Sample records for multivariate analysis findings

  1. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  2. Principal Cluster Axes: A Projection Pursuit Index for the Preservation of Cluster Structures in the Presence of Data Reduction

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.; Henson, Robert

    2012-01-01

    A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…

  3. Prognostic factors and relative risk for survival in N1-3 oral squamous cell carcinoma: a multivariate analysis using Cox's hazard model.

    PubMed

    Noguchi, M; Kido, Y; Kubota, H; Kinjo, H; Kohama, G

    1999-12-01

    The records of 136 patients with N1-3 oral squamous cell carcinoma treated by surgery were investigated retrospectively, with the aim of finding out which factors were predictive of survival on multivariate analysis. Four independent factors significantly influenced survival in the following order: pN stage; T stage; histological grade; and N stage. The most significant was pN stage, the five-year survival for patients with pN0 being 91% and for patients with pN1-3 41%. A further study was carried out on the 80 patients with pN1-3 to find out their prognostic factors for survival and the independent factors identified by multivariate analysis were T stage and presence or absence of extracapsular spread to metastatic lymph nodes.

  4. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  5. Metric Selection for Evaluation of Human Supervisory Control Systems

    DTIC Science & Technology

    2009-12-01

    finding a significant effect when there is none becomes more likely. The inflation of type I error due to multiple dependent variables can be handled...with multivariate analysis techniques, such as Multivariate Analysis of Variance (MANOVA) (Johnson & Wichern, 2002). However, it should be noted that...the few significant differences among many insignificant ones. The best way to avoid failure to identify significant differences is to design an

  6. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003

    NASA Astrophysics Data System (ADS)

    Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe

    2013-02-01

    Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.

  7. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  8. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  9. Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino

    2008-05-01

    In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.

  10. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  11. Application of the new Cross Recurrence Plots to multivariate data

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Romano, C.; Kurths, J.

    2003-04-01

    We extend and then apply the method of the new Cross Recurrence Plots (XRPs) to multivariate data. After introducing the new method we carry out an analysis of spatiotemporal ecological data. We compute not only the Rényi entropies and cross entropies by XRP, that allow to draw conclusions about the coupling of the systems, but also find a prediction horizon for intermediate time scales.

  12. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  13. Multivariable nonlinear analysis of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2003-05-01

    We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.

  14. Risk factors for incidental durotomy during lumbar surgery: a retrospective study by multivariate analysis.

    PubMed

    Chen, Zhixiang; Shao, Peng; Sun, Qizhao; Zhao, Dong

    2015-03-01

    The purpose of the present study was to use a prospectively collected data to evaluate the rate of incidental durotomy (ID) during lumbar surgery and determine the associated risk factors by using univariate and multivariate analysis. We retrospectively reviewed 2184 patients who underwent lumbar surgery from January 1, 2009 to December 31, 2011 at a single hospital. Patients with ID (n=97) were compared with the patients without ID (n=2019). The influences of several potential risk factors that might affect the occurrence of ID were assessed using univariate and multivariate analyses. The overall incidence of ID was 4.62%. Univariate analysis demonstrated that older age, diabetes, lumbar central stenosis, posterior approach, revision surgery, prior lumber surgery and minimal invasive surgery are risk factors for ID during lumbar surgery. However, multivariate analysis identified older age, prior lumber surgery, revision surgery, and minimally invasive surgery as independent risk factors. Older age, prior lumber surgery, revision surgery, and minimal invasive surgery were independent risk factors for ID during lumbar surgery. These findings may guide clinicians making future surgical decisions regarding ID and aid in the patient counseling process to alleviate risks and complications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    PubMed

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  16. MULTIVARIATE ANALYSIS OF DRINKING BEHAVIOUR IN A RURAL POPULATION

    PubMed Central

    Mathrubootham, N.; Bashyam, V.S.P.; Shahjahan

    1997-01-01

    This study was carried out to find out the drinking pattern in a rural population, using multivariate techniques. 386 current users identified in a community were assessed with regard to their drinking behaviours using a structured interview. For purposes of the study the questions were condensed into 46 meaningful variables. In bivariate analysis, 14 variables including dependent variables such as dependence, MAST & CAGE (measuring alcoholic status), Q.F. Index and troubled drinking were found to be significant. Taking these variables and other multivariate techniques too such as ANOVA, correlation, regression analysis and factor analysis were done using both SPSS PC + and HCL magnum mainframe computer with FOCUS package and UNIX systems. Results revealed that number of factors such as drinking style, duration of drinking, pattern of abuse, Q.F. Index and various problems influenced drinking and some of them set up a vicious circle. Factor analysis revealed mainly 3 factors, abuse, dependence and social drinking factors. Dependence could be divided into low/moderate dependence. The implications and practical applications of these tests are also discussed. PMID:21584077

  17. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    PubMed

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  19. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less

  20. Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.

    PubMed

    Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki

    2017-05-01

    To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.

  1. Prognostic significance of MRI findings in patients with myxoid-round cell liposarcoma.

    PubMed

    Tateishi, Ukihide; Hasegawa, Tadashi; Beppu, Yasuo; Kawai, Akira; Satake, Mitsuo; Moriyama, Noriyuki

    2004-03-01

    The aims of this study were to determine the prognostic significance of MRI findings in patients with myxoid-round cell liposarcomas and to clarify which MRI features best indicate tumors with adverse clinical behavior. The initial MRI studies of 36 pathologically confirmed myxoid-round cell liposarcomas were retrospectively reviewed, and observations from this review were correlated with the histopathologic features. MR images were evaluated by two radiologists with agreement by consensus, and both univariate and multivariate analyses were conducted to evaluate survival with a median clinical follow-up of 33 months (range, 9-276 months). Statistically significant MRI findings that favored a diagnosis of intermediate- or high-grade tumor were large tumor size (> 10 cm), deeply situated tumor, tumor possessing irregular contours, absence of lobulation, absence of thin septa, presence of thick septa, absence of tumor capsule, high-intensity signal pattern, pronounced enhancement, and globular or nodular enhancement. Of these MRI findings, thin septa (p < 0.05), a tumor capsule (p < 0.01), and pronounced enhancement (p < 0.01) were associated significantly, according to univariate analysis, with overall survival. Multivariate analysis indicated that pronounced enhancement was associated significantly with overall survival (p < 0.05). Contrast-enhanced MRI findings can indicate a good or adverse prognosis in patients with myxoid-round cell liposarcomas.

  2. The application of near infrared (NIR) spectroscopy to inorganic preservative-treated wood

    Treesearch

    Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Timothy G. Rials

    2004-01-01

    There is a growing need to find a rapid, inexpensive, and reliable method to distinguish between treated and untreated waste wood. This paper evaluates the ability of near infrared (NIR) spectroscopy with multivariate analysis (MVA) to distinguish preservative types and retentions. It is demonstrated that principal component analysis (PCA) can differentiate lumber...

  3. Making Waves or Treading Water? An Analysis of Charter Schools in New York State

    ERIC Educational Resources Information Center

    Silverman, Robert Mark

    2013-01-01

    This article compares charter schools and other public schools in New York State. School Report Card (SRC) data measuring student, teacher, and school characteristics from the state's 16 urban school districts with charter schools were examined. Descriptive and multivariate analysis was used. The findings suggest that there are more similarities…

  4. Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging.

    PubMed

    Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F

    2015-01-01

    An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  5. Designing Interactive Online Nursing Courses

    ERIC Educational Resources Information Center

    Jain, Smita; Jain, Pawan

    2015-01-01

    This study empirically tests the relation between the instructional design elements and the overall meaningful interactions among online students. Eighteen online graduate nursing courses are analyzed using bivariate and multivariate analysis techniques. Findings suggest that the quantity of meaningful interaction among learners can be improved by…

  6. Diagnostic value of history and physical examination in patients suspected of lumbosacral nerve root compression

    PubMed Central

    Vroomen, P; de Krom, M C T F M; Wilmink, J; Kester, A; Knottnerus, J

    2002-01-01

    Objective: To evaluate patient characteristics, symptoms, and examination findings in the clinical diagnosis of lumbosacral nerve root compression causing sciatica. Methods: The study involved 274 patients with pain radiating into the leg. All had a standardised clinical assessment and magnetic resonance (MR) imaging. The associations between patient characteristics, clinical findings, and lumbosacral nerve root compression on MR imaging were analysed. Results: Nerve root compression was associated with three patient characteristics, three symptoms, and four physical examination findings (paresis, absence of tendon reflexes, a positive straight leg raising test, and increased finger-floor distance). Multivariate analysis, analysing the independent diagnostic value of the tests, showed that nerve root compression was predicted by two patient characteristics, four symptoms, and two signs (increased finger-floor distance and paresis). The straight leg raise test was not predictive. The area under the curve of the receiver-operating characteristic was 0.80 for the history items. It increased to 0.83 when the physical examination items were added. Conclusions: Various clinical findings were found to be associated with nerve root compression on MR imaging. While this set of findings agrees well with those commonly used in daily practice, the tests tended to have lower sensitivity and specificity than previously reported. Stepwise multivariate analysis showed that most of the diagnostic information revealed by physical examination findings had already been revealed by the history items. PMID:11971050

  7. Extending Inferential Group Analysis in Type 2 Diabetic Patients with Multivariate GLM Implemented in SPM8.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel

    2017-01-01

    Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.

  8. Extending Inferential Group Analysis in Type 2 Diabetic Patients with Multivariate GLM Implemented in SPM8

    PubMed Central

    Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel

    2017-01-01

    Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571

  9. Site 765: Sedimentology

    USGS Publications Warehouse

    ,

    1990-01-01

    Various techniques were used to decipher the sedimentation history of Site 765, including Markov chain analysis of facies transitions, XRD analysis of clay and other minerals, and multivariate analysis of smear-slide data, in addition to the standard descriptive procedures employed by the shipboard sedimentologist. This chapter presents brief summaries of methodology and major findings of these three techniques, a summary of the sedimentation history, and a discussion of trends in sedimentation through time.

  10. Rex fortran 4 system for combinatorial screening or conventional analysis of multivariate regressions

    Treesearch

    L.R. Grosenbaugh

    1967-01-01

    Describes an expansible computerized system that provides data needed in regression or covariance analysis of as many as 50 variables, 8 of which may be dependent. Alternatively, it can screen variously generated combinations of independent variables to find the regression with the smallest mean-squared-residual, which will be fitted if desired. The user can easily...

  11. The Multivariate Structure of Communication Avoidance.

    ERIC Educational Resources Information Center

    Bell, Robert A.

    1986-01-01

    Clarifies the nature of communication avoidance through a structural analysis grounded in facet theory. Presents evidence for a duplex model of avoidance in which theoretical distinctions among modalities of approach-avoidance and context proved empirically relevant. Discusses implications of these findings for the explication, treatment, and…

  12. Multivariate Meta-Analysis of Preference-Based Quality of Life Values in Coronary Heart Disease.

    PubMed

    Stevanović, Jelena; Pechlivanoglou, Petros; Kampinga, Marthe A; Krabbe, Paul F M; Postma, Maarten J

    2016-01-01

    There are numerous health-related quality of life (HRQol) measurements used in coronary heart disease (CHD) in the literature. However, only values assessed with preference-based instruments can be directly applied in a cost-utility analysis (CUA). To summarize and synthesize instrument-specific preference-based values in CHD and the underlying disease-subgroups, stable angina and post-acute coronary syndrome (post-ACS), for developed countries, while accounting for study-level characteristics, and within- and between-study correlation. A systematic review was conducted to identify studies reporting preference-based values in CHD. A multivariate meta-analysis was applied to synthesize the HRQoL values. Meta-regression analyses examined the effect of study level covariates age, publication year, prevalence of diabetes and gender. A total of 40 studies providing preference-based values were detected. Synthesized estimates of HRQoL in post-ACS ranged from 0.64 (Quality of Well-Being) to 0.92 (EuroQol European"tariff"), while in stable angina they ranged from 0.64 (Short form 6D) to 0.89 (Standard Gamble). Similar findings were observed in estimates applying to general CHD. No significant improvement in model fit was found after adjusting for study-level covariates. Large between-study heterogeneity was observed in all the models investigated. The main finding of our study is the presence of large heterogeneity both within and between instrument-specific HRQoL values. Current economic models in CHD ignore this between-study heterogeneity. Multivariate meta-analysis can quantify this heterogeneity and offers the means for uncertainty around HRQoL values to be translated to uncertainty in CUAs.

  13. Association between Smoking and the Progression of Computed Tomography Findings in Chronic Pancreatitis.

    PubMed

    Lee, Jeong Woo; Kim, Ho Gak; Lee, Dong Wook; Han, Jimin; Kwon, Hyuk Yong; Seo, Chang Jin; Oh, Ji Hye; Lee, Joo Hyoung; Jung, Jin Tae; Kwon, Joong Goo; Kim, Eun Young

    2016-05-23

    Smoking and alcohol intake are two wellknown risk factors for chronic pancreatitis. However, there are few studies examining the association between smoking and changes in computed tomography (CT) findings in chronic pancreatitis. The authors evaluated associations between smoking, drinking and the progression of calcification on CT in chronic pancreatitis. In this retrospective study, 59 patients with chronic pancreatitis who had undergone initial and follow-up CT between January 2002 and September 2010 were included. Progression of calcification among CT findings was compared according to the amount of alcohol intake and smoking. The median duration of followup was 51.6 months (range, 17.1 to 112.7 months). At initial CT findings, there was pancreatic calcification in 35 patients (59.3%). In the follow-up CT, progression of calcification was observed in 37 patients (62.7%). Progression of calcification was more common in smokers according to the multivariate analysis (odds ratio [OR], 9.987; p=0.006). The amount of smoking was a significant predictor for progression of calcification in the multivariate analysis (OR, 6.051 in less than 1 pack per day smokers; OR, 36.562 in more than 1 pack per day smokers; p=0.008). Continued smoking accelerates pancreatic calcification, and the amount of smoking is associated with the progression of calcification in chronic pancreatitis.

  14. Mapping the Strategic Thinking of Public Relations Managers in a Crisis Situation: An Illustrative Example Using Conjoint Analysis.

    ERIC Educational Resources Information Center

    Bronn, Peggy Simcic; Olson, Erik L.

    1999-01-01

    Illustrates the operationalization of the conjoint analysis multivariate technique for the study of the public relations function within strategic decision making in a crisis situation. Finds that what the theory describes as the strategic way of handling a crisis is also the way each of the managers who were evaluated would prefer to conduct…

  15. Does placental inflammation relate to brain lesions and volume in preterm infants?

    PubMed

    Reiman, Milla; Kujari, Harry; Maunu, Jonna; Parkkola, Riitta; Rikalainen, Hellevi; Lapinleimu, Helena; Lehtonen, Liisa; Haataja, Leena

    2008-05-01

    To evaluate the association between histologic inflammation of placenta and brain findings in ultrasound examinations and regional brain volumes in magnetic resonance imaging in very-low-birth-weight (VLBW) or in very preterm infants. VLBW or very preterm infants (n = 121) were categorized into 3 groups according to the most pathologic brain finding on ultrasound examinations until term. The brain magnetic resonance imaging performed at term was analyzed for regional brain volumes. The placentas were analyzed for histologic inflammatory findings. Histologic chorioamnionitis on the fetal side correlated to brain lesions in univariate but not in multivariate analyses. Low gestational age was the only significant risk factor for brain lesions in multivariate analysis (P < .0001). Histologic chorioamnionitis was not associated with brain volumes in multivariate analyses. Female sex, low gestational age, and low birth weight z score correlated to smaller volumes in total brain tissue (P = .001, P = .0002, P < .0001, respectively) and cerebellum (P = .047, P = .003, P = .001, respectively). In addition, low gestational age and low-birth-weight z score correlated to a smaller combined volume of basal ganglia and thalami (P = .0002). Placental inflammation does not appear to correlate to brain lesions or smaller regional brain volumes in VLBW or in very preterm infants at term age.

  16. Factors Associated with Sexual Behavior among Adolescents: A Multivariate Analysis.

    ERIC Educational Resources Information Center

    Harvey, S. Marie; Spigner, Clarence

    1995-01-01

    A self-administered survey examining multiple factors associated with engaging in sexual intercourse was completed by 1,026 high school students in a classroom setting. Findings suggest that effective interventions to address teenage pregnancy need to utilize a multifaceted approach to the prevention of high-risk behaviors. (JPS)

  17. Disfluency in Spasmodic Dysphonia: A Multivariate Analysis.

    ERIC Educational Resources Information Center

    Cannito, Michael P.; Burch, Annette Renee; Watts, Christopher; Rappold, Patrick W.; Hood, Stephen B.; Sherrard, Kyla

    1997-01-01

    This study examined visual analog scaling judgments of disfluency by normal listeners in response to oral reading by 20 adults with spasmodic dysphonia (SD) and nondysphonic controls. Findings suggest that although dysfluency is not a defining feature of SD, it does contribute significantly to the overall clinical impression of severity of the…

  18. Generalist Genes and Learning Disabilities: A Multivariate Genetic Analysis of Low Performance in Reading, Mathematics, Language and General Cognitive Ability in a Sample of 8000 12-Year-Old Twins

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Kovas, Yulia; Harlaar, Nicole; Hayiou-Thomas, Marianna E.; Petrill, Stephen A.; Dale, Philip S.; Plomin, Robert

    2009-01-01

    Background: Our previous investigation found that the same genes influence poor reading and mathematics performance in 10-year-olds. Here we assess whether this finding extends to language and general cognitive disabilities, as well as replicating the earlier finding for reading and mathematics in an older and larger sample. Methods: Using a…

  19. Cohort comparisons: emotional well-being among adolescents and older adults

    PubMed Central

    Momtaz, Yadollah Abolfathi; Hamid, Tengku Aizan; Ibrahim, Rahimah

    2014-01-01

    Background There are several negative stereotypes about older adults that have negatively influenced people’s attitude about aging. The present study compared emotional well-being between older adults and adolescents. Methods Data for this study came from 1,403 community-dwelling elderly persons and 1,190 secondary school students and were obtained from two national cross-sectional surveys. Emotional well-being was measured using the World Health Organization-Five Well-Being Index. Data analysis was conducted using a multivariate analysis of covariance with SPSS software version 20 (IBM Corporation, Armonk, NY, USA). Results Elderly people significantly scored higher levels of emotional well-being (mean, 62.3; standard deviation, 22.55) than younger people (mean, 57.9; standard deviation, 18.46; t, 5.32; P≤0.001). The findings from the multivariate analysis of covariance revealed a significant difference between older adults and younger people in emotional well-being [F(3, 2587)=120.21; P≤0.001; η2=0.122] after controlling for sex. Conclusion Contrary to negative stereotypes about aging, our findings show a higher level of emotional well-being among older adults compared with younger people. PMID:24872683

  20. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    PubMed Central

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  1. Simple and Multivariate Relationships Between Spiritual Intelligence with General Health and Happiness.

    PubMed

    Amirian, Mohammad-Elyas; Fazilat-Pour, Masoud

    2016-08-01

    The present study examined simple and multivariate relationships of spiritual intelligence with general health and happiness. The employed method was descriptive and correlational. King's Spiritual Quotient scales, GHQ-28 and Oxford Happiness Inventory, are filled out by a sample consisted of 384 students, which were selected using stratified random sampling from the students of Shahid Bahonar University of Kerman. Data are subjected to descriptive and inferential statistics including correlations and multivariate regressions. Bivariate correlations support positive and significant predictive value of spiritual intelligence toward general health and happiness. Further analysis showed that among the Spiritual Intelligence' subscales, Existential Critical Thinking Predicted General Health and Happiness, reversely. In addition, happiness was positively predicted by generation of personal meaning and transcendental awareness. The findings are discussed in line with the previous studies and the relevant theoretical background.

  2. Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data.

    PubMed

    Lepre, Jorge; Rice, J Jeremy; Tu, Yuhai; Stolovitzky, Gustavo

    2004-05-01

    Despite the growing literature devoted to finding differentially expressed genes in assays probing different tissues types, little attention has been paid to the combinatorial nature of feature selection inherent to large, high-dimensional gene expression datasets. New flexible data analysis approaches capable of searching relevant subgroups of genes and experiments are needed to understand multivariate associations of gene expression patterns with observed phenotypes. We present in detail a deterministic algorithm to discover patterns of multivariate gene associations in gene expression data. The patterns discovered are differential with respect to a control dataset. The algorithm is exhaustive and efficient, reporting all existent patterns that fit a given input parameter set while avoiding enumeration of the entire pattern space. The value of the pattern discovery approach is demonstrated by finding a set of genes that differentiate between two types of lymphoma. Moreover, these genes are found to behave consistently in an independent dataset produced in a different laboratory using different arrays, thus validating the genes selected using our algorithm. We show that the genes deemed significant in terms of their multivariate statistics will be missed using other methods. Our set of pattern discovery algorithms including a user interface is distributed as a package called Genes@Work. This package is freely available to non-commercial users and can be downloaded from our website (http://www.research.ibm.com/FunGen).

  3. Income and Education in Turkey: A Multivariate Analysis

    ERIC Educational Resources Information Center

    Sari, Ramazan; Soytas, Ugur

    2006-01-01

    Although the role of education in an economy is emphasized in theoretical studies, empirical literature finds mixed results for the relationship between growth and education. We examine the relationship between Gross Domestic Product (GDP) and enrollments in primary, secondary, and high schools, as well as universities in Turkey for 1937-1996, in…

  4. Examining a Comprehensive Model of Disaster-Related Posttraumatic Stress Disorder in Systematically Studied Survivors of 10 Disasters

    PubMed Central

    Oliver, Julianne; Pandya, Anand

    2012-01-01

    Objectives. Using a comprehensive disaster model, we examined predictors of posttraumatic stress disorder (PTSD) in combined data from 10 different disasters. Methods. The combined sample included data from 811 directly exposed survivors of 10 disasters between 1987 and 1995. We used consistent methods across all 10 disaster samples, including full diagnostic assessment. Results. In multivariate analyses, predictors of PTSD were female gender, younger age, Hispanic ethnicity, less education, ever-married status, predisaster psychopathology, disaster injury, and witnessing injury or death; exposure through death or injury to friends or family members and witnessing the disaster aftermath did not confer additional PTSD risk. Intentionally caused disasters associated with PTSD in bivariate analysis did not independently predict PTSD in multivariate analysis. Avoidance and numbing symptoms represented a PTSD marker. Conclusions. Despite confirming some previous research findings, we found no associations between PTSD and disaster typology. Prospective research is needed to determine whether early avoidance and numbing symptoms identify individuals likely to develop PTSD later. Our findings may help identify at-risk populations for treatment research. PMID:22897543

  5. Association between Smoking and the Progression of Computed Tomography Findings in Chronic Pancreatitis

    PubMed Central

    Lee, Jeong Woo; Kim, Ho Gak; Lee, Dong Wook; Han, Jimin; Kwon, Hyuk Yong; Seo, Chang Jin; Oh, Ji Hye; Lee, Joo Hyoung; Jung, Jin Tae; Kwon, Joong Goo; Kim, Eun Young

    2016-01-01

    Background/Aims Smoking and alcohol intake are two well-known risk factors for chronic pancreatitis. However, there are few studies examining the association between smoking and changes in computed tomography (CT) findings in chronic pancreatitis. The authors evaluated associations between smoking, drinking and the progression of calcification on CT in chronic pancreatitis. Methods In this retrospective study, 59 patients with chronic pancreatitis who had undergone initial and follow-up CT between January 2002 and September 2010 were included. Progression of calcification among CT findings was compared according to the amount of alcohol intake and smoking. Results The median duration of follow-up was 51.6 months (range, 17.1 to 112.7 months). At initial CT findings, there was pancreatic calcification in 35 patients (59.3%). In the follow-up CT, progression of calcification was observed in 37 patients (62.7%). Progression of calcification was more common in smokers according to the multivariate analysis (odds ratio [OR], 9.987; p=0.006). The amount of smoking was a significant predictor for progression of calcification in the multivariate analysis (OR, 6.051 in less than 1 pack per day smokers; OR, 36.562 in more than 1 pack per day smokers; p=0.008). Conclusions Continued smoking accelerates pancreatic calcification, and the amount of smoking is associated with the progression of calcification in chronic pancreatitis. PMID:26601825

  6. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  7. Searching for New Biomarkers and the Use of Multivariate Analysis in Gastric Cancer Diagnostics.

    PubMed

    Kucera, Radek; Smid, David; Topolcan, Ondrej; Karlikova, Marie; Fiala, Ondrej; Slouka, David; Skalicky, Tomas; Treska, Vladislav; Kulda, Vlastimil; Simanek, Vaclav; Safanda, Martin; Pesta, Martin

    2016-04-01

    The first aim of this study was to search for new biomarkers to be used in gastric cancer diagnostics. The second aim was to verify the findings presented in literature on a sample of the local population and investigate the risk of gastric cancer in that population using a multivariant statistical analysis. We assessed a group of 36 patients with gastric cancer and 69 healthy individuals. We determined carcinoembryonic antigen, cancer antigen 19-9, cancer antigen 72-4, matrix metalloproteinases (-1, -2, -7, -8 and -9), osteoprotegerin, osteopontin, prothrombin induced by vitamin K absence-II, pepsinogen I, pepsinogen II, gastrin and Helicobacter pylori for each sample. The multivariate stepwise logistic regression identified the following biomarkers as the best gastric cancer predictors: CEA, CA72-4, pepsinogen I, Helicobacter pylori presence and MMP7. CEA and CA72-4 remain the best markers for gastric cancer diagnostics. We suggest a mathematical model for the assessment of risk of gastric cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. A CLIPS expert system for clinical flow cytometry data analysis

    NASA Technical Reports Server (NTRS)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  9. Exploring Geographical Differentiation of the Hoelen Medicinal Mushroom, Wolfiporia extensa (Agaricomycetes), Using Fourier-Transform Infrared Spectroscopy Combined with Multivariate Analysis.

    PubMed

    Li, Yan; Zhang, Ji; Zhao, Yanli; Liu, Honggao; Wang, Yuanzhong; Jin, Hang

    2016-01-01

    In this study the geographical differentiation of dried sclerotia of the medicinal mushroom Wolfiporia extensa, obtained from different regions in Yunnan Province, China, was explored using Fourier-transform infrared (FT-IR) spectroscopy coupled with multivariate data analysis. The FT-IR spectra of 97 samples were obtained for wave numbers ranging from 4000 to 400 cm-1. Then, the fingerprint region of 1800-600 cm-1 of the FT-IR spectrum, rather than the full spectrum, was analyzed. Different pretreatments were applied on the spectra, and a discriminant analysis model based on the Mahalanobis distance was developed to select an optimal pretreatment combination. Two unsupervised pattern recognition procedures- principal component analysis and hierarchical cluster analysis-were applied to enhance the authenticity of discrimination of the specimens. The results showed that excellent classification could be obtained after optimizing spectral pretreatment. The tested samples were successfully discriminated according to their geographical locations. The chemical properties of dried sclerotia of W. extensa were clearly dependent on the mushroom's geographical origins. Furthermore, an interesting finding implied that the elevations of collection areas may have effects on the chemical components of wild W. extensa sclerotia. Overall, this study highlights the feasibility of FT-IR spectroscopy combined with multivariate data analysis in particular for exploring the distinction of different regional W. extensa sclerotia samples. This research could also serve as a basis for the exploitation and utilization of medicinal mushrooms.

  10. The explanatory role of relationship power and control in domestic violence against women in Nicaragua: a feminist psychology analysis.

    PubMed

    Grose, Rose Grace; Grabe, Shelly

    2014-08-01

    This study offers a feminist psychology analysis of various aspects of relationship power and control and their relative explanatory contribution to understanding physical, psychological, and sexual violence against women. Findings from structured interviews with 345 women from rural Nicaragua (M age = 44) overwhelmingly demonstrate that measures of power and control reflecting interpersonal relationship dynamics have the strongest predictive power for explaining violence when compared in multivariate analyses to several of the more commonly used measures. These findings have implications for future research and the evaluation of interventions designed to decrease levels of violence against women. © The Author(s) 2014.

  11. Statistics Anxiety and Worry: The Roles of Worry Beliefs, Negative Problem Orientation, and Cognitive Avoidance

    ERIC Educational Resources Information Center

    Williams, Amanda S.

    2015-01-01

    Statistics anxiety is a common problem for graduate students. This study explores the multivariate relationship between a set of worry-related variables and six types of statistics anxiety. Canonical correlation analysis indicates a significant relationship between the two sets of variables. Findings suggest that students who are more intolerant…

  12. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing.

    PubMed

    Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel

    2015-01-01

    The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.

  13. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing

    PubMed Central

    STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL

    2015-01-01

    Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749

  14. The Influence of Judgment Calls on Meta-Analytic Findings.

    PubMed

    Tarrahi, Farid; Eisend, Martin

    2016-01-01

    Previous research has suggested that judgment calls (i.e., methodological choices made in the process of conducting a meta-analysis) have a strong influence on meta-analytic findings and question their robustness. However, prior research applies case study comparison or reanalysis of a few meta-analyses with a focus on a few selected judgment calls. These studies neglect the fact that different judgment calls are related to each other and simultaneously influence the outcomes of a meta-analysis, and that meta-analytic findings can vary due to non-judgment call differences between meta-analyses (e.g., variations of effects over time). The current study analyzes the influence of 13 judgment calls in 176 meta-analyses in marketing research by applying a multivariate, multilevel meta-meta-analysis. The analysis considers simultaneous influences from different judgment calls on meta-analytic effect sizes and controls for alternative explanations based on non-judgment call differences between meta-analyses. The findings suggest that judgment calls have only a minor influence on meta-analytic findings, whereas non-judgment call differences between meta-analyses are more likely to explain differences in meta-analytic findings. The findings support the robustness of meta-analytic results and conclusions.

  15. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  17. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool

    PubMed Central

    Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi

    2016-01-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405

  18. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool.

    PubMed

    Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi

    2015-11-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.

  19. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  20. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  1. Association between Breast Cancer Recurrence and Cellular Dissociation Assessed Using Fine-Needle Aspiration.

    PubMed

    Koike, Etsuko; Iwaya, Keiichi; Watanabe, Akinori; Miyake, Shinji; Sato, Eiichi; Ishikawa, Takashi

    2016-01-01

    To determine the associations between breast cancer recurrence and cytological findings of fine-needle aspiration cytology (FNAC). The study included 117 women who had undergone a modified radical mastectomy for invasive ductal carcinoma of the breast. FNAC samples of these patients were reexamined, and cytological findings, such as cellular dissociation, nuclear pleomorphism, nuclear atypia, chromatin pattern, and nuclear size, were scored. Uni- and multivariate analyses were performed to determine the prognostic significance of the cytological findings. Corresponding cancer tissues were immunostained for estrogen receptor, progesterone receptor, human epidermal growth factor 2 (HER2), p53, and E-cadherin to determine their associations with cytological findings. Coexpression of Arp2 and WAVE2 was also examined immunohistochemically as a cell locomotion signal. Cellular dissociation (p = 0.0259) and nuclear size (p = 0.0417) were significantly associated with cancer recurrence. Multivariate analysis showed that cellular dissociation and histological grade were significant independent predictors of cancer recurrence. Cellular dissociation was found to be associated with coexpression of Arp2 and WAVE2 (p = 0.0356) and HER2 (p = 0.0469). The cytological finding of cell dissociation was associated with the activation of Arp2 and WAVE2 signals and was an independent predictor of recurrence. © 2016 S. Karger AG, Basel.

  2. Insurance Coverage for Rehabilitation Therapies and Association with Social Participation Outcomes among Low-Income Children.

    PubMed

    Mirza, Mansha; Kim, Yoonsang

    2016-01-01

    (1) To profile children's health insurance coverage rates for specific rehabilitation therapies; (2) to determine whether coverage for rehabilitation therapies is associated with social participation outcomes after adjusting for child and household characteristics; (3) to assess whether rehabilitation insurance differentially affects social participation of children with and without disabilities. We conducted a cross-sectional analysis of secondary survey data on 756 children (ages 3-17) from 370 households living in low-income neighborhoods in a Midwestern U.S. city. Multivariate mixed effects logistic regression models were estimated. Significantly higher proportions of children with disabilities had coverage for physical therapy, occupational therapy, and speech and language pathology, yet gaps in coverage were noted. Multivariate analysis indicated that rehabilitation insurance coverage was significantly associated with social participation (OR = 1.67, 95% CI: 1.013-2.75). This trend was sustained in subgroup analysis. Findings support the need for comprehensive coverage of all essential services under children's health insurance programs.

  3. [Temporary employment and health: a multivariate analysis of occupational injury risk by job tenure].

    PubMed

    Bena, Antonella; Giraudo, Massimiliano

    2013-01-01

    To study the relationship between job tenure and injury risk, controlling for individual factors and company characteristics. Analysis of incidence and injury risk by job tenure, controlling for gender, age, nationality, economic activity, firm size. Sample of 7% of Italian workers registered in the INPS (National Institute of Social Insurance) database. Private sector employees who worked as blue collars or apprentices. First-time occupational injuries, all occupational injuries, serious occupational injuries. Our findings show an increase in injury risk among those who start a new job and an inverse relationship between job tenure and injury risk. Multivariate analysis confirm these results. Recommendations for improving this situation include the adoption of organizational models that provide periods of mentoring from colleagues already in the company and the assignment to simple and not much hazardous tasks. The economic crisis may exacerbate this problem: it is important for Italy to improve the systems of monitoring relations between temporary employment and health.

  4. Radiographical findings in patients with liver cirrhosis and hepatic encephalopathy.

    PubMed

    Elwir, Saleh; Hal, Hassan; Veith, Joshua; Schreibman, Ian; Kadry, Zakiyah; Riley, Thomas

    2016-08-01

    Hepatic encephalopathy is a common complication encountered in patients with liver cirrhosis. Hepatic encephalopathy is not reflected in the current liver transplant allocation system. Correlation was sought between hepatic encephalopathy with findings detected on radiographic imaging studies and the patient's clinical profile. A retrospective analysis was conducted of patients with cirrhosis, who presented for liver transplant evaluation in 2009 and 2010. Patients with hepatocellular carcinoma, ejection fraction less than 60% and who had a TIPS (transjugular intrahepatic portosystemic shunting) procedure or who did not complete the evaluation were excluded. Statistical analysis was performed and variables found to be significant on univariate analysis (P < 0.05) were analysed by a multivariate logistic regression model. A total of 117 patients met the inclusion criteria and were divided into a hepatic encephalopathy group (n = 58) and a control group (n = 59). Univariate analysis found that a smaller portal vein diameter, smaller liver antero-posterior diameter, liver nodularity and use of diuretics or centrally acting medications showed significant correlation with hepatic encephalopathy. This association was confirmed for smaller portal vein, use of diuretics and centrally acting medications in the multivariate analysis. A decrease in portal vein diameter was associated with increased risk of encephalopathy. Identifying patients with smaller portal vein diameter may warrant screening for encephalopathy by more advanced psychometric testing, and more aggressive control of constipation and other factors that may precipitate encephalopathy. © The Author(s) 2015. Published by Oxford University Press and the Digestive Science Publishing Co. Limited.

  5. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Incidence of cervical lymph node metastasis and its association with outcomes in patients with adenoid cystic carcinoma. An international collaborative study

    PubMed Central

    Amit, Moran; Binenbaum, Yoav; Sharma, Kanika; Ramer, Naomi; Ramer, Ilana; Agbetoba, Abib; Glick, Joelle; Yang, Xinjie; Lei, Delin; Bjørndal, Kristine; Godballe, Christian; Mücke, Thomas; Wolff, Klaus-Dietrich; Fliss, Dan; Eckardt, André M.; Copelli, Chiara; Sesenna, Enrico; Palmer, Frank; Ganly, Ian; Patel, Snehal; Gil, Ziv

    2016-01-01

    Background The patterns of regional metastasis in adenoid cystic carcinoma (ACC) of the head and neck and its association with outcome is not established. Methods We conducted a retrospective multicentered multivariate analysis of 270 patients who underwent neck dissection. Results The incidence rate of neck metastases was 29%. The rate observed in the oral cavity is 37%, and in the major salivary glands is 19% (p = .001). The rate of occult nodal metastases was 17%. Overall 5-year survival rates were 44% in patients undergoing therapeutic neck dissections, and 65% and 73% among those undergoing elective neck dissections, with and without nodal metastases, respectively (p = .017). Multivariate analysis revealed that the primary site, nodal classification, and margin status were independent predictors of survival. Conclusion Our findings support the consideration of elective neck treatment in patients with ACC of the oral cavity. PMID:25060927

  7. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    NASA Astrophysics Data System (ADS)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  8. Using Science Activities To Internalize Locus of Control. Final Report.

    ERIC Educational Resources Information Center

    Rowland, Paul McD.

    This project was designed to investigate the effect of the use of cause-and-effect activities in the science curriculum on the locus of control of the learner. The purpose of this research is to find the effect of the activities on the learner's locus of control and attitude toward science at grades 7 through 10. A multivariate analysis of…

  9. A Unified Framework for Association Analysis with Multiple Related Phenotypes

    PubMed Central

    Stephens, Matthew

    2013-01-01

    We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data. PMID:23861737

  10. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  11. Multivariate Models for Normal and Binary Responses in Intervention Studies

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen

    2016-01-01

    Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…

  12. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  13. Multivariable regression analysis of list experiment data on abortion: results from a large, randomly-selected population based study in Liberia.

    PubMed

    Moseson, Heidi; Gerdts, Caitlin; Dehlendorf, Christine; Hiatt, Robert A; Vittinghoff, Eric

    2017-12-21

    The list experiment is a promising measurement tool for eliciting truthful responses to stigmatized or sensitive health behaviors. However, investigators may be hesitant to adopt the method due to previously untestable assumptions and the perceived inability to conduct multivariable analysis. With a recently developed statistical test that can detect the presence of a design effect - the absence of which is a central assumption of the list experiment method - we sought to test the validity of a list experiment conducted on self-reported abortion in Liberia. We also aim to introduce recently developed multivariable regression estimators for the analysis of list experiment data, to explore relationships between respondent characteristics and having had an abortion - an important component of understanding the experiences of women who have abortions. To test the null hypothesis of no design effect in the Liberian list experiment data, we calculated the percentage of each respondent "type," characterized by response to the control items, and compared these percentages across treatment and control groups with a Bonferroni-adjusted alpha criterion. We then implemented two least squares and two maximum likelihood models (four total), each representing different bias-variance trade-offs, to estimate the association between respondent characteristics and abortion. We find no clear evidence of a design effect in list experiment data from Liberia (p = 0.18), affirming the first key assumption of the method. Multivariable analyses suggest a negative association between education and history of abortion. The retrospective nature of measuring lifetime experience of abortion, however, complicates interpretation of results, as the timing and safety of a respondent's abortion may have influenced her ability to pursue an education. Our work demonstrates that multivariable analyses, as well as statistical testing of a key design assumption, are possible with list experiment data, although with important limitations when considering lifetime measures. We outline how to implement this methodology with list experiment data in future research.

  14. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  15. Multivariate Heteroscedasticity Models for Functional Brain Connectivity.

    PubMed

    Seiler, Christof; Holmes, Susan

    2017-01-01

    Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  16. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  17. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry

    PubMed Central

    Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.

    2017-01-01

    Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569

  18. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  19. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  20. Categorical speech processing in Broca's area: an fMRI study using multivariate pattern-based analysis.

    PubMed

    Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S

    2012-03-14

    Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.

  1. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Investigation of Association Between Hip Osteoarthritis Susceptibility Loci and Radiographic Proximal Femur Shape

    PubMed Central

    Thiagarajah, Shankar; Wilkinson, J. Mark; Panoutsopoulou, Kalliope; Day‐Williams, Aaron G.; Cootes, Timothy F.; Wallis, Gillian A.; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Chapman, Kay; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Timothy D.; Valdes, Ana M.; Wallis, Gillian A.; Mark Wilkinson, J.; Zeggini, Eleftheria

    2015-01-01

    Objective To test whether previously reported hip morphology or osteoarthritis (OA) susceptibility loci are associated with proximal femur shape as represented by statistical shape model (SSM) modes and as univariate or multivariate quantitative traits. Methods We used pelvic radiographs and genotype data from 929 subjects with unilateral hip OA who had been recruited previously for the Arthritis Research UK Osteoarthritis Genetics Consortium genome‐wide association study. We built 3 SSMs capturing the shape variation of the OA‐unaffected proximal femur in the entire mixed‐sex cohort and for male/female‐stratified cohorts. We selected 41 candidate single‐nucleotide polymorphisms (SNPs) previously reported as being associated with hip morphology (for replication analysis) or OA (for discovery analysis) and for which genotype data were available. We performed 2 types of analysis for genotype–phenotype associations between these SNPs and the modes of the SSMs: 1) a univariate analysis using individual SSM modes and 2) a multivariate analysis using combinations of SSM modes. Results The univariate analysis identified association between rs4836732 (within the ASTN2 gene) and mode 5 of the female SSM (P = 0.0016) and between rs6976 (within the GLT8D1 gene) and mode 7 of the mixed‐sex SSM (P = 0.0003). The multivariate analysis identified association between rs5009270 (near the IFRD1 gene) and a combination of modes 3, 4, and 9 of the mixed‐sex SSM (P = 0.0004). Evidence of associations remained significant following adjustment for multiple testing. All 3 SNPs had previously been associated with hip OA. Conclusion These de novo findings suggest that rs4836732, rs6976, and rs5009270 may contribute to hip OA susceptibility by altering proximal femur shape. PMID:25939412

  3. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  4. A multiplexed analysis approach identifies new association of inflammatory proteins in patients with overactive bladder

    PubMed Central

    Ma, Emily; Vetter, Joel; Bliss, Laura; Lai, H. Henry; Mysorekar, Indira U.

    2016-01-01

    Overactive bladder (OAB) is a common debilitating bladder condition with unknown etiology and limited diagnostic modalities. Here, we explored a novel high-throughput and unbiased multiplex approach with cellular and molecular components in a well-characterized patient cohort to identify biomarkers that could be reliably used to distinguish OAB from controls or provide insights into underlying etiology. As a secondary analysis, we determined whether this method could discriminate between OAB and other chronic bladder conditions. We analyzed plasma samples from healthy volunteers (n = 19) and patients diagnosed with OAB, interstitial cystitis/bladder pain syndrome (IC/BPS), or urinary tract infections (UTI; n = 51) for proinflammatory, chemokine, cytokine, angiogenesis, and vascular injury factors using Meso Scale Discovery (MSD) analysis and urinary cytological analysis. Wilcoxon rank-sum tests were used to perform univariate and multivariate comparisons between patient groups (controls, OAB, IC/BPS, and UTI). Multivariate logistic regression models were fit for each MSD analyte on 1) OAB patients and controls, 2) OAB and IC/BPS patients, and 3) OAB and UTI patients. Age, race, and sex were included as independent variables in all multivariate analysis. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic potential of a given analyte. Our findings demonstrate that five analytes, i.e., interleukin 4, TNF-α, macrophage inflammatory protein-1β, serum amyloid A, and Tie2 can reliably differentiate OAB relative to controls and can be used to distinguish OAB from the other conditions. Together, our pilot study suggests a molecular imbalance in inflammatory proteins may contribute to OAB pathogenesis. PMID:27029431

  5. Comparison of chest CT findings in nontuberculous mycobacterial diseases vs. Mycobacterium tuberculosis lung disease in HIV-negative patients with cavities.

    PubMed

    Kim, Cherry; Park, So Hee; Oh, Sang Young; Kim, Sung-Soo; Jo, Kyung-Wook; Shim, Tae Sun; Kim, Mi Young

    2017-01-01

    This article focuses on the differences between CT findings of HIV-negative patients who have cavities with nontuberculous mycobacteria (NTM) disease and those with Mycobacterium tuberculosis infections (TB). We retrospectively reviewed 128 NTM disease patients (79 males and 49 females) with cavities in chest CT, matched for age and gender with 128 TB patients in the same period. Sputum cultures of all patients were positive for pathogens. Two independent chest radiologists evaluated the characteristics of the largest cavity and related factors. Interobserver agreement was excellent (κ value, 0.853-0.938). Cavity walls in NTM disease were significantly thinner (6.9±4 mm vs 10.9±6 mm, P<0.001) and more even (the ratio of thickness, 2.6±1 vs 3.7±2, P<0.001) than those in TB. The thickening of adjacent pleura next to the cavity was also significantly thicker in NTM than TB (P<0.001). However, in the multivariate analysis, thickening of adjacent pleura was the only significant factor among the representative cavity findings (Odds ratio [OR], 6.49; P<0.001). In addition, ill-defined tree-in-bud nodules (OR, 8.82; P<0.001), number of non-cavitary nodules (≥10mm) (OR, 0.72; P = 0.003), and bronchiectasis in the RUL (OR, 5.3; P = 0.002) were significantly associated ancillary findings with NTM disease in the multivariate analysis. The major cavities in NTM disease generally have thinner and more even walls than those in TB. When cavities are associated with adjacent pleural thickening, ill-defined satellite tree-in-bud nodules, or fewer non-cavitary nodules ≥10 mm, these CT findings are highly suggestive of NTM disease rather than TB.

  6. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  7. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    NASA Astrophysics Data System (ADS)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  8. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  9. Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou

    2017-01-01

    Interaction patterns among different warehouses could make the warehouse-out behavioral sequences less predictable. We firstly take a coupling detrended fluctuation analysis on the warehouse-out quantity, and find that the multivariate sequences exhibit significant coupling multifractal characteristics regardless of the types of steel products. Secondly, we track the sources of multifractal warehouse-out sequences by shuffling and surrogating original ones, and we find that fat-tail distribution contributes more to multifractal features than the long-term memory, regardless of types of steel products. From perspective of warehouse contribution, some warehouses steadily contribute more to multifractal than other warehouses. Finally, based on multiscale multifractal analysis, we propose Hurst surface structure to investigate coupling multifractal, and show that multiple behavioral sequences exhibit significant coupling multifractal features that emerge and usually be restricted within relatively greater time scale interval.

  10. Downregulation of SASH1 correlates with poor prognosis in cervical cancer.

    PubMed

    Xie, J; Zhang, W; Zhang, J; Lv, Q-Y; Luan, Y-F

    2017-10-01

    The aim of this study was to analyze the association of SASH1 expression with clinicopathological features and prognosis in patients suffering cervical cancer. The expressions of SASH1 mRNA and protein in cervical cancer tissues and matched normal cervical tissues were detected by Real-time PCR and Immunohistochemistry. Based on the above findings, the association among SASH1 expression and clinicopathological features was analyzed. Overall survival was evaluated using the Kaplan-Meier method. The variables were used in univariate and multivariate analysis by the Cox proportional hazards model. The results demonstrated that both SASH1 mRNA and proteins were downregulated in cervical cancer tissues compared with those in matched normal tissues (both p < 0.05). Also, decreased SASH1 expression in cervical cancer was found to be significantly associated with high FIGO Stage (p = 0.001), lymph nodes metastasis (p = 0.003) and differentiation (p = 0.018). Furthermore, Kaplan-Meier analysis demonstrated that low SASH1 expression level was associated with poorer overall survival (p < 0.01). Univariate and multivariate analyses indicated that status of SASH1 was an independent prognostic factor for patients with cervical cancer. These findings suggested that SASH1 can be useful as a new prognostic marker and therapeutic target in cervical cancer patients.

  11. Heritability of somatotype components from early adolescence into young adulthood: a multivariate analysis on a longitudinal twin study.

    PubMed

    Peeters, M W; Thomis, M A; Claessens, A L; Loos, R J F; Maes, H H M; Lysens, R; Vanden Eynde, B; Vlietinck, R; Beunen, G

    2003-01-01

    Several studies with different designs have attempted to estimate the heritability of somatotype components. However they often ignore the covariation between the three components as well as possible sex and age effects. Shared environmental factors are not always controlled for. This study explores the pattern of genetic and environmental determination of the variation in Heath-Carter somatotype components from early adolescence into young adulthood. Data from the Leuven Longitudinal Twin Study, a longitudinal sample of Belgian same-aged twins followed from 10 to 18 years (n = 105 pairs, equally divided over five zygosity groups), is entered into a multivariate path analysis. Thus the covariation between the somatotype components is taken into account, gender heterogeneity can be tested, common environmental influences can be distinguished from genetic effects and age effects are controlled for. Heritability estimates from 10 to 18 years range from 0.21 to 0.88, 0.46 to 0.76 and 0.16 to 0.73 for endomorphy, mesomorphy and ectomorphy in boys. In girls, heritability estimates range from 0.76 to 0.89, 0.36 to 0.57 and 0.57 to 0.76 for the respective somatotype components. Sex differences are significant from 14 years onwards. More than half of the variance in all somatotype components for both sexes at all time points is explained by factors the three components have in common. The finding of substantial genetic influence on the variability of somatotype components is further supported. The need to consider somatotype as a whole is stressed as well as the need for sex- and perhaps age-specific analyses. Further multivariate analyses are needed to confirm the present findings.

  12. The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method

    NASA Astrophysics Data System (ADS)

    Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad

    2018-04-01

    Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.

  13. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  14. Multivariate Cluster Analysis.

    ERIC Educational Resources Information Center

    McRae, Douglas J.

    Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…

  15. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: Multivariate analysis of task-free fMRI.

    PubMed

    Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D

    2015-11-01

    Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox-Gastaut phenotype. Abnormal function of these areas is likely to be important in explaining the intellectual problems characteristic of this disorder. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  16. Race and Older Mothers’ Differentiation: A Sequential Quantitative and Qualitative Analysis

    PubMed Central

    Sechrist, Jori; Suitor, J. Jill; Riffin, Catherine; Taylor-Watson, Kadari; Pillemer, Karl

    2011-01-01

    The goal of this paper is to demonstrate a process by which qualitative and quantitative approaches are combined to reveal patterns in the data that are unlikely to be detected and confirmed by either method alone. Specifically, we take a sequential approach to combining qualitative and quantitative data to explore race differences in how mothers differentiate among their adult children. We began with a standard multivariate analysis examining race differences in mothers’ differentiation among their adult children regarding emotional closeness and confiding. Finding no race differences in this analysis, we conducted an in-depth comparison of the Black and White mothers’ narratives to determine whether there were underlying patterns that we had been unable to detect in our first analysis. Using this method, we found that Black mothers were substantially more likely than White mothers to emphasize interpersonal relationships within the family when describing differences among their children. In our final step, we developed a measure of familism based on the qualitative data and conducted a multivariate analysis to confirm the patterns revealed by the in-depth comparison of the mother’s narratives. We conclude that using such a sequential mixed methods approach to data analysis has the potential to shed new light on complex family relations. PMID:21967639

  17. Militarism and mortality. An international analysis of arms spending and infant death rates.

    PubMed

    Woolhandler, S; Himmelstein, D U

    1985-06-15

    Examination of data from 141 countries showed that infant mortality rates for 1979 were positively correlated with the proportion of gross national product devoted to military spending (r = 0.23, p less than 0.01) and negatively correlated with indicators of economic development, health resources, and social spending. In a multivariate analysis controlling for per caput gross national product, arms spending remained a significant positive predictor of infant mortality rate (p less than 0.0001), while the proportion of the population with access to clean water, the number of teachers per head, and caloric consumption per head were negative predictors. The multivariate model accounted for much of the observed variance in infant mortality rate (R2 = 0.78, p less than 0.0001), and showed good fit to similar data for the year 1972 (R2 = 0.80, p less than 0.0001). The model was also predictive of infant mortality rates in subgroup analysis of underdeveloped, middle developed, and developed nations. Analysis of time trends confirmed that an increase in military spending presages a poor record of improvement in infant mortality rate. These findings support the hypothesis that arms spending is causally related to infant mortality.

  18. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

    PubMed

    van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem

    2015-10-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.

  19. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  20. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  1. Strategies to optimize monitoring schemes of recreational waters from Salta, Argentina: a multivariate approach

    PubMed Central

    Gutiérrez-Cacciabue, Dolores; Teich, Ingrid; Poma, Hugo Ramiro; Cruz, Mercedes Cecilia; Balzarini, Mónica; Rajal, Verónica Beatriz

    2014-01-01

    Several recreational surface waters in Salta, Argentina, were selected to assess their quality. Seventy percent of the measurements exceeded at least one of the limits established by international legislation becoming unsuitable for their use. To interpret results of complex data, multivariate techniques were applied. Arenales River, due to the variability observed in the data, was divided in two: upstream and downstream representing low and high pollution sites, respectively; and Cluster Analysis supported that differentiation. Arenales River downstream and Campo Alegre Reservoir were the most different environments and Vaqueros and La Caldera Rivers were the most similar. Canonical Correlation Analysis allowed exploration of correlations between physicochemical and microbiological variables except in both parts of Arenales River, and Principal Component Analysis allowed finding relationships among the 9 measured variables in all aquatic environments. Variable’s loadings showed that Arenales River downstream was impacted by industrial and domestic activities, Arenales River upstream was affected by agricultural activities, Campo Alegre Reservoir was disturbed by anthropogenic and ecological effects, and La Caldera and Vaqueros Rivers were influenced by recreational activities. Discriminant Analysis allowed identification of subgroup of variables responsible for seasonal and spatial variations. Enterococcus, dissolved oxygen, conductivity, E. coli, pH, and fecal coliforms are sufficient to spatially describe the quality of the aquatic environments. Regarding seasonal variations, dissolved oxygen, conductivity, fecal coliforms, and pH can be used to describe water quality during dry season, while dissolved oxygen, conductivity, total coliforms, E. coli, and Enterococcus during wet season. Thus, the use of multivariate techniques allowed optimizing monitoring tasks and minimizing costs involved. PMID:25190636

  2. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  3. Impact of novel histopathological factors on the outcomes of liver surgery for colorectal cancer metastases.

    PubMed

    Serrablo, A; Paliogiannis, P; Pulighe, F; Moro, S Saudi-Moro; Borrego-Estella, V; Attene, F; Scognamillo, F; Hörndler, C

    2016-09-01

    We evaluated the impacts of a series of novel histopathological factors on clinical-surgical outcomes and survival of patients who underwent surgery for colorectal cancer liver metastasis, with and without neoadjuvant chemotherapy. A prospective database including 150 consecutive patients who underwent 183 hepatic resections for metastatic colorectal cancer was evaluated. Among them, 74 (49.3%) received neoadjuvant chemotherapy before surgery. The histopathological factors studied were: a) microsatellitosis, b) type and pattern of tumour growth, c) nuclear grade and the number of mitoses/mm(2), d) perilesional pseudocapsule, e) intratumoural fibrosis, f) lesion cellularity, g) hypoxic-angiogenic perilesional growth pattern, and h) the tumour normal interface. Three or more metastatic lesions, R1 resection margins, and <50% tumour necrosis were prognostic factors for a worse OS, but only the former was confirmed to be an independent prognostic factor in the multivariate analysis. Furthermore, tumour fibrosis <40% and cellularity >10% were predictive of a worse neoadjuvant therapy response, but these findings were not confirmed in the multivariate analysis. Finally, tumour necrosis <50%, cellularity >10%, and TNI >0.5 mm were prognostic factors for a worse DFS and AS in the univariate but not in the multivariate analysis. Several factors seem to influence the outcomes of surgery for colorectal cancer liver metastasis, especially the number of the lesions, the margins of resection, the percentage of necrosis and fibrosis, as well as the cellularity and the TNI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Risk factors associated with oroantral perforation during surgical removal of maxillary third molar teeth.

    PubMed

    Hasegawa, Takumi; Tachibana, Akira; Takeda, Daisuke; Iwata, Eiji; Arimoto, Satomi; Sakakibara, Akiko; Akashi, Masaya; Komori, Takahide

    2016-12-01

    The relationship between radiographic findings and the occurrence of oroantral perforation is controversial. Few studies have quantitatively analyzed the risk factors contributing to oroantral perforation, and no study has reported multivariate analysis of the relationship(s) between these various factors. This retrospective study aims to fill this void. Various risk factors for oroantral perforation during maxillary third molar extraction were investigated by univariate and multivariate analysis. The proximity of the roots to the maxillary sinus floor (root-sinus [RS] classification) was assessed using panoramic radiography and classified as types 1-5. The relationship between the maxillary second and third molars was classified according to a modified version of the Archer classification. The relative depth of the maxillary third molar in the bone was classified as class A-C, and its angulation relative to the long axis of the second molar was also recorded. Performance of an incision (OR 5.16), mesioangular tooth angulation (OR 6.05), and type 3 RS classification (i.e., significant superimposition of the roots of all posterior maxillary teeth with the sinus floor; OR 10.18) were all identified as risk factors with significant association to an outcome of oroantral perforation. To our knowledge, this is the first multivariate analysis of the risk factors for oroantral perforation during surgical extraction of the maxillary third molar. This RS classification may offer a new predictive parameter for estimating the risk of oroantral perforation.

  5. Risk of Postoperative Complications Among Inflammatory Bowel Disease Patients Treated Preoperatively With Vedolizumab.

    PubMed

    Yamada, Akihiro; Komaki, Yuga; Patel, Nayan; Komaki, Fukiko; Aelvoet, Arthur S; Tran, Anthony L; Pekow, Joel; Dalal, Sushila; Cohen, Russell D; Cannon, Lisa; Umanskiy, Konstantin; Smith, Radhika; Hurst, Roger; Hyman, Neil; Rubin, David T; Sakuraba, Atsushi

    2017-09-01

    Vedolizumab is increasingly used to treat patients with ulcerative colitis (UC) and Crohn's disease (CD), however, its safety during the perioperative period remains unclear. We compared the 30-day postoperative complications among patients treated preoperatively with vedolizumab, anti-tumor necrosis factor (TNF)-α agents or non-biological therapy. The retrospective study cohort was comprised of patients receiving vedolizumab, anti-TNF-α agents or non-biological therapy within 4 weeks of surgery. The rates of 30-day postoperative complications were compared between groups using univariate and multivariate analysis. Propensity score-matched analysis was performed to compare the outcome between groups. Among 443 patients (64 vedolizumab, 129 anti-TNF-α agents, and 250 non-biological therapy), a total of 144 patients experienced postoperative complications (32%). In multivariate analysis, age >65 (odds ratio (OR) 3.56, 95% confidence interval (CI) 1.30-9.76) and low-albumin (OR 2.26, 95% CI 1.28-4.00) were associated with increased risk of 30-day postoperative complications. For infectious complications, steroid use (OR 3.67, 95% CI 1.57-8.57, P=0.003) and low hemoglobin (OR 3.03, 95% CI 1.32-6.96, P=0.009) were associated with increased risk in multivariate analysis. Propensity score matched analysis demonstrated that the risks of postoperative complications were not different among patients preoperatively receiving vedolizumab, anti-TNF-α agents or non-biological therapy (UC, P=0.40; CD, P=0.35). In the present study, preoperative vedolizumab exposure did not affect the risk of 30-day postoperative complications in UC and CD. Further, larger studies are required to confirm our findings.

  6. Longitudinal study of factors affecting taste sense decline in old-old individuals.

    PubMed

    Ogawa, T; Uota, M; Ikebe, K; Arai, Y; Kamide, K; Gondo, Y; Masui, Y; Ishizaki, T; Inomata, C; Takeshita, H; Mihara, Y; Hatta, K; Maeda, Y

    2017-01-01

    The sense of taste plays a pivotal role for personal assessment of the nutritional value, safety and quality of foods. Although it is commonly recognised that taste sensitivity decreases with age, alterations in that sensitivity over time in an old-old population have not been previously reported. Furthermore, no known studies utilised comprehensive variables regarding taste changes and related factors for assessments. Here, we report novel findings from a 3-year longitudinal study model aimed to elucidate taste sensitivity decline and its related factors in old-old individuals. We utilised 621 subjects aged 79-81 years who participated in the Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians Study for baseline assessments performed in 2011 and 2012, and then conducted follow-up assessments 3 years later in 328 of those. Assessment of general health, an oral examination and determination of taste sensitivity were performed for each. We also evaluated cognitive function using Montreal Cognitive Assessment findings, then excluded from analysis those with a score lower than 20 in order to secure the validity and reliability of the subjects' answers. Contributing variables were selected using univariate analysis, then analysed with multivariate logistic regression analysis. We found that males showed significantly greater declines in taste sensitivity for sweet and sour tastes than females. Additionally, subjects with lower cognitive scores showed a significantly greater taste decrease for salty in multivariate analysis. In conclusion, our longitudinal study revealed that gender and cognitive status are major factors affecting taste sensitivity in geriatric individuals. © 2016 John Wiley & Sons Ltd.

  7. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  8. Methods for presentation and display of multivariate data

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.

  9. A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2014-01-01

    Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…

  10. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    NASA Astrophysics Data System (ADS)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  11. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer.

    PubMed

    Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B

    2014-12-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. Copyright © 2014 Walling et al.

  12. A Multivariate Analysis of Genetic Constraints to Life History Evolution in a Wild Population of Red Deer

    PubMed Central

    Walling, Craig A.; Morrissey, Michael B.; Foerster, Katharina; Clutton-Brock, Tim H.; Pemberton, Josephine M.; Kruuk, Loeske E. B.

    2014-01-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. PMID:25278555

  13. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    PubMed

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Potential predictors of risk sexual behavior among private college students in Mekelle City, North Ethiopia.

    PubMed

    Gebresllasie, Fanna; Tsadik, Mache; Berhane, Eyoel

    2017-01-01

    Risk sexual practice among students from public universities/colleges is common in Ethiopia. However, little has been known about risk sexual behavior of students in private colleges where more students are potentially enrolled. Therefore, this study aimed to assess the magnitude of risky sexual behaviors and predictors among students of Private Colleges in Mekelle City. A mixed design of both quantitative and qualitative methods was used among 627 randomly selected students of private colleges from February to march 2013. Self administered questionnaire and focus group discussion was used to collect data. A thematic content analysis was used for the qualitative part. For the quantitative study, Univariate, Bivariate and multivariable analysis was made using SPSS version 16 statistical package and p value less than 0.05 was used as cut off point for a statistical significance. Among the total 590 respondents, 151 (29.1%) have ever had sex. Among the sexually active students, 30.5% reported having had multiple sexual partners and consistent condom use was nearly 39%. In multivariable logistic regression analysis, variables such as sex, age group, sex last twelve months and condom use last twelve months was found significantly associated with risky sexual behavior. The findings of qualitative and quantitative study showed consistency in presence of risk factors. Finding of this study showed sexual risk behaviors is high among private colleges such as multiple sexual partners and substance use. So that colleges should emphasis on promoting healthy sexual and reproductive health programs.

  15. Brain galanin system genes interact with life stresses in depression-related phenotypes

    PubMed Central

    Juhasz, Gabriella; Hullam, Gabor; Eszlari, Nora; Gonda, Xenia; Antal, Peter; Anderson, Ian Muir; Hökfelt, Tomas G. M.; Deakin, J. F. William; Bagdy, Gyorgy

    2014-01-01

    Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression. PMID:24706871

  16. Tissue-Negative Transient Ischemic Attack: Is There a Role for Perfusion MRI?

    PubMed

    Grams, Raymond W; Kidwell, Chelsea S; Doshi, Amish H; Drake, Kendra; Becker, Jennifer; Coull, Bruce M; Nael, Kambiz

    2016-07-01

    Approximately 60% of patients with a clinical transient ischemic attack (TIA) do not have DWI evidence of cerebral ischemia. The purpose of this study was to assess the added diagnostic value of perfusion MRI in the evaluation of patients with TIA who have normal DWI findings. The inclusion criteria for this retrospective study were clinical presentation of TIA at admission with a discharge diagnosis of TIA confirmed by a stroke neurologist, MRI including both DWI and perfusion-weighted imaging within 48 hours of symptom onset, and no DWI lesion. Cerebral blood flow (CBF) and time to maximum of the residue function (Tmax) maps were evaluated independently by two observers. Multivariate analysis was used to assess perfusion findings; clinical variables; age, blood pressure, clinical symptoms, diabetes (ABCD2) score; duration of TIA; and time between MRI and onset and resolution of symptoms. Fifty-two patients (33 women, 19 men; age range, 20-95 years) met the inclusion criteria. A regional perfusion abnormality was identified on either Tmax or CBF maps of 12 of 52 (23%) patients. Seven (58%) of the patients with perfusion abnormalities had hypoperfused lesions best detected on Tmax maps; the other five had hyperperfusion best detected on CBF maps. In 11 of 12 (92%) patients with abnormal perfusion MRI findings, the regional perfusion deficit correlated with the initial neurologic deficits. Multivariable analysis revealed no significant difference in demographics, ABCD2 scores, or presentation characteristics between patients with and those without perfusion abnormalities. Perfusion MRI that includes Tmax and CBF parametric maps adds diagnostic value by depicting regions with delayed perfusion or postischemic hyperperfusion in approximately one-fourth of TIA patients who have normal DWI findings.

  17. High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia

    PubMed Central

    Plis, Sergey M; Sui, Jing; Lane, Terran; Roy, Sushmita; Clark, Vincent P; Potluru, Vamsi K; Huster, Rene J; Michael, Andrew; Sponheim, Scott R; Weisend, Michael P; Calhoun, Vince D

    2013-01-01

    Identifying the complex activity relationships present in rich, modern neuroimaging data sets remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven by numerous latent factors. Further, modern experiments often produce data sets containing multiple stimulus contexts or tasks processed by the same subjects. Fusing such multi-session data sets may reveal additional structure, but raises further statistical challenges. We present a novel analysis method for extracting complex activity networks from such multifaceted imaging data sets. Compared to previous methods, we choose a new point in the trade-off space, sacrificing detailed generative probability models and explicit latent variable inference in order to achieve robust estimation of multivariate, nonlinear group factors (“network clusters”). We apply our method to identify relationships of task-specific intrinsic networks in schizophrenia patients and control subjects from a large fMRI study. After identifying network-clusters characterized by within- and between-task interactions, we find significant differences between patient and control groups in interaction strength among networks. Our results are consistent with known findings of brain regions exhibiting deviations in schizophrenic patients. However, we also find high-order, nonlinear interactions that discriminate groups but that are not detected by linear, pair-wise methods. We additionally identify high-order relationships that provide new insights into schizophrenia but that have not been found by traditional univariate or second-order methods. Overall, our approach can identify key relationships that are missed by existing analysis methods, without losing the ability to find relationships that are known to be important. PMID:23876245

  18. Factors predicting the presence of esophageal or gastric varices in patients with advanced liver disease.

    PubMed

    Zaman, A; Hapke, R; Flora, K; Rosen, H R; Benner, K

    1999-11-01

    Recently it has been recommended that all cirrhotic patients without previous variceal hemorrhage undergo endoscopic screening to detect varices and that those with large varices should be treated with beta-blockers (American College of Gastroenterology guidelines). However, endoscopic screening only of patients at highest risk for varices may be the most cost effective. Ninety-eight patients without a history of variceal hemorrhage underwent esophagogastroduodenoscopy as part of a liver transplant evaluation. Univariate/multivariate analysis was used to evaluate associations between the presence of varices and patient characteristics including etiology of liver disease, Child-Pugh class, physical findings (spider angiomata, splenomegaly, and ascites), encephalopathy, laboratory parameters (prothrombin time, albumin, bilirubin, BUN, creatinine, and platelets), and abdominal ultrasound findings (portal vein diameter/flow, splenomegaly, and ascites). The causes of cirrhosis among the 67 men and 31 women (mean age, 48 yr) included 28% Hepatitis C/alcoholism, 25% Hepatitis C, 13% alcoholism, 9% primary sclerosing cholangitis/primary biliary cirrhosis, 9% cryptogenic, 6% Hepatitis B, 1% Hepatitis B and C, and 9% other. Patients were Child-Pugh class A 34%, B 51%, and C 15%. Endoscopic findings included esophageal varices in 68% of patients (30% were large), gastric varices in 15%, and portal hypertensive gastropathy in 58%. Platelet count <88,000 was the only parameter identified by univariate/multivariate analysis (p < 0.05) as associated with the presence of large esophageal varices (odds ratio 5.5; 95% confidence interval 1.8-20.6) or gastric varices (odds ratio 5; 95% confidence interval 1.4-23). Platelet count <88,000 is associated with the presence of esophagogastric varices. A large prospective study is needed to verify and validate these findings and may allow identification of a group of patients who would most benefit from endoscopic screening for varices.

  19. SEM-PLS Analysis of Inhibiting Factors of Cost Performance for Large Construction Projects in Malaysia: Perspective of Clients and Consultants

    PubMed Central

    Memon, Aftab Hameed; Rahman, Ismail Abdul

    2014-01-01

    This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R 2 value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun. PMID:24693227

  20. SEM-PLS analysis of inhibiting factors of cost performance for large construction projects in Malaysia: perspective of clients and consultants.

    PubMed

    Memon, Aftab Hameed; Rahman, Ismail Abdul

    2014-01-01

    This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R(2) value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun.

  1. Wavelet analysis for the study of the relations among soil radon anomalies, volcanic and seismic events: the case of Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Ferrera, Elisabetta; Giammanco, Salvatore; Cannata, Andrea; Montalto, Placido

    2013-04-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol® probe located on the upper NE flank of Mt. Etna volcano, close either to the Piano Provenzana fault or to the NE-Rift. Seismic and volcanological data have been analyzed together with radon data. We also analyzed air and soil temperature, barometric pressure, snow and rain fall data. In order to find possible correlations among the above parameters, and hence to reveal possible anomalies in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-days time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-days moving averages showed that, similar to multivariate linear regression analysis, the summer period is characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allows to study the relations among different signals either in time or frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Our work suggests that in order to make an accurate analysis of the relations among distinct signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be very effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  2. Factors related to clinical pregnancy after vitrified-warmed embryo transfer: a retrospective and multivariate logistic regression analysis of 2313 transfer cycles.

    PubMed

    Shi, Wenhao; Zhang, Silin; Zhao, Wanqiu; Xia, Xue; Wang, Min; Wang, Hui; Bai, Haiyan; Shi, Juanzi

    2013-07-01

    What factors does multivariate logistic regression show to be significantly associated with the likelihood of clinical pregnancy in vitrified-warmed embryo transfer (VET) cycles? Assisted hatching (AH) and if the reason to freeze embryos was to avoid the risk of ovarian hyperstimulation syndrome (OHSS) were significantly positively associated with a greater likelihood of clinical pregnancy. Single factor analysis has shown AH, number of embryos transferred and the reason of freezing for OHSS to be positively and damaged blastomere to be negatively significantly associated with the chance of clinical pregnancy after VET. It remains unclear what factors would be significant after multivariate analysis. The study was a retrospective analysis of 2313 VET cycles from 1481 patients performed between January 2008 and April 2012. A multivariate logistic regression analysis was performed to identify the factors to affect clinical pregnancy outcome of VET. There were 22 candidate variables selected based on clinical experiences and the literature. With the thresholds of α entry = α removal= 0.05 for both variable entry and variable removal, eight variables were chosen to contribute the multivariable model by the bootstrap stepwise variable selection algorithm (n = 1000). Eight variables were age at controlled ovarian hyperstimulation (COH), reason for freezing, AH, endometrial thickness, damaged blastomere, number of embryos transferred, number of good-quality embryos, and blood presence on transfer catheter. A descriptive comparison of the relative importance was accomplished by the proportion of explained variation (PEV). Among the reasons for freezing, the OHSS group showed a higher OR than the surplus embryo group when compared with other reasons for VET groups (OHSS versus Other, OR: 2.145; CI: 1.4-3.286; Surplus embryos versus Other, OR: 1.152; CI: 0.761-1.743) and high PEV (marginal 2.77%, P = 0.2911; partial 1.68%; CI of area under receptor operator characteristic curve (ROC): 0.5576-0.6000). AH also showed a high OR (OR: 2.105, CI: 1.554-2.85) and high PEV (marginal 1.97%; partial 1.02%; CI of area under ROC: 0.5344-0.5647). The number of good-quality embryos showed the highest marginal PEV and partial PEV (marginal 3.91%, partial 2.28%; CI of area under ROC: 0.5886-0.6343). This was a retrospective multivariate analysis of the data obtained in 5 years from a single IVF center. Repeated cycles in the same woman were treated as independent observations, which could introduce bias. Results are based on clinical pregnancy and not live births. Prospective analysis of a larger data set from a multicenter study based on live births is necessary to confirm the findings. Paying attention to the quality of embryos, the number of good embryos, AH and the reasons for freezing that are associated with clinical pregnancy after VET will assist the improvement of success rates.

  3. Multivariate Analysis and Machine Learning in Cerebral Palsy Research

    PubMed Central

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP. PMID:29312134

  4. Multivariate Analysis and Machine Learning in Cerebral Palsy Research.

    PubMed

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.

  5. Association of educational status with cardiovascular disease: Teheran Lipid and Glucose Study.

    PubMed

    Hajsheikholeslami, Farhad; Hatami, Masumeh; Hadaegh, Farzad; Ghanbarian, Arash; Azizi, Fereidoun

    2011-06-01

    The aim of this study was to evaluate the associations between educational level and cardiovascular disease (CVD) in an older Iranian population. To estimate the odds ratio (OR) of educational level in a cross-sectional study, logistic regression analysis was used on 1,788 men and 2,204 women (222 men and 204 women positive based on their CVD status) aged ≥ 45 years. In men, educational levels of college degree and literacy level below diploma were inversely associated with CVD in the multivariate model [0.52 (0.28-0.94), 0.61 (0.40-0.92), respectively], but diploma level did not show any significant association with CVD, neither in the crude model nor in the multivariate model. In women, increase in educational level was inversely associated with risk of CVD in the crude model, but in the multivariate adjusted model, literacy level below diploma decreased risk of CVD by 39%, compared with illiteracy. Our findings support those of developed countries that, along with other CVD risk factors, educational status has an inverse association with CVD among a representative Iranian population of older men and women.

  6. Quality by design case study: an integrated multivariate approach to drug product and process development.

    PubMed

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  7. Value of dual contrast liver MRI at 3.0 T in differentiating well-differentiated hepatocellular carcinomas from dysplastic nodules: preliminary results of multivariate analysis.

    PubMed

    Yoon, Min A; Kim, Se Hyung; Park, Hee Sun; Lee, Dong Ho; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2009-10-01

    To assess the diagnostic value of dual contrast magnetic resonance imaging (DC-MRI) in the differentiation of well-differentiated hepatocellular carcinomas (WD-HCCs) from dysplastic nodules (DNs) and to determine the significant MRI predictors using univariate and multivariate analyses. Thirty-two WD-HCCs and 33 DNs in 28 patients who underwent liver transplantation with available histopathology as a gold standard were enrolled in this study. All patients underwent DC-MRI using superparamagnetic iron oxide (SPIO) and gadolinium (Gd) agents on a 3 T MRI unit. For all patients, precontrast T1- and T2-weighted (T2W) images as well as post-SPIO T2- and T2*W images were obtained. Then, for dynamic MRI, arterial (AP), portal, and equilibrium images were also obtained. Two radiologists reviewed the MR images for analyzing signal intensity on the all MR sequences in consensus. On AP images, the degree of enhancement was subjectively categorized into 4 groups: no, minimal, moderate, and strong enhancement. For quantitative analysis, relative arterial enhancement ratio was calculated by averaging 3 regions of interest values of each nodule on pre-Gd T1W and AP images. Each variable was initially evaluated using univariate analyses to assess statistically significant MRI findings differentiating HCCs and DNs, then with multivariate logistic regression analysis to find the most predictable MRI findings. Twenty WD-HCCs showed iso- or high SI on precontrast T2W images, whereas 23 DNs showed low SI (P = 0.003). Most DNs showed low SI on post-SPIO T2W (30/33) and T2*W (25/33) images, whereas HCCs tended to show heterogeneous high or high SI (16/32 and 19/32) (P < 0.012). On post-SPIO and pre-Gd T1W GRE images, 28 WD-HCCs showed iso- or high SI, whereas 24 DNs showed low SI (P < 0.001). On AP images, 20 HCCs revealed more than minimal degree of enhancement, whereas 32 DNs did not show any enhancement (P < 0.001). Mean relative arterial enhancement ratio of HCCs (39.4%) was also significantly larger than that of DNs (15.6%) (P = 0.001). On portal images, WD-HCCs tended to show iso- or high SI (n = 21), whereas DNs showed low SI (n = 29) (P < 0.001). Multivariate analysis revealed that a subjective degree of enhancement on AP images and SI on post-SPIO and pre-Gd T1W GRE images were the 2 variables that independently differentiated WD-HCCs from DNs. The use of DC-MRI is helpful in the differentiation of WD HCCs and DNs. More specifically, a subjective degree of enhancement on AP images and SI on post-SPIO and pre-Gd T1W GRE images are the 2 variables that independently differentiate WD-HCCs from DNs.

  8. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  9. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  10. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception.

    PubMed

    Arsenault, Jessica S; Buchsbaum, Bradley R

    2016-08-01

    The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.

  11. Metabolic Profiling of Adiponectin Levels in Adults: Mendelian Randomization Analysis.

    PubMed

    Borges, Maria Carolina; Barros, Aluísio J D; Ferreira, Diana L Santos; Casas, Juan Pablo; Horta, Bernardo Lessa; Kivimaki, Mika; Kumari, Meena; Menon, Usha; Gaunt, Tom R; Ben-Shlomo, Yoav; Freitas, Deise F; Oliveira, Isabel O; Gentry-Maharaj, Aleksandra; Fourkala, Evangelia; Lawlor, Debbie A; Hingorani, Aroon D

    2017-12-01

    Adiponectin, a circulating adipocyte-derived protein, has insulin-sensitizing, anti-inflammatory, antiatherogenic, and cardiomyocyte-protective properties in animal models. However, the systemic effects of adiponectin in humans are unknown. Our aims were to define the metabolic profile associated with higher blood adiponectin concentration and investigate whether variation in adiponectin concentration affects the systemic metabolic profile. We applied multivariable regression in ≤5909 adults and Mendelian randomization (using cis -acting genetic variants in the vicinity of the adiponectin gene as instrumental variables) for analyzing the causal effect of adiponectin in the metabolic profile of ≤37 545 adults. Participants were largely European from 6 longitudinal studies and 1 genome-wide association consortium. In the multivariable regression analyses, higher circulating adiponectin was associated with higher high-density lipoprotein lipids and lower very-low-density lipoprotein lipids, glucose levels, branched-chain amino acids, and inflammatory markers. However, these findings were not supported by Mendelian randomization analyses for most metabolites. Findings were consistent between sexes and after excluding high-risk groups (defined by age and occurrence of previous cardiovascular event) and 1 study with admixed population. Our findings indicate that blood adiponectin concentration is more likely to be an epiphenomenon in the context of metabolic disease than a key determinant. © 2017 The Authors.

  12. Predictors of clinical outcome in pediatric oligodendroglioma: meta-analysis of individual patient data and multiple imputation.

    PubMed

    Wang, Kevin Yuqi; Vankov, Emilian R; Lin, Doris Da May

    2018-02-01

    OBJECTIVE Oligodendroglioma is a rare primary CNS neoplasm in the pediatric population, and only a limited number of studies in the literature have characterized this entity. Existing studies are limited by small sample sizes and discrepant interstudy findings in identified prognostic factors. In the present study, the authors aimed to increase the statistical power in evaluating for potential prognostic factors of pediatric oligodendrogliomas and sought to reconcile the discrepant findings present among existing studies by performing an individual-patient-data (IPD) meta-analysis and using multiple imputation to address data not directly available from existing studies. METHODS A systematic search was performed, and all studies found to be related to pediatric oligodendrogliomas and associated outcomes were screened for inclusion. Each study was searched for specific demographic and clinical characteristics of each patient and the duration of event-free survival (EFS) and overall survival (OS). Given that certain demographic and clinical information of each patient was not available within all studies, a multivariable imputation via chained equations model was used to impute missing data after the mechanism of missing data was determined. The primary end points of interest were hazard ratios for EFS and OS, as calculated by the Cox proportional-hazards model. Both univariate and multivariate analyses were performed. The multivariate model was adjusted for age, sex, tumor grade, mixed pathologies, extent of resection, chemotherapy, radiation therapy, tumor location, and initial presentation. A p value of less than 0.05 was considered statistically significant. RESULTS A systematic search identified 24 studies with both time-to-event and IPD characteristics available, and a total of 237 individual cases were available for analysis. A median of 19.4% of the values among clinical, demographic, and outcome variables in the compiled 237 cases were missing. Multivariate Cox regression analysis revealed subtotal resection (p = 0.007 [EFS] and 0.043 [OS]), initial presentation of headache (p = 0.006 [EFS] and 0.004 [OS]), mixed pathologies (p = 0.005 [EFS] and 0.049 [OS]), and location of the tumor in the parietal lobe (p = 0.044 [EFS] and 0.030 [OS]) to be significant predictors of tumor progression or recurrence and death. CONCLUSIONS The use of IPD meta-analysis provides a valuable means for increasing statistical power in investigations of disease entities with a very low incidence. Missing data are common in research, and multiple imputation is a flexible and valid approach for addressing this issue, when it is used conscientiously. Undergoing subtotal resection, having a parietal tumor, having tumors with mixed pathologies, and suffering headaches at the time of diagnosis portended a poorer prognosis in pediatric patients with oligodendroglioma.

  13. A symmetric multivariate leakage correction for MEG connectomes

    PubMed Central

    Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.

    2015-01-01

    Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259

  14. Spectrum of mucocutaneous manifestations in 277 patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    PubMed

    Castori, Marco; Dordoni, Chiara; Morlino, Silvia; Sperduti, Isabella; Ritelli, Marco; Valiante, Michele; Chiarelli, Nicola; Zanca, Arianna; Celletti, Claudia; Venturini, Marina; Camerota, Filippo; Calzavara-Pinton, Piergiacomo; Grammatico, Paola; Colombi, Marina

    2015-03-01

    Cutaneous manifestations are a diagnostic criterion of Ehlers-Danlos syndrome, hypermobility type (EDS-HT) and joint hypermobility syndrome (JHS). These two conditions, originally considered different disorders, are now accepted as clinically indistinguishable and often segregate as a single-familial trait. EDS-HT and JHS are still exclusion diagnoses not supported by any specific laboratory test. Accuracy of clinical diagnosis is, therefore, crucial for appropriate patients' classification and management, but it is actually hampered by the low consistency of many applied criteria including the cutaneous one. We report on mucocutaneous findings in 277 patients with JHS/EDS-HT with both sexes and various ages. Sixteen objective and five anamnestic items were selected and ascertained in two specialized outpatient clinics. Feature rates were compared by sex and age by a series of statistical tools. Data were also used for a multivariate correspondence analysis with the attempt to identify non-causal associations of features depicting recognizable phenotypic clusters. Our findings identified a few differences between sexes and thus indicated an attenuated sexual dimorphism for mucocutaneous features in JHS/EDS-HT. Ten features showed significantly distinct rates at different ages and this evidence corroborated the concept of an evolving phenotype in JHS/EDS-HT also affecting the skin. Multivariate correspondence analysis identified three relatively discrete phenotypic profiles, which may represent the cutaneous counterparts of the three disease phases previously proposed for JHS/EDS-HT. These findings could be used for revising the cutaneous criterion in a future consensus for the clinical diagnosis of JHS/EDS-HT. © 2015 Wiley Periodicals, Inc.

  15. Job insecurity and risk of diabetes: a meta-analysis of individual participant data.

    PubMed

    Ferrie, Jane E; Virtanen, Marianna; Jokela, Markus; Madsen, Ida E H; Heikkilä, Katriina; Alfredsson, Lars; Batty, G David; Bjorner, Jakob B; Borritz, Marianne; Burr, Hermann; Dragano, Nico; Elovainio, Marko; Fransson, Eleonor I; Knutsson, Anders; Koskenvuo, Markku; Koskinen, Aki; Kouvonen, Anne; Kumari, Meena; Nielsen, Martin L; Nordin, Maria; Oksanen, Tuula; Pahkin, Krista; Pejtersen, Jan H; Pentti, Jaana; Salo, Paula; Shipley, Martin J; Suominen, Sakari B; Tabák, Adam; Theorell, Töres; Väänänen, Ari; Vahtera, Jussi; Westerholm, Peter J M; Westerlund, Hugo; Rugulies, Reiner; Nyberg, Solja T; Kivimäki, Mika

    2016-12-06

    Job insecurity has been associated with certain health outcomes. We examined the role of job insecurity as a risk factor for incident diabetes. We used individual participant data from 8 cohort studies identified in 2 open-access data archives and 11 cohort studies participating in the Individual-Participant-Data Meta-analysis in Working Populations Consortium. We calculated study-specific estimates of the association between job insecurity reported at baseline and incident diabetes over the follow-up period. We pooled the estimates in a meta-analysis to produce a summary risk estimate. The 19 studies involved 140 825 participants from Australia, Europe and the United States, with a mean follow-up of 9.4 years and 3954 incident cases of diabetes. In the preliminary analysis adjusted for age and sex, high job insecurity was associated with an increased risk of incident diabetes compared with low job insecurity (adjusted odds ratio [OR] 1.19, 95% confidence interval [CI] 1.09-1.30). In the multivariable-adjusted analysis restricted to 15 studies with baseline data for all covariates (age, sex, socioeconomic status, obesity, physical activity, alcohol and smoking), the association was slightly attenuated (adjusted OR 1.12, 95% CI 1.01-1.24). Heterogeneity between the studies was low to moderate (age- and sex-adjusted model: I 2 = 24%, p = 0.2; multivariable-adjusted model: I 2 = 27%, p = 0.2). In the multivariable-adjusted analysis restricted to high-quality studies, in which the diabetes diagnosis was ascertained from electronic medical records or clinical examination, the association was similar to that in the main analysis (adjusted OR 1.19, 95% CI 1.04-1.35). Our findings suggest that self-reported job insecurity is associated with a modest increased risk of incident diabetes. Health care personnel should be aware of this association among workers reporting job insecurity. © 2016 Canadian Medical Association or its licensors.

  16. Apolipoprotein E Polymorphism and Left Ventricular Failure in Beta-Thalassemia: A Multivariate Meta-Analysis.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Bagos, Pantelis G

    2017-09-01

    Apolipoprotein E (ApoE) is potentially a genetic risk factor for the development of left ventricular failure (LVF), the main cause of death in beta-thalassemia homozygotes. In the present study, we synthesize the results of independent studies examining the effect of ApoE on LVF development in thalassemic patients through a meta-analytic approach. However, all studies report more than one outcome, as patients are classified into three groups according to the severity of the symptoms and the genetic polymorphism. Thus, a multivariate meta-analytic method that addresses simultaneously multiple exposures and multiple comparison groups was developed. Four individual studies were included in the meta-analysis involving 613 beta-thalassemic patients and 664 controls. The proposed method that takes into account the correlation of log odds ratios (log(ORs)), revealed a statistically significant overall association (P-value  =  0.009), mainly attributed to the contrast of E4 versus E3 allele for patients with evidence (OR: 2.32, 95% CI: 1.19, 4.53) or patients with clinical and echocardiographic findings (OR: 3.34, 95% CI: 1.78, 6.26) of LVF. This study suggests that E4 is a genetic risk factor for LVF in beta-thalassemia major. The presented multivariate approach can be applied in several fields of research. © 2017 John Wiley & Sons Ltd/University College London.

  17. A novel practical scoring for early diagnosis of traumatic bowel injury without obvious solid organ injury in hemodynamically stable patients.

    PubMed

    Zarour, Ahmad; El-Menyar, Ayman; Khattabi, Mazen; Tayyem, Raed; Hamed, Osama; Mahmood, Ismail; Abdelrahman, Husham; Chiu, William; Al-Thani, Hassan

    2014-01-01

    To develop a scoring tool based on clinical and radiological findings for early diagnosis and intervention in hemodynamically stable patients with traumatic bowel and mesenteric injury (TBMI) without obvious solid organ injury (SOI). A retrospective analysis was conducted for all traumatic abdominal injury patients in Qatar from 2008 to 2011. Data included demographics and clinical, radiological and operative findings. Multivariate logistic regression was performed to analyze the predictors for the need of therapeutic laparotomy. A total of 105 patients met the inclusion criteria with a mean age of 33 ± 15. Motor Vehicle Crashes (58%) and fall (21%) were the major MOI. Using Receiver operating characteristic curve, Z-score of >9 was the cutoff point (AUC = 0.98) for high probability of the presence of TBMI requiring surgical intervention. Z-Score >9 was found to have sensitivity (96.7%), specificity (97.4%), PPV (93.5%) and NPV (98.7%). Multivariate regression analysis found Z-score (>9) to be an independent predictor for the need of exploratory laparotomy (OR7.0; 95% CI: 2.46-19.78, p = 0.001). This novel tool for early diagnosis of TBMI is found to be simple and helpful in selecting stable patients with free intra-abdominal fluid without SOI for exploratory Laparotomy. However, further prospective studies are warranted. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Borderline Personality Features in Students: the Predicting Role of Schema, Emotion Regulation, Dissociative Experience and Suicidal Ideation.

    PubMed

    Sajadi, Seyede Fateme; Arshadi, Nasrin; Zargar, Yadolla; Mehrabizade Honarmand, Mahnaz; Hajjari, Zahra

    2015-06-01

    Numerous studies have demonstrated that early maladaptive schemas, emotional dysregulation are supposed to be the defining core of borderline personality disorder. Many studies have also found a strong association between the diagnosis of borderline personality and the occurrence of suicide ideation and dissociative symptoms. The present study was designed to investigate the relationship between borderline personality features and schema, emotion regulation, dissociative experiences and suicidal ideation among high school students in Shiraz City, Iran. In this descriptive correlational study, 300 students (150 boys and 150 girls) were selected from the high schools in Shiraz, Iran, using the multi-stage random sampling. Data were collected using some instruments including borderline personality feature scale for children, young schema questionnaire-short form, difficulties in emotion-regulation scale (DERS), dissociative experience scale and beck suicide ideation scale. Data were analyzed using the Pearson correlation coefficient and multivariate regression analysis. The results showed a significant positive correlation between schema, emotion regulation, dissociative experiences and suicide ideation with borderline personality features. Moreover, the results of multivariate regression analysis suggested that among the studied variables, schema was the most effective predicting variable of borderline features (P < 0.001). The findings of this study are in accordance with findings from previous studies, and generally show a meaningful association between schema, emotion regulation, dissociative experiences, and suicide ideation with borderline personality features.

  19. Selecting climate simulations for impact studies based on multivariate patterns of climate change.

    PubMed

    Mendlik, Thomas; Gobiet, Andreas

    In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.

  20. [Value of the albumin to globulin ratio in predicting severity and prognosis in myasthenia gravis patients].

    PubMed

    Yang, D H; Su, Z Q; Chen, Y; Chen, Z B; Ding, Z N; Weng, Y Y; Li, J; Li, X; Tong, Q L; Han, Y X; Zhang, X

    2016-03-08

    To assess the predictive value of the albumin to globulin ratio (AGR) in evaluation of disease severity and prognosis in myasthenia gravis patients. A total of 135 myasthenia gravis (MG) patients were enrolled between February 2009 and March 2015. The AGR was detected on the first day of hospitalization and ranked from lowest to highest, and the patients were divided into three equal tertiles according to the AGR values, which were T1 (AGR <1.34), T2 (1.34≤AGR≤1.53) and T3 (AGR>1.53). The Kaplan-Meier curve was used to evaluate the prognostic value of AGR. Cox model analysis was used to evaluate the relevant factors. Multivariate Logistic regression analysis was used to find the predictors of myasthenia crisis during hospitalization. The median length of hospital stay for each tertile was: for the T1 21 days (15-35.5), T2 18 days (14-27.5), and T3 16 days (12-22.5) (P<0.01), and Kaplan-Meier curves showed significant difference among the three groups. In the univariate model, serum albumin, creatinine, AGR and MGFA clinical classification were related to prognosis of myasthenia gravis. At the multivariate Cox regression analysis, the AGR (P<0.001) and MGFA clinical classification (P<0.001) were independent predictive factors of disease severity and prognosis in myasthenia gravis patients. Respectively, the hazard ratio (HR) were 4.655 (95% CI: 2.355-9.202) and 0.596 (95% CI: 0.492-0.723). Multivariate Logistic regression analysis showed the AGR (P<0.001) and MGFA clinical classification were related to myasthenia crisis. The AGR may represent a simple, potentially useful predictive biomarker for evaluating the disease severity and prognosis of patients with myasthenia gravis.

  1. Positron emission tomography–computed tomography predictors of progression after DA-R-EPOCH for PMBCL

    PubMed Central

    Ng, Andrea K.; Dabaja, Bouthaina S.; Milgrom, Sarah A.; Gunther, Jillian R.; Fuller, C. David; Smith, Grace L.; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F.; Akhtari, Mani; Mawlawi, Osama; Medeiros, L. Jeffrey; Chuang, Hubert H.; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S.; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta

    2018-01-01

    Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [18F]fluorodeoxyglucose positron emission tomography–computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning–derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance (P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis (P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. PMID:29895624

  2. The association between tranexamic acid and convulsive seizures after cardiac surgery: a multivariate analysis in 11 529 patients.

    PubMed

    Sharma, V; Katznelson, R; Jerath, A; Garrido-Olivares, L; Carroll, J; Rao, V; Wasowicz, M; Djaiani, G

    2014-02-01

    Because of a lack of contemporary data regarding seizures after cardiac surgery, we undertook a retrospective analysis of prospectively collected data from 11 529 patients in whom cardiopulmonary bypass was used from January 2004 to December 2010. A convulsive seizure was defined as a transient episode of disturbed brain function characterised by abnormal involuntary motor movements. Multivariate regression analysis was performed to identify independent predictors of postoperative seizures. A total of 100 (0.9%) patients developed postoperative convulsive seizures. Generalised and focal seizures were identified in 68 and 32 patients, respectively. The median (IQR [range]) time after surgery when the seizure occurred was 7 (6-12 [1-216]) h and 8 (6-11 [4-18]) h, respectively. Epileptiform findings on electroencephalography were seen in 19 patients. Independent predictors of postoperative seizures included age, female sex, redo cardiac surgery, calcification of ascending aorta, congestive heart failure, deep hypothermic circulatory arrest, duration of aortic cross-clamp and tranexamic acid. When tested in a multivariate regression analysis, tranexamic acid was a strong independent predictor of seizures (OR 14.3, 95% CI 5.5-36.7; p < 0.001). Patients with convulsive seizures had 2.5 times higher in-hospital mortality rates and twice the length of hospital stay compared with patients without convulsive seizures. Mean (IQR [range]) length of stay in the intensive care unit was 115 (49-228 [32-481]) h in patients with convulsive seizures compared with 26 (22-69 [14-1080]) h in patients without seizures (p < 0.001). Convulsive seizures are a serious postoperative complication after cardiac surgery. As tranexamic acid is the only modifiable factor, its administration, particularly in doses exceeding 80 mg.kg(-1), should be weighed against the risk of postoperative seizures.

  3. Positron emission tomography-computed tomography predictors of progression after DA-R-EPOCH for PMBCL.

    PubMed

    Pinnix, Chelsea C; Ng, Andrea K; Dabaja, Bouthaina S; Milgrom, Sarah A; Gunther, Jillian R; Fuller, C David; Smith, Grace L; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F; Akhtari, Mani; Mawlawi, Osama; Medeiros, L Jeffrey; Chuang, Hubert H; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta

    2018-06-12

    Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [ 18 F]fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning-derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance ( P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis ( P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. © 2018 by The American Society of Hematology.

  4. Multivariate Analysis of Conformational Changes Induced by Macromolecular Interactions

    NASA Astrophysics Data System (ADS)

    Mitra, Indranil; Alexov, Emil

    2009-11-01

    Understanding protein-protein binding and associated conformational changes is critical for both understanding thermodynamics of protein interactions and successful drug discovery. Our study focuses on computational analysis of plausible correlations between induced conformational changes and set of biophysical characteristics of interacting monomers. It was done by comparing 3D structures of unbound and bound monomers to calculate the RMSD which is used as measure of the structural changed induced by the binding. We correlate RMSD with volumetric and interfacial charge of the monomers, the amino acid composition, the energy of binding, and type of amino acids at the interface. as predictors. The data set was analyzed with SVM in R & SPSS which is trained on a combination of a new robust evolutionary conservation signal with the monomeric properties to predict the induced RMSD. The goal of this study is to undergo parametric tests and heirchiacal cluster and discriminant multivariate analysis to find key predictors which will be used to develop algorithm to predict the magnitude of conformational changes provided by the structure of interacting monomers. Results indicate that the most promising predictor is the net charge of the monomers, however, other parameters as the type of amino acids at the interface have significant contribution as well.

  5. Effects of Lacunar Infarctions on Cognitive Impairment in Patients with Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy

    PubMed Central

    Choi, Jay Chol; Kang, Sa-Yoon; Kang, Ji-Hoon; Na, Hae Ri; Park, Ji-Kang

    2011-01-01

    Background and Purpose Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited microangiopathy caused by mutations in the Notch3 gene. Although previous studies have shown an association between lacunar infarction and cognitive impairment, the relationship between MRI parameters and cognition remains unclear. In this study we investigated the influence of MRI parameters on cognitive impairment in CADASIL. Methods We applied a prospective protocol to 40 patients. MRI analysis included the normalized volume of white-matter hyperintensities (nWMHs), number of lacunes, and number of cerebral microbleeds. Cognition was assessed with the aid of psychometric tests [Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognition (ADAS-cog), Trail-Making Test, and Stroop interference (Stroop IF)]. Results A multivariate regression analysis revealed that the total number of lacunes influenced the performance in the MMSE, ADAS-cog, and Stroop IF, while nWMHs had a strong univariate association with ADAS-cog and Stroop IF scores. However, this association disappeared in the multivariate analysis. Conclusions These findings demonstrate that the number of lacunes is the main predictive factor of cognitive impairment in CADASIL. PMID:22259617

  6. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    PubMed

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to care at HV facilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The influence of patient, caregiver, and family factors on symptoms of anxiety and depression in children and adolescents with intractable epilepsy.

    PubMed

    Puka, Klajdi; Widjaja, Elysa; Smith, Mary Lou

    2017-02-01

    The objective was to evaluate the association of caregiver and family factors with symptoms of anxiety and depression in children and adolescents with medically refractory localization-related epilepsy (i.e., failed at least two epilepsy medications). Forty-four children (ages 6-11years) and 65 adolescents (ages 12-18years) and their parents participated in this multicentered, observational, cross-sectional study. Univariable and multivariable linear regressions were used to evaluate the influence of multiple patient, caregiver, and family characteristics on self-reported symptoms of anxiety and depression in the children and adolescents. Among children, depressive symptoms were associated with a lower proportion of life with seizures (β=.344, p=.022), caregiver depression (β=.462, p=.002), poorer family relationships (β=.384, p=.010), and poorer family mastery and social support (β=.337, p=.025); in multivariable analysis, proportion of life with epilepsy and parental depression remained significant. No significant predictors of anxiety were found among children. Among adolescents, depressive symptoms were associated with caregiver unemployment (β=.345, p=.005) and anxiety (β=.359, p=.003), low household income (β=.321, p=.012), poorer family mastery and social support (β=.334, p=.007), and greater family demands (β=.326, p=.008); in multivariable analysis, caregiver unemployment and anxiety remained significant. Greater anxiety symptoms among adolescents were associated with females (β=.320, p=.009) and caregiver depression (β=.246, p=.048) and anxiety (β=.392, p=.001) and poorer family mastery and social support (β=.247, p=.047); in multivariable analysis, female sex and caregiver anxiety remained significant. These findings highlight the central role of caregiver psychopathology, which is amenable to intervention, on children and adolescents' symptoms of anxiety and depression. Addressing caregiver psychopathology may improve children and adolescents' quality of life even if seizure control is not attained. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    PubMed

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  9. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    PubMed

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis

    PubMed Central

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-01-01

    Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689

  11. Prenatal Sonographic Predictors of Neonatal Coarctation of the Aorta.

    PubMed

    Anuwutnavin, Sanitra; Satou, Gary; Chang, Ruey-Kang; DeVore, Greggory R; Abuel, Ashley; Sklansky, Mark

    2016-11-01

    To identify practical prenatal sonographic markers for the postnatal diagnosis of coarctation of the aorta. We reviewed the fetal echocardiograms and postnatal outcomes of fetal cases of suspected coarctation of the aorta seen at a single institution between 2010 and 2014. True- and false-positive cases were compared. Logistic regression analysis was used to determine echocardiographic predictors of coarctation of the aorta. Optimal cutoffs for these markers and a multivariable threshold scoring system were derived to discriminate fetuses with coarctation of the aorta from those without coarctation of the aorta. Among 35 patients with prenatal suspicion of coarctation of the aorta, the diagnosis was confirmed postnatally in 9 neonates (25.7% true-positive rate). Significant predictors identified from multivariate analysis were as follows: Z score for the ascending aorta diameter of -2 or less (P = < .001), Z score for the mitral valve annulus of -2 or less (P= .033), Zscore for the transverse aortic arch diameter of -2 or less (P= .028), and abnormal aortic valve morphologic features (P= .026). Among all variables studied, the ascending aortic Z score had the highest sensitivity (78%) and specificity (92%) for detection of coarctation of the aorta. A multivariable threshold scoring system identified fetuses with coarctation of the aorta with still greater sensitivity (89%) and only mildly decreased specificity (88%). The finding of a diminutive ascending aorta represents a powerful and practical prenatal predictor of neonatal coarctation of the aorta. A multivariable scoring system, including dimensions of the ascending and transverse aortas, mitral valve annulus, and morphologic features of the aortic valve, provides excellent sensitivity and specificity. The use of these practical sonographic markers may improve prenatal detection of coarctation of the aorta. © 2016 by the American Institute of Ultrasound in Medicine.

  12. Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students

    ERIC Educational Resources Information Center

    Valero-Mora, Pedro M.; Ledesma, Ruben D.

    2011-01-01

    This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…

  13. Characteristics of foodborne outbreaks in which use of analytical epidemiological studies contributed to identification of suspected vehicles, European Union, 2007 to 2011.

    PubMed

    Schlinkmann, K M; Razum, O; Werber, D

    2017-04-01

    Foodborne disease outbreaks (FBDOs) occur frequently in Europe. Employing analytical epidemiological study designs increases the likelihood of identifying the suspected vehicle(s), but these studies are rarely applied in FBDO investigations. We used multivariable binary logistic regression analysis to identify characteristics of investigated FBDOs reported to the European Food Safety Authority (2007-2011) that were associated with analytical epidemiological evidence (compared to evidence from microbiological investigations/descriptive epidemiology only). The analysis was restricted to FBDO investigations, where the evidence for the suspected vehicle was considered 'strong', i.e. convincing. The presence of analytical epidemiological evidence was reported in 2012 (50%) of these 4038 outbreaks. In multivariable analysis, increasing outbreak size, number of hospitalizations, causative (i.e. aetiological) agent (whether identified and, if so, which one), and the setting in which these outbreaks occurred (e.g. geographically dispersed outbreaks) were independently associated with presence of analytical evidence. The number of investigations with reported analytical epidemiological evidence was unexpectedly high, likely indicating the need for quality assurance within the European Union foodborne outbreak reporting system, and warranting cautious interpretation of our findings. This first analysis of evidence implicating a food vehicle in FBDOs may help to inform public health authorities on when to use analytical epidemiological study designs.

  14. Role of Surgical Services in Profitability of Hospitals in California: An Analysis of Office of Statewide Health Planning and Development Annual Financial Data.

    PubMed

    Moazzez, Ashkan; de Virgilio, Christian

    2016-10-01

    With constant changes in health-care laws and payment methods, profitability, and financial sustainability of hospitals are of utmost importance. The purpose of this study is to determine the relationship between surgical services and hospital profitability. The Office of Statewide Health Planning and Development annual financial databases for the years 2009 to 2011 were used for this study. The hospitals' characteristics and income statement elements were extracted for statistical analysis using bivariate and multivariate linear regression. A total of 989 financial records of 339 hospitals were included. On bivariate analysis, the number of inpatient and ambulatory operating rooms (ORs), the number of cases done both as inpatient and outpatient in each OR, and the average minutes used in inpatient ORs were significantly related with the net income of the hospital. On multivariate regression analysis, when controlling for hospitals' payer mix and the study year, only the number of inpatient cases done in the inpatient ORs (β = 832, P = 0.037), and the number of ambulatory ORs (β = 1,485, 466, P = 0.001) were significantly related with the net income of the hospital. These findings suggest that hospitals can maximize their profitability by diverting and allocating outpatient surgeries to ambulatory ORs, to allow for more inpatient surgeries.

  15. Ultraviolet spectroscopy combined with ultra-fast liquid chromatography and multivariate statistical analysis for quality assessment of wild Wolfiporia extensa from different geographical origins.

    PubMed

    Li, Yan; Zhang, Ji; Jin, Hang; Liu, Honggao; Wang, Yuanzhong

    2016-08-05

    A quality assessment system comprised of a tandem technique of ultraviolet (UV) spectroscopy and ultra-fast liquid chromatography (UFLC) aided by multivariate analysis was presented for the determination of geographic origin of Wolfiporia extensa collected from five regions in Yunnan Province of China. Characteristic UV spectroscopic fingerprints of samples were determined based on its methanol extract. UFLC was applied for the determination of pachymic acid (a biomarker) presented in individual test samples. The spectrum data matrix and the content of pachymic acid were integrated and analyzed by partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). The results showed that chemical properties of samples were clearly dominated by the epidermis and inner part as well as geographical origins. The relationships among samples obtained from these five regions have been also presented. Moreover, an interesting finding implied that geographical origins had much greater influence on the chemical properties of epidermis compared with that of the inner part. This study demonstrated that a rapid tool for accurate discrimination of W. extensa by UV spectroscopy and UFLC could be available for quality control of complicated medicinal mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.

    PubMed

    Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J

    2016-02-01

    A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.

  17. Groundwater quality in Ghaziabad district, Uttar Pradesh, India: Multivariate and health risk assessment.

    PubMed

    Chabukdhara, Mayuri; Gupta, Sanjay Kumar; Kotecha, Yatharth; Nema, Arvind K

    2017-07-01

    This study aimed to assess the quality of groundwater and potential health risk due to ingestion of heavy metals in the peri-urban and urban-industrial clusters of Ghaziabad district, Uttar Pradesh, India. Furthermore, the study aimed to evaluate heavy metals sources and their pollution level using multivariate analysis and fuzzy comprehensive assessment (FCA), respectively. Multivariate analysis using principle component analysis (PCA) showed mixed origin for Pb, Cd, Zn, Fe, and Ni, natural source for Cu and Mn and anthropogenic source for Cr. Among all the metals, Pb, Cd, Fe and Ni were above the safe limits of Bureau of Indian Standards (BIS) and World Health Organization (WHO) except Ni. Health risk in terms of hazard quotient (HQ) showed that the HQ values for children were higher than the safe level (HQ = 1) for Pb (2.4) and Cd (2.1) in pre-monsoon while in post-monsoon the value exceeded only for Pb (HQ = 1.23). The health risks of heavy metals for the adults were well within safe limits. The finding of this study indicates potential health risks to the children due to chronic exposure to contaminated groundwater in the region. Based on FCA, groundwater pollution could be categorized as quite high in the peri-urban region, and absolutely high in the urban region of Ghaziabad district. This study showed that different approaches are required for the integrated assessment of the groundwater pollution, and provides a scientific basis for the strategic future planning and comprehensive management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identifying Neural Patterns of Functional Dyspepsia Using Multivariate Pattern Analysis: A Resting-State fMRI Study

    PubMed Central

    Liu, Peng; Qin, Wei; Wang, Jingjing; Zeng, Fang; Zhou, Guangyu; Wen, Haixia; von Deneen, Karen M.; Liang, Fanrong; Gong, Qiyong; Tian, Jie

    2013-01-01

    Background Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs). Methodology/Principal Findings Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration. Conclusions These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD. PMID:23874543

  19. Diabetes may affect intracranial aneurysm stabilization in older patients: Analysis based on intraoperative findings

    PubMed Central

    Song, Jihye; Shin, Yong Sam

    2016-01-01

    Background: Only a small proportion of aneurysms progress to rupture. Previous studies have focused on predicting the rupture risk of intracranial aneurysms. Atherosclerotic aneurysm wall appears resistant to rupture. The purpose of this study was to evaluate clinical and morphological factors affecting atherosclerosis of an aneurysm and identify the parameters that predict aneurysm stabilization. Methods: We conducted a retrospective analysis of 253 consecutive patients with 291 unruptured aneurysms who underwent clipping surgery in a single institution between January 2012 and October 2013. Aneurysms were categorized based on intraoperative video findings and assessed morphologic and demographic data. Aneurysms which had the atherosclerotic wall without any super thin and transparent portion were defined as stabilized group and the others as a not-stabilized group. Results: Of the 207 aneurysms, 176 (85.0%) were assigned to the not-stabilized group and 31 (15.0%) to the stabilized group. The relative proportion of stabilized aneurysms increased significantly as the age increased (P < 0.001). Univariate logistic analysis showed that age ≥65 years (P < 0.001), hypertension (P = 0.012), diabetes (P = 0.007), and height ≥3 mm (P = 0.007) were correlated with stabilized aneurysms. Multivariate logistic analysis showed that age ≥65 years (P = 0.009) and hypertension (P = 0.041) were strongly correlated with stable aneurysms. In older patients (≥65 years of age), multivariate logistic regression revealed that only diabetes was associated with stabilized aneurysms (P = 0.027). Conclusions: In patients ≥65 years of age, diabetes mellitus may highly predict the stabilized aneurysms. These results provide useful information in determining treatment and follow-up strategies, especially in older patients. PMID:27313965

  20. Visual Impairment Is Associated With Depressive Symptoms-Results From the Nationwide German DEGS1 Study.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Rezapour, Jasmin; Beutel, Manfred E; Bertram, Bernd; Pfeiffer, Norbert

    2018-01-01

    Visual impairment (VI) is associated with a variety of comorbidities including physical and mental health in industrial countries. Our aim is to examine associations between self-reported impairment and depressive symptoms in the German population. The point prevalence of self-reported VI in Germany was computed using data from the German Health Interview and Examination Survey for adults from 2008 to 2011 ( N  = 7.783, 50.5% female, age range 18-79 years). VI was surveyed by two questions, one for seeing faces at a distance of 4 m and one for reading newspapers. Depressive symptoms were evaluated with the Patient Health Questionnaire-9 questionnaire and 2-week prevalence was computed with weighted data. Depressive symptoms were defined by a value of ≥10. Logistic regression analysis was performed to analyze an association between self-reported VI and depressive symptoms. Multivariable analysis including adjustment for age, gender, socioeconomic status, and chronic diseases were carried out with weighted data. The 2-week prevalence of depressive symptoms was 20.8% (95% CI: 16.6-25.7%) for some difficulties in distance vision and 14.4% (95% CI: 7.5-25.9%) for severe difficulties in distance vision, while 17.0% (95% CI: 13.3-21.4%), respectively, 16.7% (95% CI: 10.7-25.1%) for near vision. Analysis revealed that depressive symptoms were associated with self-reported VI for reading, respectively, with low VI for distance vision. Multivariable regression analysis including potential confounders confirmed these findings. Depressive symptoms are a frequent finding in subjects with difficulties in distance and near vision with a prevalence of up to 24%. Depressive comorbidity should therefore be evaluated in subjects reporting VI.

  1. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  2. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  3. The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects

    ERIC Educational Resources Information Center

    Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle

    2011-01-01

    Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…

  4. Two-sample tests and one-way MANOVA for multivariate biomarker data with nondetects.

    PubMed

    Thulin, M

    2016-09-10

    Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  6. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  7. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Computed tomography findings associated with the risk for emergency ventral hernia repair.

    PubMed

    Mueck, Krislynn M; Holihan, Julie L; Mo, Jiandi; Flores-Gonzales, Juan R; Ko, Tien C; Kao, Lillian S; Liang, Mike K

    2017-07-01

    Conventional wisdom teaches that small hernia defects are more likely to incarcerate. We aim to identify radiographic features of ventral hernias associated with increased risk of bowel incarceration. We assessed all patients who underwent emergent ventral hernia repair for bowel complications from 2009 to 2015. Cases were matched 1:3 with elective controls. Computed tomography scans were reviewed to determine hernia characteristics. Univariate and multivariable analyses were performed to identify variables associated with emergent surgery. The cohort consisted of 88 patients and 264 controls. On univariate analysis, older age, higher ASA score, elevated BMI, ascites, larger hernias, small angle, and taller hernias were associated with emergent surgery. On multivariable analysis, morbid obesity, ascites, smaller angle, and taller hernias were independently associated with emergent surgery. The teaching that large defects do not incarcerate is inaccurate; bowel compromise occurs with ventral hernias of all sizes. Instead, taller height and smaller angle are associated with the need for emergent repair. Early elective repair should be considered for patients with hernia features concerning for increased risk of bowel compromise. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits

    PubMed Central

    van Zanten, Martijn

    2015-01-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  10. Multivariate analysis of correlation between electrophysiological and hemodynamic responses during cognitive processing

    PubMed Central

    Kujala, Jan; Sudre, Gustavo; Vartiainen, Johanna; Liljeström, Mia; Mitchell, Tom; Salmelin, Riitta

    2014-01-01

    Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological and hemodynamic responses across the human cortex would be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electromagnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation patterns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher order cortical regions. The low-frequency range showed substantial variance, with negative and positive correlations manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing. PMID:24518260

  11. Visualizing frequent patterns in large multivariate time series

    NASA Astrophysics Data System (ADS)

    Hao, M.; Marwah, M.; Janetzko, H.; Sharma, R.; Keim, D. A.; Dayal, U.; Patnaik, D.; Ramakrishnan, N.

    2011-01-01

    The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. Then we quantify the efficiency of the discovered motifs by linking them with a performance metric. To visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient motif) can be quickly detected from a large time series for further investigation. We have applied these methods to two real-world data sets: data center cooling and oil well production. The results provide important new insights into the recurring patterns.

  12. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  13. Ethnicity Is an Independent Determinant of Age-Specific PSA Level: Findings from a Multiethnic Asian Setting

    PubMed Central

    Sothilingam, Selvalingam; Malek, Rohan; Sundram, Murali; Hisham Bahadzor, Badrul; Ong, Teng Aik; Ng, Keng Lim; Sivalingam, Sivaprakasam; Razack, Azad Hassan Abdul

    2014-01-01

    Objectives To study the baseline PSA profile and determine the factors influencing the PSA levels within a multiethnic Asian setting. Materials and Methods We conducted a cross-sectional study of 1054 men with no clinical evidence of prostate cancer, prostate surgery or 5α-reductase inhibitor treatment of known prostate conditions. The serum PSA concentration of each subject was assayed. Potential factors associated with PSA level including age, ethnicity, height, weight, family history of prostate cancer, lower urinary tract voiding symptoms (LUTS), prostate volume and digital rectal examination (DRE) were evaluated using univariable and multivariable analysis. Results There were 38 men (3.6%) found to have a PSA level above 4 ng/ml and 1016 (96.4%) with a healthy PSA (≤4 ng/ml). The median PSA level of Malay, Chinese and Indian men was 1.00 ng/ml, 1.16 ng/ml and 0.83 ng/ml, respectively. Indians had a relatively lower median PSA level and prostate volume than Malays and Chinese, who shared a comparable median PSA value across all 10-years age groups. The PSA density was fairly similar amongst all ethnicities. Further analysis showed that ethnicity, weight and prostate volume were independent factors associated with age specific PSA level in the multivariable analysis (p<0.05). Conclusion These findings support the concept that the baseline PSA level varies between different ethnicities across all age groups. In addition to age and prostate volume, ethnicity may also need to be taken into account when investigating serum PSA concentrations in the multiethnic Asian population. PMID:25111507

  14. Effects of icotinib on early-stage non-small-cell lung cancer as neoadjuvant treatment with different epidermal growth factor receptor phenotypes.

    PubMed

    Wang, Tao; Liu, Yang; Zhou, Bin; Wang, Zhi; Liang, Naichao; Zhang, Yundong; Dong, Zhouhuan; Li, Jie

    2016-01-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated efficacy in treating advanced non-small-cell lung cancer (NSCLC). Preliminary findings suggested that EGFR-TKIs might also be beneficial in neoadjuvant therapy in treating NSCLC. Therefore, this study aimed to evaluate the efficacy and safety of neoadjuvant therapy with icotinib in patients with early-stage NSCLC. We retrospectively reviewed the medical history of patients who were initially diagnosed with stage IA-IIIA NSCLC and were under icotinib administration before surgery between December 2011 and December 2014. Tumor assessment was conducted between the second and fourth week from initial icotinib treatment. The association between personal characteristics, smoking status, disease stage, EGFR mutation status, and clinical outcomes were investigated using multivariate logistic regression analysis. A total of 67 patients with NSCLC were reviewed, and approximately half (38/67) of them were identified as having EGFR-mutant tumors. The overall response rate of all patients was 26.7% at 2-4 weeks' assessment. Multivariate analysis showed that female sex (38.5% versus 10.7% in males, P=0.028) and EGFR mutation status (42.1% versus 6.9% in EGFR wild type, P=0.011) were independent predictive factors. The analysis also showed that the most common adverse effects were rash (43.3%) and dry skin (34.4%), which were tolerable. Icotinib induced clinical response with minimal toxicity as neoadjuvant treatment in early NSCLC, especially in patients with common EGFR mutations. Further studies are warranted to confirm our findings.

  15. Unmet Needs for Social Support and Effects on Diabetes Self-care Activities in Korean Americans With Type 2 Diabetes

    PubMed Central

    Song, Youngshin; Song, Hee-Jung; Han, Hae-Ra; Park, So-Youn; Nam, Soohyun; Kim, Miyong T.

    2013-01-01

    Objective The purpose of this study was (1) to characterize the primary sources of social support and the extent of unmet needs for support (defined as the gap between social support needs and the receipt of social support) in a sample of Korean Americans (KAs) with type 2 diabetes and (2) to examine the effect of unmet needs for support on their self-care activities. Methods Baseline data obtained from a community-based intervention trial were used for this study of 83 middle-aged KAs with type 2 diabetes. Study design and data analysis were guided by social cognitive theory. The key variables were dictated the order of the variables in multivariate regression analysis. Results Our findings indicated that for diabetic KAs, the primary source of social support differed according to gender. Unmet needs for support were significantly associated with self-care activities, but the amount of support needs and of social support received were not. Multivariate analysis also confirmed that unmet needs for social support are a significant strong predictor of inadequate type 2 diabetes self-care activities, after controlling for other covariates. The hierarchical regression model explained about 30% of total variance in self-care activities. Conclusions The findings highlight the importance of considering unmet needs for social support when addressing self-care activities in type 2 diabetes patients. Future interventions should focus on filling gaps in social support and tailoring approaches according to key determinants, such as gender or education level, to improve self-care activities in the context of type 2 diabetes care. PMID:22222514

  16. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  17. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  18. Magnetic Resonance Imaging Findings Predict the Recurrence of Chronic Subdural Hematoma

    PubMed Central

    GOTO, Haruo; ISHIKAWA, Osamu; NOMURA, Masashi; TANAKA, Kentaro; NOMURA, Seiji; MAEDA, Keiichiro

    2015-01-01

    The exact predictive factors for postoperative recurrence of chronic subdural hematoma (CSDH) are still unknown. Based on the preoperative magnetic resonance imaging (MRI), low recurrence rate of T1-hyperintensity hematoma was previously reported. We investigated the other types of radiological findings which are related to the recurrence rate of CSDH in large number of patients analyzed by multivariate logistic regression model. Preoperative MRI and postoperative computed tomography (CT) were performed and the influence of the preoperative use of antiplatelet or anticoagulant drugs was also studied. The overall recurrence rate was 9.3% (47 of 505 hematomas). The MRI T1-iso/hypointensity group showed a significantly higher recurrence rate (18.2%, 29 of 159) compared to the other groups (5.2%, 18 of 346; p < 0.001). Multivariate logistic regression analysis showed T1 classification was the solo significant prognostic predictor among various factors such as bilateral hematoma, antiplatelet or anticoagulant drug usage, residual hematoma on postoperative CT, and MRI classification (p < 0.001): adjusted odds ratio for the recurrence in T1-iso/hypointensity group relative to the T1-hyperintensity group was 5.58 [95% confidence interval (CI), 2.09–14.86] (p = 0.001). Postoperative residual hematoma and antiplatelet or anticoagulant drug usage did not increase the recurrence risk. The preoperative MRI findings, especially T1WI findings, have predictive value for postoperative recurrence of CSDH and the T1-iso/hypointensity group can be assumed to be a high recurrence risk group. PMID:25746312

  19. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  20. Undiagnosed Small Fiber Polyneuropathy: Is It a Component of Gulf War Illness?

    DTIC Science & Technology

    2011-07-01

    After informed consent, a site (10 cm above the ankle ) is anesthetized and one or two 2- or 3mm diameter skin punches are removed using sterile...results anchor the lower end of the normal biopsy curve from which the multivariate analysis is derived. Thus, their biopsies will remain part of the...the findings in the young adult subjects, and also anchor the lower end of the neurite density curve, thus providing a more accurate normative fit

  1. Multivariate analysis for scanning tunneling spectroscopy data

    NASA Astrophysics Data System (ADS)

    Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke

    2018-01-01

    We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.

  2. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    NASA Astrophysics Data System (ADS)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  3. Can we discover double Higgs production at the LHC?

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Ghosh, Tathagata; Sinha, Kuver

    2017-08-01

    We explore double Higgs production via gluon fusion in the b b ¯γ γ channel at the high-luminosity LHC using machine learning tools. We first propose a Bayesian optimization approach to select cuts on kinematic variables, obtaining a 30%-50% increase in the significance compared to current results in the literature. We show that this improvement persists once systematic uncertainties are taken into account. We next use boosted decision trees (BDT) to further discriminate signal and background events. Our analysis shows that a joint optimization of kinematic cuts and BDT hyperparameters results in an appreciable improvement in the significance. Finally, we perform a multivariate analysis of the output scores of the BDT. We find that assuming a very low level of systematics, the techniques proposed here will be able to confirm the production of a pair of standard model Higgs bosons at 5 σ level with 3 ab-1 of data. Assuming a more realistic projection of the level of systematics, around 10%, the optimization of cuts to train BDTs combined with a multivariate analysis delivers a respectable significance of 4.6 σ . Even assuming large systematics of 20%, our analysis predicts a 3.6 σ significance, which represents at least strong evidence in favor of double Higgs production. We carefully incorporate background contributions coming from light flavor jets or c jets being misidentified as b jets and jets being misidentified as photons in our analysis.

  4. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    PubMed

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals

    PubMed Central

    Wiszniewsky, Anna; Ritter, Manuel; Goreish, Ibtisam A.; Atti El Mekki, Misk El Yemen A.; Arriens, Sandra; Pfarr, Kenneth; Fimmers, Rolf; Doenhoff, Mike; Hoerauf, Achim; Layland, Laura E.

    2016-01-01

    Background In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. Methodology This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4–85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. Principal Findings Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. Conclusions/Significance Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to distinguish patent from non-patent individuals. PMID:27152725

  6. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    PubMed

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  7. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  8. Applying multivariate analysis as decision tool for evaluating sediment-specific remediation strategies.

    PubMed

    Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M

    2016-05-01

    Multivariate methodology was employed for finding optimum remediation conditions for electrodialytic remediation of harbour sediment from an Arctic location in Norway. The parts of the experimental domain in which both sediment- and technology-specific remediation objectives were met were identified. Objectives targeted were removal of the sediment-specific pollutants Cu and Pb, while minimising the effect on the sediment matrix by limiting the removal of naturally occurring metals while maintaining low energy consumption. Two different cell designs for electrochemical remediation were tested and final concentrations of Cu and Pb were below background levels in large parts of the experimental domain when operating at low current densities (<0.12 mA/cm(2)). However, energy consumption, remediation times and the effect on naturally occurring metals were different for the 2- and 3-compartment cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multivariate Analysis of Schools and Educational Policy.

    ERIC Educational Resources Information Center

    Kiesling, Herbert J.

    This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…

  10. Repetition of self-harm and suicide following self-harm in children and adolescents: findings from the Multicentre Study of Self-harm in England.

    PubMed

    Hawton, Keith; Bergen, Helen; Kapur, Navneet; Cooper, Jayne; Steeg, Sarah; Ness, Jennifer; Waters, Keith

    2012-12-01

    Self-harm (intentional self-poisoning and self-injury) in children and adolescents is often repeated and is associated with increased risk of future suicide. We have investigated factors associated with these outcomes. We used data collected in the Multicentre Study of Self-harm in England on all self-harm hospital presentations by individuals aged 10-18 years between 2000 and 2007, and national death information on these individuals to the end of 2010. Cox hazard proportional models were used to identify independent and multivariable predictors of repetition of self-harm and of suicide. Repetition of self-harm occurred in 27.3% of individuals (N = 3920) who presented between 2000 and 2005 and were followed up until 2007. Multivariate analysis showed that repetition was associated with age, self-cutting, and previous self-harm and psychiatric treatment. Of 51 deaths in individuals who presented between 2000 and 2007 and were followed up to 2010 (N = 5133) half (49.0%) were suicides. The method used was usually different to that used for self-harm. Multivariate analysis showed that suicide was associated with male gender [Hazard ratio (HR) = 2.4, 95% CI 1.2-4.8], self-cutting (HR = 2.1, 95% CI 1.1-3.7) and prior psychiatric treatment at initial presentation (HR = 4.2, 95% CI 1.7-10.5). It was also associated with self-cutting and history of psychiatric treatment at the last episode before death, and history of previous self harm. Self-cutting as a method of self-harm in children and adolescents conveys greater risk of suicide (and repetition) than self-poisoning although different methods are usually used for suicide. The findings underline the need for psychosocial assessment in all cases. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  11. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  12. [Modulating variables of work disability in depressive disorders].

    PubMed

    Catalina Romero, C; Cabrera Sierra, M; Sainz Gutiérrez, J C; Barrenechea Albarrán, J L; Madrid Conesa, A; Calvo Bonacho, E

    2011-01-01

    To describe the duration of sickness absence in unipolar depression and to determine the relationship of demographic, job-related and clinical variables with length of temporary work disability in depressive disorders. Prospective observational study. A total of 1,292 subjects with depressive disorder diagnosis (ICD-9-CM) were selected claiming sick leave in an Occupational Diseases and Accident sat Work Insurance Scheme (sampling on successive occasions). Descriptive analyses of sickness absence duration, and bivariate (median test) and multivariate analysis (logistic regression) were performed to find relationships between demographic, job-related and clinical variables. Mean duration of sickness absence episodes due to a depressive disorder was 120 days. After multivariate analyses, female sex (p < 0.01), higher age (p < 0.01), lower educational level (p < 0.01), method of payment according to whether self-employed or unemployed workers (p < 0.01) and being referred to both psychiatrist and psychologist (p < 0.01) remained significantly associated with sick leave length. These findings confirm a strong association of depression with long periods of work disability and high absenteeism, and also suggest the need for improvements in functional ability assessment and promotion, treatment and referral of depressed patients. Copyright © 2010 SECA. Published by Elsevier Espana. All rights reserved.

  13. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  14. Performance characteristics of LOX-H2, tangential-entry, swirl-coaxial, rocket injectors

    NASA Technical Reports Server (NTRS)

    Howell, Doug; Petersen, Eric; Clark, Jim

    1993-01-01

    Development of a high performing swirl-coaxial injector requires an understanding of fundamental performance characteristics. This paper addresses the findings of studies on cold flow atomic characterizations which provided information on the influence of fluid properties and element operating conditions on the produced droplet sprays. These findings are applied to actual rocket conditions. The performance characteristics of swirl-coaxial injection elements under multi-element hot-fire conditions were obtained by analysis of combustion performance data from three separate test series. The injection elements are described and test results are analyzed using multi-variable linear regression. A direct comparison of test results indicated that reduced fuel injection velocity improved injection element performance through improved propellant mixing.

  15. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  16. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  17. Neuro-Magnetic Resonance Imaging in Hand, Foot, and Mouth Disease: Finding in 412 Patients and Prognostic Features.

    PubMed

    Lian, Zhou-Yang; Li, He-Hong; Zhang, Bin; Dong, Yu-Hao; Deng, Wu-Xu; Liu, Jing; Luo, Xiao-Ning; Huang, Biao; Liang, Chang-Hong; Zhang, Shui-Xing

    The aims of this study were to describe the neuroimaging findings in hand, foot, and mouth disease and determine those who may provide prognosis. Magnetic resonance imaging scans in 412 severe hand, foot, and mouth disease between 2009 and 2014 were retrospectively evaluated. The patients who had the neurological signs were followed for 6 months to 1 year. According to the good or poor prognosis, 2 groups were categorized. The incidence of lesions in different sites between the 2 groups was compared, and multivariate analysis was used to look for risk factors. The major sites of involvement for all patients with percentages were the medulla oblongata (16.1%), spinal anterior nerve roots (12.4%), thoracic segments (11.1%), brain or spinal meninges (8.3%), and so on. There were 347 patients (84.2%) with good prognosis and 65 (15.8%) with poor prognosis in the follow-up. There was a significantly higher rate of lesions involving the cerebral white substance, thalamus, medulla oblongata, pons, midbrain, and spinal cord in the group with poor prognosis. Multivariate analysis showed 2 independent risk factors associated with poor prognosis: lesions located in the medulla oblongata (P < 0.015) and spinal cord (P < 0.001) on magnetic resonance imaging; the latter was the most significant prognostic factor (odds ratio, 29.11; P < 0.001). We found that the distribution patterns for all patients mainly involved the medulla oblongata, spinal anterior nerve roots, thoracic segments, and brain or spinal meninges. Our findings suggested that patients with lesions located in the medulla oblongata and spinal cord may be closely monitored for early intervention and meticulous management. For children with the symptom of nervous system, they are strongly recommended for magnetic resonance examination.

  18. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.

    PubMed

    Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao

    2016-11-30

    Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cycling Empirical Antibiotic Therapy in Hospitals: Meta-Analysis and Models

    PubMed Central

    Abel, Sören; Viechtbauer, Wolfgang; Bonhoeffer, Sebastian

    2014-01-01

    The rise of resistance together with the shortage of new broad-spectrum antibiotics underlines the urgency of optimizing the use of available drugs to minimize disease burden. Theoretical studies suggest that coordinating empirical usage of antibiotics in a hospital ward can contain the spread of resistance. However, theoretical and clinical studies came to different conclusions regarding the usefulness of rotating first-line therapy (cycling). Here, we performed a quantitative pathogen-specific meta-analysis of clinical studies comparing cycling to standard practice. We searched PubMed and Google Scholar and identified 46 clinical studies addressing the effect of cycling on nosocomial infections, of which 11 met our selection criteria. We employed a method for multivariate meta-analysis using incidence rates as endpoints and find that cycling reduced the incidence rate/1000 patient days of both total infections by 4.95 [9.43–0.48] and resistant infections by 7.2 [14.00–0.44]. This positive effect was observed in most pathogens despite a large variance between individual species. Our findings remain robust in uni- and multivariate metaregressions. We used theoretical models that reflect various infections and hospital settings to compare cycling to random assignment to different drugs (mixing). We make the realistic assumption that therapy is changed when first line treatment is ineffective, which we call “adjustable cycling/mixing”. In concordance with earlier theoretical studies, we find that in strict regimens, cycling is detrimental. However, in adjustable regimens single resistance is suppressed and cycling is successful in most settings. Both a meta-regression and our theoretical model indicate that “adjustable cycling” is especially useful to suppress emergence of multiple resistance. While our model predicts that cycling periods of one month perform well, we expect that too long cycling periods are detrimental. Our results suggest that “adjustable cycling” suppresses multiple resistance and warrants further investigations that allow comparing various diseases and hospital settings. PMID:24968123

  20. The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

    PubMed Central

    Evans, S.; Kyong, J.S.; Rosen, S.; Golestani, N.; Warren, J.E.; McGettigan, C.; Mourão-Miranda, J.; Wise, R.J.S.; Scott, S.K.

    2014-01-01

    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing. PMID:23585519

  1. Risk factors associated with gastric cancer in Mexico: education, breakfast and chili.

    PubMed

    Trujillo Rivera, Alejandro; Sampieri, Clara Luz; Morales Romero, Jaime; Montero, Hilda; Acosta Mesa, Héctor Gabriel; Cruz Ramírez, Nicandro; Novoa Del Toro, Elva María; León Córdoba, Kenneth

    2018-06-01

    the aim of the study was to use a validated questionnaire to identify factors associated with the development of gastric cancer (GC) in the Mexican population. the study included cases and controls that were paired by sex and ± 10 years of age at diagnosis. In relation to cases, 46 patients with a confirmed histopathological diagnosis of adenocarcinoma-type GC, as reported in the hospital records, were selected, and 46 blood bank donors from the same hospital were included as controls. The previously validated Questionnaire to Find Factors Associated with Gastric Cancer (QUFA-GC©) was used to collect data. Odds ratio (OR) and 95% confidence interval (IC) were estimated via univariate analysis (paired OR). Multivariate analysis was performed by logistic regression. A decision tree was constructed using the J48 algorithm. an association was found by univariate analysis between GC risk and a lack of formal education, having smoked for ≥ 10 years, eating rapidly, consuming very hot food and drinks, a non-suitable breakfast within two hours of waking, pickled food and capsaicin. In contrast, a protective association against GC was found with taking recreational exercise and consuming fresh fruit and vegetables. No association was found between the development of GC and having an income that reflected poverty, using a refrigerator, perception of the omission of breakfast and time period of alcoholism. In the final multivariate analysis model, having no formal education (OR = 17.47, 95% CI = 5.17-76.69), consuming a non-suitable breakfast within two hours of waking (OR = 8.99, 95% CI = 2.85-35.50) and the consumption of capsaicin ˃ 29.9 mg capsaicin per day (OR = 3.77, 95% CI = 1.21-13.11) were factors associated with GC. an association was found by multivariate analysis between the presence of GC and education, type of breakfast and the consumption of capsaicin. These variables are susceptible to intervention and can be identified via the QUFA-GC ©.

  2. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.

  3. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  4. A Study of Effects of MultiCollinearity in the Multivariable Analysis

    PubMed Central

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.

    2015-01-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257

  5. A Study of Effects of MultiCollinearity in the Multivariable Analysis.

    PubMed

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W

    2014-10-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.

  6. Multivariate Analysis of the Factors Associated With Sexual Intercourse, Marriage, and Paternity of Hypospadias Patients.

    PubMed

    Kanematsu, Akihiro; Higuchi, Yoshihide; Tanaka, Shiro; Hashimoto, Takahiko; Nojima, Michio; Yamamoto, Shingo

    2016-10-01

    Patients with hypospadias are treated surgically during childhood, which has the intention of enabling a satisfactory sexual life in adulthood. However, it is unclear whether patients with corrected hypospadias can lead a satisfactory sexual life and sustain a marital relationship and produce offspring. To evaluate factors associated with achievement of sexual intercourse, marriage, and paternity in patients with hypospadias who have reached adulthood. Self-completion questionnaires were mailed in April 2012 to patients with hypospadias at least 18 years old who had been treated at our institution during childhood from 1973 through 1998 by a single surgeon and the same surgical policy. Assessments included the International Prostate Symptom Score, the International Index for Erectile Function-5, and non-validated questions related to current social and physical status and sexual, marital, and paternity experiences. Candidate factors were extracted from patients' neonatal data, surgical findings and results, and current physical and social status obtained by the questionnaires. Candidate factors associated with heterosexual intercourse, marriage, and paternity experiences were analyzed using univariate and multivariate proportional hazard models and log-rank test of Kaplan-Meier curves. Of the 518 patients contacted, 108 (age = 18-50 years, median = 28 years) met the inclusion criteria. Two- and one-stage repairs were performed as the initial treatment in 79 and 12, respectively, and 17 of the analyzed cases were reoperations for patients initially treated elsewhere. Fifty-seven patients had the milder type (31 glandular, 26 penile), 36 had the proximal type (13 penoscrotal, 23 scrotal-perineal), and 15 had an unknown type. Multivariate analyses by Cox proportional hazard model and log-rank tests confirmed that experience of sexual intercourse was associated with the milder type of hypospadias (P = .025 and .0076 respectively), marriage was associated with stable employment (P = .020 and .026, respectively), and paternity was associated with the absence of additional surgery after completion of the initial repair (P = .013 by multivariate analysis). There was scant overlap of factors associated with the three events. The present findings provide reference information for surgeons and parents regarding future sexual and marriage experiences of children treated for hypospadias. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  7. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the observed anomalies. Our work suggests that in order to make an accurate analysis of the relations among different signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be the most effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  8. Localization of genes involved in the metabolic syndrome using multivariate linkage analysis.

    PubMed

    Olswold, Curtis; de Andrade, Mariza

    2003-12-31

    There are no well accepted criteria for the diagnosis of the metabolic syndrome. However, the metabolic syndrome is identified clinically by the presence of three or more of these five variables: larger waist circumference, higher triglyceride levels, lower HDL-cholesterol concentrations, hypertension, and impaired fasting glucose. We use sets of two or three variables, which are available in the Framingham Heart Study data set, to localize genes responsible for this syndrome using multivariate quantitative linkage analysis. This analysis demonstrates the applicability of using multivariate linkage analysis and how its use increases the power to detect linkage when genes are involved in the same disease mechanism.

  9. Study on the application of MRF and the D-S theory to image segmentation of the human brain and quantitative analysis of the brain tissue

    NASA Astrophysics Data System (ADS)

    Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang

    2012-01-01

    The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.

  10. Financial Conflicts of Interest and Study Results in Environmental and Occupational Health Research.

    PubMed

    Friedman, Lee; Friedman, Michael

    2016-03-01

    To date, there is no comprehensive analysis of the relationship between financial conflict of interest (COI) and a potential publication bias in environmental and occupational health studies. We analyzed original research articles published in 2012 in 17 peer-reviewed journals. Multivariable ordinal logistic regression models were developed to evaluate the relationship between financial COI and the study outcome. Of the 373 studies included in the analysis, 17.2% had a financial COI associated with organizations involved with the processing, use, or disposal of industrial and commercial products, and studies with this type of COI were more likely to report negative results (Adjusted Odds Ratio = 4.31), as were studies with any COI associated with the military (employment or funding; Adjusted Odds Ratio = 9.15). Our findings show a clear relationship between direction of reported findings and specific types of financial COI.

  11. Differentiating clinical groups using the serial color-word test (S-CWT).

    PubMed

    Hentschel, Uwe; Rubino, I Alex; Bijleveld, Catrien

    2011-04-01

    The present study attempted to differentiate 11 diagnostic groups by means of the Serial Color-Word Test (S-CWT), using multivariate discriminant analysis. Two alternative scoring systems of the S-CWT were outlined. Asample of 514 individuals who had clinical diagnoses of various types and 397 controls who had no diagnostic findings comprised the sample. The first discriminant analysis failed to differentiate the groups adequately. The groups were consequently reduced to four (schizophrenia, bipolar disorders, temporo-mandibular joint pain dysfunction syndrome, and eating disturbances), which gave better reclassification findings for a clinical application of the test. This classification gave over 55% correct assignments. The final four groups had a statistically significant discrimination on the test, which remained stable also in a bootstrap procedure. Implications for treatment indications and outcomes as well as strategies for further studies using the S-CWT are discussed.

  12. Pneumonia after kidney transplant: incidence, risk factors, and mortality.

    PubMed

    Dizdar, Oguzhan Sitki; Ersoy, Alparslan; Akalin, Halis

    2014-06-01

    Pneumonia is an important cause of morbidity and mortality in recipients of solid-organ transplant. We aimed to determine risk factors for development of pneumonia and associated deaths in kidney transplant recipients. A retrospective review of medical records was performed for all kidney transplant recipients from December 1988, to April 2011. The diagnosis of community-acquired pneumonia was made from symptoms, clinical findings, and chest radiography. The diagnosis of nosocomial pneumonia was made according to published criteria. Laboratory and serologic tests, radiographic findings, cultures of respiratory specimens, and tissue biopsies were reviewed. In 406 kidney transplant recipients, there were 82 patients (20%) who had 111 episodes of pneumonia, including 49 nosocomial episodes of pneumonia (44%). Bacterial infections were the most common cause (34 episodes [31%]). In multivariate analysis, significant risk factors associated with pneumonia episodes were older age, hypertension, cardiac disease, history of acute graft rejection, and not using everolimus/mycophenolate mofetil/prednisolone protocol. There were 28 episodes that resulted in death (25%), including 20 nosocomial episodes (71%). In multivariate analysis, significant risk factors associated with death from pneumonia episodes were antibiotic use in the previous 3 months, high C-reactive protein, and low albumin. Cutoff values for increased risk of death from pneumonia included C-reactive protein > 10 mg/dL and procalcitonin > 8.8 ng/mL. Recipients of kidney transplant may be at risk for pneumonia and associated death. Nosocomial pulmonary infections may be associated with marked morbidity and mortality in kidney transplant recipients.

  13. The Impact of Financial Conflicts of Interest in Plastic Surgery: Are They All Created Equal?

    PubMed

    Lopez, Joseph; Juan, Ilona; Wu, Adela; Samaha, Georges; Cho, Brian; Luck, J D; Soni, Ashwin; Milton, Jacqueline; May, James W; Tufaro, Anthony P; Dorafshar, Amir H

    2016-08-01

    Recently, several studies have demonstrated that articles that disclose conflicts of interests (COI) are associated with publication of positive results. The purpose of this study was to learn more about the different types of COI as they relate to the general topic of COI in plastic surgery. Specifically, we aimed to examine whether different types of COI are more likely than others to be associated with the presentation of positive findings. We reviewed all original articles in Annals of Plastic Surgery, Journal of Plastic, Reconstructive, and Aesthetic Surgery, and Plastic & Reconstructive Surgery from January 1, 2012, to December 31, 2013. All scientific articles were analyzed, and several article characteristics were extracted. Disclosed COI were categorized into the following categories: consultant/employee, royalties/stock options, and research support. The findings reported in each article abstract were blindly graded as reporting a positive, negative, neutral, or not applicable result. A multivariable analysis was performed to determine whether an association existed between certain types of COI and publication of positive conclusions. A total of 3124 articles were identified of which 1185 fulfilled the inclusion criteria. Financial COI were reported in 153 studies (12.9%). The most common type of COI was "research support" (7.3%), whereas the least common was "royalties/stock options" (1.2%). Rates of different types of COI varied significantly by plastic surgery subspecialty field (P < 0.001). In the multivariable analysis, authors who disclosed COI related to research support, consultant/employee, and royalties/stock options were 1.31, 6.62, and 8.72 times more likely, respectively, to publish positive findings when compared with authors that disclosed no COI after correcting for potential confounding factors. However, consultancy/employee status was the only COI category statistically associated with publication of positive results (P < 0.001). Self-reported COI are uncommon in plastic surgery research. Our results provide evidence that certain types of financial COI are more likely than others to be associated with the presentation of positive findings. This analysis suggests that certain investigators may be more biased, consciously or unconsciously, by the type of financial benefit offered by industry.

  14. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  15. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  16. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  17. Earth resources data analysis program, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The efforts and findings of the Earth Resources Data Analysis Program are summarized. Results of a detailed study of the needs of EOD with respect to an applications development system (ADS) for the analysis of remotely sensed data, including an evaluation of four existing systems with respect to these needs are described. Recommendations as to possible courses for EOD to follow to obtain a viable ADS are presented. Algorithmic development comprised of several subtasks is discussed. These subtasks include the following: (1) two algorithms for multivariate density estimation; (2) a data smoothing algorithm; (3) a method for optimally estimating prior probabilities of unclassified data; and (4) further applications of the modified Cholesky decomposition in various calculations. Little effort was expended on task 3, however, two reports were reviewed.

  18. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Jonathan; Xu, Beibei; Moores Cancer Center, University of California San Diego, La Jolla, California

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences inmore » patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end of life.« less

  20. Urinary bladder cancer treated with radical cystectomy: perioperative parameters and early complications prospectively registered in a national population-based database.

    PubMed

    Jerlström, Tomas; Gårdmark, Truls; Carringer, Malcolm; Holmäng, Sten; Liedberg, Fredrik; Hosseini, Abolfazl; Malmström, Per-Uno; Ljungberg, Börje; Hagberg, Oskar; Jahnson, Staffan

    2014-08-01

    Cystectomy combined with pelvic lymph-node dissection and urinary diversion entails high morbidity and mortality. Improvements are needed, and a first step is to collect information on the current situation. In 2011, this group took the initiative to start a population-based database in Sweden (population 9.5 million in 2011) with prospective registration of patients and complications until 90 days after cystectomy. This article reports findings from the first year of registration. Participation was voluntary, and data were reported by local urologists or research nurses. Perioperative parameters and early complications classified according to the modified Clavien system were registered, and selected variables of possible importance for complications were analysed by univariate and multivariate logistic regression. During 2011, 285 (65%) of 435 cystectomies performed in Sweden were registered in the database, the majority reported by the seven academic centres. Median blood loss was 1000 ml, operating time 318 min, and length of hospital stay 15 days. Any complications were registered for 103 patients (36%). Clavien grades 1-2 and 3-5 were noted in 19% and 15%, respectively. Thirty-seven patients (13%) were reoperated on at least once. In logistic regression analysis elevated risk of complications was significantly associated with operating time exceeding 318 min in both univariate and multivariate analysis, and with age 76-89 years only in multivariate analysis. It was feasible to start a national population-based registry of radical cystectomies for bladder cancer. The evaluation of the first year shows an increased risk of complications in patients with longer operating time and higher age. The results agree with some previously published series but should be interpreted with caution considering the relatively low coverage, which is expected to be higher in the future.

  1. Concomitant Mediastinoscopy Increases the Risk of Postoperative Pneumonia After Pulmonary Lobectomy.

    PubMed

    Yendamuri, Sai; Battoo, Athar; Attwood, Kris; Dhillon, Samjot Singh; Dy, Grace K; Hennon, Mark; Picone, Anthony; Nwogu, Chukwumere; Demmy, Todd; Dexter, Elisabeth

    2018-05-01

    Mediastinoscopy is considered the gold standard for preresectional staging of lung cancer. We sought to examine the effect of concomitant mediastinoscopy on postoperative pneumonia (POP) in patients undergoing lobectomy. All patients in our institutional database (2008-2015) undergoing lobectomy who did not receive neoadjuvant therapy were included in our study. The relationship between mediastinoscopy and POP was examined using univariate (Chi square) and multivariate analyses (binary logistic regression). In order to validate our institutional findings, lobectomy data in the National Surgical Quality Improvement Program (NSQIP) from 2005 to 2014 were analyzed for these associations. Of 810 patients who underwent a lobectomy at our institution, 741 (91.5%) surgeries were performed by video-assisted thoracic surgery (VATS) and 487 (60.1%) patients underwent concomitant mediastinoscopy. Univariate analysis demonstrated an association between mediastinoscopy and POP in patients undergoing VATS [odds ratio (OR) 1.80; p = 0.003], but not open lobectomy. Multivariate analysis retained mediastinoscopy as a variable, although the relationship showed only a trend (OR 1.64; p = 0.1). In the NSQIP cohort (N = 12,562), concomitant mediastinoscopy was performed in 9.0% of patients, with 44.5% of all the lobectomies performed by VATS. Mediastinoscopy was associated with POP in patients having both open (OR1.69; p < 0.001) and VATS lobectomy (OR 1.72; p = 0.002). This effect remained in multivariate analysis in both the open and VATS lobectomy groups (OR 1.46, p = 0.003; and 1.53, p = 0.02, respectively). Mediastinoscopy may be associated with an increased risk of POP after pulmonary lobectomy. This observation should be examined in other datasets as it potentially impacts preresectional staging algorithms for patients with lung cancer.

  2. Clinical Factors and Viral Load Influencing Severity of Acute Hepatitis A.

    PubMed

    Lee, Hyun Woong; Chang, Dong-Yeop; Moon, Hong Ju; Chang, Hye Young; Shin, Eui-Cheol; Lee, June Sung; Kim, Kyung-Ah; Kim, Hyung Joon

    2015-01-01

    Clinical manifestations of hepatitis A virus (HAV) infection vary from mild to fulminant hepatic failure (FHF) in adults. We investigated the relationship between laboratory findings, including viral load, and clinical outcomes in patients with acute hepatitis A (AHA) and evaluated predictive factors for severe acute hepatitis (s-AH). We analyzed the clinical manifestations of AHA in 770 patients. Patients with a prothrombin time (PT) of less than 40% of normal were classified as s-AH and included 4 patients with FHF, 11 patients with acute renal failure, and 3 patients with prolonged jaundice (n = 128). Other patients were defined as mild acute hepatitis (m-AH) (n = 642). Serum samples were obtained from 48 patients with acute hepatitis A. Among them, 20 with s-AH, and 28 with m-AH, were tested for HAV RNA titer. In a multivariate analysis, age (HR = 1.042, P = 0.041), peak creatinine (HR = 4.014, P = 0.001), bilirubin (HR = 1.153, P = 0.003), alanine aminotransferase (ALT) (HR = 1.001, P < 0.001), initial lactate dehydrogenase (LDH) (HR = 1.000, P = 0.045) and total cholesterol (HR = 0.978, P < 0.001) were independent factors for s-AH. Serum HAV RNA was detected in 20/20 (100%) patients with s-AH and 22/28 (78.6%) patients with m-AH. In a multivariate analysis of the 48 patients who were tested for HAV RNA, peak ALT (HR = 1.001, P = 0.004) and HAV RNA titer (HR = 2.076, P = 0.012) were independent factors for s-AH. Clinical factors including age, peak creatinine, bilirubin, ALT, initial LDH and total cholesterol were independent factors for s-AH in a multivariate analysis. In particular, HAV load strongly correlated with the severity of hepatitis A.

  3. Clinical Factors and Viral Load Influencing Severity of Acute Hepatitis A

    PubMed Central

    Lee, Hyun Woong; Chang, Dong-Yeop; Moon, Hong Ju; Chang, Hye Young; Shin, Eui-Cheol; Lee, June Sung; Kim, Kyung-Ah; Kim, Hyung Joon

    2015-01-01

    Background and Aims Clinical manifestations of hepatitis A virus (HAV) infection vary from mild to fulminant hepatic failure (FHF) in adults. We investigated the relationship between laboratory findings, including viral load, and clinical outcomes in patients with acute hepatitis A (AHA) and evaluated predictive factors for severe acute hepatitis (s-AH). Methods We analyzed the clinical manifestations of AHA in 770 patients. Patients with a prothrombin time (PT) of less than 40% of normal were classified as s-AH and included 4 patients with FHF, 11 patients with acute renal failure, and 3 patients with prolonged jaundice (n = 128). Other patients were defined as mild acute hepatitis (m-AH) (n = 642). Serum samples were obtained from 48 patients with acute hepatitis A. Among them, 20 with s-AH, and 28 with m-AH, were tested for HAV RNA titer. Results In a multivariate analysis, age (HR = 1.042, P = 0.041), peak creatinine (HR = 4.014, P = 0.001), bilirubin (HR = 1.153, P = 0.003), alanine aminotransferase (ALT) (HR = 1.001, P<0.001), initial lactate dehydrogenase (LDH) (HR = 1.000, P = 0.045) and total cholesterol (HR = 0.978, P<0.001) were independent factors for s-AH. Serum HAV RNA was detected in 20/20 (100%) patients with s-AH and 22/28 (78.6%) patients with m-AH. In a multivariate analysis of the 48 patients who were tested for HAV RNA, peak ALT (HR = 1.001, P = 0.004) and HAV RNA titer (HR = 2.076, P = 0.012) were independent factors for s-AH. Conclusions Clinical factors including age, peak creatinine, bilirubin, ALT, initial LDH and total cholesterol were independent factors for s-AH in a multivariate analysis. In particular, HAV load strongly correlated with the severity of hepatitis A. PMID:26090677

  4. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  5. Multivariate multiscale entropy of financial markets

    NASA Astrophysics Data System (ADS)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  6. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists.

    PubMed

    Vongsvivut, Jitraporn; Heraud, Philip; Gupta, Adarsha; Puri, Munish; McNaughton, Don; Barrow, Colin J

    2013-10-21

    The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production.

  7. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils.

    PubMed

    Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael

    2018-03-27

    Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  8. Prognostic impact of the level of nodal involvement: retrospective analysis of patients with advanced oral squamous cell carcinoma.

    PubMed

    Murakami, R; Nakayama, H; Semba, A; Hiraki, A; Nagata, M; Kawahara, K; Shiraishi, S; Hirai, T; Uozumi, H; Yamashita, Y

    2017-01-01

    We retrospectively evaluated the prognostic impact of the level of nodal involvement in patients with advanced oral squamous cell carcinoma (SCC). Between 2005 and 2010, 105 patients with clinical stage III or IV oral SCC had chemoradiotherapy preoperatively. Clinical (cN) and pathological nodal (pN) involvement was primarily at levels Ib and II. We defined nodal involvement at levels Ia and III-V as anterior and inferior extensions, respectively, and recorded such findings as extensive. With respect to pretreatment variables (age, clinical stage, clinical findings of the primary tumour, and nodal findings), univariate analysis showed that extensive cN was the only significant factor for overall survival (hazard ratio [HR], 3.27; 95% CI 1.50 to 7.13; p=0.001). Univariate analysis showed that all pN findings, including the nodal classification (invaded nodes, multiple, and contralateral) and extensive involvement were significant, and multivariate analysis confirmed that extensive pN (HR 4.71; 95% CI 1.85 to 11.97; p=0.001) and multiple pN (HR 2.59; 95% CI 1.10 to 6.09; p=0.029) were independent predictors of overall survival. Assessment based on the level of invaded neck nodes may be a better predictor of survival than the current nodal classification. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  11. Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis.

    PubMed

    Zhang, Sheng; Hu, Sien; Sinha, Rajita; Potenza, Marc N; Malison, Robert T; Li, Chiang-Shan R

    2016-01-01

    Cocaine dependence is associated with deficits in cognitive control. Previous studies demonstrated that chronic cocaine use affects the activity and functional connectivity of the thalamus, a subcortical structure critical for cognitive functioning. However, the thalamus contains nuclei heterogeneous in functions, and it is not known how thalamic subregions contribute to cognitive dysfunctions in cocaine dependence. To address this issue, we used multivariate pattern analysis (MVPA) to examine how functional connectivity of the thalamus distinguishes 100 cocaine-dependent participants (CD) from 100 demographically matched healthy control individuals (HC). We characterized six task-related networks with independent component analysis of fMRI data of a stop signal task and employed MVPA to distinguish CD from HC on the basis of voxel-wise thalamic connectivity to the six independent components. In an unbiased model of distinct training and testing data, the analysis correctly classified 72% of subjects with leave-one-out cross-validation (p < 0.001), superior to comparison brain regions with similar voxel counts (p < 0.004, two-sample t test). Thalamic voxels that form the basis of classification aggregate in distinct subclusters, suggesting that connectivities of thalamic subnuclei distinguish CD from HC. Further, linear regressions provided suggestive evidence for a correlation of the thalamic connectivities with clinical variables and performance measures on the stop signal task. Together, these findings support thalamic circuit dysfunction in cognitive control as an important neural marker of cocaine dependence.

  12. A Baseline for the Multivariate Comparison of Resting-State Networks

    PubMed Central

    Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.

    2011-01-01

    As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040

  13. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    PubMed

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  15. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Treesearch

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  16. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  17. A preliminary analysis of quantifying computer security vulnerability data in "the wild"

    NASA Astrophysics Data System (ADS)

    Farris, Katheryn A.; McNamara, Sean R.; Goldstein, Adam; Cybenko, George

    2016-05-01

    A system of computers, networks and software has some level of vulnerability exposure that puts it at risk to criminal hackers. Presently, most vulnerability research uses data from software vendors, and the National Vulnerability Database (NVD). We propose an alternative path forward through grounding our analysis in data from the operational information security community, i.e. vulnerability data from "the wild". In this paper, we propose a vulnerability data parsing algorithm and an in-depth univariate and multivariate analysis of the vulnerability arrival and deletion process (also referred to as the vulnerability birth-death process). We find that vulnerability arrivals are best characterized by the log-normal distribution and vulnerability deletions are best characterized by the exponential distribution. These distributions can serve as prior probabilities for future Bayesian analysis. We also find that over 22% of the deleted vulnerability data have a rate of zero, and that the arrival vulnerability data is always greater than zero. Finally, we quantify and visualize the dependencies between vulnerability arrivals and deletions through a bivariate scatterplot and statistical observations.

  18. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  19. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception.

    PubMed

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness.

  20. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    PubMed Central

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  1. Stochastic univariate and multivariate time series analysis of PM2.5 and PM10 air pollution: A comparative case study for Plovdiv and Asenovgrad, Bulgaria

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S.; Stoimenova, M.; Ivanov, A.; Voynikova, D.; Iliev, I.

    2016-10-01

    Fine particulate matter PM2.5 and PM10 air pollutants are a serious problem in many urban areas affecting both the health of the population and the environment as a whole. The availability of large data arrays for the levels of these pollutants makes it possible to perform statistical analysis, to obtain relevant information, and to find patterns within the data. Research in this field is particularly topical for a number of Bulgarian cities, European country, where in recent years regulatory air pollution health limits are constantly being exceeded. This paper examines average daily data for air pollution with PM2.5 and PM10, collected by 3 monitoring stations in the cities of Plovdiv and Asenovgrad between 2011 and 2016. The goal is to find and analyze actual relationships in data time series, to build adequate mathematical models, and to develop short-term forecasts. Modeling is carried out by stochastic univariate and multivariate time series analysis, based on Box-Jenkins methodology. The best models are selected following initial transformation of the data and using a set of standard and robust statistical criteria. The Mathematica and SPSS software were used to perform calculations. This examination showed measured concentrations of PM2.5 and PM10 in the region of Plovdiv and Asenovgrad regularly exceed permissible European and national health and safety thresholds. We obtained adequate stochastic models with high statistical fit with the data and good quality forecasting when compared against actual measurements. The mathematical approach applied provides an independent alternative to standard official monitoring and control means for air pollution in urban areas.

  2. Calorie intake and patient outcomes in severe acute kidney injury: findings from The Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy (RENAL) study trial

    PubMed Central

    2014-01-01

    Introduction Current practice in the delivery of caloric intake (DCI) in patients with severe acute kidney injury (AKI) receiving renal replacement therapy (RRT) is unknown. We aimed to describe calorie administration in patients enrolled in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy (RENAL) study and to assess the association between DCI and clinical outcomes. Methods We performed a secondary analysis in 1456 patients from the RENAL trial. We measured the dose and evolution of DCI during treatment and analyzed its association with major clinical outcomes using multivariable logistic regression, Cox proportional hazards models, and time adjusted models. Results Overall, mean DCI during treatment in ICU was low at only 10.9 ± 9 Kcal/kg/day for non-survivors and 11 ± 9 Kcal/kg/day for survivors. Among patients with a lower DCI (below the median) 334 of 729 (45.8%) had died at 90-days after randomization compared with 316 of 727 (43.3%) patients with a higher DCI (above the median) (P = 0.34). On multivariable logistic regression analysis, mean DCI carried an odds ratio of 0.95 (95% confidence interval (CI): 0.91-1.00; P = 0.06) per 100 Kcal increase for 90-day mortality. DCI was not associated with significant differences in renal replacement (RRT) free days, mechanical ventilation free days, ICU free days and hospital free days. These findings remained essentially unaltered after time adjusted analysis and Cox proportional hazards modeling. Conclusions In the RENAL study, mean DCI was low. Within the limits of such low caloric intake, greater DCI was not associated with improved clinical outcomes. Trial registration ClinicalTrials.gov number, NCT00221013 PMID:24629036

  3. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of connectivity analyses for resting state EEG data

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo

    2017-06-01

    Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.

  5. Power of Models in Longitudinal Study: Findings from a Full-Crossed Simulation Design

    ERIC Educational Resources Information Center

    Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S.

    2009-01-01

    Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…

  6. Model transformations for state-space self-tuning control of multivariable stochastic systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.

    1988-01-01

    The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.

  7. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    EPA Science Inventory

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  8. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  9. Drunk driving detection based on classification of multivariate time series.

    PubMed

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  10. The choice of prior distribution for a covariance matrix in multivariate meta-analysis: a simulation study.

    PubMed

    Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L

    2015-12-30

    Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

    PubMed Central

    Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan

    2015-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  12. Moving beyond Univariate Post-Hoc Testing in Exercise Science: A Primer on Descriptive Discriminate Analysis

    ERIC Educational Resources Information Center

    Barton, Mitch; Yeatts, Paul E.; Henson, Robin K.; Martin, Scott B.

    2016-01-01

    There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent…

  13. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  14. Nest-site selection analysis of hooded crane (Grus monacha) in Northeastern China based on a multivariate ensemble model.

    PubMed

    Jiao, Shengwu; Guo, Yumin; Huettmann, Falk; Lei, Guangchun

    2014-07-01

    Avian nest-site selection is an important research and management subject. The hooded crane (Grus monacha) is a vulnerable (VU) species according to the IUCN Red List. Here, we present the first long-term Chinese legacy nest data for this species (1993-2010) with publicly available metadata. Further, we provide the first study that reports findings on multivariate nest habitat preference using such long-term field data for this species. Our work was carried out in Northeastern China, where we found and measured 24 nests and 81 randomly selected control plots and their environmental parameters in a vast landscape. We used machine learning (stochastic boosted regression trees) to quantify nest selection. Our analysis further included varclust (R Hmisc) and (TreenNet) to address statistical correlations and two-way interactions. We found that from an initial list of 14 measured field variables, water area (+), water depth (+) and shrub coverage (-) were the main explanatory variables that contributed to hooded crane nest-site selection. Agricultural sites played a smaller role in the selection of these nests. Our results are important for the conservation management of cranes all over East Asia and constitute a defensible and quantitative basis for predictive models.

  15. Difference in Postsurgical Prognostic Factors between Lung Adenocarcinoma and Squamous Cell Carcinoma

    PubMed Central

    Sakai, Hiroki; Kimura, Hiroyuki; Miyazawa, Tomoyuki; Marushima, Hideki; Saji, Hisashi

    2017-01-01

    Purpose: The aim of this study was to compare the clinicopathologic prognostic factors between patients who underwent lung resection for adenocarcinoma (AD) and those with squamous cell carcinoma (SQ). Methods: A database of patients with lung AD or SQ who underwent surgery with curative intent in our department from January 2008 to December 2014 was reviewed. Associations between various clinicopathologic factors, postsurgical recurrence-free survival (RFS), and overall survival (OS) were analyzed to find significant prognostic factors. Results: A total of 537 lung cancer patients (AD, 434; SQ, 103) were included in this study. Although RFS was similar in patients with AD and SQ, OS was significantly poorer in those with SQ. Multivariate analysis in patients with AD revealed that age (≥69 vs. <69), lymphatic invasion, and histologic pleural invasion (p0 vs. p1–3) were associated with RFS, while gender and pleural invasion were associated with OS. In SQ, however, smoking, clinical stage, and pulmonary metastasis were associated with RFS in the multivariate analysis. Conclusion: Since significant postoperative prognostic factors are quite different between lung AD and SQ, these two histologic types should be differently analyzed in a clinical study. PMID:28966230

  16. Cross-sectional study of anal intraepithelial lesions in women with cervical neoplasia without HIV.

    PubMed

    Heráclio, Sandra A; de Souza, Alex S R; de Souza, Paulo R E; Katz, Leila; Lima Junior, Sergio F; Amorim, Melania M R

    2018-02-01

    To evaluate the prevalence of anal intraepithelial lesions and associated risk factors in women with cervical neoplasia. The present cross-sectional study enrolled patients with intraepithelial or invasive cervical neoplasia who had been referred to the lower genital tract pathology outpatient department of the Instituto de Medicina Integral Prof. Fernando Figueira, Recife, Brazil, between December 1, 2008, and December 31, 2009; patients with HIV infections were excluded. All participants underwent anal cytology and high-resolution anoscopy; sociodemographic and clinical risk factors were identified using multivariate analysis. There were 324 patients included and 37 (11.4%) had anal intraepithelial neoplasia. Factors associated with anal intraepithelial neoplasia in the multivariate analysis were being older than 35 years of age (P=0.002), having completed no more than 4 years of education (P=0.012), anomalous anal cytology (P=0.003), and anomalous high-resolution anoscopy findings (P<0.001); subclinical HPV lesions on vulvoscopy (P=0.057) were not associated with anal intraepithelial neoplasia. The prevalence of anal intraepithelial neoplasia was high among patients with cervical neoplasia who did not have HIV, particularly patients older than 35 years. © 2017 International Federation of Gynecology and Obstetrics.

  17. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.

    PubMed

    Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin

    2015-04-01

    Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  18. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  19. Combine bivariate statistics analysis and multivariate statistics analysis to assess landslide susceptibility in Chen-Yu-Lan watershed, Nantou, Taiwan.

    NASA Astrophysics Data System (ADS)

    Ngan Nguyen, Thi To; Liu, Cheng-Chien

    2013-04-01

    How landslides occurred and which factors triggered and sped up landslide occurrences were usually asked by researchers in the past decades. Many investigations carried out in many places in the world to finding out methods that predict and prevent damages from landslides phenomena. Chen-Yu-Lan River watershed is reputed as a 'hot pot' of landslide researches in Taiwan by its complicated geological structures with the significant tectonic fault systems and steeply mountainous terrain. Beside annual high precipitation concentration and the abrupt slopes, some natural disaster, as typhoons (Sinlaku-2008, Kalmaegi-2008, and Marakot-2009) and earthquake (Chi-Chi earthquake-1999) are also the triggered factors cause landslides with serious damages in this place. This research expresses the quantitative approaches to generate landslide susceptible map for Chen-Yu-Lan watershed, a mountainous area in the central Taiwan. Landslide inventories data, which were detected from the Formosat-2 imageries for eight years from 2004 to 2011, were applied to carry out landslide susceptibility mapping. Bivariate statistics analysis and multivariate statistics analysis would be applied to calculate susceptible index of landslides. The weights of parameters were computed based on landslide data for eight years from 2004 to 2011. To validate effective levels of factors to landslide occurrences, this method built some multivariate algorithms and compared these results with real landslide occurrences. Besides this method, the historical data of landslides were also used to assess and classify landslide susceptibility levels. From long-term landslide data, relation between landslide susceptibility levels and landslide repetition was assigned. The results demonstrated differently effective levels of potential factors, such as, slope gradient, drainage density, lithology and land use to landslide phenomena. The results also showed logical relationship between weights and characteristics of factors' classes. Depending on these results be able to help planning managers localize the high risk areas of landslide or safely areas by building and human activities.

  20. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  1. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  2. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure.

    PubMed

    D'Amico, E J; Neilands, T B; Zambarano, R

    2001-11-01

    Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.

  3. Prospective analysis of body mass index, physical activity and colorectal cancer risk associated with β-catenin (CTNNB1) status

    PubMed Central

    Morikawa, Teppei; Kuchiba, Aya; Lochhead, Paul; Nishihara, Reiko; Yamauchi, Mai; Imamura, Yu; Liao, Xiaoyun; Qian, Zhi Rong; Ng, Kimmie; Chan, Andrew T.; Meyerhardt, Jeffrey A.; Giovannucci, Edward; Fuchs, Charles S.; Ogino, Shuji

    2013-01-01

    Dysregulation of the WNT/β-catenin (CTNNB1) signaling pathway is implicated in colorectal carcinoma and metabolic diseases. Considering these roles and cancer prevention, we hypothesized that tumor CTNNB1 status might influence cellular sensitivity to obesity and physical activity. In clinical follow-up of 109,046 women in the Nurses' Health Study and 47,684 men in the Health Professionals Follow-up Study, there were 861 incident rectal and colon cancers with tissue immunohistochemistry data on nuclear CTNNB1 expression. Using this molecular pathological epidemiology database, we performed Cox proportional hazards regression analysis using data duplication method to assess differential associations of body mass index (BMI) or exercise activity with colorectal cancer risk according to tumor CTNNB1 status. Greater BMI was associated with a significantly higher risk of CTNNB1-negative cancer [multivariate hazard ratio (HR) =1.34; 95% confidence interval (CI), 1.18–1.53 for 5.0 kg/m2 increment; Ptrend=0.0001], but not with CTNNB1-positive cancer risk (multivariate HR =1.07; 95% CI, 0.92–1.25 for 5.0 kg/m2 increment; Ptrend=0.36; Pheterogeneity=0.027, between CTNNB1-negative and CTNNB1-positive cancer risks). Physical activity level was associated with a lower risk of CTNNB1-negative cancer (multivariate HR =0.93; 95% CI, 0.87–1.00 for 10 MET-hours/week increment; Ptrend=0.044), but not with CTNNB1-positive cancer risk (multivariate HR =0.98; 95% CI, 0.91–1.05 for 10 MET-hours/week increment; Ptrend=0.60). Our findings argue that obesity and physical inactivity are associated with a higher risk of CTNNB1-negative colorectal cancer, but not with CTNNB1-positive cancer risk. Further, they suggest that energy balance and metabolism status exerts its effect in a specific carcinogenesis pathway that is less likely dependent on WNT/CTNNB1 activation. PMID:23442321

  4. Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection.

    PubMed

    Basques, Bryce A; Golinvaux, Nicholas S; Bohl, Daniel D; Yacob, Alem; Toy, Jason O; Varthi, Arya G; Grauer, Jonathan N

    2014-10-15

    Retrospective database review. To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. The American College of Surgeons National Surgical Quality Improvement Program database, which includes data from more than 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without the use of an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. A total of 23,670 elective spine procedures were identified, of which 2226 (9.4%) used an operating microscope. The average patient age was 55.1±14.4 years. The average operative time (incision to closure) was 125.7±82.0 minutes.Microscope use was associated with minor increases in preoperative room time (+2.9 min, P=0.013), operative time (+13.2 min, P<0.001), and total room time (+18.6 min, P<0.001) on multivariate analysis.A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and nonmicroscope groups for occurrence of any infection, superficial surgical site infection, deep surgical site infection, organ space infection, or sepsis/septic shock, regardless of surgery type. We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. 3.

  5. Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection

    PubMed Central

    Basques, Bryce A.; Golinvaux, Nicholas S.; Bohl, Daniel D.; Yacob, Alem; Toy, Jason O.; Varthi, Arya G.; Grauer, Jonathan N.

    2014-01-01

    Study Design Retrospective database review. Objective To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Summary of Background Data Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. Methods The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database, which includes data from over 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. Results A total of 23,670 elective spine procedures were identified, of which 2,226 (9.4%) used an operating microscope. The average patient age was 55.1 ± 14.4 years. The average operative time (incision to closure) was 125.7 ± 82.0 minutes. Microscope use was associated with minor increases in preoperative room time (+2.9 minutes, p=0.013), operative time (+13.2 minutes, p<0.001), and total room time (+18.6 minutes, p<0.001) on multivariate analysis. A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and non-microscope groups for occurrence of any infection, superficial surgical site infection (SSI), deep SSI, organ space infection, or sepsis/septic shock, regardless of surgery type. Conclusions We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. PMID:25188600

  6. Outlier Detection in Hyperspectral Imagery Using Closest Distance to Center with Ellipsoidal Multivariate Trimming

    DTIC Science & Technology

    2011-01-01

    where r << P. The use of PCA for finding outliers in multivariate data is surveyed by Gnanadesikan and Kettenring16 and Rao.17 As alluded to earlier...1984. 16. Gnanadesikan R and Kettenring JR. Robust estimates, residu­ als, and outlier detection with multiresponse data. Biometrics 1972; 28: 81–124

  7. Multi-Sample Cluster Analysis Using Akaike’s Information Criterion.

    DTIC Science & Technology

    1982-12-20

    of Likelihood Criteria for I)fferent Hypotheses," in P. A. Krishnaiah (Ed.), Multivariate Analysis-Il, New York: Academic Press. [5] Fisher, R. A...Methods of Simultaneous Inference in MANOVA," in P. R. Krishnaiah (Ed.), rultivariate Analysis-Il, New York: Academic Press. [8) Kendall, M. G. (1966...1982), Applied Multivariate Statisti- cal-Analysis, Englewood Cliffs: Prentice-Mall, Inc. [1U] Krishnaiah , P. R. (1969), "Simultaneous Test

  8. SUGGESTIONS FOR OPTIMIZED PLANNING OF MULTIVARIATE MONITORING OF ATMOSPHERIC POLLUTION

    EPA Science Inventory

    Recent work in factor analysis of multivariate data sets has shown that variables with little signal should not be included in the factor analysis. Work also shows that rotational ambiguity is reduced if sources impacting a receptor have both large and small contributions. Thes...

  9. Multivariate Meta-Analysis Using Individual Participant Data

    ERIC Educational Resources Information Center

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2015-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…

  10. A bispectral q-hypergeometric basis for a class of quantum integrable models

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Martin, Xavier

    2018-01-01

    For the class of quantum integrable models generated from the q-Onsager algebra, a basis of bispectral multivariable q-orthogonal polynomials is exhibited. In the first part, it is shown that the multivariable Askey-Wilson polynomials with N variables and N + 3 parameters introduced by Gasper and Rahman [Dev. Math. 13, 209 (2005)] generate a family of infinite dimensional modules for the q-Onsager algebra, whose fundamental generators are realized in terms of the multivariable q-difference and difference operators proposed by Iliev [Trans. Am. Math. Soc. 363, 1577 (2011)]. Raising and lowering operators extending those of Sahi [SIGMA 3, 002 (2007)] are also constructed. In the second part, finite dimensional modules are constructed and studied for a certain class of parameters and if the N variables belong to a discrete support. In this case, the bispectral property finds a natural interpretation within the framework of tridiagonal pairs. In the third part, eigenfunctions of the q-Dolan-Grady hierarchy are considered in the polynomial basis. In particular, invariant subspaces are identified for certain conditions generalizing Nepomechie's relations. In the fourth part, the analysis is extended to the special case q = 1. This framework provides a q-hypergeometric formulation of quantum integrable models such as the open XXZ spin chain with generic integrable boundary conditions (q ≠ 1).

  11. Intake of Fiber and Nuts during Adolescence and Incidence of Proliferative Benign Breast Disease

    PubMed Central

    Su, Xuefen; Tamimi, Rulla M.; Collins, Laura C.; Baer, Heather J.; Cho, Eunyoung; Sampson, Laura; Willett, Walter C.; Schnitt, Stuart J.; Connolly, James L.; Rosner, Bernard A.; Colditz, Graham A.

    2011-01-01

    Objective We examined the association between adolescent fiber intake and proliferative BBD, a marker of increased breast cancer risk, in the Nurses’ Health Study II. Methods Among 29,480 women who completed a high school diet questionnaire in 1998, 682 proliferative BBD cases were identified and confirmed by centralized pathology review between 1991 and 2001. Multivariate-adjusted Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results Women in the highest quintile of adolescent fiber intake had a 25% lower risk of proliferative BBD (multivariate HR (95% CI): 0.75 (0.59, 0.96), p-trend = 0.01) than women in the lowest quintile. High school intake of nuts and apples was also related to significantly reduced BBD risk. Women consuming ≥2 servings of nuts/week had a 36% lower risk (multivariate HR (95% CI): 0.64 (0.48, 0.85), p-trend < 0.01) than women consuming <1 serving/month. Results were essentially the same when the analysis was restricted to prospective cases (n = 142) diagnosed after return of the high school diet questionnaire. Conclusions These findings support the hypothesis that dietary intake of fiber and nuts during adolescence influence subsequent risk of breast disease and may suggest a viable means for breast cancer prevention. PMID:20229245

  12. Multivariate Profiles of Selected versus Non-Selected Elite Youth Brazilian Soccer Players

    PubMed Central

    Alves, Isabella S.; Padilha, Maickel B.; Casanova, Filipe; Puggina, Enrico F.; Maia, José

    2017-01-01

    Abstract This study determined whether a multivariate profile more effectively discriminated selected than non-selected elite youth Brazilian soccer players. This examination was carried out on 66 youth soccer players (selected, n = 28, mean age 16.3 ± 0.1; non-selected, n = 38, mean age 16.7 ± 0.4) using objective instruments. Multivariate profiles were assessed through anthropometric characteristics, biological maturation, tactical-technical skills, and motor performance. The Student’s t-test identified that selected players exhibited significantly higher values for height (t = 2.331, p = 0.02), lean body mass (t = 2.441, p = 0.01), and maturity offset (t = 4.559, p < 0.001), as well as performed better in declarative tactical knowledge (t = 10.484, p < 0.001), shooting (t = 2.188, p = 0.03), dribbling (t = 5.914, p < 0.001), speed – 30 m (t = 8.304, p < 0.001), countermovement jump (t = 2.718, p = 0.008), and peak power tests (t = 2.454, p = 0.01). Forward stepwise discriminant function analysis showed that declarative tactical knowledge, running speed –30 m, maturity offset, dribbling, height, and peak power correctly classified 97% of the selected players. These findings may have implications for a highly efficient selection process with objective measures of youth players in soccer clubs. PMID:29339991

  13. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    PubMed Central

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  14. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    PubMed

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    PubMed Central

    Saqib, Hafiz Sohaib Ahmed; You, Minsheng

    2017-01-01

    Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies. PMID:29085741

  16. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  17. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  18. Determinants of Paramedic Response Readiness for CBRNE Threats

    PubMed Central

    Jones, Alison; Smith, George; Nelson, Jenny; Agho, Kingsley; Taylor, Melanie; Raphael, Beverley

    2010-01-01

    Paramedics play a pivotal role in the response to major emergencies. Recent evidence indicates that their confidence and willingness to respond to chemical, biological, radiological, nuclear, and explosives-related (CBRNE) incidents differs from that relating to their “routine” emergency work. To further investigate the factors underpinning their readiness to respond to CBRNE incidents, paramedics in New South Wales (NSW), Australia, were asked to complete a validated online survey instrument. Univariate and multivariate analyses were performed to examine associated factors determining readiness. The sample of 663 respondents was weighted to reflect the NSW paramedic population as a whole. The univariate analysis indicated that gender, length of service, deployment concern, perceived personal resilience, CBRNE training, and incident experience were significantly associated with perceived CBRNE response readiness. In the initial multivariate analysis, significantly higher response readiness was associated with male gender, university education, and greater length of service (10-15 years). In the final multivariate model, the combined effect of training/incident experience negated the significant effects observed in the initial model and, importantly, showed that those with recent training reported higher readiness, irrespective of incident experience. Those with lower concern regarding CBRNE deployment and those with higher personal resilience were significantly more likely to report higher readiness (Adjusted Relative Risk [ARR] = 0.91, 95% CI: 0.84-0.99; ARR = 1.40, 95% CI: 1.11-1.72, respectively). These findings will assist emergency medical planners in recognizing occupational and dispositional factors associated with enhanced CBRNE readiness and highlight the important role of training in redressing potential readiness differences associated with these factors. PMID:20569060

  19. Are classic predictors of voltage valid in cardiac amyloidosis? A contemporary analysis of electrocardiographic findings.

    PubMed

    Sperry, Brett W; Vranian, Michael N; Hachamovitch, Rory; Joshi, Hariom; McCarthy, Meghann; Ikram, Asad; Hanna, Mazen

    2016-07-01

    Low voltage electrocardiography (ECG) coupled with increased ventricular wall thickness is the hallmark of cardiac amyloidosis. However, patient characteristics influencing voltage in the general population, including bundle branch block, have not been evaluated in amyloid heart disease. A retrospective analysis was performed of patients with newly diagnosed cardiac amyloidosis from 2002 to 2014. ECG voltage was calculated using limb (sum of QRS complex in leads I, II and III) and precordial (Sokolow: S in V1 plus R in V5-V6) criteria. The associations between voltage and clinical variables were tested using multivariable linear regression. A Cox model assessed the association of voltage with mortality. In 389 subjects (transthyretin ATTR 186, light chain AL 203), 30% had conduction delay (QRS >120ms). In those with narrow QRS, 68% met low limb, 72% low Sokolow and 57% both criteria, with lower voltages found in AL vs ATTR. LV mass index as well as other typical factors that impact voltage (age, sex, race, hypertension, BSA, and smoking) in the general population were not associated with voltage in this cardiac amyloidosis cohort. Patients with LBBB and IVCD had similar voltages when compared to those with narrow QRS. Voltage was significantly associated with mortality (p<0.001 for both criteria) after multivariable adjustment. Classic predictors of ECG voltage in the general population are not valid in cardiac amyloidosis. In this cohort, the prevalence estimates of ventricular conduction delay and low voltage are higher than previously reported. Voltage predicts mortality after multivariable adjustment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. A neuromorphic network for generic multivariate data classification

    PubMed Central

    Schmuker, Michael; Pfeil, Thomas; Nawrot, Martin Paul

    2014-01-01

    Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using “virtual receptors” (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems. PMID:24469794

  1. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  2. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review.

    PubMed

    Maione, Camila; Barbosa, Rommel Melgaço

    2018-01-24

    Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.

  3. Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): a Data-Driven Approach across Metabolic Processes.

    PubMed

    Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun

    2015-11-04

    There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.

  4. Nutritional Intervention: A Secondary Analysis of Its Effect on Malnourished Colombian Pre-Schoolers.

    ERIC Educational Resources Information Center

    Bejar, Isaac I.

    1981-01-01

    Effects of nutritional supplementation on physical development of malnourished children was analyzed by univariate and multivariate methods for the analysis of repeated measures. Results showed that the nutritional treatment was successful, but it was necessary to resort to the multivariate approach. (Author/GK)

  5. A Multivariate Descriptive Model of Motivation for Orthodontic Treatment.

    ERIC Educational Resources Information Center

    Hackett, Paul M. W.; And Others

    1993-01-01

    Motivation for receiving orthodontic treatment was studied among 109 young adults, and a multivariate model of the process is proposed. The combination of smallest scale analysis and Partial Order Scalogram Analysis by base Coordinates (POSAC) illustrates an interesting methodology for health treatment studies and explores motivation for dental…

  6. Exploring Pattern of Socialisation Conditions and Human Development by Nonlinear Multivariate Analysis.

    ERIC Educational Resources Information Center

    Grundmann, Matthias

    Following the assumptions of ecological socialization research, adequate analysis of socialization conditions must take into account the multilevel and multivariate structure of social factors that impact on human development. This statement implies that complex models of family configurations or of socialization factors are needed to explain the…

  7. Univariate Analysis of Multivariate Outcomes in Educational Psychology.

    ERIC Educational Resources Information Center

    Hubble, L. M.

    1984-01-01

    The author examined the prevalence of multiple operational definitions of outcome constructs and an estimate of the incidence of Type I error rates when univariate procedures were applied to multiple variables in educational psychology. Multiple operational definitions of constructs were advocated and wider use of multivariate analysis was…

  8. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  9. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  10. MULTIVARIATE ANALYSIS ON LEVELS OF SELECTED METALS, PARTICULATE MATTER, VOC, AND HOUSEHOLD CHARACTERISTICS AND ACTIVITIES FROM THE MIDWESTERN STATES NHEXAS

    EPA Science Inventory

    Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...

  11. Information transfer and information modification to identify the structure of cardiovascular and cardiorespiratory networks.

    PubMed

    Faes, Luca; Nollo, Giandomenico; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Javorka, Michal

    2017-07-01

    To fully elucidate the complex physiological mechanisms underlying the short-term autonomic regulation of heart period (H), systolic and diastolic arterial pressure (S, D) and respiratory (R) variability, the joint dynamics of these variables need to be explored using multivariate time series analysis. This study proposes the utilization of information-theoretic measures to measure causal interactions between nodes of the cardiovascular/cardiorespiratory network and to assess the nature (synergistic or redundant) of these directed interactions. Indexes of information transfer and information modification are extracted from the H, S, D and R series measured from healthy subjects in a resting state and during postural stress. Computations are performed in the framework of multivariate linear regression, using bootstrap techniques to assess on a single-subject basis the statistical significance of each measure and of its transitions across conditions. We find patterns of information transfer and modification which are related to specific cardiovascular and cardiorespiratory mechanisms in resting conditions and to their modification induced by the orthostatic stress.

  12. Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation.

    PubMed

    Kandelbauer, A; Kessler, W; Kessler, R W

    2008-03-01

    The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.

  13. Awareness and Acceptability of Pre-exposure HIV Prophylaxis Among Men Who have Sex with Men in Baltimore.

    PubMed

    Fallon, Susan A; Park, Ju Nyeong; Ogbue, Christine Powell; Flynn, Colin; German, Danielle

    2017-05-01

    This paper assessed characteristics associated with awareness of and willingness to take pre-exposure prophylaxis (PrEP) among Baltimore men who have sex with men (MSM). We used data from BESURE-MSM3, a venue-based cross-sectional HIV surveillance study conducted among MSM in 2011. Multivariate regression was used to identify characteristics associated with PrEP knowledge and acceptability among 399 participants. Eleven percent had heard of PrEP, 48% would be willing to use PrEP, and none had previously used it. In multivariable analysis, black race and perceived discrimination against those with HIV were significantly associated with decreased awareness, and those who perceived higher HIV discrimination reported higher acceptability of PrEP. Our findings indicate a need for further education about the potential utility of PrEP in addition to other prevention methods among MSM. HIV prevention efforts should address the link between discrimination and potential PrEP use, especially among men of color.

  14. Effect of abdominopelvic abscess drain size on drainage time and probability of occlusion

    PubMed Central

    Rotman, Jessica A.; Getrajdman, George I.; Maybody, Majid; Erinjeri, Joseph P.; Yarmohammadi, Hooman; Sofocleous, Constantinos T.; Solomon, Stephen B.; Boas, F. Edward

    2016-01-01

    Background The purpose of this study is to determine whether larger abdominopelvic abscess drains reduce the time required for abscess resolution, or the probability of tube occlusion. Methods 144 consecutive patients who underwent abscess drainage at a single institution were reviewed retrospectively. Results: Larger initial drain size did not reduce drainage time, drain occlusion, or drain exchanges (p>0.05). Subgroup analysis did not find any type of collection that benefitted from larger drains. A multivariate model predicting drainage time showed that large collections (>200 ml) required 16 days longer drainage time than small collections (<50 ml). Collections with a fistula to bowel required 17 days longer drainage time than collections without a fistula. Initial drain size and the viscosity of the fluid in the collection had no significant effect on drainage time in the multivariate model. Conclusions 8 F drains are adequate for initial drainage of most serous and serosanguineous collections. 10 F drains are adequate for initial drainage of most purulent or bloody collections. PMID:27634422

  15. Healthy Living Behaviors Among Chinese-American Preschool-Aged Children: Results of a Parent Survey.

    PubMed

    Chomitz, Virginia Rall; Brown, Alison; Lee, Victoria; Must, Aviva; Chui, Kenneth Kwan Ho

    2017-07-17

    Associations between diet, physical activity, parenting, and acculturation among Chinese-American children are understudied. Parents/caregivers of children attending child-care programs in Boston Chinatown completed a self-administered survey on demographics, child's diet, physical activities, anthropometrics, and parenting practices. Associations were evaluated in multivariable regression analysis, stratified by survey language preference, a proxy for acculturation. Responding Asian families = 132; 86.4% were immigrants; 75.8% completed the Chinese-version survey. Children (mean ± SD: 4.9 ± 1.1 years) did not eat vegetables (31.8%), or play actively outside (45.4%) daily, 64.8% watched television/screens daily; 32.6% were overweight/obese (based on parent report). Parenting practices associated with obesity were apparent. Although healthy-living behavioral outcomes were less prevalent among less acculturated parents; multivariable adjustment attenuated the observed significant differences. Findings suggest opportunities for improvement in study children's diet and healthy-living behaviors, and underscore the need for further research on acculturation, and parenting styles in this population.

  16. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis

    PubMed Central

    White, Jon; Sofat, Reecha; Hemani, Gibran; Shah, Tina; Engmann, Jorgen; Dale, Caroline; Shah, Sonia; Kruger, Felix A; Giambartolomei, Claudia; Swerdlow, Daniel I; Palmer, Tom; McLachlan, Stela; Langenberg, Claudia; Zabaneh, Delilah; Lovering, Ruth; Cavadino, Alana; Jefferis, Barbara; Finan, Chris; Wong, Andrew; Amuzu, Antoinette; Ong, Ken; Gaunt, Tom R; Warren, Helen; Davies, Teri-Louise; Drenos, Fotios; Cooper, Jackie; Ebrahim, Shah; Lawlor, Debbie A; Talmud, Philippa J; Humphries, Steve E; Power, Christine; Hypponen, Elina; Richards, Marcus; Hardy, Rebecca; Kuh, Diana; Wareham, Nicholas; Ben-Shlomo, Yoav; Day, Ian N; Whincup, Peter; Morris, Richard; Strachan, Mark W J; Price, Jacqueline; Kumari, Meena; Kivimaki, Mika; Plagnol, Vincent; Whittaker, John C; Smith, George Davey; Dudbridge, Frank; Casas, Juan P; Holmes, Michael V; Hingorani, Aroon D

    2016-01-01

    Summary Background Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. Methods We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. Findings In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04–1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08–1·29), 1·10 (1·00–1·22), and 1·05 (0·92–1·20), respectively, per 1 SD increment in plasma urate. Interpretation Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions. Funding UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council. PMID:26781229

  17. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  18. CT-assessed large airway involvement and lung function decline in eosinophilic asthma: The association between induced sputum eosinophil differential counts and airway remodeling.

    PubMed

    Inoue, Hideki; Ito, Isao; Niimi, Akio; Matsumoto, Hisako; Matsuoka, Hirofumi; Jinnai, Makiko; Takeda, Tomoshi; Oguma, Tsuyoshi; Otsuka, Kojiro; Nakaji, Hitoshi; Tajiri, Tomoko; Iwata, Toshiyuki; Nagasaki, Tadao; Kanemitsu, Yoshihiro; Mishima, Michiaki

    2016-11-01

    Eosinophilic asthma (EA) is a distinct clinical phenotype characterized by eosinophilic airway inflammation and airway remodeling. Few studies have used computed tomography (CT) scanning to assess the association between sputum eosinophil differential counts and airway involvement. We aimed to investigate the clinical characteristics and airway involvement of EA, and to examine the correlation between induced sputum eosinophil differential counts and CT-assessed airway remodeling. We retrospectively divided 63 patients with stable asthma receiving inhaled corticosteroids into 2 groups: 26 patients with EA (sputum eosinophil >3%) and 37 patients with non-eosinophilic asthma (NEA). Clinical measurements such as spirometry, fractional exhaled nitric oxide levels (FeNO), and CT-assessed indices of airway involvement were compared between the groups. Multivariate analysis was performed to identify determinants of the percentage of wall area (WA%). The EA group had significantly longer asthma duration, lower pulmonary function, and higher FeNO than the NEA group. Also, the EA group had higher WA% and smaller airway luminal area than the NEA group. Sputum eosinophil differential counts and WA% were positively correlated. The multivariate linear regression analysis showed that the factors associated with WA% included sputum eosinophil differential counts, age, and body mass index. However, asthma duration was not associated with WA%. Our CT-assessed findings demonstrated large airway involvement in EA, and we observed a positive association between induced sputum eosinophil differential counts and WA%. The findings indicate that induced sputum eosinophil differential counts may be associated with airway remodeling in patients with stable asthma.

  19. Determination of sex from radiographic measurements of the humerus by discriminant function analysis in Saudi population, Qassim region, KSA.

    PubMed

    Shehri, Fahad Al; Soliman, Khaled E A

    2015-08-01

    Diagnosis of sex from skeleton or individual bone plays an important role in identifying unknown bodies, parts of bodies or skeletal remains for forensic purposes. This study aims to examine the applicability of the measurements taken from the humerus to assess sex, and to contribute to establishing discriminant function equations for Saudi populations for medico legal applications. Archived X-ray radiographs of humerus for 387 patients (216 males & 171 females) who attended the orthopedic clinics at Suleiman Al-Habib Hospital, Qassim region, KSA in the period from January 2011 to December 2013 were reviewed and analyzed. Five dimensions, including maximum length, vertical head diameter, diameter of head+greater tubercle, right-left diameter at midshaft, and epicondylar breadth were taken and subjected to Univariate and multivariate discriminant function analysis. The studied radiographic dimensions of the humerus indicate that there are significant differences (p<0.05) between the males and females measurements while the difference between right and left measurements was not significant. The findings revealed that the proximal part of the humerus has greater diagnostic accuracy than distal and middle parts. Accuracy of correct classification varies between 68.0% (epicondylar breadth) and 90.4% (vertical head diameter) for univariate analyses. When the multivariate analyses were conducted, three functions were produced, with the accuracy of ranging between 88.4% and 94.3%. These findings suggested that the dimensions of the humerus, especially the measurements taken from the proximal parts, could be used successfully for sex diagnosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Seroprevalence of Hepatitis B Virus Infection and Its Risk Factors in the West of Iran: A Population-based Study

    PubMed Central

    Alavian, Seyed Moayed; Tabatabaei, Seyed Vahid; Ghadimi, Teyyeb; Beedrapour, Farzam; Kafi-abad, Sedigheh Amini; Gharehbaghian, Ahmad; Abolghasemi, Hassan

    2012-01-01

    Introduction: Hepatitis B virus (HBV) infection is a serious global public health problem affecting billions of people globally. The lack of information of its seroprevalence among the general population is an obstacle for formulating effective policies to reduce the burden viral hepatitis. Therefore, this population based serological survey was conducted in Kurdistan province, where no epidemiological data was available to determine the prevalence and risk factors of HBV infection. Methods: 1613 healthy subjects were selected from all districts of Kurdistan province (in the western of Iran) using random cluster sampling. The subjects’ age ranged from 6 to 65 years old. Serum samples were tested for HBcAb, HBsAg and anti-HDV antibody. Screening tests were carried out by the third generation of ELISA. Various risk factors were recorded and multivariate analysis was performed. Results: The prevalence of HBsAg and HBcAb in Kurdistan was before 0.80% (95% CI 0.44; 1.34) and 5.02% (95% CI 4.03; 6.17), respectively. None of HBsAg carriers had positive anti-HDV antibody. Predictors of HBsAg or HBcAb in multivariate analysis were: older age and marriage. We did not find any significant differences between males and females. Conclusion: Our population based study suggests that intrafamilial HBV transmission plays a major role in HBV transmission in Kurdistan province. Furthermore, approximately 5% of general population in this province has prior exposure to HBV and less than 1% is HBsAg carriers. However, we could not find any case of HDV infection among them. PMID:23189228

  1. Shifting chronic disease management from hospitals to primary care in Estonian health system: analysis of national panel data

    PubMed Central

    Atun, Rifat; Gurol–Urganci, Ipek; Hone, Thomas; Pell, Lisa; Stokes, Jonathan; Habicht, Triin; Lukka, Kaija; Raaper, Elin; Habicht, Jarno

    2016-01-01

    Background Following independence from the Soviet Union in 1991, Estonia introduced a national insurance system, consolidated the number of health care providers, and introduced family medicine centred primary health care (PHC) to strengthen the health system. Methods Using routinely collected health billing records for 2005–2012, we examine health system utilisation for seven ambulatory care sensitive conditions (ACSCs) (asthma, chronic obstructive pulmonary disease [COPD], depression, Type 2 diabetes, heart failure, hypertension, and ischemic heart disease [IHD]), and by patient characteristics (gender, age, and number of co–morbidities). The data set contained 552 822 individuals. We use patient level data to test the significance of trends, and employ multivariate regression analysis to evaluate the probability of inpatient admission while controlling for patient characteristics, health system supply–side variables, and PHC use. Findings Over the study period, utilisation of PHC increased, whilst inpatient admissions fell. Service mix in PHC changed with increases in phone, email, nurse, and follow–up (vs initial) consultations. Healthcare utilisation for diabetes, depression, IHD and hypertension shifted to PHC, whilst for COPD, heart failure and asthma utilisation in outpatient and inpatient settings increased. Multivariate regression indicates higher probability of inpatient admission for males, older patient and especially those with multimorbidity, but protective effect for PHC, with significantly lower hospital admission for those utilising PHC services. Interpretation Our findings suggest health system reforms in Estonia have influenced the shift of ACSCs from secondary to primary care, with PHC having a protective effect in reducing hospital admissions. PMID:27648258

  2. Association Between Obesity and Discordance in Fibrosis Stage Determination by Magnetic Resonance vs Transient Elastography in Patients With Nonalcoholic Liver Disease.

    PubMed

    Caussy, Cyrielle; Chen, Jun; Alquiraish, Mosab H; Cepin, Sandra; Nguyen, Phirum; Hernandez, Carolyn; Yin, Meng; Bettencourt, Ricki; Cachay, Edward R; Jayakumar, Saumya; Fortney, Lynda; Hooker, Jonathan; Sy, Ethan; Valasek, Mark A; Rizo, Emily; Richards, Lisa; Brenner, David A; Sirlin, Claude B; Ehman, Richard L; Loomba, Rohit

    2018-01-17

    Magnetic resonance elastography (MRE) and transient elastography (TE) are noninvasive techniques used to detect liver fibrosis in nonalcoholic fatty liver disease. MRE detects fibrosis more accurately than TE, but MRE is more expensive, and the concordance between MRE and TE have not been optimally assessed in obese patients. It is important to determine under which conditions TE and MRE produce the same readings, so that some patients can simply undergo TE evaluation to detect fibrosis. We aimed to assess the association between body mass index (BMI) and discordancy between MRE and TE findings, using liver biopsy as the reference, and validated our findings in a separate cohort. We performed a cross-sectional study of 119 adults with nonalcoholic fatty liver disease who underwent MRE, TE with M and XL probe, and liver biopsy analysis from October 2011 through January 2017 (training cohort). MRE and TE results were considered to be concordant if they found patients to have the same stage fibrosis as liver biopsy analysis. We validated our findings in 75 adults with nonalcoholic fatty liver disease who underwent contemporaneous MRE, TE, and liver biopsy at a separate institution from March 2010 through May 2013. The primary outcome was rate of discordance between MRE and TE in determining stage of fibrosis (stage 2-4 vs 0-1). Secondary outcomes were the rate of discordance between MRE and TE in determining dichotomized stage of fibrosis (1-4 vs 0, 3-4 vs 0-2, and 4 vs 0-3). In the training cohort, there was 43.7% discordance in findings from MRE versus TE. BMI associated significantly with discordance in findings from MRE versus TE (odds ratio, 1.69; 95% confidence interval, 1.15-2.51; P = .008) after multivariable adjustment by age and sex. The findings were confirmed in the validation cohort: there was 45.3% discordance in findings from MRE versus TE. BMI again associated significantly with discordance in findings from MRE versus TE (odds ratio, 1.52; 95% confidence interval, 1.04-2.21; P = .029) after multivariable adjustment by age and sex. We identified and validated BMI as a factor significantly associated with discordance of findings from MRE versus TE in assessment of fibrosis stage. The degree of discordancy increases with BMI. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Time Series Model Identification by Estimating Information.

    DTIC Science & Technology

    1982-11-01

    principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R

  5. Genomic Analysis of Complex Microbial Communities in Wounds

    DTIC Science & Technology

    2012-01-01

    thoroughly in the ecology literature. Permutation Multivariate Analysis of Variance ( PerMANOVA ). We used PerMANOVA to test the null-hypothesis of no...difference between the bacterial communities found within a single wound compared to those from different patients (α = 0.05). PerMANOVA is a...permutation-based version of the multivariate analysis of variance (MANOVA). PerMANOVA uses the distances between samples to partition variance and

  6. Risk factors of hepatitis B virus infection among blood donors in Duhok city, Kurdistan Region, Iraq.

    PubMed

    R Hussein, Nawfal

    2018-01-01

    Hepatitis B virus (HBV) infection is a public health problem. The lack of information about the seroprevalence and risk factors is an obstacle for preventive public health plans to reduce the burden of viral hepatitis. Therefore, this study was conducted in Iraq, where no studies had been performed to determine the prevalence and risk factors of HBV infection. Blood samples were collected form 438 blood donors attending blood bank in Duhok city. Serum samples were tested for HBV core-antibodies (HBcAb) and HBV surface-antigen (HBsAg) by ELISA. Various risk factors were recorded and multivariate analysis was performed. 5/438 (1.14%) of the subjects were HBsAg positive (HBsAg and HBcAb positive) and 36/438 (8.2%) were HBcAb positive. Hence, 41 cases were exposed to HBV and data analysis was based on that. Univariate analysis showed that there were significant associations between history of illegitimate sexual contact, history of alcohol or history of dental surgeries and HBV exposure (p<0.05 for all). Then, multivariate analysis was conducted to find HBV exposure predictive factors. It was found that history of dental surgery was a predictive factor for exposure to the virus (P=0.03, OR: 2.397). This study suggested that the history of dental surgery was predictive for HBV transmission in Duhok city. Further population-based study is needed to determine HBV risk factors in the society and public health plan based on that should be considered.

  7. Cross-sectional survey of workload and burnout among Japanese physicians working in stroke care: the nationwide survey of acute stroke care capacity for proper designation of comprehensive stroke center in Japan (J-ASPECT) study.

    PubMed

    Nishimura, Kunihiro; Nakamura, Fumiaki; Takegami, Misa; Fukuhara, Schunichi; Nakagawara, Jyoji; Ogasawara, Kuniaki; Ono, Junichi; Shiokawa, Yoshiaki; Miyachi, Shigeru; Nagata, Izumi; Toyoda, Kazunori; Matsuda, Shinya; Kataoka, Hiroharu; Miyamoto, Yoshihiro; Kitaoka, Kazuyo; Kada, Akiko; Iihara, Koji

    2014-05-01

    Burnout is common among physicians and affects the quality of care. We aimed to determine the prevalence of burnout among Japanese physicians working in stroke care and evaluate personal and professional characteristics associated with burnout. A cross-sectional design was used to develop and distribute a survey to 11 211 physicians. Physician burnout was assessed using the Maslach Burnout Inventory General Survey. The predictors of burnout and the relationships among them were identified by multivariable logistic regression analysis. A total of 2724 (25.3%) physicians returned the surveys. After excluding those who were not working in stroke care or did not complete the survey appropriately, 2564 surveys were analyzed. Analysis of the participants' scores revealed that 41.1% were burned out. Multivariable analysis indicated that number of hours worked per week is positively associated with burnout. Hours slept per night, day-offs per week, years of experience, as well as income, are inversely associated with burnout. Short Form 36 mental health subscale was also inversely associated with burnout. The primary risk factors for burnout are heavy workload, short sleep duration, relatively little experience, and low mental quality of life. Prospective research is required to confirm these findings and develop programs for preventing burnout. © 2014 American Heart Association, Inc.

  8. Factors associated with abnormal eating attitudes among Greek adolescents.

    PubMed

    Bilali, Aggeliki; Galanis, Petros; Velonakis, Emmanuel; Katostaras, Theofanis

    2010-01-01

    To estimate the prevalence of abnormal eating attitudes among Greek adolescents and identify possible risk factors associated with these attitudes. Cross-sectional, school-based study. Six randomly selected schools in Patras, southern Greece. The study population consisted of 540 Greek students aged 13-18 years, and the response rate was 97%. The dependent variable was scores on the Eating Attitudes Test-26, with scores > or = 20 indicating abnormal eating attitudes. Bivariate analysis included independent Student t test, chi-square test, and Fisher's exact test. Multivariate logistic regression analysis was applied for the identification of the predictive factors, which were associated independently with abnormal eating attitudes. A 2-sided P value of less than .05 was considered statistically significant. The prevalence of abnormal eating attitudes was 16.7%. Multivariate logistic regression analysis demonstrated that females, urban residents, and those with a body mass index outside normal range, a perception of being overweight, body dissatisfaction, and a family member on a diet were independently related to abnormal eating attitudes. The results indicate that a proportion of Greek adolescents report abnormal eating attitudes and suggest that multiple factors contribute to the development of these attitudes. These findings are useful for further research into this topic and would be valuable in designing preventive interventions. Copyright 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  9. Ratio of mean platelet volume to platelet count is a potential surrogate marker predicting liver cirrhosis.

    PubMed

    Iida, Hiroya; Kaibori, Masaki; Matsui, Kosuke; Ishizaki, Morihiko; Kon, Masanori

    2018-01-27

    To provide a simple surrogate marker predictive of liver cirrhosis (LC). Specimens from 302 patients who underwent resection for hepatocellular carcinoma between January 2006 and December 2012 were retrospectively analyzed. Based on pathologic findings, patients were divided into groups based on whether or not they had LC. Parameters associated with hepatic functional reserve were compared in these two groups using Mann-Whitney U -test for univariate analysis. Factors differing significantly in univariate analyses were entered into multivariate logistic regression analysis. There were significant differences between the LC group ( n = 100) and non-LC group ( n = 202) in prothrombin activity, concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin, cholinesterase, type IV collagen, hyaluronic acid, indocyanine green retention rate at 15 min, maximal removal rate of technitium-99m diethylene triamine penta-acetic acid-galactosyl human serum albumin and ratio of mean platelet volume to platelet count (MPV/PLT). Multivariate analysis showed that prothrombin activity, concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin and hyaluronic acid, and MPV/PLT ratio were factors independently predictive of LC. The area under the curve value for MPV/PLT was 0.78, with a 0.8 cutoff value having a sensitivity of 65% and a specificity of 78%. The MPV/PLT ratio, which can be determined simply from the complete blood count, may be a simple surrogate marker predicting LC.

  10. In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis

    DOE PAGES

    Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan

    2007-11-10

    In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less

  11. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  12. Multivariate geomorphic analysis of forest streams: Implications for assessment of land use impacts on channel condition

    Treesearch

    Richard. D. Wood-Smith; John M. Buffington

    1996-01-01

    Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...

  13. Modeling Associations among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Tchumtchoua, Sylvie; Dey, Dipak K.

    2012-01-01

    This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…

  14. Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait

    PubMed Central

    Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.

    2003-01-01

    Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094

  15. The association between body mass index and severe biliary infections: a multivariate analysis.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2012-11-01

    Obesity has been associated with worse infectious disease outcomes. It is a risk factor for cholesterol gallstones, but little is known about associations between body mass index (BMI) and biliary infections. We studied this using factors associated with biliary infections. A total of 427 patients with gallstones were studied. Gallstones, bile, and blood (as applicable) were cultured. Illness severity was classified as follows: none (no infection or inflammation), systemic inflammatory response syndrome (fever, leukocytosis), severe (abscess, cholangitis, empyema), or multi-organ dysfunction syndrome (bacteremia, hypotension, organ failure). Associations between BMI and biliary bacteria, bacteremia, gallstone type, and illness severity were examined using bivariate and multivariate analysis. BMI inversely correlated with pigment stones, biliary bacteria, bacteremia, and increased illness severity on bivariate and multivariate analysis. Obesity correlated with less severe biliary infections. BMI inversely correlated with pigment stones and biliary bacteria; multivariate analysis showed an independent correlation between lower BMI and illness severity. Most patients with severe biliary infections had a normal BMI, suggesting that obesity may be protective in biliary infections. This study examined the correlation between BMI and biliary infection severity. Published by Elsevier Inc.

  16. Multivariate meta-analysis using individual participant data.

    PubMed

    Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R

    2015-06-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

  17. Multivariate Analysis As a Support for Diagnostic Flowcharts in Allergic Bronchopulmonary Aspergillosis: A Proof-of-Concept Study.

    PubMed

    Vitte, Joana; Ranque, Stéphane; Carsin, Ania; Gomez, Carine; Romain, Thomas; Cassagne, Carole; Gouitaa, Marion; Baravalle-Einaudi, Mélisande; Bel, Nathalie Stremler-Le; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Gaudart, Jean

    2017-01-01

    Molecular-based allergy diagnosis yields multiple biomarker datasets. The classical diagnostic score for allergic bronchopulmonary aspergillosis (ABPA), a severe disease usually occurring in asthmatic patients and people with cystic fibrosis, comprises succinct immunological criteria formulated in 1977: total IgE, anti- Aspergillus fumigatus ( Af ) IgE, anti- Af "precipitins," and anti- Af IgG. Progress achieved over the last four decades led to multiple IgE and IgG(4) Af biomarkers available with quantitative, standardized, molecular-level reports. These newly available biomarkers have not been included in the current diagnostic criteria, either individually or in algorithms, despite persistent underdiagnosis of ABPA. Large numbers of individual biomarkers may hinder their use in clinical practice. Conversely, multivariate analysis using new tools may bring about a better chance of less diagnostic mistakes. We report here a proof-of-concept work consisting of a three-step multivariate analysis of Af IgE, IgG, and IgG4 biomarkers through a combination of principal component analysis, hierarchical ascendant classification, and classification and regression tree multivariate analysis. The resulting diagnostic algorithms might show the way for novel criteria and improved diagnostic efficiency in Af -sensitized patients at risk for ABPA.

  18. Multivariate analysis of longitudinal rates of change.

    PubMed

    Bryan, Matthew; Heagerty, Patrick J

    2016-12-10

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Comparison of pure laparoscopic versus open left hemihepatectomy by multivariate analysis: a retrospective cohort study.

    PubMed

    Cho, Hwui-Dong; Kim, Ki-Hun; Hwang, Shin; Ahn, Chul-Soo; Moon, Deok-Bog; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Gil-Chun; Lee, Sung-Gyu

    2018-02-01

    To compare the outcomes of pure laparoscopic left hemihepatectomy (LLH) versus open left hemihepatectomy (OLH) for benign and malignant conditions using multivariate analysis. All consecutive cases of LLH and OLH between October 2007 and December 2013 in a tertiary referral hospital were enrolled in this retrospective cohort study. All surgical procedures were performed by one surgeon. The LLH and OLH groups were compared in terms of patient demographics, preoperative data, clinical perioperative outcomes, and tumor characteristics in patients with malignancy. Multivariate analysis of the prognostic factors associated with severe complications was then performed. The LLH group (n = 62) had a significantly shorter postoperative hospital stay than the OLH group (n = 118) (9.53 ± 3.30 vs 14.88 ± 11.36 days, p < 0.001). Multivariate analysis revealed that the OLH group had >4 times the risk of the LLH group in terms of developing severe complications (Clavien-Dindo grade ≥III) (odds ratio 4.294, 95% confidence intervals 1.165-15.832, p = 0.029). LLH was a safe and feasible procedure for selected patients. LLH required shorter hospital stay and resulted in less operative blood loss. Multivariate analysis revealed that LLH was associated with a lower risk of severe complications compared to OLH. The authors suggest that LLH could be a reasonable treatment option for selected patients.

  20. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation.

    PubMed

    Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai

    2017-10-01

    Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.

  1. A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network

    DTIC Science & Technology

    1980-07-08

    to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for

  2. Is Heart Rate Variability Better Than Routine Vital Signs for Prehospital Identification of Major Hemorrhage

    DTIC Science & Technology

    2015-01-01

    different PRBC transfusion volumes. We performed multivariate regression analysis using HRV metrics and routine vital signs to test the hypothesis that...study sponsors did not have any role in the study design, data collection, analysis and interpretation of data, report writing, or the decision to...primary outcome was hemorrhagic injury plus different PRBC transfusion volumes. We performed multivariate regression analysis using HRV metrics and

  3. Multivariate optimum interpolation of surface pressure and winds over oceans

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.

    1984-01-01

    The observations of surface pressure are quite sparse over oceanic areas. An effort to improve the analysis of surface pressure over oceans through the development of a multivariate surface analysis scheme which makes use of surface pressure and wind data is discussed. Although the present research used ship winds, future versions of this analysis scheme could utilize winds from additional sources, such as satellite scatterometer data.

  4. Craniofacial morphometric analysis of mandibular prognathism.

    PubMed

    Chang, H P; Liu, P H; Yang, Y H; Lin, H C; Chang, C H

    2006-03-01

    The purpose of this study was to provide more information about the morphological characteristics of the craniofacial complex in mandibular prognathism. Forty young adult males having mandibular prognathism were compared with 40 having normal occlusion. This was conducted to carry out geometric morphometric assessments to localize alterations, using Procrustes analysis and thin-plate spline analysis, in addition to conventional cephalometric techniques. Procrustes analysis indicated that the mean craniofacial, midfacial and mandibular morphology was significantly different in prognathic subjects compared with normal controls. This finding was corroborated by the multivariate Hotelling T(2)-test of cephalometric variables. Mandibular prognathism demonstrated a shorter and slightly retropositioned maxilla, a greater total length and anterior positioning of the mandible. Thin-plate spline analysis revealed a developmental diminution of the palatomaxillary region anteroposteriorly and a developmental elongation of the mandible anteroposteriorly, leading to the appearance of a prognathic mandibular profile. In conclusion, thin-plate spline analysis seems to provide a valuable supplement for conventional cephalometric analysis because the complex patterns of craniofacial shape change are visualized suggestive by means of grid deformations.

  5. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  6. Application of multivariate statistical techniques for differentiation of ripe banana flour based on the composition of elements.

    PubMed

    Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat

    2009-01-01

    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.

  7. Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data

    PubMed Central

    Batal, Iyad; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos

    2015-01-01

    Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes. PMID:25937993

  8. Dimensions of Problem Drinking among Young Adult Restaurant Workers

    PubMed Central

    Moore, Roland S.; Cunradi, Carol B.; Duke, Michael R.; Ames, Genevieve M.

    2009-01-01

    Background Nationwide surveys identify food service workers as heavy alcohol users. Objectives This article analyzes dimensions and correlates of problem drinking among young adult food service workers. Methods A telephone survey of national restaurant chain employees yielded 1294 completed surveys. Results Hazardous alcohol consumption patterns were seen in 80% of men and 64% of women. Multivariate analysis showed that different dimensions of problem drinking measured by the AUDIT were associated with workers' demographic characteristics, smoking behavior and job category. Conclusions & Scientific Significance These findings offer evidence of extremely high rates of alcohol misuse among young adult restaurant workers. PMID:20180660

  9. PYCHEM: a multivariate analysis package for python.

    PubMed

    Jarvis, Roger M; Broadhurst, David; Johnson, Helen; O'Boyle, Noel M; Goodacre, Royston

    2006-10-15

    We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines. http://sourceforge.net/projects/pychem

  10. Borrowing of strength and study weights in multivariate and network meta-analysis.

    PubMed

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2017-12-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).

  11. Multivariate longitudinal data analysis with censored and intermittent missing responses.

    PubMed

    Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun

    2018-05-08

    The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Borrowing of strength and study weights in multivariate and network meta-analysis

    PubMed Central

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2016-01-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254

  13. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.

  14. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  15. Multivariate geometry as an approach to algal community analysis

    USGS Publications Warehouse

    Allen, T.F.H.; Skagen, S.

    1973-01-01

    Multivariate analyses are put in the context of more usual approaches to phycological investigations. The intuitive common-sense involved in methods of ordination, classification and discrimination are emphasised by simple geometric accounts which avoid jargon and matrix algebra. Warnings are given that artifacts result from technique abuses by the naive or over-enthusiastic. An analysis of a simple periphyton data set is presented as an example of the approach. Suggestions are made as to situations in phycological investigations, where the techniques could be appropriate. The discipline is reprimanded for its neglect of the multivariate approach.

  16. Basic cardiovascular variability signals: mutual directed interactions explored in the information domain.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Javorka, Kamil; Faes, Luca

    2017-05-01

    The study of short-term cardiovascular interactions is classically performed through the bivariate analysis of the interactions between the beat-to-beat variability of heart period (RR interval from the ECG) and systolic blood pressure (SBP). Recent progress in the development of multivariate time series analysis methods is making it possible to explore how directed interactions between two signals change in the context of networks including other coupled signals. Exploiting these advances, the present study aims at assessing directional cardiovascular interactions among the basic variability signals of RR, SBP and diastolic blood pressure (DBP), using an approach which allows direct comparison between bivariate and multivariate coupling measures. To this end, we compute information-theoretic measures of the strength and delay of causal interactions between RR, SBP and DBP using both bivariate and trivariate (conditioned) formulations in a group of healthy subjects in a resting state and during stress conditions induced by head-up tilt (HUT) and mental arithmetics (MA). We find that bivariate measures better quantify the overall (direct  +  indirect) information transferred between variables, while trivariate measures better reflect the existence and delay of directed interactions. The main physiological results are: (i) the detection during supine rest of strong interactions along the pathway RR  →  DBP  →  SBP, reflecting marked Windkessel and/or Frank-Starling effects; (ii) the finding of relatively weak baroreflex effects SBP  →  RR at rest; (iii) the invariance of cardiovascular interactions during MA, and the emergence of stronger and faster SBP  →  RR interactions, as well as of weaker RR  →  DBP interactions, during HUT. These findings support the importance of investigating cardiovascular interactions from a network perspective, and suggest the usefulness of directed information measures to assess physiological mechanisms and track their changes across different physiological states.

  17. The relationship between computed tomography findings and the locations of perforated peptic ulcers: it may provide better information for gastrointestinal surgeons.

    PubMed

    Wang, Shang-Yu; Cheng, Chi-Tung; Liao, Chien-Hung; Fu, Chih-Yuan; Wong, Yon-Cheong; Chen, Huan-Wu; Ouyang, Chun-Hsiang; Kuo, I-Ming; Hsu, Yu-Pao; Yeh, Chun-Nan

    2016-10-01

    Computed tomography (CT) plays an important role in diagnosing gastrointestinal perforation. This study explored the relationship between CT findings and the locations of perforated peptic ulcers (PPUs), which may help further surgical planning. During a 34-month period, 175 patients had CT scans. We categorized those 175 patients into 2 groups: patients with and without a PPU at a difficult ulcer site for a laparoscopic approach. Both clinical data and the CT images were reviewed and analyzed. Based on the univariate analysis results, we conducted multivariate analyses of 3 factors: age, American Society of Anesthesiologists classification of 3 or more, and positive lesser sac image findings. The positive lesser sac findings in CT were the only independent factor that was correlated to the PPU site. Positive lesser sac CT findings may help to predict PPUs in sites where a laparoscopic approach might be difficult. Our study re-evaluates the additional value of CT scanning in diagnosing PPU, and the results may assist with surgical planning in clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1984-01-01

    The objective of this investigation is to develop a state-of-the-art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies. A three-dimensional multivariate O/I analysis scheme has been developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  19. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    The development of a state of the art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies was investigated. A three dimensional multivariate O/I analysis scheme was developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  20. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  1. Functional Path Analysis as a Multivariate Technique in Developing a Theory of Participation in Adult Education.

    ERIC Educational Resources Information Center

    Martin, James L.

    This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…

  2. Missing Data and Multiple Imputation in the Context of Multivariate Analysis of Variance

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…

  3. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  4. Bias and Precision of Measures of Association for a Fixed-Effect Multivariate Analysis of Variance Model

    ERIC Educational Resources Information Center

    Kim, Soyoung; Olejnik, Stephen

    2005-01-01

    The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…

  5. Multivariate analysis of climate along the southern coast of Alaska—some forestry implications.

    Treesearch

    Wilbur A. Farr; John S. Hard

    1987-01-01

    A multivariate analysis of climate was used to delineate 10 significantly different groups of climatic stations along the southern coast of Alaska based on latitude, longitude, seasonal temperatures and precipitation, frost-free periods, and total number of growing degree days. The climatic stations were too few to delineate this rugged, mountainous region into...

  6. Patterns and Predictors of Language and Literacy Abilities 4-10 Years in the Longitudinal Study of Australian Children

    PubMed Central

    Zubrick, Stephen R.; Taylor, Catherine L.; Christensen, Daniel

    2015-01-01

    Aims Oral language is the foundation of literacy. Naturally, policies and practices to promote children’s literacy begin in early childhood and have a strong focus on developing children’s oral language, especially for children with known risk factors for low language ability. The underlying assumption is that children’s progress along the oral to literate continuum is stable and predictable, such that low language ability foretells low literacy ability. This study investigated patterns and predictors of children’s oral language and literacy abilities at 4, 6, 8 and 10 years. The study sample comprised 2,316 to 2,792 children from the first nationally representative Longitudinal Study of Australian Children (LSAC). Six developmental patterns were observed, a stable middle-high pattern, a stable low pattern, an improving pattern, a declining pattern, a fluctuating low pattern, and a fluctuating middle-high pattern. Most children (69%) fit a stable middle-high pattern. By contrast, less than 1% of children fit a stable low pattern. These results challenged the view that children’s progress along the oral to literate continuum is stable and predictable. Findings Multivariate logistic regression was used to investigate risks for low literacy ability at 10 years and sensitivity-specificity analysis was used to examine the predictive utility of the multivariate model. Predictors were modelled as risk variables with the lowest level of risk as the reference category. In the multivariate model, substantial risks for low literacy ability at 10 years, in order of descending magnitude, were: low school readiness, Aboriginal and/or Torres Strait Islander status and low language ability at 8 years. Moderate risks were high temperamental reactivity, low language ability at 4 years, and low language ability at 6 years. The following risk factors were not statistically significant in the multivariate model: Low maternal consistency, low family income, health care card, child not read to at home, maternal smoking, maternal education, family structure, temperamental persistence, and socio-economic area disadvantage. The results of the sensitivity-specificity analysis showed that a well-fitted multivariate model featuring risks of substantive magnitude did not do particularly well in predicting low literacy ability at 10 years. PMID:26352436

  7. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study

    PubMed Central

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398

  8. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.

    PubMed

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.

  9. MULTIVARIATE ANALYSES (CONONICAL CORRELATION AND PARTIAL LEAST SQUARE, PLS) TO MODEL AND ASSESS THE ASSOCIATION OF LANDSCAPE METRICS TO SURFACE WATER CHEMICAL AND BIOLOGICAL PROPERTIES USING SAVANNAH RIVER BASIN DATA.

    EPA Science Inventory

    Many multivariate methods are used in describing and predicting relation; each has its unique usage of categorical and non-categorical data. In multivariate analysis of variance (MANOVA), many response variables (y's) are related to many independent variables that are categorical...

  10. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  11. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun

    2018-02-01

    It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.

  12. Understanding perception of active noise control system through multichannel EEG analysis.

    PubMed

    Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad

    2018-06-01

    In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.

  13. Longitudinal analysis of physical activity, fluid intake, and graft function among kidney transplant recipients

    PubMed Central

    Gordon, Elisa J.; Prohaska, Thomas R.; Gallant, Mary P.; Sehgal, Ashwini R.; Strogatz, David; Yucel, Recai; Conti, David; Siminoff, Laura A.

    2010-01-01

    Summary Self-care is recommended to kidney transplant recipients as a vital component to maintain long-term graft function. However, little is known about the effects of physical activity, fluid intake, and smoking history on graft function. This longitudinal study examined the relationship between self-care practices on graft function among 88 new kidney transplant recipients in Chicago, IL and Albany, NY between 2005 and 2008. Participants were interviewed, completed surveys, and medical charts were abstracted. Physical activity, fluid intake, and smoking history at baseline were compared with changes in estimated glomerular filtration rate (eGFR) (every 6 months up to 1 year) using bivariate and multivariate regression analysis, while controlling for sociodemographic and clinical transplant variables. Multivariate analyses revealed that greater physical activity was significantly (P < 0.05) associated with improvement in GFR at 6 months; while greater physical activity, absence of smoking history, and nonwhite ethnicity were significant (P < 0.05) predictors of improvement in GFR at 12 months. These results suggest that increasing physical activity levels in kidney recipients may be an effective behavioral measure to help ensure graft functioning. Our findings suggest the need for a randomized controlled trial of exercise, fluid intake, and smoking history on GFR beyond 12 months. PMID:19619168

  14. Longitudinal analysis of physical activity, fluid intake, and graft function among kidney transplant recipients.

    PubMed

    Gordon, Elisa J; Prohaska, Thomas R; Gallant, Mary P; Sehgal, Ashwini R; Strogatz, David; Yucel, Recai; Conti, David; Siminoff, Laura A

    2009-10-01

    Self-care is recommended to kidney transplant recipients as a vital component to maintain long-term graft function. However, little is known about the effects of physical activity, fluid intake, and smoking history on graft function. This longitudinal study examined the relationship between self-care practices on graft function among 88 new kidney transplant recipients in Chicago, IL and Albany, NY between 2005 and 2008. Participants were interviewed, completed surveys, and medical charts were abstracted. Physical activity, fluid intake, and smoking history at baseline were compared with changes in estimated glomerular filtration rate (eGFR) (every 6 months up to 1 year) using bivariate and multivariate regression analysis, while controlling for sociodemographic and clinical transplant variables. Multivariate analyses revealed that greater physical activity was significantly (P < 0.05) associated with improvement in GFR at 6 months; while greater physical activity, absence of smoking history, and nonwhite ethnicity were significant (P < 0.05) predictors of improvement in GFR at 12 months. These results suggest that increasing physical activity levels in kidney recipients may be an effective behavioral measure to help ensure graft functioning. Our findings suggest the need for a randomized controlled trial of exercise, fluid intake, and smoking history on GFR beyond 12 months.

  15. The association between physical activity and social isolation in community-dwelling older adults.

    PubMed

    Robins, Lauren M; Hill, Keith D; Finch, Caroline F; Clemson, Lindy; Haines, Terry

    2018-02-01

    Social isolation is an increasing concern in older community-dwelling adults. There is growing need to determine effective interventions addressing social isolation. This study aimed to determine whether a relationship exists between physical activity (recreational and/or household-based) and social isolation. An examination was conducted for whether group- or home-based falls prevention exercise was associated with social isolation. Cross-sectional analysis of telephone survey data was used to investigate relationships between physical activity, health, age, gender, living arrangements, ethnicity and participation in group- or home-based falls prevention exercise on social isolation. Univariable and multivariable ordered logistic regression analyses were conducted. Factors found to be significantly associated with reduced social isolation in multivariable analysis included living with a partner/spouse, reporting better general health, higher levels of household-based physical activity (OR = 1.03, CI = 1.01-1.05) and feeling less downhearted/depressed. Being more socially isolated was associated with symptoms of depression and a diagnosis of congestive heart failure (pseudo R 2 = 0.104). Findings suggest that household-based physical activity is related to social isolation in community-dwelling older adults. Further research is required to determine the nature of this relationship and to investigate the impact of group physical activity interventions on social isolation.

  16. Incidence of retinopathy of prematurity in the United States: 1997 through 2005.

    PubMed

    Lad, Eleonora M; Hernandez-Boussard, Tina; Morton, John M; Moshfeghi, Darius M

    2009-09-01

    To determine the incidence of retinopathy of prematurity (ROP) based on a national database and to identify baseline characteristics, demographic information, comorbidities, and surgical interventions. Retrospective study based on the National Inpatient Sample from 1997 through 2005. The National Inpatient Sample was queried for all newborn infants with and without ROP. Multivariate logistic regression was used to predict risk factors for ROP. Thirty-four million live births were recorded during the study period. The total ROP incidence was 0.17% overall and 15.58% for premature infants with length of stay of more than 28 days. Our results conclusively demonstrated the importance of low birth weight as a risk for ROP development in infants with length of stay of more than 28 days, as well as association with respiratory conditions, fetal hemorrhage, intraventricular hemorrhage, and blood transfer. An interesting finding was the protective effect conferred by hypoxia, necrotizing enterocolitis, and hemolytic disease of the newborn. Infants with ROP had a higher incidence of undergoing laser photocoagulation therapy, pars plana vitrectomy, and scleral buckle surgery. The current study represents a large, retrospective analysis of newborns with ROP. The multivariate analysis emphasizes the role of birth weight in extended-stay infants, as well as respiratory conditions, fetal hemorrhage, intraventricular hemorrhage, and blood transfer.

  17. The prevalence of posttraumatic stress disorder among adult earthquake survivors in Peru.

    PubMed

    Cairo, Javier B; Dutta, Suparna; Nawaz, Haq; Hashmi, Shahrukh; Kasl, Stanislav; Bellido, Edgar

    2010-03-01

    To estimate the prevalence of posttraumatic stress disorder (PTSD) and to assess the relationships between PTSD and demographic and disaster-related factors. Five months after a magnitude 8.0 earthquake struck the city of Pisco, Peru, we conducted a cross-sectional study using demographic questions, the PTSD Checklist, and a translated version of the Harvard Trauma Questionnaire. We used stratified sampling to randomly enroll subjects in Pisco and its annexes. We then used bivariate and multivariate analyses to find correlations between PTSD and demographic and disaster-related factors. We interviewed 298 adult earthquake survivors and detected 75 cases of PTSD (prevalence 25.2%; 95% confidence interval, 20.2%-30.1%). In the bivariate analysis, PTSD was significantly associated with female sex, loss of church, food and water shortages immediately after the earthquake, joblessness, injuries, loss of a relative or friend, lack of clean drinking water or appropriate sleeping conditions 5 months after the earthquake, and low levels of perceived support from family and friends. In the multivariate analysis, only female sex, food and water shortages, loss of church, injuries, and low levels of perceived support from family and friends were independently associated with PTSD. PTSD affected about a quarter of Pisco's population. Its impact was moderate to severe when compared with other disasters worldwide and in Latin America.

  18. Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis.

    PubMed

    Tian, Jun-sheng; Liu, Cai-chun; Xiang, Huan; Zheng, Xiao-fen; Peng, Guo-jiang; Zhang, Xiang; Du, Guan-hua; Qin, Xue-mei

    2015-11-01

    Depression is one of the prevalent and serious mental disorders and the number of depressed patients has been on the rise globally during the recent decades. Sea buckthorn seed oil from traditional Chinese medicine (TCM) is edible and has been widely used for treatment of different diseases for a long time. However, there are few published reports on the antidepressant effect of sea buckthorn seed oil. With the objective of finding potential biomarkers of the therapeutic response of sea buckthorn seed oil in chronic unpredictable mild stress (CUMS) rats, urine metabolomics based on gas chromatography-mass spectrometry (GC-MS) coupled with multivariate analysis was applied. In this study, we discovered a higher level of pimelic acid as well as palmitic acid and a lower level of suberic acid, citrate, phthalic acid, cinnamic acid and Sumiki's acid in urine of rats exposed to CUMS procedures after sea buckthorn seed oil was administered. These changes of metabolites are involved in energy metabolism, fatty acid metabolism and other metabolic pathways as well as in the synthesis of neurotransmitters and it is helpful to facilitate the efficacy evaluation and mechanism elucidating the effect of sea buckthorn seed oil for depression management.

  19. Relationship of breastfeeding self-efficacy with quality of life in Iranian breastfeeding mothers.

    PubMed

    Mirghafourvand, Mojgan; Kamalifard, Mahin; Ranjbar, Fatemeh; Gordani, Nasrin

    2017-07-20

    Due to the importance of breastfeeding, we decided to conduct a study to examine the relationship between breastfeeding self-efficacy and quality of life. This study was a cross-sectional study, which was carried out on 547 breastfeeding mothers that had 2-6 months old infants. The participants were selected randomly, and the sociodemographic characteristics questionnaire, Dennis' breastfeeding self-efficacy scale, and WHO's Quality of Life (WHOQOL) questionnaire were completed through interview. The multivariate linear regression model was used for data analysis. The means (standard deviations) of breastfeeding self-efficacy score and quality of life score were 134.5 (13.3) and 67.7 (13.7), respectively. Quality of life and all of its dimensions were directly and significantly related to breastfeeding self-efficacy. According to the results of multivariate linear regression analysis, there was a relationship between breastfeeding self-efficacy and the following variables: environmental dimension of quality of life, education, spouse's age, spouse's job, average duration of previous breastfeeding period and receiving breastfeeding training. Findings showed that there is direct and significant relationship between breastfeeding self-efficacy and quality of life. Moreover, it seems that the development of appropriate training programs is necessary for improving the quality of life of pregnant women, as it consequently enhances breastfeeding self-efficacy.

  20. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    PubMed

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  1. Is race erased? Decoding race from patterns of neural activity when skin color is not diagnostic of group boundaries.

    PubMed

    Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J

    2013-10-01

    Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.

  2. Reporting of research quality characteristics of studies published in 6 major clinical dental specialty journals.

    PubMed

    Pandis, Nikolaos; Polychronopoulou, Argy; Madianos, Phoebus; Makou, Margarita; Eliades, Theodore

    2011-06-01

    The objective of this article was to record reporting characteristics related to study quality of research published in major specialty dental journals with the highest impact factor (Journal of Endodontics, Journal of Oral and Maxillofacial Surgery, American Journal of Orthodontics and Dentofacial Orthopedics; Pediatric Dentistry, Journal of Clinical Periodontology, and International Journal of Prosthetic Dentistry). The included articles were classified into the following 3 broad subject categories: (1) cross-sectional (snap-shot), (2) observational, and (3) interventional. Multinomial logistic regression was conducted for effect estimation using the journal as the response and randomization, sample calculation, confounding discussed, multivariate analysis, effect measurement, and confidence intervals as the explanatory variables. The results showed that cross-sectional studies were the dominant design (55%), whereas observational investigations accounted for 13%, and interventions/clinical trials for 32%. Reporting on quality characteristics was low for all variables: random allocation (15%), sample size calculation (7%), confounding issues/possible confounders (38%), effect measurements (16%), and multivariate analysis (21%). Eighty-four percent of the published articles reported a statistically significant main finding and only 13% presented confidence intervals. The Journal of Clinical Periodontology showed the highest probability of including quality characteristics in reporting results among all dental journals. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Reasons for job separations in a cohort of workers with psychiatric disabilities.

    PubMed

    Cook, Judith A; Burke-Miller, Jane K

    2015-01-01

    We explored the relative effects of adverse working conditions, job satisfaction, wages, worker characteristics, and local labor markets in explaining voluntary job separations (quits) among employed workers with psychiatric disabilities. Data come from the Employment Intervention Demonstration Program in which 2,086 jobs were ended by 892 workers during a 24 mo observation period. Stepped multivariable logistic regression analysis examined the effect of variables on the likelihood of quitting. Over half (59%) of all job separations were voluntary while 41% were involuntary, including firings (17%), temporary job endings (14%), and layoffs (10%). In multivariable analysis, workers were more likely to quit positions at which they were employed for 20 h/wk or less, those with which they were dissatisfied, low-wage jobs, non-temporary positions, and jobs in the structural (construction) occupations. Voluntary separation was less likely for older workers, members of racial and ethnic minority groups, and those residing in regions with lower unemployment rates. Patterns of job separations for workers with psychiatric disabilities mirrored some findings regarding job leaving in the general labor force but contradicted others. Job separation antecedents reflect the concentration of jobs for workers with psychiatric disabilities in the secondary labor market, characterized by low-salaried, temporary, and part-time employment.

  4. Better Working Memory and Motor Inhibition in Children Who Delayed Gratification

    PubMed Central

    Yu, Junhong; Kam, Chi-Ming; Lee, Tatia M. C.

    2016-01-01

    Background: Despite the extensive research on delayed gratification over the past few decades, the neurocognitive processes that subserve delayed gratification remains unclear. As an exploratory step in studying these processes, the present study aims to describe the executive function profiles of children who were successful at delaying gratification and those who were not. Methods: A total of 138 kindergarten students (65 males, 73 females; Mage = 44 months, SD = 3.5; age range = 37–53 months) were administered a delayed gratification task, a 1-back test, a Day/night Stroop test and a Go/no-go test. The outcome measures of these tests were then analyzed between groups using a Multivariate Analysis of Variance, and subsequently a Multivariate Analysis of Covariance incorporating age as a covariate. Results: Children who were successful in delaying gratification were significantly older and had significantly better outcomes in the 1-back test and go/no-go test. With the exception of the number of hits in the go/no-go test, all other group differences remained significant after controlling for age. Conclusion: Children who were successful in delaying gratification showed better working memory and motor inhibition relative to those who failed the delayed gratification task. The implications of these findings are discussed. PMID:27493638

  5. Effect of Contact Damage on the Strength of Ceramic Materials.

    DTIC Science & Technology

    1982-10-01

    variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F

  6. Functional connectomics from a "big data" perspective.

    PubMed

    Xia, Mingrui; He, Yong

    2017-10-15

    In the last decade, explosive growth regarding functional connectome studies has been observed. Accumulating knowledge has significantly contributed to our understanding of the brain's functional network architectures in health and disease. With the development of innovative neuroimaging techniques, the establishment of large brain datasets and the increasing accumulation of published findings, functional connectomic research has begun to move into the era of "big data", which generates unprecedented opportunities for discovery in brain science and simultaneously encounters various challenging issues, such as data acquisition, management and analyses. Big data on the functional connectome exhibits several critical features: high spatial and/or temporal precision, large sample sizes, long-term recording of brain activity, multidimensional biological variables (e.g., imaging, genetic, demographic, cognitive and clinic) and/or vast quantities of existing findings. We review studies regarding functional connectomics from a big data perspective, with a focus on recent methodological advances in state-of-the-art image acquisition (e.g., multiband imaging), analysis approaches and statistical strategies (e.g., graph theoretical analysis, dynamic network analysis, independent component analysis, multivariate pattern analysis and machine learning), as well as reliability and reproducibility validations. We highlight the novel findings in the application of functional connectomic big data to the exploration of the biological mechanisms of cognitive functions, normal development and aging and of neurological and psychiatric disorders. We advocate the urgent need to expand efforts directed at the methodological challenges and discuss the direction of applications in this field. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. OGLE II Eclipsing Binaries In The LMC: Analysis With Class

    NASA Astrophysics Data System (ADS)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.

    2011-01-01

    The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.

  8. Body mass index gain between ages 20-40 years and lifestyle characteristics of men at ages 40-60 years: The Adventist Health Study-2

    PubMed Central

    Japas, Claudio; Knutsen, Synnøve; Dehom, Salem; Dos Santos, Hildemar; Tonstad, Serena

    2014-01-01

    Background Obesity increases risk of premature disease, and may be associated with unfavorable lifestyle changes that add to risk. This study analyzed the association of midlife BMI change with current lifestyle patterns among multiethnic men. Methods Men aged 40-60 years (n=9864) retrospectively reported body weight between ages 20-40 years and current dietary, TV, physical activity and sleep practices in the Adventist Health Study II, a study of church-goers in the US and Canada. In multivariate logistic regression analysis, odds ratios for BMI gain were calculated for each lifestyle practice controlling for sociodemographic and other lifestyle factors and current BMI. Results Men with median or higher BMI gain (2.79 kg/m2) between ages 20-40 years were more likely to consume a non-vegetarian diet, and engage in excessive TV watching and little physical activity and had a shorter sleep duration compared to men with BMI gain below the median (all p<0.001). In multivariate logistic analysis current BMI was significantly associated with all lifestyle factors in multivariate analyses (all p≤0.005). BMI gain was associated with lower odds of vegetarian diet (odds ratio [OR] 0.939; 95% confidence interval [CI] 0.921-0.957) and of physical activity ≥150 minutes/week (OR 0.979, 95% CI 0.960-0.999). Conclusions These findings imply that diet and less physical activity are associated with both gained and attained BMI, while inactivity (TV watching) and short sleep duration correlated only with attained BMI. Unhealthy lifestyle may add risk to that associated with BMI. Longitudinal and intervention studies are needed to infer causal relationships. PMID:25434910

  9. Newly Graduated Nurses' Competence and Individual and Organizational Factors: A Multivariate Analysis.

    PubMed

    Numminen, Olivia; Leino-Kilpi, Helena; Isoaho, Hannu; Meretoja, Riitta

    2015-09-01

    To study the relationships between newly graduated nurses' (NGNs') perceptions of their professional competence, and individual and organizational work-related factors. A multivariate, quantitative, descriptive, correlation design was applied. Data collection took place in November 2012 with a national convenience sample of 318 NGNs representing all main healthcare settings in Finland. Five instruments measured NGNs' perceptions of their professional competence, occupational commitment, empowerment, practice environment, and its ethical climate, with additional questions on turnover intentions, job satisfaction, and demographics. Descriptive statistics summarized the demographic data, and inferential statistics multivariate path analysis modeling estimated the relationships between the variables. The strongest relationship was found between professional competence and empowerment, competence explaining 20% of the variance of empowerment. The explanatory power of competence regarding practice environment, ethical climate of the work unit, and occupational commitment, and competence's associations with turnover intentions, job satisfaction, and age, were statistically significant but considerably weaker. Higher competence and satisfaction with quality of care were associated with more positive perceptions of practice environment and its ethical climate as well as higher empowerment and occupational commitment. Apart from its association with empowerment, competence seems to be a rather independent factor in relation to the measured work-related factors. Further exploration would deepen the knowledge of this relationship, providing support for planning educational and developmental programs. Research on other individual and organizational factors is warranted to shed light on factors associated with professional competence in providing high-quality and safe care as well as retaining new nurses in the workforce. The study sheds light on the strength and direction of the significantly associated work-related factors. Nursing professional bodies, managers, and supervisors can use the findings in planning orientation programs and other occupational interventions for NGNs. © 2015 Sigma Theta Tau International.

  10. Antimicrobial resistance: the major contribution of poor governance and corruption to this growing problem.

    PubMed

    Collignon, Peter; Athukorala, Prema-Chandra; Senanayake, Sanjaya; Khan, Fahad

    2015-01-01

    To determine how important governmental, social, and economic factors are in driving antibiotic resistance compared to the factors usually considered the main driving factors-antibiotic usage and levels of economic development. A retrospective multivariate analysis of the variation of antibiotic resistance in Europe in terms of human antibiotic usage, private health care expenditure, tertiary education, the level of economic advancement (per capita GDP), and quality of governance (corruption). The model was estimated using a panel data set involving 7 common human bloodstream isolates and covering 28 European countries for the period 1998-2010. Only 28% of the total variation in antibiotic resistance among countries is attributable to variation in antibiotic usage. If time effects are included the explanatory power increases to 33%. However when the control of corruption indicator is included as an additional variable, 63% of the total variation in antibiotic resistance is now explained by the regression. The complete multivariate regression only accomplishes an additional 7% in terms of goodness of fit, indicating that corruption is the main socioeconomic factor that explains antibiotic resistance. The income level of a country appeared to have no effect on resistance rates in the multivariate analysis. The estimated impact of corruption was statistically significant (p< 0.01). The coefficient indicates that an improvement of one unit in the corruption indicator is associated with a reduction in antibiotic resistance by approximately 0.7 units. The estimated coefficient of private health expenditure showed that one unit reduction is associated with a 0.2 unit decrease in antibiotic resistance. These findings support the hypothesis that poor governance and corruption contributes to levels of antibiotic resistance and correlate better than antibiotic usage volumes with resistance rates. We conclude that addressing corruption and improving governance will lead to a reduction in antibiotic resistance.

  11. Multiple expression patterns of biopathological markers in primary invasive breast carcinoma: a useful tool for elucidating its biological behaviour.

    PubMed

    Ceccarelli, C; Santini, D; Chieco, P; Taffurelli, M; Marrano, D; Mancini, A M

    1995-03-01

    Commonly used clinical and morphologic criteria have been reported to be of limited value in predicting the outcome of malignant tumours of the breast. Integrated information from the quantitative analysis in tumour tissue of biological parameters such as oestrogen and progesterone receptors (ER and PGR), proliferative activity, and proto-oncogene p53, c-erB2, and bcl-2 expression, may be useful for defining the biology of growth of breast carcinoma and to plan effective therapeutic strategies. Immunohistochemistry with antibodies recognizing ER, PGR, Ki-67, and the p53, c-erbB2, and bcl-2 encoded proteins was performed on 291 primary breast carcinomas. Results were integrated with clinico-pathological indicators and examined with multivariate statistical procedures and modeling. P53, c-erbB2, and bcl-2 gene products were detected, respectively, in 30.6%, 31.6%, and 85.9% of the examined invasive breast carcinomas, revealing variable associations with cellular differentiation and proliferation as defined by ER/PGR status, Ki-67, tumour mass and histologic and nuclear grading. A multivariate graphical display on a subset of the most informative cases revealed that bcl-2 expression parallels ER/PGR status and is of importance in separating tumour clusters with different degrees of aggressiveness. The results of this study indicate that multivariate explorative analyses conducted on biological and clinico-pathological parameters might constitute an integrated approach to data analysis useful for distinguishing different biological behaviours and therapeutic groups in breast carcinoma. Our findings also suggest that bcl-2 expression may play a pivotal role in tumours lacking ER-mediated growth regulation.

  12. COMT Val158Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury

    PubMed Central

    Winkler, Ethan A.; Yue, John K.; Ferguson, Adam R.; Temkin, Nancy R.; Stein, Murray B.; Barber, Jason; Yuh, Esther L.; Sharma, Sourabh; Satris, Gabriela G.; McAllister, Thomas W.; Rosand, Jonathan; Sorani, Marco D.; Lingsma, Hester F.; Tarapore, Phiroz E.; Burchard, Esteban G.; Hu, Donglei; Eng, Celeste; Wang, Kevin K.W.; Mukherjee, Pratik; Okonkwo, David O.; Diaz-Arrastia, Ramon; Manley, Geoffrey T.

    2017-01-01

    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist – Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09–0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20–6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10–0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11–0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03–0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69–4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings. PMID:27769642

  13. COMT Val158Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury.

    PubMed

    Winkler, Ethan A; Yue, John K; Ferguson, Adam R; Temkin, Nancy R; Stein, Murray B; Barber, Jason; Yuh, Esther L; Sharma, Sourabh; Satris, Gabriela G; McAllister, Thomas W; Rosand, Jonathan; Sorani, Marco D; Lingsma, Hester F; Tarapore, Phiroz E; Burchard, Esteban G; Hu, Donglei; Eng, Celeste; Wang, Kevin K W; Mukherjee, Pratik; Okonkwo, David O; Diaz-Arrastia, Ramon; Manley, Geoffrey T

    2017-01-01

    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val 158 Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met 158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val 158 Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City.

    PubMed

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007-2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0-15 years old). Middle-aged people (16-65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8-1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place.

  15. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City

    PubMed Central

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007–2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0–15 years old). Middle-aged people (16–65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8–1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place. PMID:26815039

  16. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals.

    PubMed

    Elfaki, Tayseer Elamin Mohamed; Arndts, Kathrin; Wiszniewsky, Anna; Ritter, Manuel; Goreish, Ibtisam A; Atti El Mekki, Misk El Yemen A; Arriens, Sandra; Pfarr, Kenneth; Fimmers, Rolf; Doenhoff, Mike; Hoerauf, Achim; Layland, Laura E

    2016-05-01

    In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to distinguish patent from non-patent individuals.

  17. Lesion stiffness measured by shear-wave elastography: Preoperative predictor of the histologic underestimation of US-guided core needle breast biopsy.

    PubMed

    Park, Ah Young; Son, Eun Ju; Kim, Jeong-Ah; Han, Kyunghwa; Youk, Ji Hyun

    2015-12-01

    To determine whether lesion stiffness measured by shear-wave elastography (SWE) can be used to predict the histologic underestimation of ultrasound (US)-guided 14-gauge core needle biopsy (CNB) for breast masses. This retrospective study enrolled 99 breast masses from 93 patients, including 40 high-risk lesions and 59 ductal carcinoma in situ (DCIS), which were diagnosed by US-guided 14-gauge CNB. SWE was performed for all breast masses to measure quantitative elasticity values before US-guided CNB. To identify the preoperative factors associated with histologic underestimation, patients' age, symptoms, lesion size, B-mode US findings, and quantitative SWE parameters were compared according to the histologic upgrade after surgery using the chi-square test, Fisher's exact test, or independent t-test. The independent factors for predicting histologic upgrade were evaluated using multivariate logistic regression analysis. The underestimation rate was 28.3% (28/99) in total, 25.0% (10/40) in high-risk lesions, and 30.5% (18/59) in DCIS. All elasticity values of the upgrade group were significantly higher than those of the non-upgrade group (P<0.001). On multivariate analysis, the mean (Odds ratio [OR]=1.021, P=0.001), maximum (OR=1.015, P=0.008), and minimum (OR=1.028, P=0.001) elasticity values were independently associated with histologic underestimation. The patients' age, lesion size, and final assessment category on US of the upgrade group were higher than those of the non-upgrade group (P=0.046 for age; P=0.021 for lesion size; P=0.030 for US category), but these were not independent predictors of histologic underestimation on multivariate analysis. Breast lesion stiffness quantitatively measured by SWE could be helpful to predict the underestimation of malignancy in US-guided 14-gauge CNB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. HIV infection and awareness among men who have sex with men-20 cities, United States, 2008 and 2011.

    PubMed

    Wejnert, Cyprian; Le, Binh; Rose, Charles E; Oster, Alexandra M; Smith, Amanda J; Zhu, Julia

    2013-01-01

    Over half of HIV infections in the United States occur among men who have sex with men (MSM). Awareness of infection is a necessary precursor to antiretroviral treatment and risk reduction among HIV-infected persons. We report data on prevalence and awareness of HIV infection among MSM in 2008 and 2011, using data from 20 cities participating in the 2008 and 2011 National HIV Behavioral Surveillance System (NHBS) among MSM. Venue-based, time-space sampling was used to recruit men for interview and HIV testing. We analyzed data for men who reported ≥ 1 male sex partner in the past 12 months. Participants who tested positive were considered to be aware of their infection if they reported a prior positive HIV test. We used multivariable analysis to examine differences between results from 2011 vs. 2008. HIV prevalence was 19% in 2008 and 18% in 2011 (p = 0.14). In both years, HIV prevalence was highest among older age groups, blacks, and men with lower education and income. In multivariable analysis, HIV prevalence did not change significantly from 2008 to 2011 overall (p = 0.51) or in any age or racial/ethnic category (p>0.15 in each category). Among those testing positive, a greater proportion was aware of their infection in 2011 (66%) than in 2008 (56%) (p<0.001). In both years, HIV awareness was higher for older age groups, whites, and men with higher education and income. In multivariable analysis, HIV awareness increased from 2008 to 2011 overall (p<0.001) and for all age and racial/ethnic categories (p<0.01 in each category). In both years, black MSM had the highest HIV prevalence and the lowest awareness among racial/ethnic groups. These findings suggest that HIV-positive MSM are increasingly aware of their infections.

  19. Classification of Malaysia aromatic rice using multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  20. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  1. A Course in... Multivariable Control Methods.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.

    1988-01-01

    Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)

  2. Differences in passenger car and large truck involved crash frequencies at urban signalized intersections: an exploratory analysis.

    PubMed

    Dong, Chunjiao; Clarke, David B; Richards, Stephen H; Huang, Baoshan

    2014-01-01

    The influence of intersection features on safety has been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes. Although there are distinct differences between passenger cars and large trucks-size, operating characteristics, dimensions, and weight-modeling crash counts across vehicle types is rarely addressed. This paper develops and presents a multivariate regression model of crash frequencies by collision vehicle type using crash data for urban signalized intersections in Tennessee. In addition, the performance of univariate Poisson-lognormal (UVPLN), multivariate Poisson (MVP), and multivariate Poisson-lognormal (MVPLN) regression models in establishing the relationship between crashes, traffic factors, and geometric design of roadway intersections is investigated. Bayesian methods are used to estimate the unknown parameters of these models. The evaluation results suggest that the MVPLN model possesses most of the desirable statistical properties in developing the relationships. Compared to the UVPLN and MVP models, the MVPLN model better identifies significant factors and predicts crash frequencies. The findings suggest that traffic volume, truck percentage, lighting condition, and intersection angle significantly affect intersection safety. Important differences in car, car-truck, and truck crash frequencies with respect to various risk factors were found to exist between models. The paper provides some new or more comprehensive observations that have not been covered in previous studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Insights to Galaxy Evolution Utilizing a Multivariate Comparison of Circumgalactic OVI and MgII

    NASA Astrophysics Data System (ADS)

    Lewis, James; Churchill, Christopher; Nielsen, Nikole; Kacprzak, Glenn; Muzahid, Sowgat; Charlton, Jane

    2018-01-01

    We present a promising multivariate method to categorize inter-related astronomical data in meaningful ways. We use data from the MAGIICAT and "Multiphase Galaxy Halos" surveys and limit our sample to those galaxies which are imaged with the Hubble Space Telescope and for which the Circumgalactic Medium (CGM) is measured using high-resolution quasar spectra (HIRES/COS). Utilizing the method to categorize data about the CGM and its host galaxy yields distinct categories of CGM-galaxy pairs that imply a common fate for the outflows of MgII and OVI in redder galaxies. The analysis reveals a lack of circumgalactic OVI in lower mass, bluer (younger) galaxies, and that as the blue galaxies gain mass and age along the green valley strong OVI appears in the CGM predominately along the minor axes. But as the galaxies continue to gain mass and age into the red sequence strong OVI gas is found primarily along the major axes. Furthermore, we find a population of low mass red galaxies in which only weak, uniform, circumgalactic OVI is found. Incorporating our multivariate results for circumgalactic MgII, including evidence for quenching of star formation via weak circumgalactic MgII preferentially found along the minor axes of redder galaxies, and invoking the similarity of OVI column densities and kinematic spreads along the major and minor axes, we infer that OVI is ancient gas in the CGM.

  4. A systematic review of the relationship factor between women and health professionals within the multivariant analysis of maternal satisfaction.

    PubMed

    Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio

    2016-10-01

    personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Independent Predictors of Prognosis Based on Oral Cavity Squamous Cell Carcinoma Surgical Margins.

    PubMed

    Buchakjian, Marisa R; Ginader, Timothy; Tasche, Kendall K; Pagedar, Nitin A; Smith, Brian J; Sperry, Steven M

    2018-05-01

    Objective To conduct a multivariate analysis of a large cohort of oral cavity squamous cell carcinoma (OCSCC) cases for independent predictors of local recurrence (LR) and overall survival (OS), with emphasis on the relationship between (1) prognosis and (2) main specimen permanent margins and intraoperative tumor bed frozen margins. Study Design Retrospective cohort study. Setting Tertiary academic head and neck cancer program. Subjects and Methods This study included 426 patients treated with OCSCC resection between 2005 and 2014 at University of Iowa Hospitals and Clinics. Patients underwent excision of OCSCC with intraoperative tumor bed frozen margin sampling and main specimen permanent margin assessment. Multivariate analysis of the data set to predict LR and OS was performed. Results Independent predictors of LR included nodal involvement, histologic grade, and main specimen permanent margin status. Specifically, the presence of a positive margin (odds ratio, 6.21; 95% CI, 3.3-11.9) or <1-mm/carcinoma in situ margin (odds ratio, 2.41; 95% CI, 1.19-4.87) on the main specimen was an independent predictor of LR, whereas intraoperative tumor bed margins were not predictive of LR on multivariate analysis. Similarly, independent predictors of OS on multivariate analysis included nodal involvement, extracapsular extension, and a positive main specimen margin. Tumor bed margins did not independently predict OS. Conclusion The main specimen margin is a strong independent predictor of LR and OS on multivariate analysis. Intraoperative tumor bed frozen margins do not independently predict prognosis. We conclude that emphasis should be placed on evaluating the main specimen margins when estimating prognosis after OCSCC resection.

  6. Gaussianization for fast and accurate inference from cosmological data

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2016-06-01

    We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.

  7. Copula Multivariate analysis of Gross primary production and its hydro-environmental driver; A BIOME-BGC model applied to the Antisana páramos

    NASA Astrophysics Data System (ADS)

    Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Galarraga, Remigio; Mynett, Arthur

    2014-05-01

    Simulations of carbon cycling are prone to uncertainties from different sources, which in general are related to input data, parameters and the model representation capacities itself. The gross carbon uptake in the cycle is represented by the gross primary production (GPP), which deals with the spatio-temporal variability of the precipitation and the soil moisture dynamics. This variability associated with uncertainty of the parameters can be modelled by multivariate probabilistic distributions. Our study presents a novel methodology that uses multivariate Copulas analysis to assess the GPP. Multi-species and elevations variables are included in a first scenario of the analysis. Hydro-meteorological conditions that might generate a change in the next 50 or more years are included in a second scenario of this analysis. The biogeochemical model BIOME-BGC was applied in the Ecuadorian Andean region in elevations greater than 4000 masl with the presence of typical vegetation of páramo. The change of GPP over time is crucial for climate scenarios of the carbon cycling in this type of ecosystem. The results help to improve our understanding of the ecosystem function and clarify the dynamics and the relationship with the change of climate variables. Keywords: multivariate analysis, Copula, BIOME-BGC, NPP, páramos

  8. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  9. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using FTIR Chemical Imaging With Univariate and Multivariate Data Processing

    PubMed Central

    Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan

    2008-01-01

    Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198

  10. Multivariate Analysis of Longitudinal Rates of Change

    PubMed Central

    Bryan, Matthew; Heagerty, Patrick J.

    2016-01-01

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129

  11. Additive genetic variation and evolvability of a multivariate trait can be increased by epistatic gene action.

    PubMed

    Griswold, Cortland K

    2015-12-21

    Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Exploring the Structure of Library and Information Science Web Space Based on Multivariate Analysis of Social Tags

    ERIC Educational Resources Information Center

    Joo, Soohyung; Kipp, Margaret E. I.

    2015-01-01

    Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…

  13. Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental and Workflow Protocols

    DTIC Science & Technology

    2016-06-01

    unlimited. v List of Tables Table 1 Single-lap-joint experimental parameters ..............................................7 Table 2 Survey ...Joints: Experimental and Workflow Protocols by Robert E Jensen, Daniel C DeSchepper, and David P Flanagan Approved for...TR-7696 ● JUNE 2016 US Army Research Laboratory Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental

  14. A Multivariate Model for the Meta-Analysis of Study Level Survival Data at Multiple Times

    ERIC Educational Resources Information Center

    Jackson, Dan; Rollins, Katie; Coughlin, Patrick

    2014-01-01

    Motivated by our meta-analytic dataset involving survival rates after treatment for critical leg ischemia, we develop and apply a new multivariate model for the meta-analysis of study level survival data at multiple times. Our data set involves 50 studies that provide mortality rates at up to seven time points, which we model simultaneously, and…

  15. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  16. Evaluation of the microscopic distribution of florfenicol in feed pellets for salmon by Fourier Transform infrared imaging and multivariate analysis.

    PubMed

    Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario

    2018-04-15

    Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [Upper extremities, neck and back symptoms in office employees working at computer stations].

    PubMed

    Zejda, Jan E; Bugajska, Joanna; Kowalska, Małgorzata; Krzych, Lukasz; Mieszkowska, Marzena; Brozek, Grzegorz; Braczkowska, Bogumiła

    2009-01-01

    To obtain current data on the occurrence ofwork-related symptoms of office computer users in Poland we implemented a questionnaire survey. Its goal was to assess the prevalence and intensity of symptoms of upper extremities, neck and back in office workers who use computers on a regular basis, and to find out if the occurrence of symptoms depends on the duration of computer use and other work-related factors. Office workers in two towns (Warszawa and Katowice), employed in large social services companies, were invited to fill in the Polish version of Nordic Questionnaire. The questions included work history and history of last-week symptoms of pain of hand/wrist, elbow, arm, neck and upper and lower back (occurrence and intensity measured by visual scale). Altogether 477 men and women returned the completed questionnaires. Between-group symptom differences (chi-square test) were verified by multivariate analysis (GLM). The prevalence of symptoms in individual body parts was as follows: neck, 55.6%; arm, 26.9%; elbow, 13.3%; wrist/hand, 29.9%; upper back, 49.6%; and lower back, 50.1%. Multivariate analysis confirmed the effect of gender, age and years of computer use on the occurrence of symptoms. Among other determinants, forearm support explained pain of wrist/hand, wrist support of elbow pain, and chair adjustment of arm pain. Association was also found between low back pain and chair adjustment and keyboard position. The findings revealed frequent occurrence of symptoms of pain in upper extremities and neck in office workers who use computers on a regular basis. Seating position could also contribute to the frequent occurrence of back pain in the examined population.

  18. Ultraviolet radiation protection and skin cancer awareness in recreational athletes: a survey among participants in a running event.

    PubMed

    Christoph, Sebastian; Cazzaniga, Simone; Hunger, Robert Emil; Naldi, Luigi; Borradori, Luca; Oberholzer, Patrick Antony

    2016-01-01

    Ultraviolet radiation (UVR) protection and skin cancer awareness are essential in the avoidance of cutaneous malignancies. Skin cancer prevention programmes involve public educational campaigns, for example, for outdoor workers or school children. Since nonprofessional sun exposure (e.g. during outdoor sport) is increasing with today's lifestyle, we assessed UVR protection and skin cancer awareness among recreational athletes. This survey-based, paper/pencil study was designed to assess UVR protection and skin cancer awareness among recreational athletes attending the largest running event in Switzerland. All adults (age 18 and older) attending this run were invited to complete our survey at our study booth. Our form consisted of questions about participants' personal characteristics such as age, gender, educational attainment, skin type, history of sunburns, and personal/family history of skin cancer, as well as participants' subjective attitudes and behaviours relating to UVR protection and skin cancer avoidance. We calculated separate scores for individual UVR protection and skin cancer awareness. We tested these two scores in relation to educational level as a primary endpoint. In addition, the impacts of further distinct characteristics were assessed in multivariable analysis. A total of 970 runners (457 males, 513 females, mean age 41.0 years) completed our survey. Our results indicate that UVR protection is dependent on age, gender, skin type and personal history of skin cancer. Educational attainment (at univariate level), age, gender and skin type (in multivariable analysis) significantly affected the skin cancer awareness score. Our findings suggest that protection measures among recreational sportsmen can be improved. Achievements are notable in older, fair skinned, female runners. Our findings indicate that further work is needed in the education of the general public, and athletes in particular.

  19. Novel in silico multivariate mapping of intrinsic and anticorrelated connectivity to neurocognitive functional maps supports the maturational hypothesis of ADHD.

    PubMed

    de Lacy, Nina; Kodish, Ian; Rachakonda, Srinivas; Calhoun, Vince D

    2018-04-22

    From childhood to adolescence, strengthened coupling in frontal, striatal and parieto-temporal regions associated with cognitive control, and increased anticorrelation between task-positive and task-negative circuits, subserve the reshaping of behavior. ADHD is a common condition peaking in adolescence and regressing in adulthood, with a wide variety of cognitive control deficits. Alternate hypotheses of ADHD emphasize lagging circuitry refinement versus categorical differences in network function. However, quantifying the individual circuit contributions to behavioral findings, and relative roles of maturational versus categorical effects, is challenging in vivo or in meta-analyses using task-based paradigms within the same pipeline, given the multiplicity of neurobehavioral functions implicated. To address this, we analyzed 46 positively-correlated and anticorrelated circuits in a multivariate model in resting-state data from 504 age- and gender-matched youth, and created a novel in silico method to map individual quantified effects to reverse inference maps of 8 neurocognitive functions consistently implicated in ADHD, as well as dopamine and hyperactivity. We identified only age- and gender-related effects in intrinsic connectivity, and found that maturational refinement of circuits in youth with ADHD occupied 3-10x more brain locations than in typical development, with the footprint, effect size and contribution of individual circuits varying substantially. Our analysis supports the maturational hypothesis of ADHD, suggesting lagging connectivity reorganization within specific subnetworks of fronto-parietal control, ventral attention, cingulo-opercular, temporo-limbic and cerebellar sub-networks contribute across neurocognitive findings present in this complex condition. We present the first analysis of anti-correlated connectivity in ADHD and suggest new directions for exploring residual and non-responsive symptoms. © 2018 Wiley Periodicals, Inc.

  20. The double-edged sword of electronic health records: implications for patient disclosure.

    PubMed

    Campos-Castillo, Celeste; Anthony, Denise L

    2015-04-01

    Electronic health record (EHR) systems are linked to improvements in quality of care, yet also privacy and security risks. Results from research studies are mixed about whether patients withhold personal information from their providers to protect against the perceived EHR privacy and security risks. This study seeks to reconcile the mixed findings by focusing on whether accounting for patients' global ratings of care reveals a relationship between EHR provider-use and patient non-disclosure. A nationally representative sample from the 2012 Health Information National Trends Survey was analyzed using bivariate and multivariable logit regressions to examine whether global ratings of care suppress the relationship between EHR provider-use and patient non-disclosure. 13% of respondents reported having ever withheld information from a provider because of privacy/security concerns. Bivariate analysis showed that withholding information was unrelated to whether respondents' providers used an EHR. Multivariable analysis showed that accounting for respondents' global ratings of care revealed a positive relationship between having a provider who uses an EHR and withholding information. After accounting for global ratings of care, findings suggest that patients may non-disclose to providers to protect against the perceived EHR privacy and security risks. Despite evidence that EHRs inhibit patient disclosure, their advantages for promoting quality of care may outweigh the drawbacks. Clinicians should leverage the EHR's value in quality of care and discuss patients' privacy concerns during clinic visits, while policy makers should consider how to address the real and perceived privacy and security risks of EHRs. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Prognostic implications of mutation-specific QTc standard deviation in congenital long QT syndrome.

    PubMed

    Mathias, Andrew; Moss, Arthur J; Lopes, Coeli M; Barsheshet, Alon; McNitt, Scott; Zareba, Wojciech; Robinson, Jennifer L; Locati, Emanuela H; Ackerman, Michael J; Benhorin, Jesaia; Kaufman, Elizabeth S; Platonov, Pyotr G; Qi, Ming; Shimizu, Wataru; Towbin, Jeffrey A; Michael Vincent, G; Wilde, Arthur A M; Zhang, Li; Goldenberg, Ilan

    2013-05-01

    Individual corrected QT interval (QTc) may vary widely among carriers of the same long QT syndrome (LQTS) mutation. Currently, neither the mechanism nor the implications of this variable penetrance are well understood. To hypothesize that the assessment of QTc variance in patients with congenital LQTS who carry the same mutation provides incremental prognostic information on the patient-specific QTc. The study population comprised 1206 patients with LQTS with 95 different mutations and ≥ 5 individuals who carry the same mutation. Multivariate Cox proportional hazards regression analysis was used to assess the effect of mutation-specific standard deviation of QTc (QTcSD) on the risk of cardiac events (comprising syncope, aborted cardiac arrest, and sudden cardiac death) from birth through age 40 years in the total population and by genotype. Assessment of mutation-specific QTcSD showed large differences among carriers of the same mutations (median QTcSD 45 ms). Multivariate analysis showed that each 20 ms increment in QTcSD was associated with a significant 33% (P = .002) increase in the risk of cardiac events after adjustment for the patient-specific QTc duration and the family effect on QTc. The risk associated with QTcSD was pronounced among patients with long QT syndrome type 1 (hazard ratio 1.55 per 20 ms increment; P<.001), whereas among patients with long QT syndrome type 2, the risk associated with QTcSD was not statistically significant (hazard ratio 0.99; P = .95; P value for QTcSD-by-genotype interaction = .002). Our findings suggest that mutations with a wider variation in QTc duration are associated with increased risk of cardiac events. These findings appear to be genotype-specific, with a pronounced effect among patients with the long QT syndrome type 1 genotype. Copyright © 2013. Published by Elsevier Inc.

  2. The Adverse Survival Implications of Bland Thrombus in Renal Cell Carcinoma With Venous Tumor Thrombus.

    PubMed

    Hutchinson, Ryan; Rew, Charles; Chen, Gong; Woldu, Solomon; Krabbe, Laura-Maria; Meissner, Matthew; Sheth, Kunj; Singla, Nirmish; Shakir, Nabeel; Master, Viraj A; Karam, Jose A; Matin, Surena F; Borregales, Leonardo D; Wood, Christopher; Masterson, Timothy; Thompson, R Houston; Boorjian, Stephen A; Leibovich, Bradley C; Abel, E Jason; Bagrodia, Aditya; Margulis, Vitaly

    2018-05-01

    To characterize the presence of bland (nontumor) thrombus in advanced renal cell carcinoma and assess the impact of this finding on cancer-specific survival. A multi-institutional database of patients treated with nephrectomy with caval thrombectomy for locally-advanced renal tumors was assembled from 5 tertiary care medical centers. Using clinicopathologic variables including patient age, body mass index, Eastern Cooperative Oncology Group performance status, tumor stage, grade, nodal status and histology, and nearest-neighbor and multiple-matching propensity score matched cohorts of bland thrombus vs nonbland thrombus patients were assessed. Multivariable analysis for predictors of cancer-specific survival was performed. From an initial cohort of 579 patients, 446 met inclusion criteria (174 with bland thrombus, 272 without). At baseline, patients with bland thrombus had significantly worse performance status, higher tumor stage, higher prevalence of regional nodal metastases and higher nuclear grade (P < .01 for all). In both nearest-neighbor and multiple-matching propensity score matched cohorts, the presence of bland thrombus presence was associated with inferior median cancer-specific survival (28.1 months vs 156.8 months, and 28.1 months vs 76.7 months, P < .001 for both). The presence of bland thrombus remained independently associated with an increased risk of cancer-specific mortality on multivariable analysis (hazard ratio 4.33, 95% confidence interval 2.79-6.73, P < .001). Presence of bland thrombus is associated with adverse survival outcomes in patients treated surgically for renal tumors with venous tumor thrombus. These findings may have important implications in patient counseling, selection for surgery and inclusion in clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The Impact of Financial Conflict of Interest on Surgical Research: An Observational Study of Published Manuscripts.

    PubMed

    Cherla, Deepa V; Viso, Cristina P; Olavarria, Oscar A; Bernardi, Karla; Holihan, Julie L; Mueck, Krislynn M; Flores-Gonzalez, Juan; Liang, Mike K; Adams, Sasha D

    2018-02-09

    Substantial discrepancies exist between industry-reported and self-reported conflicts of interest (COI). Although authors with relevant, self-reported financial COI are more likely to write studies favorable to industry sponsors, it is unknown whether undisclosed COI have the same effect. We hypothesized that surgeons who fail to disclose COI are more likely to publish findings that are favorable to industry than surgeons with no COI. PubMed was searched for articles in multiple surgical specialties. Financial COI reported by surgeons and industry were compared. COI were considered to be relevant if they were associated with the product(s) mentioned by an article. Primary outcome was favorability, which was defined as an impression favorable to the product(s) discussed by an article and was determined by 3 independent, blinded clinicians for each article. Primary analysis compared incomplete self-disclosure to no COI. Ordered logistic multivariable regression modeling was used to assess factors associated with favorability. Overall, 337 articles were reviewed. There was a high rate of discordance in the reporting of COI (70.3%). When surgeons failed to disclose COI, their conclusions were significantly more likely to favor industry than surgeons without COI (RR 1.2, 95% CI 1.1-1.4, p < 0.001). On multivariable analysis, any COI (regardless of relevance, disclosure, or monetary amount) were significantly associated with favorability. Any financial COI (disclosed or undisclosed, relevant or not relevant) significantly influence whether studies report findings favorable to industry. More attention must be paid to improving research design, maximizing transparency in medical research, and insisting that surgeons disclose all COI, regardless of perceived relevance.

  4. Suspicion of respiratory tract infection with multidrug-resistant Enterobacteriaceae: epidemiology and risk factors from a Paediatric Intensive Care Unit.

    PubMed

    Renk, Hanna; Stoll, Lenja; Neunhoeffer, Felix; Hölzl, Florian; Kumpf, Matthias; Hofbeck, Michael; Hartl, Dominik

    2017-02-21

    Multidrug-resistant (MDR) infections are a serious concern for children admitted to the Paediatric Intensive Care Unit (PICU). Tracheal colonization with MDR Enterobacteriaceae predisposes to respiratory infection, but underlying risk factors are poorly understood. This study aims to determine the incidence of children with suspected infection during mechanical ventilation and analyses risk factors for the finding of MDR Enterobacteriaceae in tracheal aspirates. A retrospective single-centre analysis of Enterobacteriaceae isolates from the lower respiratory tract of ventilated PICU patients from 2005 to 2014 was performed. Resistance status was determined and clinical records were reviewed for potential risk factors. A classification and regression tree (CRT) to predict risk factors for infection with MDR Enterobacteriaceae was employed. The model was validated by simple and multivariable logistic regression. One hundred sixty-seven Enterobacteriaceae isolates in 123 children were identified. The most frequent isolates were Enterobacter spp., Klebsiella spp. and E.coli. Among these, 116 (69%) isolates were susceptible and 51 (31%) were MDR. In the CRT analysis, antibiotic exposure for ≥ 7 days and presence of gastrointestinal comorbidity were the most relevant predictors for an MDR isolate. Antibiotic exposure for ≥ 7 days was confirmed as a significant risk factor for infection with MDR Enterobacteriaceae by a multivariable logistic regression model. This study shows that critically-ill children with tracheal Enterobacteriaceae infection are at risk of carrying MDR isolates. Prior use of antibiotics for ≥ 7 days significantly increased the risk of finding MDR organisms in ventilated PICU patients with suspected infection. Our results imply that early identification of patients at risk, rapid microbiological diagnostics and tailored antibiotic therapy are essential to improve management of critically ill children infected with Enterobacteriaceae.

  5. Primary non-function is frequently associated with fatty liver allografts and high mortality after re-transplantation.

    PubMed

    Kulik, Ulf; Lehner, Frank; Klempnauer, Jürgen; Borlak, Jürgen

    2017-08-01

    The shortage of liver donations demands the use of suboptimal grafts with steatosis being a frequent finding. Although ≤30% macrovesicular steatosis is considered to be safe the risk for primary non-function (PNF) and outcome after re-transplantation (re-OLT) is unknown. Among 1205 orthotopic liver transplantations performed at our institution the frequency, survival and reason of re-OLT were evaluated. PNF (group A) cases and those with initial transplant function but subsequent need for re-OLT (group B) were analysed. Histopathology and clinical judgement determined the cause of PNF and included an assessment of hepatic steatosis. Additionally, survival of fatty liver allografts (group C) not requiring re-OLT was considered in Kaplan-Meier and multivariate regression analysis. A total of 77 high urgency re-OLTs were identified and included 39 PNF cases. Nearly 70% of PNF cases were due to primary fatty liver allografts. The 3-month in-hospital mortality for PNF cases after re-OLT was 46% and the mean survival after re-OLT was 0.5 years as compared to 5.2 and 5.1 years for group B, C, respectively, (P<.008). In multivariate Cox regression analysis only hepatic steatosis was associated with an inferior survival (HR 4.272, P=.002). The MELD score, donor BMI, age, cold ischaemic time, ICU stay, serum sodium and transaminases did not influence overall survival. Our study highlights fatty liver allografts to be a major cause for PNF with excessive mortality after re-transplantation. The findings demand the development of new methods to predict risk for PNF of fatty liver allografts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  7. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.

  8. Causal diagrams and multivariate analysis II: precision work.

    PubMed

    Jupiter, Daniel C

    2014-01-01

    In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Multivariate optimum interpolation of surface pressure and surface wind over oceans

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.; Baker, W. E.; Nestler, M. S.

    1984-01-01

    The present multivariate analysis method for surface pressure and winds incorporates ship wind observations into the analysis of surface pressure. For the specific case of 0000 GMT, on February 3, 1979, the additional data resulted in a global rms difference of 0.6 mb; individual maxima as larse as 5 mb occurred over the North Atlantic and East Pacific Oceans. These differences are noted to be smaller than the analysis increments to the first-guess fields.

  10. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  11. Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia.

    PubMed

    Rate, Andrew W

    2018-06-15

    Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Alcohol Intake and Risk of Incident Melanoma: A Pooled Analysis of Three Prospective Studies in the U.S

    PubMed Central

    Rivera, Andrew; Nan, Hongmei; Li, Tricia; Qureshi, Abrar; Cho, Eunyoung

    2016-01-01

    Background Alcohol consumption is associated with increased risk of numerous cancers, but existing evidence for an association with melanoma is equivocal. No study has evaluated the association with different anatomic locations of melanoma. Methods We used data from three large prospective cohort studies to investigate whether alcohol intake was associated with risk of melanoma. Alcohol intake was assessed repeatedly by food-frequency questionnaires. A Cox proportional hazards model was used to calculate multivariate-adjusted hazard ratios (HRs). Results A total of 1,374 cases of invasive melanoma were documented during 3,855,706 person-years of follow-up. There was an association between higher alcohol intake and incidence of invasive melanoma (pooled multivariate HR 1.14; 95% confidence interval [CI]: 1.00–1.29] per drink/d, p trend = 0.04). Among alcoholic beverages, white wine consumption was associated with an increased risk of melanoma (pooled multivariate HR 1.13 [95% CI: 1.04–1.24] per drink/d, p trend <0.01) after adjusting for other alcoholic beverages. The association between alcohol consumption and melanoma risk was stronger for melanoma in relatively UV-spared sites (trunk) versus more UV-exposed sites (head, neck, or extremities). Compared to non-drinkers, the pooled multivariate-adjusted HRs for ≥20g/d of alcohol were 1.02 (95% CI: 0.64–1.62; P trend =0.25) for melanomas of the head, neck, and extremities and 1.73 (95% CI: 1.25–2.38; P trend =0.02) for melanomas of the trunk. Conclusions Alcohol intake was associated with a modest increase in the risk of melanoma, particularly in UV-protected sites. Impact These findings further support American Cancer Society Guidelines for Cancer Prevention to limit alcohol intake. PMID:27909090

  13. Angiotensin-converting enzyme inhibitor and statin use and incident mobility limitation in community-dwelling older adults: the Health, Aging and Body Composition study.

    PubMed

    Gray, Shelly L; Boudreau, Robert M; Newman, Anne B; Studenski, Stephanie A; Shorr, Ronald I; Bauer, Douglas C; Simonsick, Eleanor M; Hanlon, Joseph T

    2011-12-01

    To evaluate whether the use of angiotensin-converting enzyme (ACE) inhibitors and statins is associated with a lower risk of incident mobility limitation in older community dwelling adults. Longitudinal cohort study. Health, Aging and Body Composition (Health ABC) study. Three thousand fifty-five participants who were well functioning at baseline (no mobility limitations). Summated standardized daily doses (low, medium, high) and duration of ACE inhibitor and statin use were computed. Mobility limitation (two consecutive self-reports of having any difficulty walking one-quarter of a mile or climbing 10 steps without resting) was assessed every 6 months after baseline. Multivariable Cox proportional hazards analyses were conducted, adjusting for demographics, health status, and health behaviors. At baseline, 15.2% used ACE inhibitors and 12.9% used statins; use of both was greater than 25% by Year 6. Over 6.5 years of follow-up, 49.8% had developed mobility limitation. In separate multivariable models, neither ACE inhibitor (multivariate hazard ratio (HR) = 0.95, 95% confidence interval (CI) = 0.82-1.09) nor statin use (multivariate HR = 1.02, 95% CI = 0.87-1.17) was associated with lower risk of mobility limitation. Similar findings were seen in analyses examining dose-response and duration-response relationships and a sensitivity analysis restricted to those with hypertension. ACE inhibitors and statins widely prescribed to treat hypertension and hypercholesterolemia, respectively, do not lower risk of mobility limitation, an important indicator of quality of life. © 2011, Copyright the Authors Journal compilation © 2011, The American Geriatrics Society.

  14. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  15. [Influence of coke oven emissions on workers' blood pressure and electrocardiographic findings].

    PubMed

    Liang, J J; Yi, G L; Mao, G S; Wang, D M; Dai, X Y

    2016-09-20

    Objective: To investigate the influence of coke oven emissions on workers' blood pressure and electrocardiographic findings, and to provide a basis for the prevention and treatment of cardiovascular diseases. Methods: The concentration of coke oven emissions at the bottom, side, and top of coke ovens was determined in a coking plant. A total of 406 coke oven workers were enrolled as exposure group and 201 office staff members were enrolled as control group. Blood pressure and electrocardiographic findings were compared between the two groups, and the multivariate logistic regression analysis was performed to analyze the influencing factors for hypertension and abnormal electrocardiographic findings. Results: The concentration of coke oven emissions was the highest at the top of coke ovens, followed by the side and bottom of coke ovens, and there was a significant difference between the exposure group and the control group ( P <0.01). The exposure group had significantly higher detection rates of hypertension, abnormal electrocardiographic findings, and abnormal chest X-ray findings than the control group ( P <0.05). The logistic regression analysis showed that high concentration of coke oven emission and age were risk factors for hypertension and abnormal electrocardiographic findings ( P <0.05). The workers exposed to high-concentration coke oven emissions were more likely to experience hypertension and abnormal electrocardiographic findings than those exposed to low-concentration coke oven emissions ( OR =1.7 and 1.9). Conclusion: Besides lung injury, coke oven emissions also have adverse effects on the cardiovascular system. Therefore, more effective measures are needed to protect the health of coke oven workers.

  16. Gait analysis and functional outcome in patients after Lisfranc injury treatment.

    PubMed

    van Hoeve, S; Stollenwerck, G; Willems, P; Witlox, M A; Meijer, K; Poeze, M

    2017-07-18

    Lisfranc injuries involve any bony or ligamentous disruption of the tarsometatarsal joint. Outcome results after treatment are mainly evaluated using patient-reported outcome measures (PROM), physical examination and radiographic findings. Less is known about the kinematics during gait. Nineteen patients (19 feet) treated for Lisfranc injury were recruited. Patients with conservative treatment and surgical treatment consisting of open reduction and internal fixation (ORIF) or primary arthrodesis were included. PROM, radiographic findings and gait analysis using the Oxford Foot Model (OFM) were analysed. Results were compared with twenty-one healthy subjects (31 feet). Multivariable logistic regression was used to determine factors influencing outcome. Patients treated for Lisfranc injury had a significantly lower walking speed than healthy subjects (P<0.001). There was a significant difference between the two groups regarding the range of motion (ROM) in the sagittal plane (flexion-extension) in the midfoot during the push-off phase (p<0.001). The ROM in the sagittal plane was significantly correlated with the AOFAS midfoot score (r 2 =0.56, p=0.012), FADI (r 2 =0.47, p=0.043) and the SF-36-physical impairment score (r 2 =0.60, p=0.007) but not with radiographic parameters for quality of reduction. In a multivariable analysis, the best explanatory factors were ROM in the sagittal plane during the push-off phase (β=0.707, p=0.001), stability (β=0.423, p=0.028) and BMI (β=-0.727 p=<0.001). This prediction model explained 87% of patient satisfaction. This study showed that patients treated for Lisfranc injury had significantly lower walking speed and significantly lower flexion/extension in the midfoot than healthy subjects. The ROM in these patients was significantly correlated with PROM, but not with radiographic quality of reduction. Most important satisfaction predictors were BMI, ROM in the sagittal plane during the push-off phase and fracture stability. Copyright © 2017. Published by Elsevier Ltd.

  17. Communication practices in the US and Syria.

    PubMed

    Merkin, Rebecca S; Ramadan, Reem

    2016-01-01

    This study highlights Syrian communication practices using comparative tests with the United States communication as a baseline. Additionally, theoretical findings on individualism and collectivism theory are extended to include findings from Syria. Multivariate Analysis of Covariance was used to test culture's effect in demographically similar (in age, SES, and education) student convenience samples, with the covariate communication adaptability, on dependent variables: empathy, social confirmation, social composure, friendships, non-verbal immediacy, social self-efficacy, and general self-efficacy. Results indicated that Syrians possess more empathy, social confirmation, and perceived general self-efficacy in comparison to U.S. citizens who have greater social composure, friendships, non-verbal immediacy and social self-efficacy. These results indicate that Syrians have the strength of self-efficacy to succeed in intercultural relationships while U.S. Americans have the assets of warmth and sociability to enable successful interactions with Syrians.

  18. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  19. Achieving universal health coverage through voluntary insurance: what can we learn from the experience of Lao PDR?

    PubMed Central

    2013-01-01

    Background The Government of Lao Peoples’ Democratic Republic (Lao PDR) has embarked on a path to achieve universal health coverage (UHC) through implementation of four risk-protection schemes. One of these schemes is community-based health insurance (CBHI) – a voluntary scheme that targets roughly half the population. However, after 12 years of implementation, coverage through CBHI remains very low. Increasing coverage of the scheme would require expansion to households in both villages where CBHI is currently operating, and new geographic areas. In this study we explore the prospects of both types of expansion by examining household and district level data. Methods Using a household survey based on a case-comparison design of 3000 households, we examine the determinants of enrolment at the household level in areas where the scheme is currently operating. We model the determinants of enrolment using a probit model and predicted probabilities. Findings from focus group discussions are used to explain the quantitative findings. To examine the prospects for geographic scale-up, we use secondary data to compare characteristics of districts with and without insurance, using a combination of univariate and multivariate analyses. The multivariate analysis is a probit model, which models the factors associated with roll-out of CBHI to the districts. Results The household findings show that enrolment is concentrated among the better off and that adverse selection is present in the scheme. The district level findings show that to date, the scheme has been implemented in the most affluent areas, in closest proximity to the district hospitals, and in areas where quality of care is relatively good. Conclusions The household-level findings indicate that the scheme suffers from poor risk-pooling, which threatens financial sustainability. The district-level findings call into question whether or not the Government of Laos can successfully expand to more remote, less affluent districts, with lower population density. We discuss the policy implications of the findings and specifically address whether CBHI can serve as a foundation for a national scheme, while exploring alternative approaches to reaching the informal sector in Laos and other countries attempting to achieve UHC. PMID:24344925

  20. Cancer screening delivery in persistent poverty rural counties.

    PubMed

    Bennett, Kevin J; Pumkam, Chaiporn; Bellinger, Jessica D; Probst, Janice C

    2011-10-01

    Rural populations are diagnosed with cancer at different rate and stages than nonrural populations, and race/ethnicity as well as the area-level income exacerbates the differences. The purpose of this analysis was to explore cancer screening rates across persistent poverty rural counties, with emphasis on nonwhite populations. The 2008 Behavioral Risk Factor Surveillance System was used, combined with data from the Area Resource File (analytic n = 309 937 unweighted, 196 344 347 weighted). Unadjusted analysis estimated screening rates for breast, cervical, and colorectal cancer. Multivariate analysis estimated the odds of screening, controlling for individual and county-level effects. Rural residents, particularly those in persistent poverty counties, were less likely to be screened than urban residents. More African Americans in persistent poverty rural counties reported not having mammography screening (18.3%) compared to 15.9% of urban African Americans. Hispanics had low screening rates across all service types. Multivariate analysis continued to find disparities in screening rates, after controlling for individual and county-level factors. African Americans in persistent poverty rural counties were more likely to be screened for both breast cancer (odds ratio, 1.44; 95% confidence interval, 1.12-1.85) and cervical cancer (1.46; 1.07-1.99) when compared with urban whites. Disparities in cancer screening rates exist across not only race/ethnicity but also county type. These disparities cannot be fully explained by either individual or county-level effects. Programs have been successful in improving screening rates for African American women and should be expanded to target other vulnerable women as well as other services such as colorectal cancer screening.

  1. Factors associated with recently transmitted Mycobacterium tuberculosis strain MS0006 in Hinds County, Mississippi.

    PubMed

    Temple, Brian; Kwara, Awewura; Sunesara, Imran; Mena, Leandro; Dobbs, Thomas; Henderson, Harold; Holcomb, Mike; Webb, Risa

    2011-12-01

    The objective of this study was to investigate risk factors associated with tuberculosis (TB) transmission that was caused by Mycobacterium tuberculosis strain MS0006 from 2004 to 2009 in Hinds County, Mississippi. DNA fingerprinting using spoligotyping, mycobacterial interspersed repetitive unit, and IS6110-based restriction fragment length polymorphism of culture-confirmed cases of TB was performed. Clinical and demographic factors associated with strain MS0006 were analyzed by univariate and multivariate analysis. Of the 144 cases of TB diagnosed during the study period, 117 were culture positive with fingerprints available. There were 48 different strains, of which 6 clustered strains were distributed among 74 patients. The MS0006 strain accounted for 46.2% of all culture-confirmed cases. Risk factors for having the MS0006 strain in a univariate analysis included homelessness, HIV co-infection, sputum smear negativity, tuberculin skin test negativity, and noninjectable drug use. Multivariate analysis identified homelessness (odds ratio 7.88, 95% confidence interval 2.90-21.35) and African American race (odds ratio 5.80, 95% confidence interval 1.37-24.55) as independent predictors of having TB caused by the MS0006 strain of M. tuberculosis. Our findings suggest that a majority of recently transmitted TB in the studied county was caused by the MS0006 strain. African American race and homelessness were significant risk factors for inclusion in the cluster. Molecular epidemiology techniques continue to provide in-depth analysis of disease transmission and play a vital role in effective contact tracing and interruption of ongoing transmission.

  2. Risk factors of hepatitis B virus infection among blood donors in Duhok city, Kurdistan Region, Iraq

    PubMed Central

    R Hussein, Nawfal

    2018-01-01

    Background: Hepatitis B virus (HBV) infection is a public health problem. The lack of information about the seroprevalence and risk factors is an obstacle for preventive public health plans to reduce the burden of viral hepatitis. Therefore, this study was conducted in Iraq, where no studies had been performed to determine the prevalence and risk factors of HBV infection. Methods: Blood samples were collected form 438 blood donors attending blood bank in Duhok city. Serum samples were tested for HBV core-antibodies (HBcAb) and HBV surface-antigen (HBsAg) by ELISA. Various risk factors were recorded and multivariate analysis was performed. Results: 5/438 (1.14%) of the subjects were HBsAg positive (HBsAg and HBcAb positive) and 36/438 (8.2%) were HBcAb positive. Hence, 41 cases were exposed to HBV and data analysis was based on that. Univariate analysis showed that there were significant associations between history of illegitimate sexual contact, history of alcohol or history of dental surgeries and HBV exposure (p<0.05 for all). Then, multivariate analysis was conducted to find HBV exposure predictive factors. It was found that history of dental surgery was a predictive factor for exposure to the virus (P=0.03, OR: 2.397). Conclusions: This study suggested that the history of dental surgery was predictive for HBV transmission in Duhok city. Further population-based study is needed to determine HBV risk factors in the society and public health plan based on that should be considered. PMID:29387315

  3. The Effect of Coffee and Quantity of Consumption on Specific Cardiovascular and All-Cause Mortality: Coffee Consumption Does Not Affect Mortality.

    PubMed

    Loomba, Rohit S; Aggarwal, Saurabh; Arora, Rohit R

    2016-01-01

    Previous studies have examined whether or not an association exists between the consumption of caffeinated coffee to all-cause and cardiovascular mortality. This study aimed to delineate this association using population representative data from the National Health and Nutrition Examination Survey III. Patients were included in the study if all the following criteria were met: (1) follow-up mortality data were available, (2) age of at least 45 years, and (3) reported amount of average coffee consumption. A total of 8608 patients were included, with patients stratified into the following groups of average daily coffee consumption: (1) no coffee consumption, (2) less than 1 cup, (3) 1 cup a day, (4) 2-3 cups, (5) 4-5 cups, (6) more than 6 cups a day. Odds ratios, 95% confidence intervals, and P values were calculated for univariate analysis to compare the prevalence of all-cause mortality, ischemia-related mortality, congestive heart failure-related mortality, and stroke-related mortality, using the no coffee consumption group as reference. These were then adjusted for confounding factors for a multivariate analysis. P < 0.05 were considered statistically significant. Univariate analysis demonstrated an association between coffee consumption and mortality, although this became insignificant on multivariate analysis. Coffee consumption, thus, does not seem to impact all-cause mortality or specific cardiovascular mortality. These findings do differ from those of recently published studies. Coffee consumption of any quantity seems to be safe without any increased mortality risk. There may be some protective effects but additional data are needed to further delineate this.

  4. A cutoff value based on analysis of a reference population decreases overestimation of the prevalence of nocturnal polyuria.

    PubMed

    van Haarst, Ernst P; Bosch, J L H Ruud

    2012-09-01

    We sought criteria for nocturnal polyuria in asymptomatic, nonurological adults of all ages by reporting reference values of the ratio of daytime and nighttime urine volumes, and finding nocturia predictors. Data from a database of frequency-volume charts from a reference population of 894 nonurological, asymptomatic volunteers of all age groups were analyzed. The nocturnal polyuria index and the nocturia index were calculated and factors influencing these values were determined by multivariate analysis. The nocturnal polyuria index had wide variation but a normal distribution with a mean ± SD of 30% ± 12%. The 95th percentile of the values was 53%. Above this cutoff a patient had nocturnal polyuria. This value contrasts with the International Continence Society definition of 33% but agrees with several other reports. On multivariate regression analysis with the nocturnal polyuria index as the dependent variable sleeping time, maximum voided volume and age were the covariates. However, the increase in the nocturnal polyuria index by age was small. Excluding polyuria and nocturia from analysis did not alter the results in a relevant way. The nocturnal voiding frequency depended on sleeping time and maximum voided volume but most of all on the nocturia index. The prevalence of nocturnal polyuria is overestimated. We suggest a new cutoff value for the nocturnal polyuria index, that is nocturnal polyuria exists when the nocturnal polyuria index exceeds 53%. The nocturia index is the best predictor of nocturia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  6. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  7. New multivariable capabilities of the INCA program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1989-01-01

    The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.

  8. Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions

    PubMed Central

    Bathke, Arne C.; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne

    2018-01-01

    ABSTRACT To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved. PMID:29565679

  9. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    NASA Astrophysics Data System (ADS)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  10. Performance of the disease risk score in a cohort study with policy-induced selection bias.

    PubMed

    Tadrous, Mina; Mamdani, Muhammad M; Juurlink, David N; Krahn, Murray D; Lévesque, Linda E; Cadarette, Suzanne M

    2015-11-01

    To examine the performance of the disease risk score (DRS) in a cohort study with evidence of policy-induced selection bias. We examined two cohorts of new users of bisphosphonates. Estimates for 1-year hip fracture rates between agents using DRS, exposure propensity scores and traditional multivariable analysis were compared. The results for the cohort with no evidence of policy-induced selection bias showed little variation across analyses (-4.1-2.0%). Analysis of the cohort with evidence of policy-induced selection bias showed greater variation (-13.5-8.1%), with the greatest difference seen with DRS analyses. Our findings suggest that caution may be warranted when using DRS methods in cohort studies with policy-induced selection bias, further research is needed.

  11. Development of multivariate exposure and fatal accident involvement rates for 1977

    DOT National Transportation Integrated Search

    1985-10-01

    The need for multivariate accident involvement rates is often encounted in : accident analysis. The FARS (Fatal Accident Reporting System) files contain : records of fatal involvements characterized by many variables while NPTS : (National Personal T...

  12. Bayesian multivariate hierarchical transformation models for ROC analysis.

    PubMed

    O'Malley, A James; Zou, Kelly H

    2006-02-15

    A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.

  13. Bayesian multivariate hierarchical transformation models for ROC analysis

    PubMed Central

    O'Malley, A. James; Zou, Kelly H.

    2006-01-01

    SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836

  14. A Novel Approach to Detect Accelerated Aged and Surface-Mediated Degradation in Explosives by UPLC-ESI-MS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beppler, Christina L

    2015-12-01

    A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less

  15. Complex numbers in chemometrics: examples from multivariate impedance measurements on lipid monolayers.

    PubMed

    Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta

    2007-07-09

    Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.

  16. A Multivariate Methodological Workflow for the Analysis of FTIR Chemical Mapping Applied on Historic Paint Stratigraphies

    PubMed Central

    Sciutto, Giorgia; Oliveri, Paolo; Catelli, Emilio; Bonacini, Irene

    2017-01-01

    In the field of applied researches in heritage science, the use of multivariate approach is still quite limited and often chemometric results obtained are often underinterpreted. Within this scenario, the present paper is aimed at disseminating the use of suitable multivariate methodologies and proposes a procedural workflow applied on a representative group of case studies, of considerable importance for conservation purposes, as a sort of guideline on the processing and on the interpretation of this FTIR data. Initially, principal component analysis (PCA) is performed and the score values are converted into chemical maps. Successively, the brushing approach is applied, demonstrating its usefulness for a deep understanding of the relationships between the multivariate map and PC score space, as well as for the identification of the spectral bands mainly involved in the definition of each area localised within the score maps. PMID:29333162

  17. Risk Factors for Central Serous Chorioretinopathy: Multivariate Approach in a Case-Control Study.

    PubMed

    Chatziralli, Irini; Kabanarou, Stamatina A; Parikakis, Efstratios; Chatzirallis, Alexandros; Xirou, Tina; Mitropoulos, Panagiotis

    2017-07-01

    The purpose of this prospective study was to investigate the potential risk factors associated independently with central serous retinopathy (CSR) in a Greek population, using multivariate approach. Participants in the study were 183 consecutive patients diagnosed with CSR and 183 controls, matched for age. All participants underwent complete ophthalmological examination and information regarding their sociodemographic, clinical, medical and ophthalmological history were recorded, so as to assess potential risk factors for CSR. Univariate and multivariate analysis was performed. Univariate analysis showed that male sex, high educational status, high income, alcohol consumption, smoking, hypertension, coronary heart disease, obstructive sleep apnea, autoimmune disorders, H. pylori infection, type A personality and stress, steroid use, pregnancy and hyperopia were associated with CSR, while myopia was found to protect from CSR. In multivariate analysis, alcohol consumption, hypertension, coronary heart disease and autoimmune disorders lost their significance, while the remaining factors were all independently associated with CSR. It is important to take into account the various risk factors for CSR, so as to define vulnerable groups and to shed light into the pathogenesis of the disease.

  18. Television Viewing and Its Association with Sedentary Behaviors, Self-Rated Heath and Academic Performance among Secondary School Students in Peru.

    PubMed

    Sharma, Bimala; Cosme Chavez, Rosemary; Jeong, Ae Suk; Nam, Eun Woo

    2017-04-05

    The study assessed television viewing >2 h a day and its association with sedentary behaviors, self-rated health, and academic performance among secondary school adolescents. A cross-sectional survey was conducted among randomly selected students in Lima in 2015. We measured self-reported responses of students using a standard questionnaire, and conducted in-depth interviews with 10 parents and 10 teachers. Chi-square test, correlation and multivariate logistic regression analysis were performed among 1234 students, and thematic analysis technique was used for qualitative information. A total of 23.1% adolescents reported watching television >2 h a day. Qualitative findings also show that adolescents spend most of their leisure time watching television, playing video games or using the Internet. Television viewing had a significant positive correlation with video game use in males and older adolescents, with Internet use in both sexes, and a negative correlation with self-rated health and academic performance in females. Multivariate logistic regression analysis shows that television viewing >2 h a day, independent of physical activity was associated with video games use >2 h a day, Internet use >2 h a day, poor/fair self-rated health and poor self-reported academic performance. Television viewing time and sex had a significant interaction effect on both video game use >2 h a day and Internet use >2 h a day. Reducing television viewing time may be an effective strategy for improving health and academic performance in adolescents.

  19. Socioeconomic status and prevalence of self-reported diabetes among adults in Tehran: results from a large population-based cross-sectional study (Urban HEART-2).

    PubMed

    Asadi-Lari, M; Khosravi, A; Nedjat, S; Mansournia, M A; Majdzadeh, R; Mohammad, K; Vaez-Mahdavi, M R; Faghihzadeh, S; Haeri Mehrizi, A A; Cheraghian, B

    2016-05-01

    Diabetes mellitus is an important public health challenge worldwide. The prevalence of type 2 diabetes varies across countries. The aim of this study is to estimate the prevalence of type 2 diabetes and to determine related factors including socioeconomic factors in a large random sample of Tehran population in 2011. In this cross-sectional study, 91,814 individuals aged over 20 years were selected randomly based on a multistage, cluster sampling. All participants were interviewed by trained personnel using standard questionnaires. Prevalence and Townsend deprivation indexes were calculated. Principal component analysis (PCA) was used to construct wealth index. Logistic regression model was used in multivariate analysis. The estimated prevalence of self-reported diabetes was 4.98 % overall, 4.76 %in men and 5.19 % in women (P < 0.003). In multivariate analysis, age, marital status (married and divorced/widow) and BMI were positively associated with the prevalence of self-reported diabetes. Of the socioeconomic variables, educational level and wealth status were negatively and Townsend Index was positively associated with diabetes. Our study findings highlight low reported prevalence of diabetes among adults in Tehran. Subjects with low socioeconomic status (SES) had a higher prevalence of type 2 diabetes. Weight gain and obesity were the most important risk factors associated with type 2 diabetes. Wealth index and educational level were better socioeconomic indicators for presenting the inequality in diabetes prevalence in relation to Townsend deprivation index.

  20. Social support, gender and patient delay.

    PubMed

    Pedersen, A F; Olesen, F; Hansen, R P; Zachariae, R; Vedsted, P

    2011-04-12

    The purpose of this study was to examine the relationship between perceived social support and patient delay (PD) among female and male cancer patients. A population-based study with register-sampled cancer patients was designed. Patient delay was defined as the time interval between the patient's experience of the first symptom and the first contact with a health-care professional. Both dates were provided by the patients (n=910). The patients completed a purpose-designed questionnaire, which assessed the patient's perceptions of how the partner reacted ('Partner Avoidance' and 'Partner Support') and how others in the social network responded ('Other Avoidance' and 'Other Support') to the patient's worries about the symptoms. The associations between the social support subscales and PD were analysed separately for men and women. In female patients, Partner Support and Other Support were associated with shorter PD, whereas Other Avoidance was associated with longer PD. In the multivariate analysis, Other Avoidance remained associated with longer PD. Moreover, disclosure of symptoms to someone reduced the likelihood of a long PD in female patients. In male patients, none of the social support scales significantly increased or decreased the risk of a long PD in the univariate analysis, but Partner Support significantly decreased risk of a long PD in the multivariate analysis. The results of this study suggest that social support and avoidance from network members influence length of PD differently in male and female cancer patients. This gender difference may explain previous mixed findings obtained in this field.

  1. Television Viewing and Its Association with Sedentary Behaviors, Self-Rated Health and Academic Performance among Secondary School Students in Peru

    PubMed Central

    Sharma, Bimala; Cosme Chavez, Rosemary; Jeong, Ae Suk; Nam, Eun Woo

    2017-01-01

    The study assessed television viewing >2 h a day and its association with sedentary behaviors, self-rated health, and academic performance among secondary school adolescents. A cross-sectional survey was conducted among randomly selected students in Lima in 2015. We measured self-reported responses of students using a standard questionnaire, and conducted in-depth interviews with 10 parents and 10 teachers. Chi-square test, correlation and multivariate logistic regression analysis were performed among 1234 students, and thematic analysis technique was used for qualitative information. A total of 23.1% adolescents reported watching television >2 h a day. Qualitative findings also show that adolescents spend most of their leisure time watching television, playing video games or using the Internet. Television viewing had a significant positive correlation with video game use in males and older adolescents, with Internet use in both sexes, and a negative correlation with self-rated health and academic performance in females. Multivariate logistic regression analysis shows that television viewing >2 h a day, independent of physical activity was associated with video games use >2 h a day, Internet use >2 h a day, poor/fair self-rated health and poor self-reported academic performance. Television viewing time and sex had a significant interaction effect on both video game use >2 h a day and Internet use >2 h a day. Reducing television viewing time may be an effective strategy for improving health and academic performance in adolescents. PMID:28379202

  2. Outcome analysis of donor gender in heart transplantation.

    PubMed

    Al-Khaldi, Abdulaziz; Oyer, Phillip E; Robbins, Robert C

    2006-04-01

    Several studies have shown a detrimental effect of female donor gender on the survival of solid-organ transplant recipients, including heart, kidney and liver. We evaluated our own experience in heart transplantation in the cyclosporine era, since 1980, to determine the effect of donor gender on survival. We retrospectively reviewed 869 consecutive patients who underwent primary heart transplantation at Stanford University Medical Center between December 1980 and March 2004. Actuarial life-table data were calculated for survival and freedom from rejection and compared between groups. Multivariate Cox proportional hazard analysis was used to identify predictors of reduced long-term survival. One-year mortality in male recipients who received a female donor heart (24%) was higher than in male recipients who received male donor heart (13%) (p = 0.009). Actuarial survival rates for male recipients at 1, 5 and 10 years were 86%, 69% and 50% (with male donor), and 76%, 59% and 45% (with female donor) (p = 0.01), respectively. Donor gender had no effect on long-term survival in male recipients < 45 years of age and female recipients. Female donor gender was identified as an independent risk factor for death by multivariate analysis, with an odds ratio of 2.3 (95% confidence interval 1.5 to 3.4, p < 0.001). In heart transplantation the detrimental effect of female donor gender on recipient survival is significant but limited to male recipients > 45 years of age. These findings should be considered in the process of donor-recipient matching.

  3. Computed tomography findings associated with bacteremia in adult patients with a urinary tract infection.

    PubMed

    Yu, T Y; Kim, H R; Hwang, K E; Lee, J-M; Cho, J H; Lee, J H

    2016-11-01

    The use of computed tomography (CT) in the diagnosis of urinary tract infection (UTI) has rapidly increased recently at acute stage, but the CT findings associated with bacteremia in UTI patients are unknown. 189 UTI patients were enrolled who underwent a CT scan within 24 h after hospital admission. We classified CT findings into eight types: a focal or multifocal wedge-shaped area of hypoperfusion, enlarged kidneys, perinephric fat stranding, ureteritis or pyelitis, complicated renal cyst, renal papillary necrosis, hydronephrosis, and renal and perirenal abscess. A retrospective analysis was conducted to evaluate the CT findings associated with bacteremia. The mean age of these patients was 60 ± 17.2 years, and 93.1 % were women. Concurrent bacteremia was noted in 40.2 % of the patients. Abnormal CT findings were noted in 96.3 % of the patients and 62.4 % had two or more abnormal findings. The most frequent abnormal CT finding was a focal or multifocal wedge-shaped area of hypoperfusion (77.2 %), followed by perinephric fat stranding (29.1 %). Perinephric fat stranding, hydronephrosis, and the presence of two or more abnormal CT findings were significantly associated with bacteremia in patients with community-acquired UTI. In the multivariate logistic regression analysis, age [odds ratio (OR) 1.03; 95 % confidence interval (CI) 1.009-1.062], two or more abnormal CT findings (OR 3.163; 95 % CI 1.334-7.498), and hydronephrosis (OR 13.160; 95 % CI 1.048-165.282) were significantly associated with bacteremia. Physicians should be aware that appropriate early management is necessary to prevent fatality in patients with these CT findings.

  4. Explaining public support for space exploration funding in America: A multivariate analysis

    NASA Astrophysics Data System (ADS)

    Nadeau, François

    2013-05-01

    Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.

  5. Learning abilities and disabilities: generalist genes in early adolescence.

    PubMed

    Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert

    2009-01-01

    The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.

  6. Gender and Ethnicity Differences in HIV-related Stigma Experienced by People Living with HIV in Ontario, Canada

    PubMed Central

    Loutfy, Mona R.; Logie, Carmen H.; Zhang, Yimeng; Blitz, Sandra L.; Margolese, Shari L.; Tharao, Wangari E.; Rourke, Sean B.; Rueda, Sergio; Raboud, Janet M.

    2012-01-01

    This study aimed to understand gender and ethnicity differences in HIV-related stigma experienced by 1026 HIV-positive individuals living in Ontario, Canada that were enrolled in the OHTN Cohort Study. Total and subscale HIV-related stigma scores were measured using the revised HIV-related Stigma Scale. Correlates of total stigma scores were assessed in univariate and multivariate linear regression. Women had significantly higher total and subscale stigma scores than men (total, median = 56.0 vs. 48.0, p<0.0001). Among men and women, Black individuals had the highest, Aboriginal and Asian/Latin-American/Unspecified people intermediate, and White individuals the lowest total stigma scores. The gender-ethnicity interaction term was significant in multivariate analysis: Black women and Asian/Latin-American/Unspecified men reported the highest HIV-related stigma scores. Gender and ethnicity differences in HIV-related stigma were identified in our cohort. Findings suggest differing approaches may be required to address HIV-related stigma based on gender and ethnicity; and such strategies should challenge racist and sexist stereotypes. PMID:23300514

  7. Effect of abdominopelvic abscess drain size on drainage time and probability of occlusion.

    PubMed

    Rotman, Jessica A; Getrajdman, George I; Maybody, Majid; Erinjeri, Joseph P; Yarmohammadi, Hooman; Sofocleous, Constantinos T; Solomon, Stephen B; Boas, F Edward

    2017-04-01

    The purpose of this study is to determine whether larger abdominopelvic abscess drains reduce the time required for abscess resolution or the probability of tube occlusion. 144 consecutive patients who underwent abscess drainage at a single institution were reviewed retrospectively. Larger initial drain size did not reduce drainage time, drain occlusion, or drain exchanges (P > .05). Subgroup analysis did not find any type of collection that benefitted from larger drains. A multivariate model predicting drainage time showed that large collections (>200 mL) required 16 days longer drainage time than small collections (<50 mL). Collections with a fistula to bowel required 17 days longer drainage time than collections without a fistula. Initial drain size and the viscosity of the fluid in the collection had no significant effect on drainage time in the multivariate model. 8 F drains are adequate for initial drainage of most serous and serosanguineous collections. 10 F drains are adequate for initial drainage of most purulent or bloody collections. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Gender and ethnicity differences in HIV-related stigma experienced by people living with HIV in Ontario, Canada.

    PubMed

    Loutfy, Mona R; Logie, Carmen H; Zhang, Yimeng; Blitz, Sandra L; Margolese, Shari L; Tharao, Wangari E; Rourke, Sean B; Rueda, Sergio; Raboud, Janet M

    2012-01-01

    This study aimed to understand gender and ethnicity differences in HIV-related stigma experienced by 1026 HIV-positive individuals living in Ontario, Canada that were enrolled in the OHTN Cohort Study. Total and subscale HIV-related stigma scores were measured using the revised HIV-related Stigma Scale. Correlates of total stigma scores were assessed in univariate and multivariate linear regression. Women had significantly higher total and subscale stigma scores than men (total, median = 56.0 vs. 48.0, p<0.0001). Among men and women, Black individuals had the highest, Aboriginal and Asian/Latin-American/Unspecified people intermediate, and White individuals the lowest total stigma scores. The gender-ethnicity interaction term was significant in multivariate analysis: Black women and Asian/Latin-American/Unspecified men reported the highest HIV-related stigma scores. Gender and ethnicity differences in HIV-related stigma were identified in our cohort. Findings suggest differing approaches may be required to address HIV-related stigma based on gender and ethnicity; and such strategies should challenge racist and sexist stereotypes.

  9. Social Cognitive and Planned Behavior Variables Associated with Stages of Change for Physical Activity in Spinal Cord Injury: A Multivariate Analysis

    ERIC Educational Resources Information Center

    Keegan, John; Ditchman, Nicole; Dutta, Alo; Chiu, Chung-Yi; Muller, Veronica; Chan, Fong; Kundu, Madan

    2016-01-01

    Purpose: To apply the constructs of social cognitive theory (SCT) and the theory of planned behavior (TPB) to understand the stages of change (SOC) for physical activities among individuals with a spinal cord injury (SCI). Method: Ex post facto design using multivariate analysis of variance (MANOVA). The participants were 144 individuals with SCI…

  10. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    ERIC Educational Resources Information Center

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  11. Testing key predictions of the associative account of mirror neurons in humans using multivariate pattern analysis.

    PubMed

    Oosterhof, Nikolaas N; Wiggett, Alison J; Cross, Emily S

    2014-04-01

    Cook et al. overstate the evidence supporting their associative account of mirror neurons in humans: most studies do not address a key property, action-specificity that generalizes across the visual and motor domains. Multivariate pattern analysis (MVPA) of neuroimaging data can address this concern, and we illustrate how MVPA can be used to test key predictions of their account.

  12. Multivariate Quantitative Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  13. The evolution of multivariate maternal effects.

    PubMed

    Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart

    2014-04-01

    There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.

  14. The Evolution of Multivariate Maternal Effects

    PubMed Central

    Kuijper, Bram; Johnstone, Rufus A.; Townley, Stuart

    2014-01-01

    There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations. PMID:24722346

  15. Understanding exercise behavior among Korean adults: a test of the transtheoretical model.

    PubMed

    Kim, YoungHo; Cardinal, Bradley J; Lee, JongYoung

    2006-01-01

    The purpose of this study was to examine the theorized association of Transtheoretical Model (TTM) of behavior change constructs by stage of change for exercise behavior among Korean adults. A total of 1,335 Korean adults were recruited and surveyed from the Nowon district, geographically located in northern Seoul. Four Korean-version questionnaires were used to identify the stage of exercise behavior and psychological attributes of adolescents. Data were analyzed by frequency analysis, MANOVA, correlation analysis, and discriminant analysis. Multivariate F tests indicated that behavioral and cognitive processes of change, exercise efficacy, and pros differentiated participants across the stages of exercise behavior. Furthermore, the findings revealed that adults' exercise behavior was significantly correlated with the TTM constructs and that overall classification accuracy across the stages of change was 50.6%. This study supports the internal and external validity of the TTM for explaining exercise behavior.

  16. Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging.

    PubMed

    Bilenko, Natalia Y; Gallant, Jack L

    2016-01-01

    In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.

  17. Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging

    PubMed Central

    Bilenko, Natalia Y.; Gallant, Jack L.

    2016-01-01

    In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. PMID:27920675

  18. Unresolved mourning, supernatural beliefs and dissociation: a mediation analysis.

    PubMed

    Thomson, Paula; Jaque, S Victoria

    2014-01-01

    Unresolved mourning is marked by disorganized behavior and states of mind. In this study, we speculated that pathological dissociation would mediate the effects of unresolved mourning on supernatural beliefs. This hypothesis was determined based on findings that indicate an association between higher levels of dissociation, stronger beliefs in the supernatural and unresolved mourning. We examined two groups of participants, one classified as non-unresolved (non-U) (n = 56) and the other as unresolved (n = 26) (U) with respect to past loss/trauma as measured by the Adult Attachment Interview (AAI). Two self-report instruments were administered to measure supernatural beliefs and dissociation. As hypothesized, the multivariate analysis of variance indicated mean differences between the two groups. The unresolved group had greater belief in the supernatural and more pathological dissociative processes. The mediation analysis demonstrated that pathological dissociation fully mediated the effects of unresolved mourning on supernatural beliefs.

  19. Visibility Graph Based Time Series Analysis.

    PubMed

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  20. Multivariate statistical analysis of low-voltage EDS spectrum images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.

    1998-03-01

    Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.

  1. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. CT imaging of ovarian yolk sac tumor with emphasis on differential diagnosis

    PubMed Central

    Li, Yang-Kang; Zheng, Yu; Lin, Jian-Bang; Xu, Gui-Xiao; Cai, Ai-Qun; Zhou, Xiu-Guo; Zhang, Guo-Jun

    2015-01-01

    Ovarian yolk sac tumors (YSTs) are rare neoplasms. No radiological study has been done to compare the imaging findings between this type of tumor and other ovarian tumors. Here we analyzed the CT findings of 11 pathologically proven ovarian YSTs and compared their imaging findings with 18 other types of ovarian tumors in the same age range. Patient age, tumor size, tumor shape, ascites and metastasis of two groups did not differ significantly (P > 0.05). A mixed solid-cystic nature, intratumoral hemorrhage, marked enhancement and dilated intratumoral vessel of two groups differed significantly (P < 0.05). The area under the ROC curve of four significant CT features was 0.679, 0.707, 0.705, and 1.000, respectively. Multivariate logistic regression analysis identified two independent signs of YST: intratumoral hemorrhage and marked enhancement. Our results show that certain suggestive CT signs that may be valuable for improving the accuracy of imaging diagnosis of YST and may be helpful in distinguishing YST from other ovarian tumors. PMID:26074455

  3. The tobacco paradox in acute coronary syndrome. The prior cessation of smoking as a marker of a better short-term prognosis.

    PubMed

    Bastos-Amador, P; Almendro-Delia, M; Muñoz-Calero, B; Blanco-Ponce, E; Recio-Mayoral, A; Reina-Toral, A; Cruz-Fernandez, J M; García-Alcántara, A; Hidalgo-Urbano, R; García-Rubira, J C

    2016-01-01

    The tobacco paradox is a phenomenon insufficiently explained by previous studies. This study analyses the prognostic role of prior or active smoking in patients with acute coronary syndrome. We obtained data from the ARIAM registry, between 2001 and 2012. The study included 42,827 patients with acute coronary syndrome (mean age, 65±13 years; 26.4% women). The influence of smoking and that of being an ex-smoker on mortality was analysed using a multivariate analysis. The smokers were younger, were more often men, had less diabetes, hypertension and prior history of heart failure, stroke, arrhythmia and renal failure and more frequently had ST-elevation and a family history of smoking. The ex-smokers had more dyslipidaemia and history of angina, myocardial infarction, ischemic heart disease, peripheral vasculopathy and chronic bronchial disease. Smokers and ex-smokers less frequently developed cardiogenic shock (smokers 4.2%, ex-smokers 4.7% and nonsmokers 6.9%, P<.001). Hospital mortality was 7.8% for the nonsmokers, 4.9% for the ex-smokers and 3.1% for the smokers (P<.001). In the multivariate analysis, the smoker factor lost its influence in the prognosis (-0.26%, p=.52 using an inverse probability calculation; and+0.26%, P=.691 using a propensity analysis). However, the exsmoker factor showed a significant reduction in mortality in both tests (-2.4% in the inverse probability analysis, P<.001; and -1.5% in the propensity analysis, P=.005). The tobacco paradox is a finding that could be explained by other prognostic factors. Smoking cessation prior to hospitalization for acute coronary syndrome is associated with a better prognosis. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  4. Risk factors for and causes and treatment of recurrence of inferior vena cava type of Budd-Chiari syndrome after stenting in China: A retrospective analysis of a large cohort.

    PubMed

    Li, Wen-Dong; Yu, Hui-Ying; Qian, Ai-Min; Rong, Jian-Jie; Zhang, Ye-Qing; Li, Xiao-Qiang

    2017-03-01

    To explore the risk factors for recurrence of inferior vena cava (IVC)-type Budd-Chiari syndrome (BCS) after stenting and evaluate the feasibility and primary outcomes of endovascular therapies for recurrent BCS. A retrospective analysis of 219 patients was performed to identify risk factors for recurrence. The images of the recurrent patients during follow-up duration and interventional surgery were also reviewed to find the possible reasons of recurrence. The outcome of endovascular therapies for recurrent BCS was evaluated by Kaplan-Meier analysis. Among the 219 patients, 172 patients with primary IVC-type BCS underwent stenting and 28 patients experienced recurrence. Multivariate analysis identified age, Child-Pugh score, MELD and total bilirubin as independent recurrent indicators. Possible causes of recurrence include thrombosis in the stent, re-obstruction in or above the stent, and stent-related hepatic vein obstruction. Twenty-five patients with recurrent BCS underwent endovascular therapies with a few complications and achieved a high level of short- and mid-term patency. Age, total bilirubin and severity of liver function are the main risk factors for BCS recurrence. These risks might contribute to thrombosis or subsequent fibrous obstruction. Endovascular therapies are effective and safe management options that yield positive outcomes for recurrent BCS. • Risk factors for recurrent Budd-Chiari syndrome were identified by multivariate analysis. • Causes of recurrent Budd-Chiari syndrome were investigated by assessing radiological images. • There is a correlation between risk factors and causes of recurrence. • Endovascular therapies for recurrent Budd-Chiari syndrome are effective and safe.

  5. Liver transplantation of hepatitis B surface antigen positive donors to hepatitis B core antibody recipients: analysis of 27 patients.

    PubMed

    Krishnamoorthi, R; Manickam, P; Cappell, M S

    2014-06-01

    Shortage of donor livers is the major limiting factor for liver transplantation (LT). While livers from patients with past infection of Hepatitis-B (HBcAb+) are commonly used as donors, scant data exists on outcomes following transplantation of HBsAg+ donor livers. The impact of donor HBsAg positivity on recipient survival is currently analyzed. Post hoc analysis of all adults undergoing LT from October 1987-September 2010 registered in United Network for Organ Sharing/Organ Procurement and Transplantation Network, a concurrent, limited access database of all American LT recipients. Only recipients who were HBcAb+ were analyzed. LTs with missing donor or recipient serologic parameters for Hepatitis-B were excluded. Significant predictors of survival were determined by univariate analysis. Cox proportional hazards model was used to determine independent risk predictors in the multivariate analysis. The population consisted of 13,329 LT recipients. The mean age of donors and recipients were 40±16 years and 52±9 years respectively. The mean follow-up was 3.7 years. Study population included 27 recipients transplanted with HBsAg+ grafts, of whom 7 (28%) died. Outcomes were adjusted for donor age, recipient age, donor gender, recipient gender, type of LT, MELD score, HCV status, previous LT, and cold ischemic time. On multivariate analysis, LT recipient outcomes were not significantly different for HBsAg+ donors versus donors without prior hepatitis B infection (HR: 1.14, 95% CI: 0.93-1.39, P=0.17). Kaplan-Meier curves revealed no significant survival difference between the two groups. These results suggest that donor HBsAg positivity did not affect overall survival of LT recipients. These findings could potentially expand the pool of liver donors.

  6. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes.

    PubMed

    Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J

    2014-07-21

    Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

  7. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum.

    PubMed

    Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E

    2017-02-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Describing the Elephant: Structure and Function in Multivariate Data.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1986-01-01

    There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family of models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain. (Author)

  9. EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making.

    PubMed

    Jacobs, Joshua; Hwang, Grace; Curran, Tim; Kahana, Michael J

    2006-08-15

    Studies of memory retrieval have identified electroencephalographic (EEG) correlates of a test item's old-new status, reaction time, and memory load. In the current study, we used a multivariate analysis to disentangle the effects of these correlated variables. During retrieval, power of left-parietal theta (4-8 Hz) oscillations increased in proportion to how well a test item was remembered, and theta in central regions correlated with decision making. We also studied how these oscillatory dynamics complemented event-related potentials. These findings are the first to demonstrate that distinct patterns of theta oscillations can simultaneously relate to different aspects of behavior.

  10. Sleep and nutritional deprivation and performance of house officers.

    PubMed

    Hawkins, M R; Vichick, D A; Silsby, H D; Kruzich, D J; Butler, R

    1985-07-01

    A study was conducted by the authors to compare cognitive functioning in acutely and chronically sleep-deprived house officers. A multivariate analysis of variance revealed significant deficits in primary mental tasks involving basic rote memory, language, and numeric skills as well as in tasks requiring high-order cognitive functioning and traditional intellective abilities. These deficits existed only for the acutely sleep-deprived group. The finding of deficits in individuals who reported five hours or less of sleep in a 24-hour period suggests that the minimum standard of four hours that has been considered by some to be adequate for satisfactory performance may be insufficient for more complex cognitive functioning.

  11. Heterogeneity Coefficients for Mahalanobis' D as a Multivariate Effect Size.

    PubMed

    Del Giudice, Marco

    2017-01-01

    The Mahalanobis distance D is the multivariate generalization of Cohen's d and can be used as a standardized effect size for multivariate differences between groups. An important issue in the interpretation of D is heterogeneity, that is, the extent to which contributions to the overall effect size are concentrated in a small subset of variables rather than evenly distributed across the whole set. Here I present two heterogeneity coefficients for D based on the Gini coefficient, a well-known index of inequality among values of a distribution. I discuss the properties and limitations of the two coefficients and illustrate their use by reanalyzing some published findings from studies of gender differences.

  12. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.

    PubMed

    Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz

    2017-03-01

    Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing.

    PubMed

    Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki

    2008-10-01

    The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with occurrence of nonunion (P < 0.05). Gustilo type and existence of deep infection were significantly correlated with healing time to union on multivariate analysis (r(2) = 0.263, P = 0.0001). Multivariate analyses for open tibial fractures treated with IMN showed that IMN after EF (especially in existence of pin site infection) was at high risk of deep infection, and that debridement within 6 h and appropriate soft-tissue managements were also important factor in preventing deep infections. These analyses postulated that both the Gustilo type and the existence of deep infection is related with fracture healing in open fractures treated with IMN. In addition, immediate IMN for type IIIB and IIIC is potentially risky, and canal reaming did not increase the risk of complication for open tibial fractures treated with IMN.

  14. Predicted extracapsular invasion of hilar lymph node metastasis by fusion positron emission tomography/computed tomography in patients with lung cancer

    PubMed Central

    MAKINO, TAKASHI; HATA, YOSHINOBU; OTSUKA, HAJIME; KOEZUKA, SATOSHI; ISOBE, KAZUTOSHI; TOCHIGI, NOBUMI; SHIRAGA, NOBUYUKI; SHIBUYA, KAZUTOSHI; HOMMA, SAKAE; IYODA, AKIRA

    2015-01-01

    Intraoperative detection of hilar lymph node metastasis, particularly with extracapsular invasion, may affect the surgical procedure in patients with lung cancer, as the preoperative estimation of hilar lymph node metastasis is unsatisfactory. The aim of this study was to investigate whether fusion positron emission tomography/computed tomography (PET/CT) is able to predict extracapsular invasion of hilar lymph node metastasis. Between April, 2007 and April, 2013, 509 patients with primary lung cancer underwent surgical resection at our institution, among whom 28 patients exhibiting hilar lymph node metastasis (at stations 10 and 11) were enrolled in this study. A maximum lymph node standardized uptake value of >2.5 in PET scans was interpreted as positive. A total of 17 patients had positive preoperative PET/CT findings in their hilar lymph nodes, while the remaining 11 had negative findings. With regard to extracapsular nodal invasion, the PET/CT findings (P=0.0005) and the histological findings (squamous cell carcinoma, P=0.05) were found to be significant predictors in the univariate analysis. In the multivariate analysis, the PET/CT findings were the only independent predictor (P=0.0004). The requirement for extensive pulmonary resection (sleeve lobectomy, bilobectomy or pneumonectomy) was significantly more frequent in the patient group with positive compared with the group with negative PET/CT findings (76 vs. 9%, respectively, P=0.01). Therefore, the PET/CT findings in the hilar lymph nodes were useful for the prediction of extracapsular invasion and, consequently, for the estimation of possible extensive pulmonary resection. PMID:26623046

  15. Predicted extracapsular invasion of hilar lymph node metastasis by fusion positron emission tomography/computed tomography in patients with lung cancer.

    PubMed

    Makino, Takashi; Hata, Yoshinobu; Otsuka, Hajime; Koezuka, Satoshi; Isobe, Kazutoshi; Tochigi, Nobumi; Shiraga, Nobuyuki; Shibuya, Kazutoshi; Homma, Sakae; Iyoda, Akira

    2015-09-01

    Intraoperative detection of hilar lymph node metastasis, particularly with extracapsular invasion, may affect the surgical procedure in patients with lung cancer, as the preoperative estimation of hilar lymph node metastasis is unsatisfactory. The aim of this study was to investigate whether fusion positron emission tomography/computed tomography (PET/CT) is able to predict extracapsular invasion of hilar lymph node metastasis. Between April, 2007 and April, 2013, 509 patients with primary lung cancer underwent surgical resection at our institution, among whom 28 patients exhibiting hilar lymph node metastasis (at stations 10 and 11) were enrolled in this study. A maximum lymph node standardized uptake value of >2.5 in PET scans was interpreted as positive. A total of 17 patients had positive preoperative PET/CT findings in their hilar lymph nodes, while the remaining 11 had negative findings. With regard to extracapsular nodal invasion, the PET/CT findings (P=0.0005) and the histological findings (squamous cell carcinoma, P=0.05) were found to be significant predictors in the univariate analysis. In the multivariate analysis, the PET/CT findings were the only independent predictor (P=0.0004). The requirement for extensive pulmonary resection (sleeve lobectomy, bilobectomy or pneumonectomy) was significantly more frequent in the patient group with positive compared with the group with negative PET/CT findings (76 vs. 9%, respectively, P=0.01). Therefore, the PET/CT findings in the hilar lymph nodes were useful for the prediction of extracapsular invasion and, consequently, for the estimation of possible extensive pulmonary resection.

  16. Is a multivariate consensus representation of genetic relationships among populations always meaningful?

    PubMed Central

    Moazami-Goudarzi, K; Laloë, D

    2002-01-01

    To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255

  17. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  18. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem.

    PubMed

    Rodríguez-Caballero, G; Caravaca, F; Fernández-González, A J; Alguacil, M M; Fernández-López, M; Roldán, A

    2017-04-15

    The main goal of this study was to assess the effect of the inoculation of four autochthonous shrub species with the arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices on the rhizosphere bacterial community and to ascertain whether such an effect is dependent on the host plant species. Additionally, analysis of rhizosphere soil chemical and biochemical properties was performed to find relationships between them and the rhizosphere bacterial communities. Non-metric multidimensional scaling analysis and subsequent permutational multivariate analysis of variance revealed differences in bacterial community composition and structure between non-inoculated and inoculated rhizospheres. Moreover, an influence of the plant species was observed. Different bacterial groups were found to be indicator taxonomic groups of non-inoculated and inoculated rhizospheres, Gemmatimonadetes and Anaerolineaceae, respectively, being the most notable indicators. As shown by distance based redundancy analysis, the shifts in bacterial community composition and structure mediated by the inoculation with the AM fungus were mainly related to changes in plant nutrients and growth parameters, such as the shoot phosphorus content. Our findings suggest that the AM fungal inoculum was able to modify the rhizosphere bacterial community assemblage while improving the host plant performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  20. Multivariate analysis of risk factors for long-term urethroplasty outcome.

    PubMed

    Breyer, Benjamin N; McAninch, Jack W; Whitson, Jared M; Eisenberg, Michael L; Mehdizadeh, Jennifer F; Myers, Jeremy B; Voelzke, Bryan B

    2010-02-01

    We studied the patient risk factors that promote urethroplasty failure. Records of patients who underwent urethroplasty at the University of California, San Francisco Medical Center between 1995 and 2004 were reviewed. Cox proportional hazards regression analysis was used to identify multivariate predictors of urethroplasty outcome. Between 1995 and 2004, 443 patients of 495 who underwent urethroplasty had complete comorbidity data and were included in analysis. Median patient age was 41 years (range 18 to 90). Median followup was 5.8 years (range 1 month to 10 years). Stricture recurred in 93 patients (21%). Primary estimated stricture-free survival at 1, 3 and 5 years was 88%, 82% and 79%. After multivariate analysis smoking (HR 1.8, 95% CI 1.0-3.1, p = 0.05), prior direct vision internal urethrotomy (HR 1.7, 95% CI 1.0-3.0, p = 0.04) and prior urethroplasty (HR 1.8, 95% CI 1.1-3.1, p = 0.03) were predictive of treatment failure. On multivariate analysis diabetes mellitus showed a trend toward prediction of urethroplasty failure (HR 2.0, 95% CI 0.8-4.9, p = 0.14). Length of urethral stricture (greater than 4 cm), prior urethroplasty and failed endoscopic therapy are predictive of failure after urethroplasty. Smoking and diabetes mellitus also may predict failure potentially secondary to microvascular damage. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.

  1. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model.

    PubMed

    Snell, Kym I E; Hua, Harry; Debray, Thomas P A; Ensor, Joie; Look, Maxime P; Moons, Karel G M; Riley, Richard D

    2016-01-01

    Our aim was to improve meta-analysis methods for summarizing a prediction model's performance when individual participant data are available from multiple studies for external validation. We suggest multivariate meta-analysis for jointly synthesizing calibration and discrimination performance, while accounting for their correlation. The approach estimates a prediction model's average performance, the heterogeneity in performance across populations, and the probability of "good" performance in new populations. This allows different implementation strategies (e.g., recalibration) to be compared. Application is made to a diagnostic model for deep vein thrombosis (DVT) and a prognostic model for breast cancer mortality. In both examples, multivariate meta-analysis reveals that calibration performance is excellent on average but highly heterogeneous across populations unless the model's intercept (baseline hazard) is recalibrated. For the cancer model, the probability of "good" performance (defined by C statistic ≥0.7 and calibration slope between 0.9 and 1.1) in a new population was 0.67 with recalibration but 0.22 without recalibration. For the DVT model, even with recalibration, there was only a 0.03 probability of "good" performance. Multivariate meta-analysis can be used to externally validate a prediction model's calibration and discrimination performance across multiple populations and to evaluate different implementation strategies. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  3. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.

  4. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Nontargeted, Rapid Screening of Extra Virgin Olive Oil Products for Authenticity Using Near-Infrared Spectroscopy in Combination with Conformity Index and Multivariate Statistical Analyses.

    PubMed

    Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M

    2016-10-01

    A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. A Civilian/Military Trauma Institute: National Trauma Coordinating Center

    DTIC Science & Technology

    2015-12-01

    zip codes was used in “proximity to violence” analysis. Data were analyzed using SPSS (version 20.0, SPSS Inc., Chicago, IL). Multivariable linear...number of adverse events and serious events was not statistically higher in one group, the incidence of deep venous thrombosis (DVT) was statistically ...subjects the lack of statistical difference on multivariate analysis may be related to an underpowered sample size. It was recommended that the

  7. Exploratory Multivariate Analysis. A Graphical Approach.

    DTIC Science & Technology

    1981-01-01

    Gnanadesikan , 1977) but we feel that these should be used with great caution unless one really has good reason to believe that the data came from such a...are referred to Gnanadesikan (1977). The present author hopes that the convenience of a single summary or significance level will not deter his readers...fit of a harmonic model to meteorological data. (In preparation). Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate

  8. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  9. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    PubMed

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  10. The Fourier decomposition method for nonlinear and non-stationary time series analysis

    PubMed Central

    Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-01-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of ‘Fourier intrinsic band functions’ (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time–frequency–energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms. PMID:28413352

  11. New robust bilinear least squares method for the analysis of spectral-pH matrix data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C

    2005-07-01

    A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.

  12. Multivariate evaluation of Thyroid Imaging Reporting and Data System (TI-RADS) in diagnosis malignant thyroid nodule: application to PCA and PLS-DA analysis.

    PubMed

    Zhang, Tan; Li, Fangxuan; Mu, Jiali; Liu, Juntian; Zhang, Sheng

    2017-06-01

    To explore the significance of ultrasonic features in differential diagnosis of thyroid nodules via combining the thyroid imaging reporting and data system (TI-RADS) and multivariate statistical analysis. Patients who received surgical treatment and was diagnosed with single thyroid nodule by postoperative pathology and preoperative ultrasound were enrolled in this study. Multivariate analysis was applied to assess the significant ultrasonic features which correlated with identifying benign or malignance and grading the TI-RADS classification of thyroid nodule. There were significant differences in the nodule size, aspect ratio, internal, echogenicity, boundary, presence or absence of calcifications, calcification type and CDFI between benign and malignant thyroid nodules. Multivariate analysis showed clear-cut distinction both between benign and malignance and among different TI-RADS categories of malignancy nodules. The shape and calcification of the nodule were important factors for distinguish the benign and malignance. Height of the nodule, aspect and calcification was important factors for grading TI-RADS categories of malignancy thyroid nodules. Ill-defined boundary, irregular shape and presence of calcification related with highly malignant risk for thyroid nodule. The larger height and aspect and presence of calcification related with higher TI-RADS classification of malignancy thyroid nodule.

  13. Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis

    ERIC Educational Resources Information Center

    Ansari, Asim; Iyengar, Raghuram

    2006-01-01

    We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…

  14. The use of multivariate statistics in studies of wildlife habitat

    Treesearch

    David E. Capen

    1981-01-01

    This report contains edited and reviewed versions of papers presented at a workshop held at the University of Vermont in April 1980. Topics include sampling avian habitats, multivariate methods, applications, examples, and new approaches to analysis and interpretation.

  15. Rejection of Multivariate Outliers.

    DTIC Science & Technology

    1983-05-01

    available in Gnanadesikan (1977). 2 The motivation for the present investigation lies in a recent paper of Schvager and Margolin (1982) who derive a... Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York. [7] Hawkins, D.M. (1980). Identification of

  16. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  17. Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Westman, Eric; Aguilar, Carlos; Muehlboeck, J-Sebastian; Simmons, Andrew

    2013-01-01

    Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer's disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV.

  18. Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.

    PubMed

    Cleophas, Ton J

    2016-01-01

    Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.

  19. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals.

    PubMed

    Verma, Priyanka; Kumar, Manoj; Mishra, Girish; Sahoo, Dinabandhu

    2017-02-01

    In the present study bio prospecting of thirty seaweeds from Indian coasts was analyzed for their biochemical components including pigments, fatty acid and ash content. Multivariate analysis of biochemical components and fatty acids was done using Principal Component Analysis (PCA) and Agglomerative hierarchical clustering (AHC) to manifest chemotaxonomic relationship among various seaweeds. The overall analysis suggests that these seaweeds have multi-functional properties and can be utilized as promising bioresource for proteins, lipids, pigments and carbohydrates for the food/feed and biofuel industry. Copyright © 2016. Published by Elsevier Ltd.

  20. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects.

    PubMed

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2016-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.

Top