well as the control inputs for specified output references that are necessary for effective results, i.e. with good regulation performances being maintained.
Reynolds, Richard J; Dudash, Michele R; Fenster, Charles B
2010-02-01
Pollination syndromes suggest that convergent evolution of floral traits and trait combinations reflects similar selection pressures. Accordingly, a pattern of selection on floral traits is expected to be consistent with increasing the attraction and pollen transfer of the important pollinator. We measured individual variation in six floral traits and yearly and lifetime total plant seed and fruit production of 758 plants across nine years of study in natural populations of Ruby-Throated Hummingbird-pollinated Silene virginica. The type, strength, and direction of selection gradients were observed by year, and for two cohorts selection was estimated through lifetime maternal fitness. Positive directional selection was detected on floral display height in all years of study and stigma exsertion in all years but one. Significant quadratic and correlational selection gradients were rare. However, a canonical analysis of the gamma matrix indicated nonlinear selection was common; if significant curvature was detected it was convex with one exception. Our analyses demonstrated selection favored trait combinations and the integration of floral features of attraction and pollen transfer efficiency that were consistent with the hummingbird pollination syndrome.
Nonlinear phase noise in coherent optical OFDM transmission systems.
Zhu, Xianming; Kumar, Shiva
2010-03-29
We derive an analytical formula to estimate the variance of nonlinear phase noise caused by the interaction of amplified spontaneous emission (ASE) noise with fiber nonlinearity such as self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in coherent orthogonal frequency division multiplexing (OFDM) systems. The analytical results agree very well with numerical simulations, enabling the study of the nonlinear penalties in long-haul coherent OFDM systems without extensive numerical simulation. Our results show that the nonlinear phase noise induced by FWM is significantly larger than that induced by SPM and XPM, which is in contrast to traditional WDM systems where ASE-FWM interaction is negligible in quasi-linear systems. We also found that fiber chromatic dispersion can reduce the nonlinear phase noise. The variance of the total phase noise increases linearly with the bit rate, and does not depend significantly on the number of subcarriers for systems with moderate fiber chromatic dispersion.
Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Corless, Martin
2004-01-01
We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.
Dynamics of nonlinear dissipative systems in the vicinity of resonance
NASA Astrophysics Data System (ADS)
Plaksiy, K. Y.; Mikhlin, Y. V.
2015-01-01
The behavior of nonlinear dissipative 2-DOF mechanical systems in the vicinity of resonance is studied in this paper. Namely, the free resonance vibrations of a spring-mass-pendulum system and the forced resonance vibrations of a 2-DOF dissipative system containing a nonlinear absorber are considered. A reduced system stated with respect to the system energy, the arctangent of the vibration amplitudes ratio, and the phase difference, is obtained and analyzed. The nonlinear normal mode approach is used in this analysis. Conditions for vibration energy localization are discussed.
Identification of the nonlinear vibration system of power transformers
NASA Astrophysics Data System (ADS)
Jing, Zheng; Hai, Huang; Pan, Jie; Yanni, Zhang
2017-01-01
This paper focuses on the identification of the nonlinear vibration system of power transformers. A Hammerstein model is used to identify the system with electrical inputs and the vibration of the transformer tank as the output. The nonlinear property of the system is modelled using a Fourier neural network consisting of a nonlinear element and a linear dynamic block. The order and weights of the network are determined based on the Lipschitz criterion and the back-propagation algorithm. This system identification method is tested on several power transformers. Promising results for predicting the transformer vibration and extracting system parameters are presented and discussed.
Input-to-state stable nonlinear filtering for a class of continuous-time delayed nonlinear systems
NASA Astrophysics Data System (ADS)
Ahn, Choon Ki
2013-06-01
This paper investigates the input-to-state stable (ISS) nonlinear filtering problem for a class of continuous-time delayed nonlinear systems with external disturbance. A new delay-dependent nonlinear ISS filter is established through available measurements to estimate the states of delayed nonlinear systems, such that the filtering error system is both exponentially and input-to-state stable for any bounded external disturbance. The design of the nonlinear ISS filter for these nonlinear systems is achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed filter.
Robust nonlinear variable selective control for networked systems
NASA Astrophysics Data System (ADS)
Rahmani, Behrooz
2016-10-01
This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.
Tools for Nonlinear Control Systems Design
NASA Technical Reports Server (NTRS)
Sastry, S. S.
1997-01-01
This is a brief statement of the research progress made on Grant NAG2-243 titled "Tools for Nonlinear Control Systems Design", which ran from 1983 till December 1996. The initial set of PIs on the grant were C. A. Desoer, E. L. Polak and myself (for 1983). From 1984 till 1991 Desoer and I were the Pls and finally I was the sole PI from 1991 till the end of 1996. The project has been an unusually longstanding and extremely fruitful partnership, with many technical exchanges, visits, workshops and new avenues of investigation begun on this grant. There were student visits, long term.visitors on the grant and many interesting joint projects. In this final report I will only give a cursory description of the technical work done on the grant, since there was a tradition of annual progress reports and a proposal for the succeeding year. These progress reports cum proposals are attached as Appendix A to this report. Appendix B consists of papers by me and my students as co-authors sorted chronologically. When there are multiple related versions of a paper, such as a conference version and journal version they are listed together. Appendix C consists of papers by Desoer and his students as well as 'solo' publications by other researchers supported on this grant similarly chronologically sorted.
Identification of systems containing nonlinear stiffnesses using backbone curves
NASA Astrophysics Data System (ADS)
Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.
2017-02-01
This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.
System Identification for Nonlinear Control Using Neural Networks
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Linse, Dennis J.
1990-01-01
An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.
A Survey of Repetitive Control for Nonlinear Systems
NASA Astrophysics Data System (ADS)
Quan, Quan; Cai, Kai-Yuan
2010-10-01
In aerospace engineering and industry, control tasks are often of a periodic nature, while repetitive control is especially suitable for tracking and rejection of periodic exogenous signals. Because of limited research effort on nonlinear systems, we give a survey of repetitive control for nonlinear systems in this paper. First, a brief introduction of repetitive control is presented. Then, after giving a brief overview of repetitive control for linear systems, this paper summarizes design methods and existing problems of repetitive control for nonlinear systems in detail. Lastly, relationships between repetitive control and other control schemes are analyzed to recognize repetitive control from different aspects more insightfully.
A Method for Exploiting Redundancy to Accommodate Actuator Limits in Multivariable Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Roulette, Greg
1995-01-01
This paper introduces a new method for accommodating actuator saturation in a multivariable system with actuator redundancy. Actuator saturation can cause significant deterioration in control system performance because unmet demand may result in sluggish transients and oscillations in response to setpoint changes. To help compensate for this problem, a technique has been developed which takes advantage of redundancy in multivariable systems to redistribute the unmet control demand over the remaining useful effectors. This method is not a redesign procedure, rather it modifies commands to the unlimited effectors to compensate for those which are limited, thereby exploiting the built-in redundancy. The original commands are modified by the increments due to unmet demand, but when a saturated effector comes off its limit, the incremental commands disappear and the original unmodified controller remains intact. This scheme provides a smooth transition between saturated and unsaturated modes as it divides up the unmet requirement over any available actuators. This way, if there is sufficiently redundant control authority, performance can be maintained.
1980-03-01
goport hm Iee reviwe - and Is approved for publIcatIOm. Project Engineer Chief. C-pana ts Branch Drector Turtine Engine Division ’Z you r ow bw chmed f P’ow...reverse side it nereeeay and ,denly vy block rewmbev) Modern Control Gas Turbine Engine Control Optimal Control Control System Design Linear Quadratic...3.2.1 Reference Schedule Correlation ..... .. 29 3.2.2 Ap /p Instrumentation Evaluation . . .. 30 3.3 Transient Controller Performance . ....... .. 35
NASA Astrophysics Data System (ADS)
Gad, R. S.; Parab, J. S.; Naik, G. M.
2010-11-01
Multivariate system spectroscopic model plays important role in understanding chemometrics of ensemble under study. Here in this manuscript we discuss various approaches of modeling of spectroscopic system and demonstrate how Lorentz oscillator can be used to model any general spectroscopic system. Chemometric studies require customized templates design for the corresponding variants participating in ensemble, which generates the characteristic matrix of the ensemble under study. The typical biological system that resembles human blood tissue consisting of five major constituents i.e., alanine, urea, lactate, glucose, ascorbate; has been tested on the model. The model was validated using three approaches, namely, root mean square error (RMSE) analysis in the range of ±5% confidence interval, clerk gird error plot, and RMSE versus percent noise level study. Also the model was tested across various template sizes (consisting of samples ranging from 10 up to 1000) to ascertain the validity of partial least squares regression. The model has potential in understanding the chemometrics of proteomics pathways.
A mathematical theory of learning control for linear discrete multivariable systems
NASA Technical Reports Server (NTRS)
Phan, Minh; Longman, Richard W.
1988-01-01
When tracking control systems are used in repetitive operations such as robots in various manufacturing processes, the controller will make the same errors repeatedly. Here consideration is given to learning controllers that look at the tracking errors in each repetition of the process and adjust the control to decrease these errors in the next repetition. A general formalism is developed for learning control of discrete-time (time-varying or time-invariant) linear multivariable systems. Methods of specifying a desired trajectory (such that the trajectory can actually be performed by the discrete system) are discussed, and learning controllers are developed. Stability criteria are obtained which are relatively easy to use to insure convergence of the learning process, and proper gain settings are discussed in light of measurement noise and system uncertainties.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.
Asymptotic Stability of Interconnected Passive Non-Linear Systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
A new, challenging benchmark for nonlinear system identification
NASA Astrophysics Data System (ADS)
Tiso, Paolo; Noël, Jean-Philippe
2017-02-01
The progress accomplished during the past decade in nonlinear system identification in structural dynamics is considerable. The objective of the present paper is to consolidate this progress by challenging the community through a new benchmark structure exhibiting complex nonlinear dynamics. The proposed structure consists of two offset cantilevered beams connected by a highly flexible element. For increasing forcing amplitudes, the system sequentially features linear behaviour, localised nonlinearity associated with the buckling of the connecting element, and distributed nonlinearity resulting from large elastic deformations across the structure. A finite element-based code with time integration capabilities is made available at https://sem.org/nonlinear-systems-imac-focus-group/. This code permits the numerical simulation of the benchmark dynamics in response to arbitrary excitation signals.
Analysis and Design Methods for Nonlinear Control Systems
1990-03-01
entitled "Design of Nonlinear PID Controllers ." In this paper it is demonstrated that the extended linearization approach can be applied to standard...Sciences and Systems, Baltimore, Maryland, pp. 675-680, 1987. [3] WJ. Rugh, "Design of Nonlinear PID Controllers ," AIChE Journa Vol. 33, No. 10, pp. 1738
On the benefit of DMT modulation in nonlinear VLC systems.
Qian, Hua; Cai, Sunzeng; Yao, Saijie; Zhou, Ting; Yang, Yang; Wang, Xudong
2015-02-09
In a visible light communication (VLC) system, the nonlinear characteristic of the light emitting diode (LED) in transmitter is a limiting factor of system performance. Modern modulation signals with large peak-to-power-ratio (PAPR) suffers uneven distortion. The nonlinear response directly impacts the intensity modulation and direct detection VLC system with pulse-amplitude modulation (PAM). The amplitude of the PAM signal is distorted unevenly and large signal is vulnerable to noise. Orthogonal linear transformations, such as discrete multi-tone (DMT) modulation, can spread the nonlinear effects evenly to each data symbol, thus perform better than PAM signals. In this paper, we provide theoretical analysis on the benefit of DMT modulation in nonlinear VLC system. We show that the DMT modulation is a better choice than the PAM modulation for the VLC system as the DMT modulation is more robust against nonlinearity. We also show that the post-distortion nonlinear elimination method, which is applied at the receiver, can be a reliable solution to the nonlinear VLC system. Simulation results show that the post-distortion greatly improves the system performance for the DMT modulation.
A study of nonlinear flight control system designs
NASA Astrophysics Data System (ADS)
Tian, Lijun
This thesis discusses both normal aircraft flight control where the control surfaces are the primary effectors, and unconventional emergency flight control by engines only. It has long been realized that nonlinearity in aircraft dynamics is a prominent consideration in design of high-performance conventional flight control systems. The engine-only flight control problem also faces strong nonlinearity, although due to different reasons. A nonlinear predictive control method and an approximate receding-horizon control method are used for normal and engine-only flight control system designs for an F-18 aircraft. The comparison of the performance with that of linear flight controllers provides some insight into when nonlinear controllers may render a much improved performance. The concept of nonlinear flight control system design is extended to output tracking control problem. The capability of the nonlinear controller to stabilize the aircraft and accomplish output tracking control for non-minimum phase system is successfully demonstrated. Numerical simulation results of longitudinal motion based on two typical flight conditions for an F-18 aircraft is presented to illustrate some of these aspects. It is suggested in this thesis that nonlinear flight control system design, particularly the engine-only controller design and output tracking control design for non-minimum phase system by using a nonlinear method is more effective for the highly nonlinear environment. The recently developed continuous-time predictive control approach and an approximate receding-horizon control method are shown to be effective methods in the situation while the conventional linear or popular nonlinear control designs are either ineffective or inapplicable.
NASA Astrophysics Data System (ADS)
Wang, C. Y.; Jiao, X. H.
2015-10-01
This paper is devoted to discuss arbitrarily switching control problem for a class of nonlinearly parameterised nonlinear switched systems. Compared with the existing results, improvements are that a systematic procedure is given for an explicit construction of a common smooth adaptive controller independent of the switching signals. Meanwhile, the developed design method can be extended to the adaptive arbitrarily switching stabilisation problem for a class of cascade switched nonlinear systems. The theoretical analysis is presented for the Lyapunov stability of the resulting closed-loop switched system and the convergence of the original switched system states at the equilibrium under arbitrary switching. Moreover, the effectiveness and feasibility of the developed method are demonstrated by both a numerical example and a chemical system.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems
NASA Astrophysics Data System (ADS)
Ataei, Mohammad; Enshaee, Ali
2011-12-01
In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.
Analysis and design of robust decentralized controllers for nonlinear systems
Schoenwald, D.A.
1993-07-01
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Nonlinear system identification and control based on modular neural networks.
Puscasu, Gheorghe; Codres, Bogdan
2011-08-01
A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.
Control design for a class of nonlinear parameter varying systems
NASA Astrophysics Data System (ADS)
Cai, Xiushan; Liu, Yang; Zhang, Wei
2015-07-01
Stabilisation for a class of one-sided Lipschitz nonlinear parameter varying systems is dealt with in this paper. First, the nonlinear parameter varying system is represented as a subsystem of a differential inclusion. Sufficient conditions for exponential stabilisation for the differential inclusion are given by solving linear matrix inequalities. Then a continuous control law is designed to stabilise the differential inclusion. It leads to stabilising the nonlinear parameter varying system. Finally, a simulation example is presented to show the validity and advantages of the proposed method.
An experimental study of nonlinear dynamic system identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1990-01-01
A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Ding, Bo; Fang, Huajing
2017-03-31
This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system.
Dong, Jiuxiang; Wang, Youyi; Yang, Guang-Hong
2010-12-01
This paper considers the output feedback control problem for nonlinear discrete-time systems, which are represented by a type of fuzzy systems with local nonlinear models. By using the estimations of the states and nonlinear functions in local models, sufficient conditions for designing observer-based controllers are given for discrete-time nonlinear systems. First, a separation property, i.e., the controller and the observer can be independently designed, is proved for the class of fuzzy systems. Second, a two-step procedure with cone complementarity linearization algorithms is also developed for solving the H( ∞) dynamic output feedback (DOF) control problem. Moreover, for the case where the nonlinear functions in local submodels are measurable, a convex condition for designing H(∞) controllers is given by a new DOF control scheme. In contrast to the existing methods, the new methods can design output feedback controllers with fewer fuzzy rules as well as less computational burden, which is helpful for controller designs and implementations. Lastly, numerical examples are given to illustrate the effectiveness of the proposed methods.
Multivariate model of female black bear habitat use for a Geographic Information System
Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.
1993-01-01
Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1992-01-01
The application of a sector-based stability theory approach to the formulation of useful uncertainty descriptions for linear, time-invariant, multivariable systems is explored. A review of basic sector properties and sector-based approach are presented first. The sector-based approach is then applied to several general forms of parameter uncertainty to investigate its advantages and limitations. The results indicate that the sector uncertainty bound can be used effectively to evaluate the impact of parameter uncertainties on the frequency response of the design model. Inherent conservatism is a potential limitation of the sector-based approach, especially for highly dependent uncertain parameters. In addition, the representation of the system dynamics can affect the amount of conservatism reflected in the sector bound. Careful application of the model can help to reduce this conservatism, however, and the solution approach has some degrees of freedom that may be further exploited to reduce the conservatism.
Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.
Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua
2016-11-14
In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.
An experimental study of nonlinear dynamic system identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D, Joseph
1991-01-01
A technique based on the Minimum Model Error optimal estimation approach is employed for robust identification of a nonlinear dynamic system. A simple harmonic oscillator with quadratic position feedback was simulated on an analog computer. With the aid of analog measurements and an assumed linear model, the Minimum Model Error Algorithm accurately identifies the quadratic nonlinearity. The tests demonstrate that the method is robust with respect to prior ignorance of the nonlinear system model and with respect to measurement record length, regardless of initial conditions.
Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems
2006-04-01
Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems AF02T002 Phase II Final Report Contract No. FA9550-04-C-0032 Principal...3. REPORT TYPE AND DATES COVERED Final Report for 14 April 2004-14 April 2006 Real-Time Trajectory Generation for Autonomous Nonlinear Flight...A 13. ABSTRACT (Maximum 200 Words) Unmanned aerial vehicle and smart munition systems need robust, real-time path generation and
Flight investigation of a multivariable model-following control system for rotorcraft
NASA Technical Reports Server (NTRS)
Hilbert, K. B.; Lebacqz, J. V.; Hindson, W. S.
1986-01-01
A high-bandwidth, multivariable, explicit model-following control system for advanced rotorcraft has been developed and evaluated on the NASA Ames CH-47B fly-by-wire helicopter. This control system has expanded the in-flight simulation capabilities of the CH-47B to support research efforts directed at the next generation of superaugmented helicopters. A detailed, analytical model of the augmented CH-47B has also been developed to support the flight tests. Analysis using this theoretical model was used to expose fundamental limitations caused by the basic vehicle characteristics and original control system implementation that had affected the performance of the model-following control system. Improvements were made to the nominal control system design to compensate for large time delays created by the higher-orderd dynamics of the aircraft and its control system. With these improvements, high bandwidth control and excellent model-following performance were achieved. Both analytical and flight-test results for the lateral axis are presented and compared. In addition, frequency-domain techniques are employed for documenting the system performance.
Self-characterization of linear and nonlinear adaptive optics systems
NASA Astrophysics Data System (ADS)
Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan
2008-01-01
We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.
Applications of nonlinear systems theory to control design
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1988-01-01
For most applications in the control area, the standard practice is to approximate a nonlinear mathematical model by a linear system. Since the feedback linearizable systems contain linear systems as a subclass, the procedure of approximating a nonlinear system by a feedback linearizable one is examined. Because many physical plants (e.g., aircraft at the NASA Ames Research Center) have mathematical models which are close to feedback linearizable systems, such approximations are certainly justified. Results and techniques are introduced for measuring the gap between the model and its truncated linearizable part. The topic of pure feedback systems is important to the study.
Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.
Jiang, Yu; Jiang, Zhong-Ping
2014-05-01
This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system.
3-D Mesh Generation Nonlinear Systems
Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
Nasser Saadatzi, Mohammad; Poshtan, Javad; Sadegh Saadatzi, Mohammad; Tafazzoli, Faezeh
2013-01-01
Electric wheelchair (EW) is subject to diverse types of terrains and slopes, but also to occupants of various weights, which causes the EW to suffer from highly perturbed dynamics. A precise multivariable dynamics of the EW is obtained using Lagrange equations of motion which models effects of slopes as output-additive disturbances. A static pre-compensator is analytically devised which considerably decouples the EW's dynamics and also brings about a more accurate identification of the EW. The controller is designed with a disturbance-observer (DOB) two-degree-of-freedom architecture, which reduces sensitivity to the model uncertainties while enhancing rejection of the disturbances. Upon disturbance rejection, noise reduction, and robust stability of the control system, three fitness functions are presented by which the DOB is tuned using a multi-objective optimization (MOO) approach namely non-dominated sorting genetic algorithm-II (NSGA-II). Finally, experimental results show desirable performance and robust stability of the proposed algorithm.
Fault diagnosis for a class of nonlinear systems via ESO.
Yan, Bingyong; Tian, Zuohua; Shi, Songjiao; Weng, Zhengxin
2008-10-01
In this paper, a novel fault detection and identification (FDI) scheme for a class of nonlinear systems is presented. First of all, an augment system is constructed by making the unknown system faults as an extended system state. Then based on the ESO theory, a novel fault diagnosis filter is constructed to diagnose the nonlinear system faults. An extension to a class of nonlinear uncertain systems is then made. An outstanding feature of this scheme is that it can simultaneously detect and identify the shape and magnitude of the system faults in real time without training the network compared with the neural network-based FDI schemes. Finally, simulation examples are given to illustrate the feasibility and effectiveness of the proposed approach.
Parameter and Structure Inference for Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
NASA Astrophysics Data System (ADS)
Liu, Yurong; Alsaadi, Fuad E.; Yin, Xiaozhou; Wang, Yamin
2015-02-01
In this paper, we are concerned with the robust H∞ filtering problem for a class of nonlinear discrete time-delay stochastic systems. The system under consideration involves parameter uncertainties, stochastic disturbances, time-varying delays and sector nonlinearities. Both missing measurements and randomly occurring nonlinearities are described via the binary switching sequences satisfying a conditional probability distribution, and the nonlinearities are assumed to be sector bounded. The problem addressed is the design of a full-order filter such that, for all admissible uncertainties, nonlinearities and time-delays, the dynamics of the filtering error is constrained to be robustly exponentially stable in the mean square, and a prescribed ? disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and some new techniques, sufficient conditions are first established to ensure the existence of the desired filtering parameters. Then, the explicit expression of the desired filter gains is described in terms of the solution to a linear matrix inequality. Finally, a numerical example is exploited to show the usefulness of the results derived.
The analysis on nonlinear control of the aircraft arresting system
NASA Astrophysics Data System (ADS)
Song, Jinchun; Du, Tianrong
2005-12-01
The aircraft arresting system is a complicated nonlinear system. This paper analyzes the mechanical-hydraulic structure of aircraft arresting system composed of electro hydraulic valve and establishes the dynamic equation of the aircraft arresting system. Based on the state-feedback linearization of nonlinear system, a PD-based controller is synthesized. Simulation studies indicate, while arresting the different type aircraft, the proposed controller has fast response, good tracking performance and strong robustness. By tuning the parameters of the PD controller, a satisfactory control performance can be guaranteed.
Applications of nonlinear system identification to structural health monitoring.
Farrar, C. R.; Sohn, H.; Robertson, A. N.
2004-01-01
The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.
Non-linear system identification in flow-induced vibration
Spanos, P.D.; Zeldin, B.A.; Lu, R.
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
Aeroelasticity of Nonlinear Tail / Rudder Systems with Freeplay
NASA Astrophysics Data System (ADS)
Rishel, Evan
This thesis details the development of a linear/nonlinear three degree of freedom aeroelastic system designed and manufactured at the University of Washington (UW). Describing function analysis was carried out in the frequency domain. Time domain simulations were carried out to account for all types of motion. Nonlinear aeroelastic behavior may lead to limit cycles which can be captured in the frequency domain using describing function approximation and numerically using Runga-Kutta integration. Linear and nonlinear aeroelastic tests were conducted in the UW 3x3 low-speed wind tunnel to determine the linear flutter speed and frequency of the system as well as its nonlinear behavior when freeplay is introduced. The test data is presented along with the results of the MATLAB-based simulations. The correlation between test and numerical results is very high.
Simulation program of nonlinearities applied to telecommunication systems
NASA Technical Reports Server (NTRS)
Thomas, C.
1979-01-01
In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.
NASA Technical Reports Server (NTRS)
Valavani, Lena
1995-01-01
The main motivation for the work under the present grant was to use nonlinear feedback linearization methods to further enhance performance capabilities of the aircraft, and robustify its response throughout its operating envelope. The idea was to use these methods in lieu of standard Taylor series linearization, in order to obtain a well behaved linearized plant, in its entire operational regime. Thus, feedback linearization was going to constitute an 'inner loop', which would then define a 'design plant model' to be compensated for robustness and guaranteed performance in an 'outer loop' application of modern linear control methods. The motivation for this was twofold; first, earlier work had shown that by appropriately conditioning the plant through conventional, simple feedback in an 'inner loop', the resulting overall compensated plant design enjoyed considerable enhancement of performance robustness in the presence of parametric uncertainty. Second, the nonlinear techniques did not have any proven robustness properties in the presence of unstructured uncertainty; a definition of robustness (and performance) is very difficult to achieve outside the frequency domain; to date, none is available for the purposes of control system design. Thus, by proper design of the outer loop, such properties could still be 'injected' in the overall system.
Digital set point control of nonlinear stochastic systems
NASA Technical Reports Server (NTRS)
Moose, R. L.; Vanlandingham, H. F.; Zwicke, P. E.
1978-01-01
A technique for digital control of nonlinear stochastic plants is presented. The development achieves a practical digital algorithm with which the closed-loop system behaves in a classical Type I manner even with gross nonlinearities in the plant structure and low signal-to-noise power ratios. The design procedure is explained in detail and illustrated by an example whose simulated responses testify to the practicality of the approach.
Adaptive Control of Nonlinear Flexible Systems
1994-05-26
nonlinear plants which admit a finite- dimensional state-space description of the form S= f(Z) + g(z)u for which the State-Space Exact Linearization Problem...robust state-feedback law and the sensi- i tivity of the exact - linearization based control law. 2.6.3 Example 2 I Consider the following one state...is also available for exact linearization , Now apply the certainty equivalence based control one can bring an input-output approach to a particu- law
Observer Based Compensators for Nonlinear Systems
1989-03-31
Automation, vol. 4, no. 1, 1988. [42] Poincare, H., Oeuvres, Tome 1, Gauthier- Villars , Paris, 1928. [43] Su, R., "On the linear equivalents of nonlinear...Control Theory, M. Fliess and M. Hazewinkel (eds.). D. Reidel, Dordrehct, to appear. [161 H. Poincare, Oeuvres, Tome 1 (Gauthier- Villars , Paris 1928). 117...one can choose a metric G on N .M G [ Gil 0 (49 def ffL (2)_ i(2) +() 2 G 0 (49) QP(x,u)dxdu (42) 2 and find a solution to 7(2) min I 1 (50) We want to
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
Experimental nonlinear laser systems: Bigger data for better science?
Kane, D. M.; Toomey, J. P.; McMahon, C.; Noblet, Y.; Argyris, A.; Syvridis, D.
2014-10-06
Bigger data is supporting knowledge discovery in nonlinear laser systems as will be demonstrated with examples from three semiconductor laser based systems – one with optical feedback, a photonic integrated circuit (PIC) chaotic laser and a frequency shifted feedback laser system.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Geometric framework for phase synchronization in coupled noisy nonlinear systems
NASA Astrophysics Data System (ADS)
Balakrishnan, J.
2006-03-01
A geometric approach is introduced for understanding the phenomenon of phase synchronization in coupled nonlinear systems in the presence of additive noise. We show that the emergence of cooperative behavior through a change of stability via a Hopf bifurcation entails the spontaneous appearance of a gauge structure in the system, arising from the evolution of the slow dynamics, but induced by the fast variables. The conditions for the oscillators to be synchronised in phase are obtained. The role of weak noise appears to be to drive the system towards a more synchronized behavior. Our analysis provides a framework to explain recent experimental observations on noise-induced phase synchronization in coupled nonlinear systems.
Nonlinear system identification based on internal recurrent neural networks.
Puscasu, Gheorghe; Codres, Bogdan; Stancu, Alexandru; Murariu, Gabriel
2009-04-01
A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.
Nonperturbative analytical approximate solutions in intrinsically nonlinear systems
NASA Astrophysics Data System (ADS)
Kindall, Kevin Gaylynn
The basis for obtaining analytical approximations in this dissertation is a new nonperturbative iterative approach that preserves the intrinsic nonlinearity of the system. The traditional method for approaching nonlinear equations has been the small amplitude approximation of classical perturbation theory. However, it is becoming increasingly evident that intrinsic nonlinearity or persistence of the interaction is a primary feature of the solutions for the nonlinear equations that have been solved. Although perturbation theory may be useful in certain physical domains, it is a domain which excludes the effects of the persistent interaction, since perturbation theory nullifies any intrinsically nonlinear property. The method of solution used here proceeds by analogy to the well-known result that second order, linear ordinary differential equations can be transformed to a Riccati equation by a change in dependent variable. An analogous transformation for nonlinear partial differential equations leads to a set of integro- differential equations for which the basic structure is Riccati. Approximations are introduced in the integral part of the integro-differential equation which allow for systematic iteration while making no expansion in powers of the coupling constant. Two sets of differential equations are examined: the Maxwell-Bloch set and the Rossler set. The importance of the former lies in its importance to the phenomenon of optical bistability. The latter represents the minimal set necessary to display chaos. In each case, their intrinsic nonlinearity is demonstrated, and nonperturbative approximate solutions are constructed.
NASA Astrophysics Data System (ADS)
Thompson, John; Schermerhorn, Benjamin
2017-01-01
Analysis of properties of physical quantities represented by vector fields often involves symmetries and spatial relationships best expressed in non-Cartesian coordinate systems. Many important quantities are determined by integrals that can involve multivariable vector differential quantities. Four pairs of students in junior-level Electricity and Magnetism (E&M) were interviewed to investigate their understanding of the structure of non-Cartesian coordinate systems and the associated differential elements. Pairs were asked to construct differential length elements for an unconventional spherical coordinate system. In order to explore how student conceptual understanding interacts with their understanding of the specific structures of these expressions, a symbolic forms framework was used. Analysis of student reasoning revealed both known and novel forms as well as the general progression of students--use and combination of symbol templates during the construction process. Each group invoked and combined symbolic forms in a similar sequence. Difficulties with the construction of expressions seem to be related almost exclusively to the conceptual schema (e.g., neglecting the role of projection) rather than with symbol templates. Supported in part by NSF Grant PHY-1405726.
Nonlinear dynamical system identification using unscented Kalman filter
NASA Astrophysics Data System (ADS)
Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan
2016-11-01
Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.
A nonlinear filtering process diagnostic system for the Space Station
NASA Technical Reports Server (NTRS)
Yoel, Raymond R.; Buchner, M.; Loparo, K.; Cubukcu, Arif
1988-01-01
A nonlinear filtering process diagnostic system, terrestrial simulation and real time implementation studies is presented. Possible applications to Space Station subsystem elements are discussed. A process diagnostic system using model based nonlinear filtering for systems with random structure was shown to provide improvements in stability, robustness, and overall performance in comparison to linear filter based systems. A suboptimal version of the nonlinear filter (zero order approximation filter, or ZOA filter) was used in simulation studies, initially, with a pressurized water reactor model and then with water/steam heat exchanger models. Finally, a real time implementation for leak detection in a water/steam heat exchanger was conducted using the ZOA filter and heat exchanger models.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
Performance evaluation of nonlinear weighted T-system
NASA Astrophysics Data System (ADS)
Benfekir, A.; Hamaci, S.; Boimond, J.-L.; Labadi, K.
2013-10-01
This article deals with the analysis of discrete event systems which can be modelled by timed event graphs with multipliers (TEGMs). These graphs are an extension of weighted T-systems studied in the Petri net literature. These models do not admit a linear representation in (min, +) algebra. This nonlinearity is due to the presence of weights on arcs. To mitigate this problem of nonlinearity and to apply some basic results used to analyse the performances of linear systems in dioid algebra, we propose a linearisation method of mathematical model reflecting the behaviour of a TEGM in order to obtain a (min, +) linear model.
Convex aggregative modelling of infinite memory nonlinear systems
NASA Astrophysics Data System (ADS)
Wachel, Paweł
2016-08-01
The convex aggregation technique is applied for modelling general class of nonlinear systems with unknown structure and infinite memory. The finite sample size properties of the algorithm are formally established and compared to the standard least-squares counterpart of the method. The proposed algorithm demonstrates its advantages when the a-priori knowledge and the measurement data are both scarce, that is, when the information about the actual system structure is unknown or uncertain and the measurement set is small and disturbed by a noise. Numerical experiments illustrate application and practical benefits of the method for various nonlinear systems.
Recent results of nonlinear estimators applied to hereditary systems.
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.; Wells, W. R.
1972-01-01
An application of the extended Kalman filter to delayed systems to estimate the state and time delay is presented. Two nonlinear estimators are discussed and the results compared with those of the Kalman filter. For all the filters considered, the hereditary system was treated with the delay in the pure form and by using Pade approximations of the delay. A summary of the convergence properties of the filters studied is given. The results indicate that the linear filter applied to the delayed system performs inadequately while the nonlinear filters provide reasonable estimates of both the state and the parameters.
Nonlinear analysis for image stabilization in IR imaging system
NASA Astrophysics Data System (ADS)
Xie, Zhan-lei; Lu, Jin; Luo, Yong-hong; Zhang, Mei-sheng
2009-07-01
In order to acquire stabilization image for IR imaging system, an image stabilization system is required. Linear method is often used in current research on the system and a simple PID controller can meet the demands of common users. In fact, image stabilization system is a structure with nonlinear characters such as structural errors, friction and disturbances. In up-grade IR imaging system, although conventional PID controller is optimally designed, it cannot meet the demands of higher accuracy and fast responding speed when disturbances are present. To get high-quality stabilization image, nonlinear characters should be rejected. The friction and gear clearance are key factors and play an important role in the image stabilization system. The friction induces static error of system. When the system runs at low speed, stick-slip and creeping induced by friction not only decrease resolution and repeating accuracy, but also increase the tracking error and the steady state error. The accuracy of the system is also limited by gear clearance, and selfexcited vibration is brought on by serious clearance. In this paper, effects of different nonlinear on image stabilization precision are analyzed, including friction and gear clearance. After analyzing the characters and influence principle of the friction and gear clearance, a friction model is established with MATLAB Simulink toolbox, which is composed of static friction, Coulomb friction and viscous friction, and the gear clearance non-linearity model is built, providing theoretical basis for the future engineering practice.
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
Wallace, Jack; Champagne, Pascale; Monnier, Anne-Charlotte
2015-01-15
Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling
Stability properties of nonlinear dynamical systems and evolutionary stable states
NASA Astrophysics Data System (ADS)
Gleria, Iram; Brenig, Leon; Rocha Filho, Tarcísio M.; Figueiredo, Annibal
2017-03-01
In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.
Applications of equivalent linearization approaches to nonlinear piping systems
Park, Y.; Hofmayer, C.; Chokshi, N.
1997-04-01
The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA`s are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations.
Numerical studies of identification in nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.
1989-01-01
An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.
NASA Astrophysics Data System (ADS)
Zhang, B.; Billings, S. A.
2015-08-01
Although a vast number of techniques for the identification of nonlinear discrete-time systems have been introduced, the identification of continuous-time nonlinear systems is still extremely difficult. In this paper, the Nonlinear Difference Equation with Moving Average noise (NDEMA) model which is a general representation of nonlinear systems and contains, as special cases, both continuous-time and discrete-time models, is first proposed. Then based on this new representation, a systematic framework for the identification of nonlinear continuous-time models is developed. The new approach can not only detect the model structure and estimate the model parameters, but also work for noisy nonlinear systems. Both simulation and experimental examples are provided to illustrate how the new approach can be applied in practice.
Schenone, Agustina V; Culzoni, María J; Marsili, Nilda R; Goicoechea, Héctor C
2013-06-01
The performance of MCR-ALS was studied in the modeling of non-linear kinetic-spectrophotometric data acquired by a stopped-flow system for the quantitation of tartrazine in the presence of brilliant blue and sunset yellow FCF as possible interferents. In the present work, MCR-ALS and U-PCA/RBL were firstly applied to remove the contribution of unexpected components not included in the calibration set. Secondly, a polynomial function was used to model the non-linear data obtained by the implementation of the algorithms. MCR-ALS was the only strategy that allowed the determination of tartrazine in test samples accurately. Therefore, it was applied for the analysis of tartrazine in beverage samples with minimum sample preparation and short analysis time. The proposed method was validated by comparison with a chromatographic procedure published in the literature. Mean recovery values between 98% and 100% and relative errors of prediction values between 4% and 9% were indicative of the good performance of the method.
Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.
2008-01-01
Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Dynamic analysis of nonlinear rotor-housing systems
NASA Technical Reports Server (NTRS)
Noah, Sherif T.
1988-01-01
Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine (SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the nonlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increment. The method is applied to a nonlinear generic model of the high pressure oxygen turbopump (HPOTP). As compared to the fourth order Runge-Kutta numerical integration methods, the convolution approach proved to be more accurate and more highly efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic responses fo the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-rotor models to their coordinates at the bearing clearances. Recommendations are included for further development of the method, for extending the analysis to aperiodic and chaotic regimes and for conducting critical parameteric studies of the nonlinear response of the current SSME turbopumps.
NASA Technical Reports Server (NTRS)
Gunderson, R. W.; George, J. H.
1974-01-01
Two approaches are investigated for obtaining estimates on the error between approximate and exact solutions of dynamic systems. The first method is primarily useful if the system is nonlinear and of low dimension. The second requires construction of a system of v-functions but is useful for higher dimensional systems, either linear or nonlinear.
Nonlinear modes in finite-dimensional PT-symmetric systems.
Zezyulin, D A; Konotop, V V
2012-05-25
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrödinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra does not imply similarity of the structure or stability of the nonlinear modes in the arrays. Even the existence of one-parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained system. In addition, the stability is not directly related to the PT symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use a graph representation of PT-symmetric networks allowing for a simple illustration of linearly equivalent networks and indicating their possible experimental design.
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
Nonlinear system guidance in the presence of transmission zero dynamics
NASA Technical Reports Server (NTRS)
Meyer, G.; Hunt, L. R.; Su, R.
1995-01-01
An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.
Anti-synchronization of two hyperchaotic systems via nonlinear control
NASA Astrophysics Data System (ADS)
Al-Sawalha, M. Mossa; Noorani, M. S. M.
2009-08-01
Based on the nonlinear control theory, the anti-synchronization between two different hyperchaotic systems is investigated. Through rigorous mathematical theory, the sufficient condition is drawn for the stability of the error dynamics, where the controllers are designed by using the sum of the relevant variables in hyperchaotic systems. Numerical simulations are performed for the hyperchaotic Chen system and the hyperchaotic Lü system to demonstrate the effectiveness of the proposed control strategy.
Accelerator-feasible N -body nonlinear integrable system
NASA Astrophysics Data System (ADS)
Danilov, V.; Nagaitsev, S.
2014-12-01
Nonlinear N -body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.
Accelerator-Feasible N-Body Nonlinear Integrable System
Danilov, V.; Nagaitsev, S.
2014-12-23
Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, attract the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.
A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis
Liu, Zitao; Hauskrecht, Milos
2015-01-01
Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS’s hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs’ spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets. PMID:25905027
Müller, Andy; Osterhage, Hannes; Sowa, Robert; Andrzejak, Ralph G; Mormann, Florian; Lehnertz, Klaus
2006-04-15
We present a client-server application for the distributed multivariate analysis of time series using standard PCs. We here concentrate on analyses of multichannel EEG/MEG data, but our method can easily be adapted to other time series. Due to the rapid development of new analysis techniques, the focus in the design of our application was not only on computational performance, but also on high flexibility and expandability of both the client and the server programs. For this purpose, the communication between the server and the clients as well as the building of the computational tasks has been realized via the Extensible Markup Language (XML). Running our newly developed method in an asynchronous distributed environment with random availability of remote and heterogeneous resources, we tested the system's performance for a number of different univariate and bivariate analysis techniques. Results indicate that for most of the currently available analysis techniques, calculations can be performed in real time, which, in principle, allows on-line analyses at relatively low cost.
On the nonlinear normal modes of free vibration of piecewise linear systems
NASA Astrophysics Data System (ADS)
Uspensky, B. V.; Avramov, K. V.
2014-07-01
A modification of the Shaw-Pierre nonlinear normal modes is suggested in order to analyze the vibrations of a piecewise linear mechanical systems with finite degrees of freedom. The use of this approach allows one to reduce to twice the dimension of the nonlinear algebraic equations system for nonlinear normal modes calculations in comparison with systems obtained by previous researchers. Two degrees of freedom and fifteen degrees of freedom nonlinear dynamical systems are investigated numerically by using nonlinear normal modes.
Geometrically Induced Nonlinearity in Materials and Structural Systems
NASA Astrophysics Data System (ADS)
Ebrahimi, Hamid
For structural analysis there are three sources of nonlinear behavior. The corresponding nonlinear effects are identified by material, geometry and boundary condition nonlinearities. Here in the present work we focused on nonlinear behavior of structural systems that arises from geometry and specifically tackled three problems: nonlinearity in shell structures, nonlinearity in scale-substrate systems and nonlinearity is cellular solids. Firstly, we present a new instability that is observed in the indentation of a highly ellipsoidal shell by a horizontal plate. Above a critical indentation depth, the plate loses contact with the shell in a series of well-defined `blisters' along the long axis of the ellipsoid. We characterize the onset of this instability and explain it using scaling arguments, numerical simulations and experiments. We also characterize the properties of the blistering pattern by showing how the number of blisters and their size depend on both the geometrical properties of the shell and the indentation but not on the shell's elastic modulus. This blistering instability may be used to determine the thickness of highly ellipsoidal shells simply by squashing them between two plates. For the second problem, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models and detailed finite element analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate. And lastly, we develop a new class of two
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
Direct adaptive control of partially known nonlinear systems.
McLain, R B; Henson, M A; Pottmann, M
1999-01-01
A direct adaptive control strategy for a class of single-input/single-output nonlinear systems is presented. The major advantage of the proposed method is that a detailed dynamic nonlinear model is not required for controller design. The only information required about the plant is measurements of the state variables, the relative degree, and the sign of a Lie derivative which appears in the associated input-output linearizing control law. Unknown controller functions are approximated using locally supported radial basis functions that are introduced only in regions of the state space where the closed-loop system actually evolves. Lyapunov stability analysis is used to derive parameter update laws which ensure (under certain assumptions) the state vector remains bounded and the plant output asymptotically tracks the output of a linear reference model. The technique is successfully applied to a nonlinear biochemical reactor model.
A simple approach to nonlinear estimation of physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating the states of nonlinear physical systems are developed. This requires some key hypotheses regarding the structure of the underlying processes. Members of this class of random processes have several desirable properties for the nonlinear estimation of random signals. An assumption is made about the form of the estimator, which may then take account of a wide range of applications. Under the above assumption, the estimation algorithm is mathematically suboptimal but effective and computationally attractive. It may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. To link theory with practice, some numerical results for a simulated system are presented, in which the responses from the proposed and the extended Kalman algorithms are compared. ?? 1988.
Federated nonlinear predictive filtering for the gyroless attitude determination system
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong
2016-11-01
This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.
Applications of Linear Systems Theory to Spectroscopic Instrumentation and Multivariate Analysis
NASA Astrophysics Data System (ADS)
Erickson, Chris L.
This research employs linear systems theory to design novel spectroscopic instruments, explain their operation, and provide insight into methods of data analysis. The first study examines the relationship between digital filtering, a technique based on linear systems theory, and multivariate regression, a statistical method. The study focuses on quantitative property estimation for one -sided, repetitive, linear, shift-invariant systems, and compares matched filtering, Kalman innovation filtering, classical least-squares regression, and principal components regression. Kalman innovation filters, which are derived by making signals independent of interferences via orthogonalization, are similar to the respective columns of the pseudo-inverse of the pure signal matrix in classical least-squares regression, and to the regression vectors of principal components least -squares regression, which are derived via calibration. Inverse regression methods, such as principal components regression, are advantageous in that if the experiment is carefully designed, interferences need not be explicitly defined and properties that depend on multiple components can be estimated. In the second study, an absorption spectrophotometer based on a novel stationary interferometer is described. A major advantage of the interferometer is that it requires few optical components: minimally a slit, a collimator, a planar mirror, a magnification lens, and a photodiode array detector. The interferometer images a linear spatial interferogram on a photodiode array. Fourier transformation of the detected interferogram yields the desired spectrum. Equations describing interferometer operation are derived using electromagnetic wave theory and linear systems theory. Systems theory is also used to model and correct systematic errors. The interferometer's baseline noise, resolution, dynamic range and precision are assessed and compared to those of a modern grating-based photodiode-array spectrograph
Hybrid simulation theory for a classical nonlinear dynamical system
NASA Astrophysics Data System (ADS)
Drazin, Paul L.; Govindjee, Sanjay
2017-03-01
Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.
Frequency bands of strongly nonlinear homogeneous granular systems.
Lydon, Joseph; Jayaprakash, K R; Ngo, Duc; Starosvetsky, Yuli; Vakakis, Alexander F; Daraio, Chiara
2013-07-01
Recent numerical studies on an infinite number of identical spherical beads in Hertzian contact showed the presence of frequency bands [Jayaprakash, Starosvetsky, Vakakis, Peeters, and Kerschen, Nonlinear Dyn. 63, 359 (2011)]. These bands, denoted here as propagation and attenuation bands (PBs and ABs), are typically present in linear or weakly nonlinear periodic media; however, their counterparts are not intuitive in essentially nonlinear periodic media where there is a complete lack of classical linear acoustics, i.e., in "sonic vacua." Here, we study the effects of PBs and ABs on the forced dynamics of ordered, uncompressed granular systems. Through numerical and experimental techniques, we find that the dynamics of these systems depends critically on the frequency and amplitude of the applied harmonic excitation. For fixed forcing amplitude, at lower frequencies, the oscillations are large in amplitude and governed by strongly nonlinear and nonsmooth dynamics, indicating PB behavior. At higher frequencies the dynamics is weakly nonlinear and smooth, in the form of compressed low-amplitude oscillations, indicating AB behavior. At the boundary between the PB and the AB large-amplitude oscillations due to resonance occur, giving rise to collisions between beads and chaotic dynamics; this renders the forced dynamics sensitive to initial and forcing conditions, and hence unpredictable. Finally, we study asymptotically the near field standing wave dynamics occurring for high frequencies, well inside the AB.
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2009-12-01
Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water
The coupled nonlinear dynamics of a lift system
Crespo, Rafael Sánchez E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Picton, Phil E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk
2014-12-10
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.
Non-linear dynamic analysis of geared systems, part 2
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet
1990-01-01
A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1991-01-01
Work continues on frequency analysis for transfer function identification, both with respect to the continued development of the underlying algorithms and in the identification study of two physical systems. Some new results of a theoretical nature were recently obtained that lend further insight into the frequency domain interpretation of the research. Progress in each of those areas is summarized. Although not related to the system identification problem, some new results were obtained on the feedback stabilization of linear time lag systems.
Multivariate analysis of groundwater quality and modeling impact of ground heat pump system
NASA Astrophysics Data System (ADS)
Thuyet, D. Q.; Saito, H.; Muto, H.; Saito, T.; Hamamoto, S.; Komatsu, T.
2013-12-01
The ground source heat pump system (GSHP) has recently become a popular building heating or cooling method, especially in North America, Western Europe, and Asia, due to advantages in reducing energy consumption and greenhouse gas emission. Because of the stability of the ground temperature, GSHP can effectively exchange the excess or demand heat of the building to the ground during the building air conditioning in the different seasons. The extensive use of GSHP can potentially disturb subsurface soil temperature and thus the groundwater quality. Therefore the assessment of subsurface thermal and environmental impacts from the GSHP operations is necessary to ensure sustainable use of GSHP system as well as the safe use of groundwater resources. This study aims to monitor groundwater quality during GSHP operation and to develop a numerical model to assess changes in subsurface soil temperature and in groundwater quality as affected by GSHP operation. A GSHP system was installed in Fuchu city, Tokyo, and consists of two closed double U-tubes (50-m length) buried vertically in the ground with a distance of 7.3 m from each U-tube located outside a building. An anti-freezing solution was circulated inside the U-tube for exchanging the heat between the building and the ground. The temperature at every 5-m depth and the groundwater quality including concentrations of 16 trace elements, pH, EC, Eh and DO in the shallow aquifer (32-m depth) and the deep aquifer (44-m depth) were monitored monthly since 2012, in an observation well installed 3 m from the center of the two U-tubes.Temporal variations of each element were evaluated using multivariate analysis and geostatistics. A three-dimensional heat exchange model was developed in COMSOL Multiphysics4.3b to simulate the heat exchange processes in subsurface soils. Results showed the difference in groundwater quality between the shallow and deep aquifers to be significant for some element concentrations and DO, but
Simple nonlinear systems and navigating catastrophes
NASA Astrophysics Data System (ADS)
Harré, Michael S.; Atkinson, Simon R.; Hossain, Liaquat
2013-06-01
Tipping points are a common occurrence in complex adaptive systems. In such systems feedback dynamics strongly influence equilibrium points and they are one of the principal concerns of research in this area. Tipping points occur as small changes in system parameters result in disproportionately large changes in the global properties of the system. In order to show how tipping points might be managed we use the Maximum Entropy (MaxEnt) method developed by Jaynes to find the fixed points of an economic system in two different ways. In the first, economic agents optimise their choices based solely on their personal benefits. In the second they optimise the total benefits of the system, taking into account the effects of all agent's actions. The effect is to move the game from a recently introduced dual localised Lagrangian problem to that of a single global Lagrangian. This leads to two distinctly different but related solutions where localised optimisation provides more flexibility than global optimisation. This added flexibility allows an economic system to be managed by adjusting the relationship between macro parameters, in this sense such manipulations provide for the possibility of "steering" an economy around potential disasters.
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
Passive dynamic controllers for non-linear mechanical systems
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.
1992-01-01
The objective is to develop active model-independent controllers for slewing and vibration control of nonlinear multibody flexible systems, including flexible robots. The topics are presented in viewgraph form and include: passive stabilization; work-energy rate principle; Liapunov theory; displacement feedback; dynamic controller; displacement and acceleration feedback; velocity feedback; displacement feedback; physical interaction; a 6-DOF robot; and simulation results.
Application of dynamical systems theory to nonlinear aircraft dynamics
NASA Technical Reports Server (NTRS)
Culick, Fred E. C.; Jahnke, Craig C.
1988-01-01
Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.
Extreme nonlinear optics of two-level systems
Tritschler, T.; Muecke, O. D.; Wegener, M.
2003-09-01
For Rabi frequencies comparable to, or even larger than, the transition frequency of a two-level system, the regime of extreme nonlinear optics is reached. Here, we give an overview of the radiated light intensity as a function of carrier frequency of light, transition frequency, Rabi frequency, spectrometer frequency, as well as of the shape and duration of the exciting optical pulses. The graphical representations reveal an amazing complexity and beauty of the nonlinear optical response. Analytical results within the ''square-wave approximation'' qualitatively reproduce many of the intricate features of the exact numerical calculations.
Nonlinearity as a resource for nonclassicality in anharmonic systems
NASA Astrophysics Data System (ADS)
Albarelli, Francesco; Ferraro, Alessandro; Paternostro, Mauro; Paris, Matteo G. A.
2016-03-01
Nonclassicality is a key ingredient for quantum enhanced technologies and experiments involving macroscopic quantum coherence. Considering various exactly solvable quantum-oscillator systems, we address the role played by the anharmonicity of their potential in the establishment of nonclassical features. Specifically, we show that a monotonic relation exists between the entropic nonlinearity of the considered potentials and their ground-state nonclassicality, as quantified by the negativity of the Wigner function. In addition, in order to clarify the role of squeezing, which is not captured by the negativity of the Wigner function, we focus on the Glauber-Sudarshan P function and address the nonclassicality-nonlinearity relation using the entanglement potential. Finally, we consider the case of a generic sixth-order potential confirming the idea that nonlinearity is a resource for the generation of nonclassicality and may serve as a guideline for the engineering of quantum oscillators.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Myers, T. T.; Thompson, P. M.
1986-01-01
It is proposed that frequency-domain multivariable robustness techniques, when combined with classical multivariable procedures, can offer an additional means of evaluating FCS designs. A lateral-directional FCS for an advanced fighter is used as an example. Robustness to unstructured aircraft-input uncertainties is assessed using purely numerical singular-value procedures. Literal approximations for the singular values of the open-loop plant and controller and for the inverse return difference are shown to provide a means of decomposing and diagnosing robustness problems that are insoluble via purely numerical methods.
On the evaluation of information flow in multivariate systems by the directed transfer function.
Eichler, Michael
2006-06-01
The directed transfer function (DTF) has been proposed as a measure of information flow between the components of multivariate time series. In this paper, we discuss the interpretation of the DTF and compare it with other measures for directed relationships. In particular, we show that the DTF does not indicate multivariate or bivariate Granger causality, but that it is closely related to the concept of impulse response function and can be viewed as a spectral measure for the total causal influence from one component to another. Furthermore, we investigate the statistical properties of the DTF and establish a simple significance level for testing for the null hypothesis of no information flow.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Nonlinear Dynamics, Chaotic and Complex Systems
NASA Astrophysics Data System (ADS)
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Adaptive Control of Nonlinear and Stochastic Systems
1991-01-14
Hernmndez-Lerma and S.I. Marcus, Nonparametric adaptive control of dis- crete time partially observable stochastic systems, Journal of Mathematical Analysis and Applications 137... Journal of Mathematical Analysis and Applications 137 (1989), 485-514. [19] A. Arapostathis and S.I. Marcus, Analysis of an identification algorithm
Multivariate time series modeling of short-term system scale irrigation demand
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara
2015-12-01
Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as
Stable Inversion for Nonlinear Nonminimum-Phase Time Varying Systems
NASA Technical Reports Server (NTRS)
Devasia, S.; Paden, B.
1998-01-01
In this paper, we extend stable inversion to nonlinear time-varying systems and study computational issues; the technique is applicable to minimum-phase as well as nonminimum-phase systems. The inversion technique is new, even in the linear time-varying case, and relies on partitioning (the dichotomic split of) the linearized system dynamics into time-varying, stable, and unstable, submanifolds. This dichotomic split is used to build time-varying filters which are, in turn, the basis of a contraction used to find a bounded inverse input-state trajectory. Finding the inverse input-state trajectory allows the development or exact-output tracking controllers. The method is local to the time-varying trajectory and requires that the internal dynamics vary slowly; however, the method represents a significant advance relative to presently available tracking controllers. Present techniques are restricted to time-invariant nonlinear systems and, in the general case, track only asymptotically.
Time-delayed feedback stabilisation of nonlinear potential systems
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Zhabko, A. P.; Zhabko, I. A.
2015-10-01
Mechanical systems with nonlinear potential forces and delayed feedback are studied. It is assumed that, in the absence of control, the trivial equilibrium positions of considered systems are stable, but they are not attracting ones. An approach for the constructing of nonlinear controllers providing the asymptotic stability of the equilibrium positions is proposed. By the use of the Lyapunov direct method and the Razumikhin approach, it is proved that for the corresponding closed-loop systems the asymptotic stability can be guaranteed even in the cases when delay is unknown and time-varying. Moreover, estimates for solutions of closed-loop systems are found. An example and the results of a computer simulation are presented to demonstrate the effectiveness of the proposed approach.
Nonlinear Optical Studies of Resonant Systems
1989-06-14
1986), Appl. Phys. Lett. 49, 1275 Cohen , E., and M.D. Sturge (1982), Phys. Rev. B 25, 3828. Cohen - Tannoudji , Claude (1977), in Frontiers in Laser...evaluation of this term including the use of reservoir theory in the density matrix ( Cohen - Tannoudji , 1977). For many cases of interest, the...review of relaxation, see Cohen -Tan -iAi, 1977). The velocity term on the left hand side describes motion of tb ’enter of mass for gas phase systems
Robust Stabilization of a Class of passive Nonlinear Systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.
1996-01-01
The problem of feedback stabilization is considered for a class of nonlinear, finite dimensional, time invariant passive systems that are affine in control. Using extensions of the Kalman-Yakubovch lemma, it is shown that such systems can be stabilized by a class of finite demensional, linear, time-invariant controllers which are strictly positive real in the weak or marginal sense. The stability holds regardless of model uncertainties, and is therefore, robust.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
microelectromechanical (MEM) and nanoelectromechanical (NEM) sys- tems; • Electronic transport in graphene systems. 2 Accomplishments and New Findings 2.1 Nonlinear...generators. All these were collaborative works with Dr. David Dietz from AFRL at Kirtland AFB. 2.2 Electronic transport in graphene systems There is...tremendous interest in graphene recently due to its potential applications in nano-scale electronic devices and circuits. It is possible that future
Diffusive limits of nonlinear hyperbolic systems with variable coefficients
NASA Astrophysics Data System (ADS)
Miyoshi, Hironari; Tsutsumi, Masayoshi
2016-09-01
We consider the initial-boundary value problem for a 2-speed system of first-order nonhomogeneous semilinear hyperbolic equations whose leading terms have a small positive parameter. Using energy estimates and a compactness lemma, we show that the diffusion limit of the sum of the solutions of the hyperbolic system, as the parameter tends to zero, verifies the nonlinear parabolic equation of the p-Laplacian type.
Transfer Functions for Nonlinear Systems via Fourier-Borel Transforms.
Fourier series or integral expansions of response functions of linear systems. The shuffle product which is the characteristic of the noncommutative ... noncommutative algebra on a computer in any of the currently available symbolic programming languages such as Macsyma, Reduce, PL1, and Lisp...gives the transform of the response of the nonlinear system as a Cauchy product of its transfer function which is introduced for the first time here
Asymptotic stability of nonlinear systems with unbounded delays
NASA Astrophysics Data System (ADS)
Tan, Man-Chun
2008-01-01
Some asymptotic stability criteria are derived for systems of nonlinear functional differential equations with unbounded delays. The criteria are described as matrix equations or matrix inequalities, which are computationally flexible and efficient. The theories are then applied to the stabilization of time-delay systems via standard feedback control (SFC) or time-delayed feedback control (DFC). Several examples are given to illustrate the results.
Globally uniformly asymptotical stabilisation of time-delay nonlinear systems
NASA Astrophysics Data System (ADS)
Cai, Xiushan; Han, Zhengzhi; Zhang, Wei
2011-07-01
Globally uniformly asymptotical stabilisation of nonlinear systems in feedback form with a delay arbitrarily large in the input is dealt with based on the backstepping approach in this article. The design strategy depends on the construction of a Lyapunov-Krasovskii functional. A continuously differentiable control law is obtained to globally uniformly asymptotically stabilise the closed-loop system. The simulation shows the effectiveness of the method.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1993-01-01
This final technical report covers a three and one-half year period preceding February 28, 1993 during which support was provided under NASA Grant NAG-1-1065. Following a general description of the system identification problem and a brief survey of methods to attack it, the basic ideas behind the approach taken in this research effort are presented. The results obtained are described with reference to the published work, including the five semiannual progress reports previously submitted and two interim technical reports.
Downing, D.J.; Fedorov, V.; Lawkins, W.F.; Morris, M.D.; Ostrouchov, G.
1996-05-01
Large data series with more than several million multivariate observations, representing tens of megabytes or even gigabytes of data, are difficult or impossible to analyze with traditional software. The shear amount of data quickly overwhelms both the available computing resources and the ability of the investigator to confidently identify meaningful patterns and trends which may be present. The purpose of this research is to give meaningful definition to `large data set analysis` and to describe and illustrate a technique for identifying unusual events in large data series. The technique presented here is based on the theory of nonlinear dynamical systems.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
Williams, Rube B.
2004-02-04
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Central suboptimal H ∞ control design for nonlinear polynomial systems
NASA Astrophysics Data System (ADS)
Basin, Michael V.; Shi, Peng; Calderon-Alvarez, Dario
2011-05-01
This article presents the central finite-dimensional H ∞ regulator for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H ∞ control problem to the corresponding optimal H 2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H 2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H ∞ regulator available for the corresponding linearised system.
Numerical methods and measurement systems for nonlinear magnetic circuits (abstract)
NASA Astrophysics Data System (ADS)
Heitbrink, Axel; Dieter Storzer, Hans; Beyer, Adalbert
1994-05-01
In the past years an increasing interest in calculation methods of circuits containing magnetic nonlinearities could be observed. For this reason a new method was developed which makes it possible to calculate the steady state solution of such circuits by the help of an interactive cad program. The modular concept of the software allows to separate the circuit into nonlinear and linear subnetworks. When regarding nonlinear magnetic elements one can choose between several numerical models for the description of the hysteresis loops or an inbuilt realtime measurement system can be activated to get the dynamic hysteresis loops. The measurement system is also helpful for the parameter extraction for the numerical hysteresis models. A modified harmonic-balance algorithm and a set of iteration schemes is used for solving the network function. The combination of the realtime measurement system and modern numerical methods brings up a productive total concept for the exact calculation of nonlinear magnetic circuits. A special application class will be discussed which is given by earth-leakage circuit breakers. These networks contain a toroidal high permeable NiFe alloy and a relay as nonlinear elements (cells) and some resistors, inductors, and capacitors as linear elements. As input dc signals at the primary winding of the core any curveform must be regarded, especially 135° phasecutted pulses. These signals with extreme higher frequency components make it impossible to use numerical models for the description of the nonlinear behavior of the core and the relays. So for both elements the realtime measurement system must be used during the iteration process. During each iteration step the actual magnetization current is sent to the measurement system, which measures the dynamic hysteresis loop at the probe. These values flow back into the iteration process. A graphic subsystem allows a look at the waveforms of all voltages and current when the iterations take place. One
Multivariate Visual Explanation for High Dimensional Datasets
Barlowe, Scott; Zhang, Tianyi; Liu, Yujie; Yang, Jing; Jacobs, Donald
2010-01-01
Understanding multivariate relationships is an important task in multivariate data analysis. Unfortunately, existing multivariate visualization systems lose effectiveness when analyzing relationships among variables that span more than a few dimensions. We present a novel multivariate visual explanation approach that helps users interactively discover multivariate relationships among a large number of dimensions by integrating automatic numerical differentiation techniques and multidimensional visualization techniques. The result is an efficient workflow for multivariate analysis model construction, interactive dimension reduction, and multivariate knowledge discovery leveraging both automatic multivariate analysis and interactive multivariate data visual exploration. Case studies and a formal user study with a real dataset illustrate the effectiveness of this approach. PMID:20694164
Zhang, Qichun; Zhou, Jinglin; Wang, Hong; Chai, Tianyou
2016-01-01
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
Observer-based controller for nonlinear analytical systems
NASA Astrophysics Data System (ADS)
Elloumi, S.; Belhouane, M. M.; Benhadj Braiek, N.
2016-06-01
In this paper, we propose to design a polynomial observer-based control for nonlinear systems and to determine sufficient linear matrix inequality (LMI) global stabilisation conditions of the polynomial controlled system augmented by its observer. The design of the observer-based control leverages some notations from the Kronecker product and the power of matrices properties for the state space description of polynomial systems. The stability study of the polynomial controlled system augmented by its observer is based on the Lyapunov stability direct method. Intensive simulations are performed to illustrate the validity and the effectiveness of the polynomial approach used to design the control.
Nonlinear system identification with applications to space weather prediction
NASA Astrophysics Data System (ADS)
Palanthandalam-Madapusi, Harish J.
2007-02-01
System identification is the process of constructing empirical mathematical models of dynamcal systems using measured data. Since data represents a key link between mathematical principles and physical processes, system identification is an important research area that can benefit all disciplines. In this dissertation, we develop identification methods for Hammerstein-Wiener models, which are model structures based on the interconnection of linear dynamics and static nonlinearities. These identification methods identify models in state-space form and use known basis functions to represent the unknown nonlinear maps. Next, we use these methods to identify periodically- switching Hammerstein-Wiener models for predicting magnetic-field fluctuation on the surface of the Earth, 30 to 90 minutes into the future. These magnetic- field fluctuations caused by the solar wind (ejections of charged plasma from the surface of the Sun) can damage critical systems aboard satellites and drive currents in power grids that can overwhelm and damage transformers. By predicting magnetic-field fluctuations on the Earth, we obtain advance warning of future disturbances. Furthermore, to predict solar wind conditions 27 days in advance, we use solar wind measurements and image measurements to construct nonlinear time-series models. We propose a class of radial basis functions to represent the nonlinear maps, which have fewer parameters that need to be tuned by the user. Additionally, we develop an identification algorithm that simultaneously identifies the state space matrices of an unknown model and reconstructs the unknown input, using output measurements and known inputs. For this purpose, we formulate the concept of input and state observability, that is, conditions under which both the unknown input and initial state of a known model can be determined from output measurements. We provide necessary and sufficient conditions for input and state observability in discrete-time systems.
Spatial nonlinearities: Cascading effects in the earth system
Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, S.; Havstad, K. M.
2006-01-01
Nonlinear interactions and feedbacks associated with thresholds through time and across space are common features of biological, physical and materials systems. These spatial nonlinearities generate surprising behavior where dynamics at one scale cannot be easily predicted based on information obtained at finer or broader scales. These cascading effects often result in severe consequences for the environment and human welfare (i.e., catastrophes) that are expected to be particularly important under conditions of changes in climate and land use. In this chapter, we illustrate the usefulness of a general conceptual and mathematical framework for understanding and forecasting spatially nonlinear responses to global change. This framework includes cross-scale interactions, threshold behavior and feedback mechanisms. We focus on spatial nonlinearities produced by fine-scale processes that cascade through time and across space to influence broad spatial extents. Here we describe the spread of catastrophic events in the context of our cross-disciplinary framework using examples from biology (wildfires, desertification, infectious diseases) and engineering (structural failures) and discuss the consequences of applying these ideas to forecasting future dynamics under a changing global environment.
NASA Astrophysics Data System (ADS)
Salman, A.; Shufan, E.; Lapidot, I.; Tsror, L.; Zeiri, L.; Sahu, R. K.; Moreh, R.; Mordechai, S.; Huleihel, M.
2015-12-01
Fourier Transform Infrared (FTIR) and Raman spectroscopies have emerged as powerful tools for chemical analysis. This is due to their ability to provide detailed information about the spatial distribution of chemical composition at the molecular level. A biological sample, i.e. bacteria or fungi, has a typical spectrum. This spectral fingerprint, characterizes the sample and can therefore be used for differentiating between biology samples which belong to different groups, i.e., several different isolates of a given fungi. When the spectral differences between the groups are minute, multivariate analysis should be used to provide a good differentiation. We hereby review several results which demonstrate the differentiation success obtained by combining spectroscopy measurements and multivariate analysis.
NASA Technical Reports Server (NTRS)
Christenson, D.; Gordon, M.; Kistler, R.; Kriegler, F.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1977-01-01
A third-generation, fast, low cost, multispectral recognition system (MIDAS) able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensots is described. The program can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principle objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in the overall program is described. The system contains a midi-computer to control the various high speed processing elements in the data path, a preprocessor to condition data, and a classifier which implements an all digital prototype multivariate Gaussian maximum likelihood or a Bayesian decision algorithm. Sufficient software was developed to perform signature extraction, control the preprocessor, compute classifier coefficients, control the classifier operation, operate the color display and printer, and diagnose operation.
Adaptive control of Hammerstein-Wiener nonlinear systems
NASA Astrophysics Data System (ADS)
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
On-line estimation of nonlinear physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.
SSNN toolbox for non-linear system identification
NASA Astrophysics Data System (ADS)
Luzar, Marcel; Czajkowski, Andrzej
2015-11-01
The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.
NASA Astrophysics Data System (ADS)
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Parallel Methods for Solving Nonlinear Block Bordered Systems of Equations
1989-12-31
pendix A. It is the 741 op-amp circuit (see e.g. Sedra and Smith [1982]), which was introduced in 1966 and is currently produced by almost every analog...Computing, edited by R. Wilhelmson, University of Illinois Press. A. Sedra , K. Smith [1982], Microelectronic Circuits, CBS College Publishing. J. Smith ...741 op-amp circuits (see e.g. Smith [1971], Valkenburg [1982]). This circuit leads to a 2-level block-bordered nonlinear system, as follows. The
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
Donges, Jonathan F; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V; Marwan, Norbert; Dijkstra, Henk A; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
NASA Astrophysics Data System (ADS)
Diamond, P.; Kuznetsov, N.; Rachinskii, D.
2001-09-01
The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators.
Surge and pitch coupled nonlinear responses of a single point mooring system
Ma, R.; Li, G.
1996-12-31
The nonlinear dynamic analysis of the single point mooring systems under the action of random sea waves was carried out by means of nonlinear spectral analysis. The study indicates that it is possible to solve nonlinear vibration problems by using spectral analysis directly. It is not necessary to linearize the nonlinear terms in this method so that the errors introduced by linearization can be eliminated. Therefore, this method will provide a convenient and accurate tool for solving nonlinear random vibrations.
Method of Conjugate Radii for Solving Linear and Nonlinear Systems
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1999-01-01
This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.
Noise and nonlinearities in digital magnetic recording systems
NASA Astrophysics Data System (ADS)
Xing, Xinzhi
1998-11-01
Various types of noise and nonlinearities in digital magnetic recording systems are investigated in this dissertation. Measurement techniques and analyzing methods are developed to understand each phenomenon. The nonlinearities due to the replay process using MR sensors are studied in Chapter 4. The nonlinearities are determined by comparing the measured signal with that obtained from a linear analysis. A characterization method of transition noise is developed in Chapter 5. Approximating transition noise by several leading 'modes' allows the noise parameters to be determined experimentally. Chapter 6 covers the investigation of disk substrate texture induced noise. The noise mechanism and characteristics are systematically studied. An analytical noise correlation function that directly relates the noise with the fluctuations of the textured disk surface is also developed in this chapter. An error rate model including colored and nonstationary noise is developed to further understand the impact of noise on system performance in Chapter 7. Noise with different characteristics is shown to influence the system performance differently. In addition, the influence of texture noise is examined in term of each noise parameter based upon the noise model developed in Chapter 6. Finally, in Chapter 8, the effect of finite write field rise time on recording performance is studied. Recording performance predicted by a simplified analytical model is compared with the measurements. It is shown that a slow flux rise time causes a degraded field gradient during writing, which results in a broader written transition, a larger NLTS, and noisier transition boundaries.
Bandlimited computerized improvements in characterization of nonlinear systems with memory
NASA Astrophysics Data System (ADS)
Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.
2016-05-01
The present article discusses some inroads in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] over many years of developmental research. The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms on the system are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order in order to combat and reasonably alleviate the curse of dimensionality.
Foundations of Feedback Theory for Nonlinear Dynamical Systems
1979-08-31
M.I.T. Press, 1971. [8] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, New York: Academic Press, 1975. [9] H. H. Rosenbrock...Feedback Systems (ed. by J. B. Cruz), New York: McGraw-11M, 1972, chap. 2. -42- [121 C. A. Desoer , "Pu.riurbtior in ilhe I/O map of a nonlinear feedback...No. 1, 1977, pp. 81-127. [181 C. A. Desoer and W. S. Chan, "The feedback interconnection of lumped linear time-invariant systems," Journal of the
Nonlinear Control of Large Disturbances in Magnetic Bearing Systems
NASA Technical Reports Server (NTRS)
Jiang, Yuhong; Zmood, R. B.
1996-01-01
In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching LO
1993-01-01
This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.
Nonlinear dynamical systems for theory and research in ergonomics.
Guastello, Stephen J
2017-02-01
Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.
Decentralized robust nonlinear model predictive controller for unmanned aerial systems
NASA Astrophysics Data System (ADS)
Garcia Garreton, Gonzalo A.
The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.
Active Nonlinear Feedback Control for Aerospace Systems. Processor
1990-12-01
relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.
Swarming behaviors in multi-agent systems with nonlinear dynamics.
Yu, Wenwu; Chen, Guanrong; Cao, Ming; Lü, Jinhu; Zhang, Hai-Tao
2013-12-01
The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agent is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.
Nonlinear problems of complex natural systems: Sun and climate dynamics.
Bershadskii, A
2013-01-13
The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed.
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-09-19
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.
Digit replacement: A generic map for nonlinear dynamical systems.
García-Morales, Vladimir
2016-09-01
A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.
Swarming behaviors in multi-agent systems with nonlinear dynamics
Yu, Wenwu; Chen, Guanrong; Cao, Ming; Lü, Jinhu; Zhang, Hai-Tao
2013-12-15
The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agent is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.
Frank, T D
2002-07-01
Using the method of steps, we describe stochastic processes with delays in terms of Markov diffusion processes. Thus, multivariate Langevin equations and Fokker-Planck equations are derived for stochastic delay differential equations. Natural, periodic, and reflective boundary conditions are discussed. Both Ito and Stratonovich calculus are used. In particular, our Fokker-Planck approach recovers the generalized delay Fokker-Planck equation proposed by Guillouzic et al. The results obtained are applied to a model for population growth: the Gompertz model with delay and multiplicative white noise.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.
Bounded Nonlinear Control of a Rotating Pendulum System
NASA Astrophysics Data System (ADS)
Luyckx, L.; Loccufier, M.; Noldus, E.
2004-08-01
We are interested in the output feedback control of mechanical systems governed by the Euler-Lagrange formalism. The systems are collocated actuator-sensor controlled and underactuated. We present a design method by means of a specific example : the set point control of a rotating pendulum. We use constrained output feedback, whereby the control inputs satisfy a priori imposed upper bounds. The closed loop stability analysis relies on the direct method of Liapunov. This results in a frequency criterion on the controller's linear dynamic component and some restrictions on its nonlinearities. The control parameters are tuned for maximizing closed loop damping.
Nonlinear dynamics of global atmospheric and earth system processes
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu
1995-01-01
During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.
Robot arm force control through system linearization by nonlinear feedback
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, Xiaoping
1988-01-01
Based on a differential geometric feedback linearization technique for nonlinear time-varying systems, a dynamic force control method for robot arms is developed. It uses active force-moment measurements at the robot wrist. The controller design fully incorporate the robot-arm dynamics and is so general that it can be reduced to pure position control, hybrid position/force control, pure force control. The controller design is independent of the tasks to be performed. Computer simulations show that the controller improves the position error by a factor of ten in cases in which position errors generate force measurements. A theorem on linearization of time-varying system is also presented.
Entropy Production in Nonlinear, Thermally Driven Hamiltonian Systems
NASA Astrophysics Data System (ADS)
Eckmann, Jean-Pierre; Pillet, Claude-Alain; Rey-Bellet, Luc
1999-04-01
We consider a finite chain of nonlinear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such a system has a unique stationary state. (This extends our earlier results for small temperature differences.) In all these cases, any initial state will converge (at an unknown rate) to the stationary state. We show that this stationary state continually produces entropy. The rate of entropy production is strictly negative when the temperatures are unequal and is proportional to the mean energy flux through the system
Extending satisficing control strategy to slowly varying nonlinear systems
NASA Astrophysics Data System (ADS)
Binazadeh, T.; Shafiei, M. H.
2013-04-01
Based on the satisficing control strategy, a novel approach to design a stabilizing control law for nonlinear time varying systems with slowly varying parameters (slowly varying systems) is presented. The satisficing control strategy has been originally introduced for time-invariant systems; however, this technique does not have any stability proof for time varying systems. In this paper, first, a parametric version of the satisficing control strategy is developed. Then, by considering the time as a frozen parameter, the parametric satisficing control strategy is utilized. Finally, a theorem is presented which suggested a stabilizing satisficing control law for the slowly varying control systems. Moreover, in this theorem, the maximum admissible rate of change of the system dynamics is evaluated. The efficiency of the proposed approach is demonstrated by a computer simulation.
Stability of dithered non-linear systems with backlash or hysteresis
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Shahruz, S. M.
1986-01-01
A study is conducted of the effect of dither on the nonlinear element of a single-input single-outout feedback system. Nonlinearities are considered with memory (backlash, hysteresis), in the feedforward loop; a dither of a given amplitude is injected at the input of the nonlinearity. The nonlinearity is followed by a linear element with low-pass characteristic. The stability of the dithered system and an approximate equivalent system (in which the nonlinearity is a smooth function) are compared. Conditions on the input and on the dither frequency are obtained so that the approximate-system stability guarantees that of the given hysteretic system.
Transient multivariable sensor evaluation
Vilim, Richard B.; Heifetz, Alexander
2017-02-21
A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.
Nonlinear stochastic system identification of skin using volterra kernels.
Chen, Yi; Hunter, Ian W
2013-04-01
Volterra kernel stochastic system identification is a technique that can be used to capture and model nonlinear dynamics in biological systems, including the nonlinear properties of skin during indentation. A high bandwidth and high stroke Lorentz force linear actuator system was developed and used to test the mechanical properties of bulk skin and underlying tissue in vivo using a non-white input force and measuring an output position. These short tests (5 s) were conducted in an indentation configuration normal to the skin surface and in an extension configuration tangent to the skin surface. Volterra kernel solution methods were used including a fast least squares procedure and an orthogonalization solution method. The practical modifications, such as frequency domain filtering, necessary for working with low-pass filtered inputs are also described. A simple linear stochastic system identification technique had a variance accounted for (VAF) of less than 75%. Representations using the first and second Volterra kernels had a much higher VAF (90-97%) as well as a lower Akaike information criteria (AICc) indicating that the Volterra kernel models were more efficient. The experimental second Volterra kernel matches well with results from a dynamic-parameter nonlinearity model with fixed mass as a function of depth as well as stiffness and damping that increase with depth into the skin. A study with 16 subjects showed that the kernel peak values have mean coefficients of variation (CV) that ranged from 3 to 8% and showed that the kernel principal components were correlated with location on the body, subject mass, body mass index (BMI), and gender. These fast and robust methods for Volterra kernel stochastic system identification can be applied to the characterization of biological tissues, diagnosis of skin diseases, and determination of consumer product efficacy.
Optimal spatiotemporal reduced order modeling for nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
LaBryer, Allen
Proposed in this dissertation is a novel reduced order modeling (ROM) framework called optimal spatiotemporal reduced order modeling (OPSTROM) for nonlinear dynamical systems. The OPSTROM approach is a data-driven methodology for the synthesis of multiscale reduced order models (ROMs) which can be used to enhance the efficiency and reliability of under-resolved simulations for nonlinear dynamical systems. In the context of nonlinear continuum dynamics, the OPSTROM approach relies on the concept of embedding subgrid-scale models into the governing equations in order to account for the effects due to unresolved spatial and temporal scales. Traditional ROMs neglect these effects, whereas most other multiscale ROMs account for these effects in ways that are inconsistent with the underlying spatiotemporal statistical structure of the nonlinear dynamical system. The OPSTROM framework presented in this dissertation begins with a general system of partial differential equations, which are modified for an under-resolved simulation in space and time with an arbitrary discretization scheme. Basic filtering concepts are used to demonstrate the manner in which residual terms, representing subgrid-scale dynamics, arise with a coarse computational grid. Models for these residual terms are then developed by accounting for the underlying spatiotemporal statistical structure in a consistent manner. These subgrid-scale models are designed to provide closure by accounting for the dynamic interactions between spatiotemporal macroscales and microscales which are otherwise neglected in a ROM. For a given resolution, the predictions obtained with the modified system of equations are optimal (in a mean-square sense) as the subgrid-scale models are based upon principles of mean-square error minimization, conditional expectations and stochastic estimation. Methods are suggested for efficient model construction, appraisal, error measure, and implementation with a couple of well-known time
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1993-01-01
The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of
General purpose nonlinear system solver based on Newton-Krylov method.
2013-12-01
KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].
Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Martin, Corless
2004-01-01
We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.
Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.
Sobhani-Tehrani, E; Talebi, H A; Khorasani, K
2014-02-01
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements.
Possibility of measuring weak noise in nonlinear systems
NASA Astrophysics Data System (ADS)
Surovyatkina, Elena D.
2004-05-01
The possibility of measuring weak noise in nonlinear systems on the basis of the phenomenon of prebifurcation noise amplification is proposed. This phenomenon is shortly outlined with special emphasis on the transition from linear regime to the regime of nonlinear saturation of fluctuation amplification. Estimates of the fluctuation variance are obtained both for the linear (away from the bifurcation threshold) and for the nonlinear regime (in the vicinity of the bifurcation threshold). These estimates have proved to be efficient for two simple bifurcation models: period doubling bifurcation and bifurcation of spontaneous symmetry breaking. Theoretical estimates have proved to be in good agreement with the results of numerical simulation. It is shown, that in the saturation regime, fluctuation variance is proportional to the square root of external noise variance, whereas in linear regime, fluctuation variance is proportional to noise variance. The approach to weak noise measuring is based on comparison of maximal fluctuation variance at the bifurcation threshold with variance away from that threshold. The applicability of this approach is limited by the necessity to perform rather long-term observations.
Quantised consensus of multi-agent systems with nonlinear dynamics
NASA Astrophysics Data System (ADS)
Zhu, Yunru; Zheng, Yuanshi; Wang, Long
2015-08-01
This paper studies the consensus problem of first-order and second-order multi-agent systems with nonlinear dynamics and quantised interactions. Continuous-time and impulsive control inputs are designed for the multi-agent systems on the logarithmic quantised relative state measurements of agents, respectively. By using nonsmooth analysis tools, we get some sufficient conditions for the consensus of multi-agent systems under the continuous-time inputs. Compared with continuous-time control inputs, impulsive distributed control inputs just use the state variables of the systems at discrete-time instances. Based on impulsive control theory, we prove that the multi-agent systems can reach consensus by choosing proper control gains and impulsive intervals. The simulation results are given to verify the effectiveness of the theoretical results.
NASA Astrophysics Data System (ADS)
Gupta, Samit Kumar; Sarma, Amarendra K.
2016-07-01
In this work, we have studied the peregrine rogue wave dynamics, with a solitons on finite background (SFB) ansatz, in the recently proposed (Ablowitz and Musslimani, (2013) [31]) continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity. We have found that the continuous nonlinear Schrödinger system with PT-symmetric nonlinearity also admits Peregrine soliton solution. Motivated by the fact that Peregrine solitons are regarded as prototypical solutions of rogue waves, we have studied Peregrine rogue wave dynamics in the c-PTNLSE model. Upon numerical computation, we observe the appearance of low-intense Kuznetsov-Ma (KM) soliton trains in the absence of transverse shift (unbroken PT-symmetry) and well-localized high-intense Peregrine rogue waves in the presence of transverse shift (broken PT-symmetry) in a definite parametric regime.
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure
NASA Astrophysics Data System (ADS)
Nygren, Olle
1993-07-01
The detection limit, obtained with a previously developed liquid chromatography flame atomic absorption spectrometry system, was not low enough for the determination of occupational exposure to organotin compounds. Optimization of the system was thus necessary. Many experimental factors may influence the response of the system, and interaction effects between these parameters may also be expected. With optimization by multivariate methods, the response of the system was improved and a 2.5-times better detection limit for organotin compounds was obtained, which was adequate for determination of occupational exposure. The system was employed for determination of occupational exposure to organotin-based wood preservatives at an impregnation plant. No exposure to butyltin compounds above 1/10 of the threshold limit value could be measured at any sampling place. It was also found that up to 30% of the tributyltin in impregnation solutions in use was dealkylated to less fungitoxic dibutyltin compounds, which may affect the quality of the impregnation.
Nonlinear hopping transport in ring systems and open channels.
Einax, Mario; Körner, Martin; Maass, Philipp; Nitzan, Abraham
2010-01-21
We study the nonlinear hopping transport in one-dimensional rings and open channels. Analytical results are derived for the stationary current response to a constant bias without assuming any specific coupling of the rates to the external fields. It is shown that anomalous large effective jump lengths, as observed in recent experiments by taking the ratio of the third-order nonlinear and the linear conductivity, can occur already in ordered systems. Rectification effects due to site energy disorder in ring systems are expected to become irrelevant for large system sizes. In open channels, in contrast, rectification effects occur already for disorder in the jump barriers and do not vanish in the thermodynamic limit. Numerical solutions for a sinusoidal bias show that the ring system provides a good description for the transport behavior in the open channel for intermediate and high frequencies. For low frequencies temporal variations in the mean particle number have to be taken into account in the open channel, which cannot be captured in the more simple ring model.
Lotka-Volterra representation of general nonlinear systems.
Hernández-Bermejo, B; Fairén, V
1997-02-01
In this article we elaborate on the structure of the generalized Lotka-Volterra (GLV) form for nonlinear differential equations. We discuss here the algebraic properties of the GLV family, such as the invariance under quasimonomial transformations and the underlying structure of classes of equivalence. Each class possesses a unique representative under the classical quadratic Lotka-Volterra form. We show how other standard modeling forms of biological interest, such as S-systems or mass-action systems, are naturally embedded into the GLV form, which thus provides a formal framework for their comparison and for the establishment of transformation rules. We also focus on the issue of recasting of general nonlinear systems into the GLV format. We present a procedure for doing so and point at possible sources of ambiguity that could make the resulting Lotka-Volterra system dependent on the path followed. We then provide some general theorems that define the operational and algorithmic framework in which this is not the case.
Filtering nonlinear dynamical systems with linear stochastic models
NASA Astrophysics Data System (ADS)
Harlim, J.; Majda, A. J.
2008-06-01
An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote
Alberich, Arístides; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel
2008-01-01
A new mathematical algorithm is proposed to correct the progressive potential shift of some voltammetric signals that decrease the linearity of the data. The corrected data matrix can be further analysed by Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) and the vector including the potential shift corrections can be fitted to specific equations such as that by DeFord-Hume. A detailed discussion is given on the different cases of potential shift correction, and, in some of them, mathematical simulation is made or experimental systems [Cd(ii)-glutathione and Zn(ii)-glycine] are analysed.
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R
2006-01-01
Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark
Nonlinear mechanics of graphene membranes and related systems
NASA Astrophysics Data System (ADS)
De Alba, Roberto
Micro- and nano-mechanical resonators with low mass and high vibrational frequency are often studied for applications in mass and force detection where they can offer unparalleled precision. They are also excellent systems with which to study nonlinear phenomena and fundamental physics due to the numerous routes through which they can couple to each other or to external systems. In this work we study the structural, thermal, and nonlinear properties of various micro-mechanical systems. First, we present a study of graphene-coated silicon nitride membranes; the resulting devices demonstrate the high quality factors of silicon nitride as well as the useful electrical and optical properties of graphene. We then study nonlinear mechanics in pure graphene membranes, where all vibrational eigenmodes are coupled to one another through the membrane tension. This effect enables coherent energy transfer from one mechanical mode to another, in effect creating a graphene mechanics-based frequency mixer. In another experiment, we measure the resonant frequency of a graphene membrane over a wide temperature range, 80K - 550K, to determine whether or not it demonstrates the negative thermal expansion coefficient predicted by prevailing theories; our results indicate that this coefficient is positive at low temperatures - possibly due to polymer contaminants on the graphene surface - and negative above room temperature. Lastly, we study optically-induced self-oscillation in metal-coated silicon nitride nanowires. These structures exhibit self-oscillation at extremely low laser powers ( 1muW incident on the nanowire), and we use this photo-thermal effect to counteract the viscous air-damping that normally inhibits micro-mechanical motion.
FINDS: A fault inferring nonlinear detection system. User's guide
NASA Technical Reports Server (NTRS)
Lancraft, R. E.; Caglayan, A. K.
1983-01-01
The computer program FINDS is written in FORTRAN-77, and is intended for operation on a VAX 11-780 or 11-750 super minicomputer, using the VMS operating system. The program detects, isolates, and compensates for failures in navigation aid instruments and onboard flight control and navigation sensors of a Terminal Configured Vehicle aircraft in a Microwave Landing System environment. In addition, FINDS provides sensor fault tolerant estimates for the aircraft states which are then used by an automatic guidance and control system to land the aircraft along a prescribed path. FINDS monitors for failures by evaluating all sensor outputs simultaneously using the nonlinear analytic relationships between the various sensor outputs arising from the aircraft point mass equations of motion. Hence, FINDS is an integrated sensor failure detection and isolation system.
M-MRAC for Nonlinear Systems with Bounded Disturbances
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2011-01-01
This paper presents design and performance analysis of a modified reference model MRAC (M-MRAC) architecture for a class of multi-input multi-output uncertain nonlinear systems in the presence of bounded disturbances. M-MRAC incorporates an error feedback in the reference model definition, which allows for fast adaptation without generating high frequency oscillations in the control signal, which closely follows the certainty equivalent control signal. The benefits of the method are demonstrated via a simulation example of an aircraft's wing rock motion.
A universal approach to the study of nonlinear systems
NASA Astrophysics Data System (ADS)
Hwa, Rudolph C.
2004-07-01
A large variety of nonlinear systems have been treated by a common approach that emphasizes the fluctuation of spatial patterns. By using the same method of analysis it is possible to discuss the chaotic behaviors of quark jets and logistic map in the same language. Critical behaviors of quark-hadron phase transition in heavy-ion collisions and of photon production at the threshold of lasing can also be described by a common scaling behavior. The universal approach also makes possible an insight into the recently discovered phenomenon of wind reversal in cryogenic turbulence as a manifestation of self-organized criticality.
Limits of localized control in extended nonlinear systems
NASA Astrophysics Data System (ADS)
Handel, Andreas
We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance control of the air flow around an airplane or car leads to better fuel-economy and reduced noise production. Usually, it is impossible to apply control everywhere. Consider an airplane: It would not be feasibly to cover the whole body of the plane with control units. Instead, one can place the control units at localized regions, such as points along the edge of the wings, spaced as far apart from each other as possible. These considerations lead to an important question: For a given system, what is the minimum number of localized controllers that still ensures successful control? Too few controllers will not achieve control, while using too many leads to unnecessary expenses and wastes resources. To answer this question, we study localized control in a class of model equations. These model equations are good representations of many real fluid flows. Using these equations, we show how one can design localized control that renders the system stable. We study the properties of the control and derive several expressions that allow us to determine the limits of successful control. We show how the number of controllers that are needed for successful control depends on the size and type of the system, as well as the way control is implemented. We find that especially the nonlinearities and the amount of noise present in the system play a crucial role. This analysis allows us to determine under
Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.
Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong
2015-11-01
The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.
Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system.
Jeong, Bongwon; Cho, Hanna; Yu, Min-Feng; Vakakis, Alexander F; McFarland, Donald Michael; Bergman, Lawrence A
2013-10-22
Nonlinear mechanical systems promise broadband resonance and instantaneous hysteretic switching that can be used for high sensitivity sensing. However, to introduce nonlinear resonances in widely used microcantilever systems, such as AFM probes, requires driving the cantilever to an amplitude that is too large for any practical applications. We introduce a novel design for a microcantilever with a strong nonlinearity at small cantilever oscillation amplitude arising from the geometrical integration of a single BN nanotube. The dynamics of the system was modeled theoretically and confirmed experimentally. The system, besides providing a practical design of a nonlinear microcantilever-based probe, demonstrates also an effective method of studying the nonlinear damping properties of the attached nanotube. Beyond the typical linear mechanical damping, the nonlinear damping contribution from the attached nanotube was found to be essential for understanding the dynamical behavior of the designed system. Experimental results obtained through laser microvibrometry validated the developed model incorporating the nonlinear damping contribution.
Localized Nonlinear Waves in Systems with Time- and Space-Modulated Nonlinearities
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Konotop, Vladimir V.
2008-04-25
Using similarity transformations we construct explicit nontrivial solutions of nonlinear Schroedinger equations with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general theory and use it to calculate explicitly nontrivial solutions such as periodic (breathers), resonant, or quasiperiodically oscillating solitons. Some implications to the field of matter waves are also discussed.
THz impulse radar for biomedical sensing: nonlinear system behavior
NASA Astrophysics Data System (ADS)
Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.
2014-03-01
The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.
Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems
NASA Astrophysics Data System (ADS)
Tryoen, J.; Le Maître, O.; Ndjinga, M.; Ern, A.
2010-09-01
This paper deals with stochastic spectral methods for uncertainty propagation and quantification in nonlinear hyperbolic systems of conservation laws. We consider problems with parametric uncertainty in initial conditions and model coefficients, whose solutions exhibit discontinuities in the spatial as well as in the stochastic variables. The stochastic spectral method relies on multi-resolution schemes where the stochastic domain is discretized using tensor-product stochastic elements supporting local polynomial bases. A Galerkin projection is used to derive a system of deterministic equations for the stochastic modes of the solution. Hyperbolicity of the resulting Galerkin system is analyzed. A finite volume scheme with a Roe-type solver is used for discretization of the spatial and time variables. An original technique is introduced for the fast evaluation of approximate upwind matrices, which is particularly well adapted to local polynomial bases. Efficiency and robustness of the overall method are assessed on the Burgers and Euler equations with shocks.
Geometric control of quantum mechanical and nonlinear classical systems
NASA Astrophysics Data System (ADS)
Nelson, Richard Joseph
1999-10-01
Geometric control refers to the judicious use of the non- commuting nature of inputs and natural dynamics as the basis for control. The last few decades in control system theory have seen the application of differential geometry in proving several important properties of systems, including controllability and observability. Until recently, however, the results of this mathematical geometry have rarely been used as the basis for designing and implementing an actual controller. This thesis demonstrates the application of a judicious selection of inputs, so that if the system is proven to be controllable using geometric methods, one can design input sequences using the same geometry. A demonstration of this method is shown in simulating the attitude control of a satellite: a highly non-linear, non- holonomic control problem. Although not a practical method for large re-orientations of a typical satellite, the approach can be applied to other nonlinear systems. The method is also applied to the closed-loop performance of a quantum mechanical system to demonstrate the feasibility of coherent quantum feedback-something impossible using a conventional controller. Finally, the method is applied in the open-loop control of a quantum mechanical system: in this case, the creation of Greenberger-Horne-Zeilinger correlations among the nuclei of an ensemble of alanine molecules in a nuclear magnetic resonance spectrometer. In each case, the data demonstrate the usefulness of a geometric approach to control. In addition to demonstrations of geometric control in practice, the quantum mechanical experiments also demonstrate for the first time peculiar quantum correlations, including GHZ correlations, that have no classical analog. The quantum experiments further establish nuclear magnetic resonance as a viable and accessible testbed of quantum predictions and processes. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Qunjing; Li, Guoli
2016-05-01
This article deals with the identification of nonlinear model and Nonlinear Predictive Functional Controller (NPFC) design based on the Hammerstein structure for the turntable servo system. As a mechanism with multi-mass rotational system, nonlinearities significantly influence the system operation, especially when the turntable is in the states of zero-crossing distortion or rapid acceleration/deceleration, etc. The field data from identification experiments are processed by Comprehensive Learning Particle Swarm Optimization (CLPSO). As a result, Hammerstein model can be derived to describe the input-output relationship globally, considering all the linear and nonlinear factors of the turntable system. Cross validation results demonstrate good correspondence between the real equipment and the identified model. In the second part of this manuscript, a nonlinear control strategy based on the genetic algorithm and predictive control is developed. The global nonlinear predictive controller is carried out by two steps: (i) build the linear predictive functional controller with state space equations for the linear subsystem of Hammerstein model, and (ii) optimize the global control variable by minimizing the cost function through genetic algorithm. On the basis of distinguish model for turntable and the effectiveness of NPFC, the good performance of tracking ability is achieved in the simulation results.
Nonlinear system modeling with random matrices: echo state networks revisited.
Zhang, Bai; Miller, David J; Wang, Yue
2012-01-01
Echo state networks (ESNs) are a novel form of recurrent neural networks (RNNs) that provide an efficient and powerful computational model approximating nonlinear dynamical systems. A unique feature of an ESN is that a large number of neurons (the "reservoir") are used, whose synaptic connections are generated randomly, with only the connections from the reservoir to the output modified by learning. Why a large randomly generated fixed RNN gives such excellent performance in approximating nonlinear systems is still not well understood. In this brief, we apply random matrix theory to examine the properties of random reservoirs in ESNs under different topologies (sparse or fully connected) and connection weights (Bernoulli or Gaussian). We quantify the asymptotic gap between the scaling factor bounds for the necessary and sufficient conditions previously proposed for the echo state property. We then show that the state transition mapping is contractive with high probability when only the necessary condition is satisfied, which corroborates and thus analytically explains the observation that in practice one obtains echo states when the spectral radius of the reservoir weight matrix is smaller than 1.
Resonance in a weakly nonlinear system with slowly varying parameters
NASA Astrophysics Data System (ADS)
Kevorkian, J.
1980-02-01
Multiple-variable expansion procedures appropriate for nonlinear systems in resonance are surveyed by the use of the model of two coupled weakly nonlinear oscillators with either constant or slowly varying frequencies. In the autonomous problem it is shown that an n-variable expansion (where n depends on the order of accuracy desired) yields uniformly valid results. The problem of passage through resonance for the nonautonomous problem is also considered and the solution is described by constructing a sequence of three expansions. The solution before resonance is developed as a generalized multiple-variable expansion and is matched with an inner expansion valid during resonance. This latter is then matched with a postresonance solution and determines it completely. Numerical integrations are used to substantiate the theoretical results. The dominant effect of passage through resonance is shown to be the excitation of a higher-order oscillation beyond resonance. Contrary to the claim in a recent work, the total action of the system does not remain constant if one accounts for the leading perturbation terms in the postresonance solution. Instead, the total action goes from one constant value to another.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A formulation is presented for identification of linear multivariable from a single set of input-output data. The identification method is formulated with the mathematical framework of learning identifications, by extension of the repetition domain concept to include shifting time intervals. This method contrasts with existing learning approaches that require data from multiple experiments. In this method, the system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded real eigenvalue assignment procedure. Through this relationship, the Markov parameters of the observer are identified. The Markov parameters of the actual system are recovered from those of the observer, and then used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and numerical examples presented to illustrate.
Time-optimal quantum control of nonlinear two-level systems
NASA Astrophysics Data System (ADS)
Chen, Xi; Ban, Yue; Hegerfeldt, Gerhard C.
2016-08-01
Nonlinear two-level Landau-Zener type equations for systems with relevance for Bose-Einstein condensates and nonlinear optics are considered and the minimal time Tmin to drive an initial state to a given target state is investigated. Surprisingly, the nonlinearity may be canceled by a time-optimal unconstrained driving and Tmin becomes independent of the nonlinearity. For constrained and unconstrained driving explicit expressions are derived for Tmin, the optimal driving, and the protocol.
NASA Technical Reports Server (NTRS)
Crutcher, H. L.; Falls, L. W.
1976-01-01
Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.
Passive dynamic controllers for non-linear mechanical systems
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.
1991-01-01
A methodology for model-independent controller design for controlling large angular motion of multi-body dynamic systems is outlined.The controlled system may consist of rigid and flexible components that undergo large rigid body motion and small elastic deformations. Control forces/torques are applied to drive the system, and at the same time suppress the vibrations due to flexibility of the components. The proposed controller consists of passive second-order systems which may be designed with little knowledge of the system parameters, even if the controlled system is non-linear. Under rather general assumptions, the passive design assures that the closed loop system has guaranteed stability properties. Unlike positive real controller design, stabilization can be accomplished without direct velocity feedback. In addition, the second-order passive design allows dynamic feedback controllers with considerable freedom to tune for desired system response, and to avoid actuator saturation. After developing the basic mathematical formulation of the design methodology, simulation results are presented to illustrate the proposed approach applied to a flexible six-degree-of-freedom manipulator.
Scalable analysis of nonlinear systems using convex optimization
NASA Astrophysics Data System (ADS)
Papachristodoulou, Antonis
In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of
One-Time Pad as a nonlinear dynamical system
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin
2012-11-01
The One-Time Pad (OTP) is the only known unbreakable cipher, proved mathematically by Shannon in 1949. In spite of several practical drawbacks of using the OTP, it continues to be used in quantum cryptography, DNA cryptography and even in classical cryptography when the highest form of security is desired (other popular algorithms like RSA, ECC, AES are not even proven to be computationally secure). In this work, we prove that the OTP encryption and decryption is equivalent to finding the initial condition on a pair of binary maps (Bernoulli shift). The binary map belongs to a family of 1D nonlinear chaotic and ergodic dynamical systems known as Generalized Luröth Series (GLS). Having established these interesting connections, we construct other perfect secrecy systems on the GLS that are equivalent to the One-Time Pad, generalizing for larger alphabets. We further show that OTP encryption is related to Randomized Arithmetic Coding - a scheme for joint compression and encryption.
A globalization procedure for solving nonlinear systems of equations
NASA Astrophysics Data System (ADS)
Shi, Yixun
1996-09-01
A new globalization procedure for solving a nonlinear system of equationsF(x)D0 is proposed based on the idea of combining Newton step and the steepest descent step WITHIN each iteration. Starting with an arbitrary initial point, the procedure converges either to a solution of the system or to a local minimizer off(x)D1/2F(x)TF(x). Each iteration is chosen to be as close to a Newton step as possible and could be the Newton step itself. Asymptotically the Newton step will be taken in each iteration and thus the convergence is quadratic. Numerical experiments yield positive results. Further generalizations of this procedure are also discussed in this paper.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Lin, Yan
2014-02-01
We investigate the problem of global stabilisation by linear output feedback for a class of uncertain nonlinear systems with zero-dynamics. Compared with the previous works, new dilation-based assumptions are introduced that allow the system nonlinearities and its bounding functions to be coupled with all the states. The nonlinear systems of this paper can be considered as an extended form of some low triangular and feedforward systems. Dynamic gain scaling technique is applied to the controller design and stability analysis. It is proved that with a unifying linear controller structure and flexible adaptive laws for the observer gain, global stabilisation of the nonlinear systems can be achieved.
Nonlinear effects in two-dimensional & layered electronic systems
NASA Astrophysics Data System (ADS)
Lee, Changjin
In this dissertation, nonlinear effects of strongly correlated 2D and layered electronic system are focused on within the framework of quasi-localized charge approximation (QLCA) and dynamic mean field theory (DMFT). In Part I, it is shown that QLCA scheme can be generalized beyond the harmonic approximation into the nonlinear regime, as a powerful tool to handle with not only the liquid phase but also the solid phase of the strongly correlated classical bilayer system. (a) The quadratic order equation of a single quasi-localized charge (QLC) for the strongly coupled classical bilayer system interacting via any general isotropic scalar potential has been derived in real space from first principle, and it is applied to the strongly coupled Coulomb bilayer system (b) The quadratic order collective mode QLCA equation has been derived in real space. (c) The Fourier space representation of quadratic QLCA equation is obtained. (d) Some difficulties for solving quadratic order QLCA equation are emphasized for the future study. In Part II, (a) the formal derivation of the longitudinal quadratic Density Response Function (qDRF) will be given in terms of the modified three-point Density Correlation Function (DCF: symbolized as F-function) not only to extract the naive symmetry of 2D qDRF in imaginary frequency space, but also to point out that the modified DCF does not stand alone because it can violate Pauli principle. (b) The modified three-point longitudinal DCF (F-function) has been calculated with the mathematical rigor. (c) It is shown that the static qDRF develops strong peaks as well as fore-reported properties of vanishing and discontinuity. (d) The mathematical mechanism of vanishing and discontinuity of static qDRF will be given. (e) The vanishing of qDRF is shown not limited to the static qDRF.
On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.
Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1990-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato appproximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
Nonlinear observer designs for fuel cell power systems
NASA Astrophysics Data System (ADS)
Gorgun, Haluk
A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS
On the average uncertainty for systems with nonlinear coupling
NASA Astrophysics Data System (ADS)
Nelson, Kenric P.; Umarov, Sabir R.; Kon, Mark A.
2017-02-01
The increased uncertainty and complexity of nonlinear systems have motivated investigators to consider generalized approaches to defining an entropy function. New insights are achieved by defining the average uncertainty in the probability domain as a transformation of entropy functions. The Shannon entropy when transformed to the probability domain is the weighted geometric mean of the probabilities. For the exponential and Gaussian distributions, we show that the weighted geometric mean of the distribution is equal to the density of the distribution at the location plus the scale (i.e. at the width of the distribution). The average uncertainty is generalized via the weighted generalized mean, in which the moment is a function of the nonlinear source. Both the Rényi and Tsallis entropies transform to this definition of the generalized average uncertainty in the probability domain. For the generalized Pareto and Student's t-distributions, which are the maximum entropy distributions for these generalized entropies, the appropriate weighted generalized mean also equals the density of the distribution at the location plus scale. A coupled entropy function is proposed, which is equal to the normalized Tsallis entropy divided by one plus the coupling.
Predictability of extremes in non-linear hierarchically organized systems
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare
Optimum Damping in a Non-Linear Base Isolation System
NASA Astrophysics Data System (ADS)
Jangid, R. S.
1996-02-01
Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.
NASA Astrophysics Data System (ADS)
Yang, Jun; Li, Shihua; Chen, Wen-Hua
2012-08-01
For a multi-input multi-output (MIMO) nonlinear system, the existing disturbance observer-based control (DOBC) only provides solutions to those whose disturbance relative degree (DRD) is higher than or equal to its input relative degree. By designing a novel disturbance compensation gain matrix, a generalised nonlinear DOBC method is proposed in this article to solve the disturbance attenuation problem of the MIMO nonlinear system with arbitrary DRD. It is shown that the disturbances are able to be removed from the output channels by the proposed method with appropriately chosen control parameters. The property of nominal performance recovery, which is the major merit of the DOBCs, is retained with the proposed method. The feasibility and effectiveness of the proposed method are demonstrated by simulation studies of both the numerical and application examples.
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Multivariate moment closure techniques for stochastic kinetic models
Lakatos, Eszter Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
Multivariate moment closure techniques for stochastic kinetic models.
Lakatos, Eszter; Ale, Angelique; Kirk, Paul D W; Stumpf, Michael P H
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
Noise in Nonlinear Dynamical Systems 3 Volume Paperback Set
NASA Astrophysics Data System (ADS)
Moss, Frank; McClintock, P. V. E.
2011-11-01
Volume 1: List of contributors; Preface; Introduction to volume one; 1. Noise-activated escape from metastable states: an historical view Rolf Landauer; 2. Some Markov methods in the theory of stochastic processes in non-linear dynamical systems R. L. Stratonovich; 3. Langevin equations with coloured noise J. M. Sancho and M. San Miguel; 4. First passage time problems for non-Markovian processes Katja Lindenberg, Bruce J. West and Jaume Masoliver; 5. The projection approach to the Fokker-Planck equation: applications to phenomenological stochastic equations with coloured noises Paolo Grigolini; 6. Methods for solving Fokker-Planck equations with applications to bistable and periodic potentials H. Risken and H. D. Vollmer; 7. Macroscopic potentials, bifurcations and noise in dissipative systems Robert Graham; 8. Transition phenomena in multidimensional systems - models of evolution W. Ebeling and L. Schimansky-Geier; 9. Coloured noise in continuous dynamical systems: a functional calculus approach Peter Hanggi; Appendix. On the statistical treatment of dynamical systems L. Pontryagin, A. Andronov and A. Vitt; Index. Volume 2: List of contributors; Preface; Introduction to volume two; 1. Stochastic processes in quantum mechanical settings Ronald F. Fox; 2. Self-diffusion in non-Markovian condensed-matter systems Toyonori Munakata; 3. Escape from the underdamped potential well M. Buttiker; 4. Effect of noise on discrete dynamical systems with multiple attractors Edgar Knobloch and Jeffrey B. Weiss; 5. Discrete dynamics perturbed by weak noise Peter Talkner and Peter Hanggi; 6. Bifurcation behaviour under modulated control parameters M. Lucke; 7. Period doubling bifurcations: what good are they? Kurt Wiesenfeld; 8. Noise-induced transitions Werner Horsthemke and Rene Lefever; 9. Mechanisms for noise-induced transitions in chemical systems Raymond Kapral and Edward Celarier; 10. State selection dynamics in symmetry-breaking transitions Dilip K. Kondepudi; 11. Noise in a
NASA Astrophysics Data System (ADS)
Bryuhanov, Yu. A.
2010-08-01
We consider a method for calculating forced oscillations in nonlinear discrete-time systems under periodic external actions. The method is based on representing the stationary oscillations in the form of an invariant set of nonlinear discrete point mappings and allows one to calculate the nonlinear-system response in the steady-state regime. The examples of using this method for calculating forced oscillations in the first- and second-order nonlinear recursive systems under the harmonic-signal action on such systems are presented.
NASA Astrophysics Data System (ADS)
Wei, Xile; Lu, Meili; Wang, Jiang; Tsang, K. M.; Deng, Bin; Che, Yanqiu
2010-05-01
We consider the assumption of existence of the general nonlinear internal model that is introduced in the design of robust output regulators for a class of minimum-phase nonlinear systems with rth degree (r ≥ 2). The robust output regulation problem can be converted into a robust stabilisation problem of an augmented system consisting of the given plant and a high-gain nonlinear internal model, perfectly reproducing the bounded including not only periodic but also nonperiodic exogenous signal from a nonlinear system, which satisfies some general immersion assumption. The state feedback controller is designed to guarantee the asymptotic convergence of system errors to zero manifold. Furthermore, the proposed scheme makes use of output feedback dynamic controller that only processes information from the regulated output error by using high-gain observer to robustly estimate the derivatives of the regulated output error. The stabilisation analysis of the resulting closed-loop systems leads to regional as well as semi-global robust output regulation achieved for some appointed initial condition in the state space, for all possible values of the uncertain parameter vector and the exogenous signal, ranging over an arbitrary compact set.
Control methods to improve non-linear HVAC system operations
NASA Astrophysics Data System (ADS)
Phalak, Kaustubh Pradeep
The change of weather conditions and occupancy schedules makes heating ventilating and air-conditioning (HVAC) systems heavily dynamic. The mass and thermal inertia, nonlinear characteristics and interactions in HVAC systems make the control more complicated. As a result, some conventional control methods often cannot provide desired control performance under variable operating conditions. The purpose of this study is to develop control methods to improve the control performance of HVAC systems. This study focuses on optimizing the airflow-pressure control method of air side economizers, identifying robust building pressurization controls, developing a control method to control outdoor air and building pressure in absence of flow and pressure sensors, stabilizing the cooling coil valve operation and, return fan speed control. The improvements can be achieved by identifying and selecting a method with relatively linear performance characteristics out of the available options, applying fans rather than dampers to control building pressure, and improving the controller's stability range using cascade control method. A steady state nonlinear network model, for an air handling unit (AHU), air distribution system and conditioned space, is applied to analyze the system control performance of air-side economizers and building pressurization. The study shows that traditional controls with completely interlinked outdoor air, recirculated air, relief air dampers have the best control performance. The decoupled relief damper control may result in negative building static pressure at lower outdoor airflow ratio and excessively positive building static pressure at higher outdoor airflow ratio. On the other hand, return fan speed control has a better controllability on building pressurization. In absence of flow and pressure sensors fixed interlinked damper and linear return fan speed tracking control can maintain constant outside air ratio and positive building pressure. The
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Improvements and applications of entrainment control for nonlinear dynamical systems.
Liu, Fang; Song, Qiang; Cao, Jinde
2008-12-01
This paper improves the existing entrainment control approaches and develops unified schemes to chaos control and generalized (lag, anticipated, and complete) synchronization of nonlinear dynamical systems. By introducing impulsive effects to the open-loop control method, we completely remove its restrictions on goal dynamics and initial conditions, and derive a sufficient condition to estimate the upper bound of impulsive intervals to ensure the global asymptotic stability. We then propose two effective ways to implement the entrainment strategy which combine open-loop and closed-loop control, and we prove that the feedback gains can be chosen according to a lower bound or be tuned with an adaptive control law. Numerical examples are given to verify the theoretical results and to illustrate their applications.
Model of intermodulation distortion in non-linear multicarrier systems
NASA Astrophysics Data System (ADS)
Frigo, Nicholas J.
1994-02-01
A heuristic model is proposed which allows calculation of the individual spectral components of the intermodulation distortion present in a non-linear system with a multicarrier input. Noting that any given intermodulation product (IMP) can only be created by a subset of the input carriers, we partition them into 'signal' carriers (which create the IMP) and 'noise' carriers, modeled as a Gaussian process. The relationship between an input signal and the statistical average of its output (averaged over the Gaussian noise) is considered to be an effective transfer function. By summing all possible combinations of signal carriers which create power at the IMP frequencies, the distortion power can be calculated exactly as a function of frequency. An analysis of clipping in lightwave CATV links for AM-VSB signals is used to introduce the model, and is compared to a series of experiments.
Prediction and simulation errors in parameter estimation for nonlinear systems
NASA Astrophysics Data System (ADS)
Aguirre, Luis A.; Barbosa, Bruno H. G.; Braga, Antônio P.
2010-11-01
This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust.
Strong vibration nonlinearity in semiconductor-based nanomechanical systems
NASA Astrophysics Data System (ADS)
Moskovtsev, Kirill; Dykman, M. I.
2017-02-01
We study the effect of the electron-phonon coupling on vibrational eigenmodes of nano- and micromechanical systems made of semiconductors with equivalent energy valleys. We show that the coupling can lead to a strong mode nonlinearity. The mechanism is the lifting of the valley degeneracy by the strain. The redistribution of the electrons between the valleys is controlled by a large ratio of the electron-phonon coupling constant to the electron chemical potential or temperature. We find the quartic in the strain terms in the electron free energy, which determine the amplitude dependence of the mode frequencies. This dependence is calculated for silicon microsystems. It is significantly different for different modes and the crystal orientation, and can vary nonmonotonously with the electron density and temperature.
Equations for Nonlinear MHD Convection in Shearless Magnetic Systems
Pastukhov, V.P.
2005-07-15
A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport processes and the establishment of the self-consistent plasma temperature and density profiles for a large class of axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow motions.
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.
Su, Shize; Lin, Zongli; Garcia, Alfredo
2016-01-01
This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.
Guidance of Nonlinear Nonminimum-Phase Dynamic Systems
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.
Nonlinear closure relations theory for transport processes in nonequilibrium systems.
Sonnino, Giorgio
2009-05-01
A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ("Onsager") transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.
A Teaching and Learning Sequence about the Interplay of Chance and Determinism in Nonlinear Systems
ERIC Educational Resources Information Center
Stavrou, D.; Duit, R.; Komorek, M.
2008-01-01
A teaching and learning sequence aimed at introducing upper secondary school students to the interplay between chance and determinism in nonlinear systems is presented. Three experiments concerning nonlinear systems (deterministic chaos, self-organization and fractals) and one experiment concerning linear systems are introduced. Thirty upper…
Model reference adaptive control for linear time varying and nonlinear systems
NASA Technical Reports Server (NTRS)
Abida, L.; Kaufman, H.
1982-01-01
Model reference adaptive control is applied to linear time varying systems and to nonlinear systems amenable to virtual linearization. Asymptotic stability is guaranteed even if the perfect model following conditions do not hold, provided that some sufficient conditions are satisfied. Simulations show the scheme to be capable of effectively controlling certain nonlinear systems.
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1974-01-01
A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.
Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems
Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...
Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo
2016-04-22
A data-driven adaptive tracking control approach is proposed for a class of continuous-time nonlinear systems using a recent developed goal representation heuristic dynamic programming (GrHDP) architecture. The major focus of this paper is on designing a multivariable tracking scheme, including the filter-based action network (FAN) architecture, and the stability analysis in continuous-time fashion. In this design, the FAN is used to observe the system function, and then generates the corresponding control action together with the reference signals. The goal network will provide an internal reward signal adaptively based on the current system states and the control action. This internal reward signal is assigned as the input for the critic network, which approximates the cost function over time. We demonstrate its improved tracking performance in comparison with the existing heuristic dynamic programming (HDP) approach under the same parameter and environment settings. The simulation results of the multivariable tracking control on two examples have been presented to show that the proposed scheme can achieve better control in terms of learning speed and overall performance.
Mele, M; Macciotta, N P P; Cecchinato, A; Conte, G; Schiavon, S; Bittante, G
2016-12-01
We investigated the potential of using multivariate factor analysis to extract metabolic information from data on the quantity and quality of milk produced under different management systems. We collected data from individual milk samples taken from 1,158 Brown Swiss cows farmed in 85 traditional or modern herds in Trento Province (Italy). Factor analysis was carried out on 47 individual fatty acids, milk yield, and 5 compositional milk traits (fat, protein, casein, and lactose contents, somatic cell score). According to a previous study on multivariate factor analysis, a variable was considered to be associated with a specific factor if the absolute value of its correlation with the factor was ≥0.60. The extracted factors were representative of the following 12 groups of fatty acids or functions: de novo fatty acids, branched fatty acid-milk yield, biohydrogenation, long-chain fatty acids, desaturation, short-chain fatty acids, milk protein and fat contents, odd fatty acids, conjugated linoleic acids, linoleic acid, udder health, and vaccelenic acid. Only 5 fatty acids showed small correlations with these groups. Factor analysis suggested the existence of differences in the metabolic pathways for de novo short- and medium-chain fatty acids and Δ(9)-desaturase products. An ANOVA of factor scores highlighted significant effects of the dairy farming system (traditional or modern), season, herd/date, parity, and days in milk. Factor behavior across levels of fixed factors was consistent with current knowledge. For example, compared with cows farmed in modern herds, those in traditional herds had higher scores for branched fatty acids, which were inversely associated with milk yield; primiparous cows had lower scores than older cows for de novo fatty acids, probably due to a larger contribution of lipids mobilized from body depots on milk fat yield. The statistical approach allowed us to reduce a large number of variables to a few latent factors with biological
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Ochs, H. T., III; Kidder, S. Q.; Scott, R. W.
1986-01-01
A variational data assimilation method for the study of cyclone-scale weather systems is described. The variational data assimilation method is to incorporate primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. The variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. The development of variational model 1 which contains two nonlinear horizontal momentum equations, an integrated continuity equation, and a hydrostatic equation is examined. Examples applying the assimilation model to rawinsonde and satellite data are presented.
Controlling wave propagation through nonlinear engineered granular systems
NASA Astrophysics Data System (ADS)
Leonard, Andrea
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave
NASA Astrophysics Data System (ADS)
Komatsu, Kazuo; Takata, Hitoshi
2012-11-01
In this paper, we consider an observer design by using a formal linearization based on Fourier expansion for nonlinear dynamic and measurement systems. A non-linear dynamic system is given by a nonlinear ordinary differential equation, and a measurement sysetm is done by a nonlinear equation. Defining a linearization function which consists of the trigonometric functions considered up to the higher-order, a nonlinear dynamic system is transformed into an augmented linear one with respect to this linearization function by using Fourier expansion. Introducing an augmented measurement vector which consists of polynomials of measurement data, a measurement equation is transformed into an augmented linear one with respect to the linearization function in the same way. To these augmented linearized systems, a linear estimation theory is applied to design a new non-linear observer.
Turksoy, Kamuran; Samadi, Sediqeh; Feng, Jianyuan; Littlejohn, Elizabeth; Quinn, Laurie; Cinar, Ali
2016-01-01
A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman’s minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(±9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of post-prandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia. PMID:26087510
Turksoy, Kamuran; Samadi, Sediqeh; Feng, Jianyuan; Littlejohn, Elizabeth; Quinn, Laurie; Cinar, Ali
2016-01-01
A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman's minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(±9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of postprandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia.
Tight Rounds on the Response of Multivariable Systems with Component Uncertainty,
1979-08-31
Prescribed Time- Domain Tolerance*." Int. J. Control. Vol. 16, pp. 267-309, 1972. 151 C. A. Desoer and M. vldyseagar. Feedback System Znput-Output...Twelfth Annual Asilasma Conference on Circuits , systems, and Computers. Pacific Grove, California, No ember 6-, 1979. (7T G. Forsythe and C. B. Moler
Nonlinear Dynamics of Extended Hydrologic Systems over long time scales
NASA Astrophysics Data System (ADS)
Lall, Upmanu
2014-05-01
We often view our knowledge of hydrology and hence of nature as intransient, at least over the time scales over which we study processes we wish to predict and understand. Over the last few decades, this assumption has come under question, largely because of the vocal expression of a changing climate, but also the recurrent demonstration of significant land use change, both of which significantly affect the boundary conditions for terrestrial hydrology that is our forte. Most recently, the concepts of hydromorphology and social hydrology have entered the discussion, and the notion that climate and hydrology influence human action, which in turn shapes hydrology, is being recognized. Finally, as a field, we seem to be coming to the conclusion that the hydrologic system is an open system, whose boundaries evolve in time, and that the hydrologic system, at many scales, has a profound effect on the systems that drive it -- whether they be the ecological and climatic systems, or the social system. What a mess! Complexity! Unpredictability! At a certain level of abstraction, one can consider the evolution of these coupled systems with nonlinear feedbacks and ask what types of questions are relevant in terms of such a coupled evolution? What are their implications at the planetary scale? What are their implications for a subsistence farmer in an arid landscape who may under external influence achieve a new transient hydro-ecological equilibrium? What are the implications for the economy and power of nations? In this talk, I will try to raise some of these questions and also provide some examples with very simple dynamical systems that suggest ways of thinking about some practical issues of feedback across climate, hydrology and human behavior.
Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions
NASA Astrophysics Data System (ADS)
Pao, C. V.; Ruan, W. H.
2007-09-01
The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.
Multiscale, multiorgan and multivariate complexity analyses of cardiovascular regulation.
Cerutti, Sergio; Hoyer, Dirk; Voss, Andreas
2009-04-13
Cardiovascular system complexity is confirmed by both its generally variegated structure of physiological modelling and the richness of information detectable from processing of the signals involved in it, with strong linear and nonlinear interactions with other biological systems. In particular, this behaviour may be accordingly described by means of what we call MMM paradigm (i.e. multiscale, multiorgan and multivariate). Such an approach to the cardiovascular system emphasizes where the genesis of its complexity is potentially allocated and how it is possible to detect information from it. No doubt that processing signals from multi-leads of the same system (multivariate), from the interaction of different physiological systems (multiorgan) and integrating all this information across multiple scales (from genes, to proteins, molecules, cells, up to the whole organ) could really provide us with a more complete look at the overall phenomenon of cardiovascular system complexity, with respect to the one which is obtainable from its single constituent parts. In this paper, some examples of approaches are discussed for investigating the cardiovascular system in different time and spatial scales, in studying a different organ involvement (such as sleep, depression and multiple organ dysfunction) and in using a multivariate approach via various linear and nonlinear methods for cardiovascular risk stratification and pathology assessment.
NASA Astrophysics Data System (ADS)
Errouissi, Rachid; Yang, Jun; Chen, Wen-Hua; Al-Durra, Ahmed
2016-08-01
In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach.
The Impact of Fiber Nonlinearities on Digital Optical Communication Systems
NASA Astrophysics Data System (ADS)
Chiang, Ting-Kuang
Wavelength-division multiplexing (WDM) enables high throughput fiber-optic networks by sending several optical channels through a single fiber. Even though the bandwidth of optical fibers is over 25 THz, fiber nonlinearities can limit the capacity of WDM communication systems. Cross -phase modulation (XPM) is one of the nonlinear effects that affect WDM systems. This thesis provides an in-depth understanding of the properties of XPM-induced phase shift and suggests techniques to suppress XPM in long-distance WDM optical networks. In this thesis, XPM is theoretically and experimentally investigated in fiber links with optical amplifiers and dispersion compensators. The theoretical analysis suggests that the XPM effect can be modeled as a phase modulator with inputs from the intensity of co-propagating waves. The frequency response of the phase modulator depends on fiber dispersion, wavelength separation, and fiber length. In non-dispersive fibers, XPM is frequency-independent; in dispersive fibers, the response is approximately inversely proportional to modulation frequency, fiber dispersion, and wavelength separation. In N-segment amplified links with no dispersion compensators, the XPM frequency response is increased N -fold, but only in very narrow frequency bands. In most other frequency bands, the increase is limited and almost independent of N. However, in N-segment amplified links with dispersion compensators, the frequency response of XPM is increased N-fold at all frequencies if the dispersion is compensated for within each fiber segment. The XPM-induced sensitivity penalty in multichannel continuous-phase frequency-shift-keying optical communication systems is investigated by theoretical analysis, computer simulations, and experimental measurements. It is shown that high-frequency components in the XPM-induced phase shift play a more important role in determining the sensitivity penalty than the low-frequency components. The XPM-induced sensitivity penalty
NASA Technical Reports Server (NTRS)
Anderson, B. D. O.; Brockett, R. W.; Byrnes, C. I.; Ghosh, B. K.; Stevens, P. K.
1983-01-01
The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined.
The SWAN/NPSOL code system for multivariable multiconstraint shield optimization
Watkins, E.F.; Greenspan, E.
1995-12-31
SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN`s optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN`s optimization capability.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Adaptation with disturbance attenuation in nonlinear control systems
Basar, T.
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
Robust Control Design for Uncertain Nonlinear Dynamic Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.
2012-01-01
Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.
A distributed system for visualizing and analyzing multivariate and multidisciplinary data
NASA Technical Reports Server (NTRS)
Jacobson, Allan S.; Allen, Mark; Bailey, Michael; Blom, Ronald; Blume, Leo; Elson, Lee
1993-01-01
THe Linked Windows Interactive Data System (LinkWinds) is being developed with NASA support. The objective of this proposal is to adapt and apply that system in a complex network environment containing elements to be found by scientists working multidisciplinary teams on very large scale and distributed data sets. The proposed three year program will develop specific visualization and analysis tools, to be exercised locally and remotely in the LinkWinds environment, to demonstrate visual data analysis, interdisciplinary data analysis and cooperative and interactive televisualization and analysis of data by geographically separated science teams. These demonstrators will involve at least two science disciplines with the aim of producing publishable results.
A distributed system for visualizing and analyzing multivariate and multidisciplinary data
NASA Technical Reports Server (NTRS)
Jacobson, Allan S.; Allen, Mark; Bailey, Michael; Blom, Ronald; Blume, Leo; Elson, Lee
1992-01-01
The Linked Windows Interactive Data System (Link Winds) is being developed with NASA support. The objective of this proposal is to adapt and apply that system in a complex network environment containing elements to be found by scientists working multidisciplinary teams on very large scale and distributed data sets. The proposed three year program will develop specific visualization and analysis tools, to be exercised locally and remotely in the Link Winds environment, to demonstrate visual data analysis, interdisciplinary data analysis and cooperative and interactive televisualization and analysis of data by geographically separated science teams. These demonstrations will involve at least two science disciplines with the aim of producing publishable results.
ERIC Educational Resources Information Center
Mather, Richard
2015-01-01
This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…
Indicators are commonly used for evaluating relative sustainability for competing products and processes. When a set of indicators is chosen for a particular system of study, it is important to ensure that they are variable independently of each other. Often the number of indicat...
AESOP: A computer-aided design program for linear multivariable control systems
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1982-01-01
An interactive computer program (AESOP) which solves quadratic optimal control and is discussed. The program can also be used to perform system analysis calculations such as transient and frequency responses, controllability, observability, etc., in support of the control and filter design computations.
Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja
2008-05-01
The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.
NASA Astrophysics Data System (ADS)
Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.
2017-01-01
Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.
Some Thoughts on Stability in Nonlinear Periodic Focusing Systems
DOE R&D Accomplishments Database
McMillan, E. M.
1967-09-05
A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.
Limit cycle analysis of active disturbance rejection control system with two nonlinearities.
Wu, Dan; Chen, Ken
2014-07-01
Introduction of nonlinearities to active disturbance rejection control algorithm might have high control efficiency in some situations, but makes the systems with complex nonlinearity. Limit cycle is a typical phenomenon that can be observed in the nonlinear systems, usually causing failure or danger of the systems. This paper approaches the problem of the existence of limit cycles of a second-order fast tool servo system using active disturbance rejection control algorithm with two fal nonlinearities. A frequency domain approach is presented by using describing function technique and transfer function representation to characterize the nonlinear system. The derivations of the describing functions for fal nonlinearities and treatment of two nonlinearities connected in series are given to facilitate the limit cycles analysis. The effects of the parameters of both the nonlinearity and the controller on the limit cycles are presented, indicating that the limit cycles caused by the nonlinearities can be easily suppressed if the parameters are chosen carefully. Simulations in the time domain are performed to assess the prediction accuracy based on the describing function.
Simple saturated designs for ANCBC systems and extension to feedforward nonlinear systems
NASA Astrophysics Data System (ADS)
Ye, Huawen; Gui, Weihua
2012-12-01
This article re-examines the robust stabilisation of the asymptotically null-controllable with bounded controls (ANCBC) systems, and extends the established algorithm to a wide class of feedforward nonlinear systems whose nominal dynamics contains both multiple integrators and multiple oscillators. Based on the notion of 'converging-input bounded-state' (CIBS) rather than 'small-input small-state' (SISS), the computation burden in Sussmann et al. (Sussmann, H.J., Sontag, E.D., and Yang, Y. (1994), 'A General Result on the Stabilization of Linear Systems using Bounded Controls', IEEE Transactions on Automatic Control, 39, 2411-2425) is reduced and a class of simple saturated control laws is presented for the CIBS stabilisation of ANCBC systems. Then, by combining the technique of dealing with higher-order terms, the algorithm for ANCBC systems is extended to feedforward nonlinear systems.
Multivariable closed loop control analysis and synthesis for complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1981-01-01
A flight control system analysis and synthesis method is presented that is intended to be especially suitable for application to vehicles exhibiting complex dynamic characteristics. For such vehicles quantitative handling qualities specifications are not usually available. Howver, handling qualities objectives are specifically introduced in this method via the hypothesis of correlation between pilot ratings and the objective function of an optimal control model of the human pilot. Further, since augmentation and pilot operate in parallel, simultaneous determination of the augmentation and pilot model gains is required. Desirable augmented dynamics are obtained for a variety of complex systems and the method is experimentally verified in the case of simple pilot damper gain selection for optimum pitch tracking performance.
On the Interval Stability of Weak-Nonlinear Control Systems with Aftereffect
Khusainov, Denys
2016-01-01
Sufficient conditions of interval absolute stability of nonlinear control systems described in terms of systems of the ordinary differential equations with delay argument and also neutral type are obtained. The Lyapunov-Krasovskii functional method in the form of the sum of a quadratic component and integrals from nonlinearity is used at construction of statements. PMID:27844050
1989-10-30
In this Phase I SBIR study, new methods are developed for the system identification and stochastic filtering of nonlinear controlled Markov processes...state space Markov process models and canonical variate analysis (CVA) for obtaining optimal nonlinear procedures for system identification and stochastic
Identification of limit cycles in multi-nonlinearity, multiple path systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Barron, O. L.
1979-01-01
A method of analysis which identifies limit cycles in autonomous systems with multiple nonlinearities and multiple forward paths is presented. The FORTRAN code for implementing the Harmonic Balance Algorithm is reported. The FORTRAN code is used to identify limit cycles in multiple path and nonlinearity systems while retaining the effects of several harmonic components.
On the estimation of the attainability set of nonlinear control systems
Ekimov, A.V.; Balykina, Yu.E.; Svirkin, M.V.
2015-03-10
Analysis of the attainability set and construction of its estimates greatly facilitates the solution of a variety of problems in mathematical control theory. In the paper, the problem of boundedness of the integral funnel of nonlinear controlled system is considered. Some estimates of the attainability sets for a nonlinear controlled system are presented. Theorems on the boundedness of considered integral funnels are proved.
Multi-variable mathematical models for the air-cathode microbial fuel cell system
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...
2016-03-10
This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less
Multi-variable mathematical models for the air-cathode microbial fuel cell system
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-05-01
This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.
Multi-variable mathematical models for the air-cathode microbial fuel cell system
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-03-10
This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.
NASA Technical Reports Server (NTRS)
Rodriguez, A. A.; Athans, M.
1986-01-01
Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.
Application of dynamical systems theory to nonlinear aircraft dynamics
NASA Astrophysics Data System (ADS)
Jahnke, Craig C.
1990-01-01
A continuation method has been used to determine the steady states of three nonlinear aircraft models: a general aviation aircraft with a canard configuration, a generic jet fighter, and the F-14. The continuation method calculated the steady states of the aircraft as functions of the control surface deflections. Bifurcations of these steady states were determined and shown to cause instabilities which resulted in qualitative changes in the state of the aircraft. A longitudinal instability which resulted in a deep stall was determined for the general aviation aircraft. Roll-coupling and high angle of attack instabilities were determined for the generic jet fighter, and wing rock, directional divergence and high angle of attack instabilities were determined for the F-14.Knowledge of the control surface deflections at which bifurcations occurred was used to either put limits on the control surface deflections or to program the control surface deflections such that a combination of control surface deflections at which bifurcations occur could not be attained. Simple control systems were included in the aircraft models to determine the effects of control systems on the instabilities of each aircraft. Steady spin modes were determined for each aircraft. A successful recovery technique was determined for the general aviation aircraft, but no successful recovery technique could be found for the F-14.
Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems
NASA Astrophysics Data System (ADS)
Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios
2015-11-01
We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.
Nonlinear phase field model for electrodeposition in electrochemical systems
Liang, Linyun; Chen, Long-Qing
2014-12-29
A nonlinear phase-field model has been developed for describing the electrodeposition process in electrochemical systems that are highly out of equilibrium. Main thermodynamic driving forces for the electrode-electrolyte interface (EEI) evolution are limited to local variations of overpotential and ion concentration. Application of the model to Li-ion batteries describes the electrode interface motion and morphology change caused by charge mass transfer in the electrolyte, an electrochemical reaction at the EEI and cation deposition on the electrode surface during the charging operation. The Li electrodeposition rate follows the classical Butler-Volmer kinetics with exponentially and linearly depending on local overpotential and cation concentration at the electrode surface, respectively. Simulation results show that the Li deposit forms a fiber-like shape and grows parallel to the electric field direction. The longer and thicker deposits are observed both for higher current density and larger rate constant where the surface reaction rate is expected to be high. The proposed diffuse interface model well captures the metal electrodeposition phenomena in plenty of non-equilibrium electrochemical systems.
Multivariate analysis and visualization of soil quality data for no-till systems.
Villamil, M B; Miguez, F E; Bollero, G A
2008-01-01
To evidence the multidimensionality of the soil quality concept, we propose the use of data visualization as a tool for exploratory data analyses, model building, and diagnostics. Our objective was to establish the best edaphic indicators for assessing soil quality in four no-till systems with regard to functioning as a medium for crop production and nutrient cycling across two Illinois locations. The compared situations were no-till corn-soybean rotations including either winter fallowing (C/S) or cover crops of rye (Secale cereale; C-R/S-R), hairy vetch (Vicia villosa; C-R/S-V), or their mixture (C-R/S-VR). The dataset included the variables bulk density (BD), penetration resistance (PR), water aggregate stability (WAS), soil reaction (pH), and the contents of soil organic matter (SOM), total nitrogen (TN), soil nitrates (NO(3)-N), and available phosphorus (P). Interactive data visualization along with canonical discriminant analysis (CDA) allowed us to show that WAS, BD, and the contents of P, TN, and SOM have the greatest potential as soil quality indicators in no-till systems in Illinois. It was more difficult to discriminate among WCC rotations than to separate these from C/S, considerably inflating the error rate associated with CDA. We predict that observations of no-till C/S will be classified correctly 51% of the time, while observations of no-till WCC rotations will be classified correctly 74% of the time. High error rates in CDA underscore the complexity of no-till systems and the need in this area for more long-term studies with larger datasets to increase accuracy to acceptable levels.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Shultz, Louis A.
1994-01-01
The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.
Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D’Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila
2015-01-01
Background Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. Objective The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Materials and Methods Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. Results The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Discussion and Conclusion Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient
Advanced data assimilation in strongly nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Miller, Robert N.; Ghil, Michael; Gauthiez, Francois
1994-01-01
Advanced data assimilation methods are applied to simple but highly nonlinear problems. The dynamical systems studied here are the stochastically forced double well and the Lorenz model. In both systems, linear approximation of the dynamics about the critical points near which regime transitions occur is not always sufficient to track their occurrence or nonoccurrence. Straightforward application of the extended Kalman filter yields mixed results. The ability of the extended Kalman filter to track transitions of the double-well system from one stable critical point to the other depends on the frequency and accuracy of the observations relative to the mean-square amplitude of the stochastic forcing. The ability of the filter to track the chaotic trajectories of the Lorenz model is limited to short times, as is the ability of strong-constraint variational methods. Examples are given to illustrate the difficulties involved, and qualitative explanations for these difficulties are provided. Three generalizations of the extended Kalman filter are described. The first is based on inspection of the innovation sequence, that is, the successive differences between observations and forecasts; it works very well for the double-well problem. The second, an extension to fourth-order moments, yields excellent results for the Lorenz model but will be unwieldy when applied to models with high-dimensional state spaces. A third, more practical method--based on an empirical statistical model derived from a Monte Carlo simulation--is formulated, and shown to work very well. Weak-constraint methods can be made to perform satisfactorily in the context of these simple models, but such methods do not seem to generalize easily to practical models of the atmosphere and ocean. In particular, it is shown that the equations derived in the weak variational formulation are difficult to solve conveniently for large systems.
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Nonlinear response of the quantum Hall system to a strong electromagnetic radiation
NASA Astrophysics Data System (ADS)
Avetissian, H. K.; Mkrtchian, G. F.
2016-12-01
We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.
Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W
2014-01-01
A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection.
On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems
NASA Astrophysics Data System (ADS)
Tripathi, Astitva; Grover, Piyush; Kalmár-Nagy, Tamás
2017-02-01
We study the problem of optimizing the performance of a nonlinear spring-mass-damper attached to a class of multiple-degree-of-freedom systems. We aim to maximize the rate of one-way energy transfer from primary system to the attachment, and focus on impulsive excitation of a two-degree-of-freedom primary system with an essentially nonlinear attachment. The nonlinear attachment is shown to be able to perform as a 'nonlinear energy sink' (NES) by taking away energy from the primary system irreversibly for some types of impulsive excitations. Using perturbation analysis and exploiting separation of time scales, we perform dimensionality reduction of this strongly nonlinear system. Our analysis shows that efficient energy transfer to nonlinear attachment in this system occurs for initial conditions close to homoclinic orbit of the slow time-scale undamped system, a phenomenon that has been previously observed for the case of single-degree-of-freedom primary systems. Analytical formulae for optimal parameters for given impulsive excitation input are derived. Generalization of this framework to systems with arbitrary number of degrees-of-freedom of the primary system is also discussed. The performance of both linear and nonlinear optimally tuned attachments is compared. While NES performance is sensitive to magnitude of the initial impulse, our results show that NES performance is more robust than linear tuned mass damper to several parametric perturbations. Hence, our work provides evidence that homoclinic orbits of the underlying Hamiltonian system play a crucial role in efficient nonlinear energy transfers, even in high dimensional systems, and gives new insight into robustness of systems with essential nonlinearity.
Spectral theory for the failure of linear control in a nonlinear stochastic system.
Grigoriev, Roman O; Handel, Andreas
2002-12-01
We consider the failure of localized control in a nonlinear spatially extended system caused by extremely small amounts of noise. It is shown that this failure occurs as a result of a nonlinear instability. Nonlinear instabilities can occur in systems described by linearly stable but strongly non-normal evolution operators. In spatially extended systems the non-normality manifests itself in two different but complementary ways: transient amplification and spectral focusing of disturbances. We show that temporal and spatial aspects of the non-normality and the type of nonlinearity are all crucially important to understand and describe the mechanism of nonlinear instability. Presented results are expected to apply equally to other physical systems where strong non-normality is due to the presence of mean flow rather than the action of control.
NASA Technical Reports Server (NTRS)
Behbehani, K.
1980-01-01
A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.
Parameter Estimation of Nonlinear Systems by Dynamic Cuckoo Search.
Liao, Qixiang; Zhou, Shudao; Shi, Hanqing; Shi, Weilai
2017-04-01
In order to address with the problem of the traditional or improved cuckoo search (CS) algorithm, we propose a dynamic adaptive cuckoo search with crossover operator (DACS-CO) algorithm. Normally, the parameters of the CS algorithm are kept constant or adapted by empirical equation that may result in decreasing the efficiency of the algorithm. In order to solve the problem, a feedback control scheme of algorithm parameters is adopted in cuckoo search; Rechenberg's 1/5 criterion, combined with a learning strategy, is used to evaluate the evolution process. In addition, there are no information exchanges between individuals for cuckoo search algorithm. To promote the search progress and overcome premature convergence, the multiple-point random crossover operator is merged into the CS algorithm to exchange information between individuals and improve the diversification and intensification of the population. The performance of the proposed hybrid algorithm is investigated through different nonlinear systems, with the numerical results demonstrating that the method can estimate parameters accurately and efficiently. Finally, we compare the results with the standard CS algorithm, orthogonal learning cuckoo search algorithm (OLCS), an adaptive and simulated annealing operation with the cuckoo search algorithm (ACS-SA), a genetic algorithm (GA), a particle swarm optimization algorithm (PSO), and a genetic simulated annealing algorithm (GA-SA). Our simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Cumulants of heat transfer across nonlinear quantum systems
NASA Astrophysics Data System (ADS)
Li, Huanan; Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng
2013-12-01
We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green's function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.
NASA Astrophysics Data System (ADS)
Gao, Fangzheng; Wu, Yuqiang; Yu, Xin
2016-12-01
In this paper, the problem of global stabilisation by state feedback is investigated for a class of stochastic high-order nonlinear systems with both high-order and low-order nonlinearities, to which the existing control methods are inapplicable. Based on the generalised stochastic Lyapunov theorem, and by skillfully using the method of adding a power integrator, a continuous state feedback controller is successfully constructed, which can guarantee the global asymptotic stability in probability of the resulting closed-loop system in the sense of weak solution, and also is able to lead to an interesting result of finite-time stabilisation under appropriate conditions. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed approach.
Some Thoughts on Stability in Nonlinear Periodic Focusing Systems [Addendum
DOE R&D Accomplishments Database
McMillan, Edwin M.
1968-03-29
Addendum to September 5, 1967 report with the same title and with the abstract: A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.
Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials
Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane
2014-01-01
In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293
Nonlinear modal interaction in HVDC/AC power systems with dc power modulation
Ni, Y.X.; Vittal, V.; Kliemann, W.; Fouad, A.A.
1996-11-01
In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.
On invariant analysis of some time fractional nonlinear systems of partial differential equations. I
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2016-10-01
An investigation of Lie point symmetries for systems of time fractional partial differential equations including Ito system, coupled Burgers equations, coupled Korteweg de Vries equations, Hirota-Satsuma coupled KdV equations, and coupled nonlinear Hirota equations has been done. Using the obtained symmetries, each one of the systems is reduced to the nonlinear system of fractional ordinary differential equations involving Erdélyi-Kober fractional differential operator depending on a parameter α.
A nonlinear lumped model for ultrasound systems using CMUT arrays.
Satir, Sarp; Degertekin, F Levent
2015-10-01
We present a nonlinear lumped model that predicts the electrical input-output behavior of an ultrasonic system using CMUTs with arbitrary array/membrane/electrode geometry in different transmit-receive configurations and drive signals. The receive-only operation, where the electrical output signal of the CMUT array in response to incident pressure field is calculated, is included by modifying the boundary elementbased vibroacoustic formulation for a CMUT array in rigid baffle. Along with the accurate large signal transmit model, this formulation covers pitch-catch and pulse-echo operation when transmit and receive signals can be separated in time. In cases when this separation is not valid, such as CMUTs used in continuous wave transmit-receive mode, pulse-echo mode with a nearby hard or soft wall or in a bounded space such as in a microfluidic channel, an efficient formulation based on the method of images is used. Some of these particular applications and the overall modeling approach have been validated through comparison with finite element analysis on specific examples including CMUTs with multiple electrodes. To further demonstrate the capability of the model for imaging applications, the two-way response of a partial dual-ring intravascular ultrasound array is simulated using a parallel computing cluster, where the output currents of individual array elements are calculated for given input pulse and compared with experimental results. With its versatility, the presented model can be a useful tool for rapid iterative CMUT-based system design and simulation for a broad range of ultrasonic applications.
A Nonlinear Lumped Model for Ultrasound Systems Using CMUT Arrays
Satir, Sarp; Degertekin, F. Levent
2015-01-01
We present a nonlinear lumped model that predicts the electrical input-output behavior of an ultrasonic system using CMUTs with arbitrary array/membrane/electrode geometry in different transmit-receive configurations and drive signals. The receive-only operation, where the electrical output signal of the CMUT array in response to incident pressure field is calculated, is included by modifying the boundary element based vibroacoustic formulation for a CMUT array in rigid baffle. Along with the accurate large signal transmit model, this formulation covers pitch-catch and pulse-echo operation when transmit and receive signals can be separated in time. In cases when this separation is not valid, such as CMUTs used in continuous wave transmit-receive mode, pulse-echo mode with a nearby hard or soft wall or in a bounded space such as in a microfluidic channel, an efficient formulation based on the method of images is used. Some of these particular applications and the overall modeling approach have been validated through comparison with finite element analysis on specific examples including CMUTs with multiple electrodes. To further demonstrate the capability of the model for imaging applications, the two-way response of a partial dual-ring intravascular ultrasound array is simulated using a parallel computing cluster, where the output currents of individual array elements are calculated for given input pulse and compared with experimental results. With its versatility, the presented model can be a useful tool for rapid iterative CMUT-based system design and simulation for a broad range of ultrasonic applications. PMID:26470049
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M.
1994-01-01
Global asymptotic stability of a class of nonlinear multibody flexible space structures under dissipative compensation is established. Two cases are considered. The first case allows unlimited nonlinear motions of the entire system and uses quaternion feedback. The second case assumes that the central body motion is in the linear range although the other bodies can undergo unrestricted nonlinear motion. The stability is proved to be robust to the inherent modeling nonlinearities and uncertainties. Furthermore, for the second case, the stability is also shown to be robust to certain actuator and sensor nonlinearities. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems. The results are applicable to a wide class of systems, including flexible space structures with articulated flexible appendages.
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M.
1994-01-01
Global asymptotic stability of a class of nonlinear multibody flexible space-stnuctures under dissipative compensation is established. Two cases are considered. The first case allows unlimited nonlinear motions of the entire system and uses quaternion feedback. The second case assumes that the central body motion is in the linear range although the other bodies can undergo unrestricted nonlinear motion. The stability is proved to be robust to the inherent modeling nonlinearities and uncertainties. Furthermore for the second case the stability is also shown to be robust to certain actuator and sensor nonlinearities. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems. The results are applicable to a wide class of systems including flexible space-structures with articulated flexible appendages.
A nonlinear screen as an element for sound absorption and frequency conversion systems
NASA Astrophysics Data System (ADS)
Rudenko, O. V.
2016-01-01
The paper discusses a model for a screen with dissipative and nonlinear elastic properties that can be used in acoustic sound absorption and frequency conversion systems. Calculation and estimation schemes are explained that are necessary for understanding the functional capabilities of the device. Examples of the nonlinear elements in the screen and promising applications are described.
Parametric and nonparametric nonlinear system identification of lung tissue strip mechanics.
Yuan, H; Westwick, D T; Ingenito, E P; Lutchen, K R; Suki, B
1999-01-01
Lung parenchyma is a soft biological material composed of many interacting elements such as the interstitial cells, extracellular collagen-elastin fiber network, and proteoglycan ground substance. The mechanical behavior of this delicate structure is complex showing several mild but distinct types of nonlinearities and a fractal-like long memory stress relaxation characterized by a power-law function. To characterize tissue nonlinearity in the presence of such long memory, we investigated the robustness and predictive ability of several nonlinear system identification techniques on stress-strain data obtained from lung tissue strips with various input wave forms. We found that in general, for a mildly nonlinear system with long memory, a nonparametric nonlinear system identification in the frequency domain is preferred over time-domain techniques. More importantly, if a suitable parametric nonlinear model is available that captures the long memory of the system with only a few parameters, high predictive ability with substantially increased robustness can be achieved. The results provide evidence that the first-order kernel of the stress-strain relationship is consistent with a fractal-type long memory stress relaxation and the nonlinearity can be described as a Wiener-type nonlinear structure for displacements mimicking tidal breathing.
Modular multivariable control improves hydrocracking
Chia, T.L.; Lefkowitz, I.; Tamas, P.D.
1996-10-01
Modular multivariable control (MMC), a system of interconnected, single process variable controllers, can be a user-friendly, reliable and cost-effective alternative to centralized, large-scale multivariable control packages. MMC properties and features derive directly from the properties of the coordinated controller which, in turn, is based on internal model control technology. MMC was applied to a hydrocracking unit involving two process variables and three controller outputs. The paper describes modular multivariable control, MMC properties, tuning considerations, application at the DCS level, constraints handling, and process application and results.
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
NASA Astrophysics Data System (ADS)
Long, Lijun; Zhao, Jun
2013-03-01
This article investigates the problem of global stabilisation for a class of switched nonlinear systems with unknown control coefficients by output feedback. Full state measurements are unavailable. We first show that via a coordinate transformation, the unknown control coefficients are lumped together and the original switched nonlinear system is transformed into a new switched nonlinear system for which control design becomes feasible. Second, for the new switched nonlinear system, based on backstepping, we design output-feedback controllers for subsystems and construct a common Lyapunov function, which rely on the designed state observer, to guarantee asymptotic stability of the closed-loop system under arbitrary switchings. Finally, as an application of the proposed design method, global stabilisation of a mass-spring-damper system is achieved by output feedback.
A Quasi-ARX Neural Network with Switching Mechanism to Adaptive Control of Nonlinear Systems
NASA Astrophysics Data System (ADS)
Wang, Lan; Cheng, Yu; Hu, Jinglu
This paper introduces an improved quasi-ARX neural network and discusses its application to adaptive control of nonlinear systems. A switching mechanism is employed to improve the performance of the quasi-ARX neural network prediction model which has linear and nonlinear parts. An adaptive controller for a nonlinear system is established based on the proposed prediction model and some stability analysis of the control system is shown. Simulations are given to show the effectiveness of the proposed method both on stability and accuracy.
NASA Astrophysics Data System (ADS)
Zhai, Jun-Yong
2014-03-01
This article addresses the problem of global finite-time output feedback stabilisation for a class of nonlinear systems in nontriangular form with an unknown output function. Since the output function is not precisely known, traditional observers based on the output is not implementable. We first design a state observer and use the observer states to construct a controller to globally stabilise the nominal system without the perturbing nonlinearities. Then, we apply the homogeneous domination approach to design a scaled homogeneous observer and controller with an appropriate choice of gain to render the nonlinear system globally finite-time stable.
Stability Analysis and Stabilization of Nonlinear Systems via Locally Defined Density Functions
NASA Astrophysics Data System (ADS)
Masubuchi, Izumi
This paper considers local stability analysis of nonlinear systems with deriving a positively invariant set based on the Rantzer's stability theory by using density functions. We define a notion of locally defined density functions around an equilibrium that give monotonously increasing positive measures near the equilibrium of a nonlinear system. Under certain assumptions, it is shown that some level set of a locally defined density function is a positively invariant set where almost all of the system trajectories converge to the equilibrium. We also mention an SOS (sum-of-squares) formulation for synthesis of a nonlinear gain via locally defined density functions.
Semi-global decentralised output feedback stabilisation for a class of uncertain nonlinear systems
NASA Astrophysics Data System (ADS)
Zhai, Jun-yong; Zha, Wen-ting; Fei, Shu-min
2013-06-01
This paper discusses the problem of semi-global decentralised output feedback control for a class of uncertain nonlinear systems. Based on the ideas of the homogeneous systems theory and the adding a power integrator technique, we first design a homogeneous observer and an output feedback control law for each nominal subsystem without the nonlinearities. Then, using the homogeneous domination approach, we relax the linear growth condition to a polynomial one and construct decentralised stabilisers to render the nonlinear system semi-globally asymptotically stable. Two simulation examples are provided to show the effectiveness of the control scheme.
The Painlevé test for nonlinear system of differential equations with complex chaotic behavior
NASA Astrophysics Data System (ADS)
Tsegel’nik, V.
2017-01-01
The Painlevé-analysis was performed for solutions of nonlinear third-order autonomous system of differential equations with quadratic nonlinearities on their right-hand sides. At certain values of two constant parameters incorporated into the system, the latter exhibits complex chaotic behavior. When the parameters attain the values corresponding to complex chaotic behavior, the system was found not to possess the Painlevé property.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities
NASA Astrophysics Data System (ADS)
Sarma, Amarendra K.; Miri, Mohammad-Ali; Musslimani, Ziad H.; Christodoulides, Demetrios N.
2014-05-01
We investigate the dynamical behavior of continuous and discrete Schrödinger systems exhibiting parity-time (PT) invariant nonlinearities. We show that such equations behave in a fundamentally different fashion than their nonlinear Schrödinger counterparts. In particular, the PT-symmetric nonlinear Schrödinger equation can simultaneously support both bright and dark soliton solutions. In addition, we study a discretized version of this PT-nonlinear Schrödinger equation on a lattice. When only two elements are involved, by obtaining the underlying invariants, we show that this system is fully integrable and we identify the PT-symmetry-breaking conditions. This arrangement is unique in the sense that the exceptional points are fully dictated by the nonlinearity itself.