Sample records for multivariate analysis methods

  1. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  2. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  3. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Methods for presentation and display of multivariate data

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.

  6. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  7. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  8. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  9. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  10. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  11. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  12. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  14. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  15. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  16. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  17. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  18. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  19. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less

  20. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  1. A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network

    DTIC Science & Technology

    1980-07-08

    to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for

  2. Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): a Data-Driven Approach across Metabolic Processes.

    PubMed

    Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun

    2015-11-04

    There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.

  3. A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2014-01-01

    Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…

  4. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  5. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  6. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using FTIR Chemical Imaging With Univariate and Multivariate Data Processing

    PubMed Central

    Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan

    2008-01-01

    Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198

  7. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  8. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  9. Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino

    2008-05-01

    In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.

  10. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  11. Multivariate analysis of longitudinal rates of change.

    PubMed

    Bryan, Matthew; Heagerty, Patrick J

    2016-12-10

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Multivariate Analysis and Machine Learning in Cerebral Palsy Research

    PubMed Central

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP. PMID:29312134

  13. Multivariate Analysis and Machine Learning in Cerebral Palsy Research.

    PubMed

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.

  14. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    PubMed

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  16. Multivariate meta-analysis using individual participant data.

    PubMed

    Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R

    2015-06-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

  17. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    PubMed

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  18. The Fourier decomposition method for nonlinear and non-stationary time series analysis

    PubMed Central

    Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-01-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of ‘Fourier intrinsic band functions’ (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time–frequency–energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms. PMID:28413352

  19. New robust bilinear least squares method for the analysis of spectral-pH matrix data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C

    2005-07-01

    A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.

  20. Multivariate Analysis of Longitudinal Rates of Change

    PubMed Central

    Bryan, Matthew; Heagerty, Patrick J.

    2016-01-01

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129

  1. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  2. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  3. A Cyber-Attack Detection Model Based on Multivariate Analyses

    NASA Astrophysics Data System (ADS)

    Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  4. Is a multivariate consensus representation of genetic relationships among populations always meaningful?

    PubMed Central

    Moazami-Goudarzi, K; Laloë, D

    2002-01-01

    To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255

  5. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  6. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  7. Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

    PubMed Central

    Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian

    2015-01-01

    In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213

  8. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  11. Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.

    PubMed

    Cleophas, Ton J

    2016-01-01

    Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.

  12. Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods

    ERIC Educational Resources Information Center

    Zhang, Ying

    2011-01-01

    Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…

  13. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  14. Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions

    PubMed Central

    Bathke, Arne C.; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne

    2018-01-01

    ABSTRACT To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved. PMID:29565679

  15. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

    PubMed Central

    Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan

    2015-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  16. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    NASA Astrophysics Data System (ADS)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  17. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  18. Nutritional Intervention: A Secondary Analysis of Its Effect on Malnourished Colombian Pre-Schoolers.

    ERIC Educational Resources Information Center

    Bejar, Isaac I.

    1981-01-01

    Effects of nutritional supplementation on physical development of malnourished children was analyzed by univariate and multivariate methods for the analysis of repeated measures. Results showed that the nutritional treatment was successful, but it was necessary to resort to the multivariate approach. (Author/GK)

  19. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  20. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.

    PubMed

    Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne

    2016-01-05

    In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.

  1. Comparison of connectivity analyses for resting state EEG data

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo

    2017-06-01

    Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.

  2. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review.

    PubMed

    Maione, Camila; Barbosa, Rommel Melgaço

    2018-01-24

    Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.

  3. A Course in... Multivariable Control Methods.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.

    1988-01-01

    Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)

  4. Multivariate Curve Resolution Methods Illustrated Using Infrared Spectra of an Alcohol Dissolved in Carbon Tetrachloride

    ERIC Educational Resources Information Center

    Grung, Bjorn; Nodland, Egil; Forland, Geir Martin

    2007-01-01

    The analysis of the infrared spectra of an alcohol dissolved in carbon tetrachloride gives a better understanding of the various multivariate curve resolution methods. The resulting concentration profile is found to be very useful for calculating the degree of association and equilibrium constants of different compounds.

  5. Multivariate longitudinal data analysis with censored and intermittent missing responses.

    PubMed

    Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun

    2018-05-08

    The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Multi-Sample Cluster Analysis Using Akaike’s Information Criterion.

    DTIC Science & Technology

    1982-12-20

    of Likelihood Criteria for I)fferent Hypotheses," in P. A. Krishnaiah (Ed.), Multivariate Analysis-Il, New York: Academic Press. [5] Fisher, R. A...Methods of Simultaneous Inference in MANOVA," in P. R. Krishnaiah (Ed.), rultivariate Analysis-Il, New York: Academic Press. [8) Kendall, M. G. (1966...1982), Applied Multivariate Statisti- cal-Analysis, Englewood Cliffs: Prentice-Mall, Inc. [1U] Krishnaiah , P. R. (1969), "Simultaneous Test

  7. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  8. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  9. Piecewise multivariate modelling of sequential metabolic profiling data.

    PubMed

    Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan

    2008-02-19

    Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.

  10. Multivariate meta-analysis of prognostic factor studies with multiple cut-points and/or methods of measurement.

    PubMed

    Riley, Richard D; Elia, Eleni G; Malin, Gemma; Hemming, Karla; Price, Malcolm P

    2015-07-30

    A prognostic factor is any measure that is associated with the risk of future health outcomes in those with existing disease. Often, the prognostic ability of a factor is evaluated in multiple studies. However, meta-analysis is difficult because primary studies often use different methods of measurement and/or different cut-points to dichotomise continuous factors into 'high' and 'low' groups; selective reporting is also common. We illustrate how multivariate random effects meta-analysis models can accommodate multiple prognostic effect estimates from the same study, relating to multiple cut-points and/or methods of measurement. The models account for within-study and between-study correlations, which utilises more information and reduces the impact of unreported cut-points and/or measurement methods in some studies. The applicability of the approach is improved with individual participant data and by assuming a functional relationship between prognostic effect and cut-point to reduce the number of unknown parameters. The models provide important inferential results for each cut-point and method of measurement, including the summary prognostic effect, the between-study variance and a 95% prediction interval for the prognostic effect in new populations. Two applications are presented. The first reveals that, in a multivariate meta-analysis using published results, the Apgar score is prognostic of neonatal mortality but effect sizes are smaller at most cut-points than previously thought. In the second, a multivariate meta-analysis of two methods of measurement provides weak evidence that microvessel density is prognostic of mortality in lung cancer, even when individual participant data are available so that a continuous prognostic trend is examined (rather than cut-points). © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  11. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  12. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  13. Multivariate assessment of event-related potentials with the t-CWT method.

    PubMed

    Bostanov, Vladimir

    2015-11-05

    Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.

  14. Missing Data and Multiple Imputation in the Context of Multivariate Analysis of Variance

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…

  15. Bias and Precision of Measures of Association for a Fixed-Effect Multivariate Analysis of Variance Model

    ERIC Educational Resources Information Center

    Kim, Soyoung; Olejnik, Stephen

    2005-01-01

    The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…

  16. An improved method for bivariate meta-analysis when within-study correlations are unknown.

    PubMed

    Hong, Chuan; D Riley, Richard; Chen, Yong

    2018-03-01

    Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  18. Multivariate pattern analysis of fMRI: the early beginnings.

    PubMed

    Haxby, James V

    2012-08-15

    In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.

  20. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  1. MULTIVARIATE ANALYSES (CONONICAL CORRELATION AND PARTIAL LEAST SQUARE, PLS) TO MODEL AND ASSESS THE ASSOCIATION OF LANDSCAPE METRICS TO SURFACE WATER CHEMICAL AND BIOLOGICAL PROPERTIES USING SAVANNAH RIVER BASIN DATA.

    EPA Science Inventory

    Many multivariate methods are used in describing and predicting relation; each has its unique usage of categorical and non-categorical data. In multivariate analysis of variance (MANOVA), many response variables (y's) are related to many independent variables that are categorical...

  2. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  3. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.

  4. Evaluation of in-line Raman data for end-point determination of a coating process: Comparison of Science-Based Calibration, PLS-regression and univariate data analysis.

    PubMed

    Barimani, Shirin; Kleinebudde, Peter

    2017-10-01

    A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Salting-out assisted liquid-liquid extraction and partial least squares regression to assay low molecular weight polycyclic aromatic hydrocarbons leached from soils and sediments

    NASA Astrophysics Data System (ADS)

    Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise

    2017-02-01

    A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.

  6. The use of multivariate statistics in studies of wildlife habitat

    Treesearch

    David E. Capen

    1981-01-01

    This report contains edited and reviewed versions of papers presented at a workshop held at the University of Vermont in April 1980. Topics include sampling avian habitats, multivariate methods, applications, examples, and new approaches to analysis and interpretation.

  7. Rejection of Multivariate Outliers.

    DTIC Science & Technology

    1983-05-01

    available in Gnanadesikan (1977). 2 The motivation for the present investigation lies in a recent paper of Schvager and Margolin (1982) who derive a... Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York. [7] Hawkins, D.M. (1980). Identification of

  8. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure.

    PubMed

    D'Amico, E J; Neilands, T B; Zambarano, R

    2001-11-01

    Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.

  9. Analysis of Lard in Lipstick Formulation Using FTIR Spectroscopy and Multivariate Calibration: A Comparison of Three Extraction Methods.

    PubMed

    Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul

    2016-01-01

    Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm -1 with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R 2 ) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.

  10. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  11. Extending Inferential Group Analysis in Type 2 Diabetic Patients with Multivariate GLM Implemented in SPM8

    PubMed Central

    Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel

    2017-01-01

    Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571

  12. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S

    2016-03-01

    Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.

  14. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing.

    PubMed

    Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki

    2008-10-01

    The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with occurrence of nonunion (P < 0.05). Gustilo type and existence of deep infection were significantly correlated with healing time to union on multivariate analysis (r(2) = 0.263, P = 0.0001). Multivariate analyses for open tibial fractures treated with IMN showed that IMN after EF (especially in existence of pin site infection) was at high risk of deep infection, and that debridement within 6 h and appropriate soft-tissue managements were also important factor in preventing deep infections. These analyses postulated that both the Gustilo type and the existence of deep infection is related with fracture healing in open fractures treated with IMN. In addition, immediate IMN for type IIIB and IIIC is potentially risky, and canal reaming did not increase the risk of complication for open tibial fractures treated with IMN.

  15. A survey of variable selection methods in two Chinese epidemiology journals

    PubMed Central

    2010-01-01

    Background Although much has been written on developing better procedures for variable selection, there is little research on how it is practiced in actual studies. This review surveys the variable selection methods reported in two high-ranking Chinese epidemiology journals. Methods Articles published in 2004, 2006, and 2008 in the Chinese Journal of Epidemiology and the Chinese Journal of Preventive Medicine were reviewed. Five categories of methods were identified whereby variables were selected using: A - bivariate analyses; B - multivariable analysis; e.g. stepwise or individual significance testing of model coefficients; C - first bivariate analyses, followed by multivariable analysis; D - bivariate analyses or multivariable analysis; and E - other criteria like prior knowledge or personal judgment. Results Among the 287 articles that reported using variable selection methods, 6%, 26%, 30%, 21%, and 17% were in categories A through E, respectively. One hundred sixty-three studies selected variables using bivariate analyses, 80% (130/163) via multiple significance testing at the 5% alpha-level. Of the 219 multivariable analyses, 97 (44%) used stepwise procedures, 89 (41%) tested individual regression coefficients, but 33 (15%) did not mention how variables were selected. Sixty percent (58/97) of the stepwise routines also did not specify the algorithm and/or significance levels. Conclusions The variable selection methods reported in the two journals were limited in variety, and details were often missing. Many studies still relied on problematic techniques like stepwise procedures and/or multiple testing of bivariate associations at the 0.05 alpha-level. These deficiencies should be rectified to safeguard the scientific validity of articles published in Chinese epidemiology journals. PMID:20920252

  16. Application of the new Cross Recurrence Plots to multivariate data

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Romano, C.; Kurths, J.

    2003-04-01

    We extend and then apply the method of the new Cross Recurrence Plots (XRPs) to multivariate data. After introducing the new method we carry out an analysis of spatiotemporal ecological data. We compute not only the Rényi entropies and cross entropies by XRP, that allow to draw conclusions about the coupling of the systems, but also find a prediction horizon for intermediate time scales.

  17. Social Cognitive and Planned Behavior Variables Associated with Stages of Change for Physical Activity in Spinal Cord Injury: A Multivariate Analysis

    ERIC Educational Resources Information Center

    Keegan, John; Ditchman, Nicole; Dutta, Alo; Chiu, Chung-Yi; Muller, Veronica; Chan, Fong; Kundu, Madan

    2016-01-01

    Purpose: To apply the constructs of social cognitive theory (SCT) and the theory of planned behavior (TPB) to understand the stages of change (SOC) for physical activities among individuals with a spinal cord injury (SCI). Method: Ex post facto design using multivariate analysis of variance (MANOVA). The participants were 144 individuals with SCI…

  18. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  19. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  20. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    PubMed

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  1. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  2. Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.

    ERIC Educational Resources Information Center

    Raymond, Margaret; And Others

    1983-01-01

    Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…

  3. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  4. Variable Importance in Multivariate Group Comparisons.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Wisenbaker, Joseph M.

    1992-01-01

    Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)

  5. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals

    NASA Astrophysics Data System (ADS)

    Azami, Hamed; Escudero, Javier

    2017-01-01

    Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.

  6. Multivariate optimum interpolation of surface pressure and surface wind over oceans

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.; Baker, W. E.; Nestler, M. S.

    1984-01-01

    The present multivariate analysis method for surface pressure and winds incorporates ship wind observations into the analysis of surface pressure. For the specific case of 0000 GMT, on February 3, 1979, the additional data resulted in a global rms difference of 0.6 mb; individual maxima as larse as 5 mb occurred over the North Atlantic and East Pacific Oceans. These differences are noted to be smaller than the analysis increments to the first-guess fields.

  7. Stability indicating methods for the analysis of cefprozil in the presence of its alkaline induced degradation product

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-04-01

    Three simple, specific, accurate and precise spectrophotometric methods were developed for the determination of cefprozil (CZ) in the presence of its alkaline induced degradation product (DCZ). The first method was the bivariate method, while the two other multivariate methods were partial least squares (PLS) and spectral residual augmented classical least squares (SRACLS). The multivariate methods were applied with and without variable selection procedure (genetic algorithm GA). These methods were tested by analyzing laboratory prepared mixtures of the above drug with its alkaline induced degradation product and they were applied to its commercial pharmaceutical products.

  8. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  9. Multivariate geometry as an approach to algal community analysis

    USGS Publications Warehouse

    Allen, T.F.H.; Skagen, S.

    1973-01-01

    Multivariate analyses are put in the context of more usual approaches to phycological investigations. The intuitive common-sense involved in methods of ordination, classification and discrimination are emphasised by simple geometric accounts which avoid jargon and matrix algebra. Warnings are given that artifacts result from technique abuses by the naive or over-enthusiastic. An analysis of a simple periphyton data set is presented as an example of the approach. Suggestions are made as to situations in phycological investigations, where the techniques could be appropriate. The discipline is reprimanded for its neglect of the multivariate approach.

  10. Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.

    PubMed

    Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E

    2005-10-01

    As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.

  11. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  12. Family-Based Rare Variant Association Analysis: A Fast and Efficient Method of Multivariate Phenotype Association Analysis.

    PubMed

    Wang, Longfei; Lee, Sungyoung; Gim, Jungsoo; Qiao, Dandi; Cho, Michael; Elston, Robert C; Silverman, Edwin K; Won, Sungho

    2016-09-01

    Family-based designs have been repeatedly shown to be powerful in detecting the significant rare variants associated with human diseases. Furthermore, human diseases are often defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based analyses may be very efficient in detecting associations with rare variants. However, few statistical methods implementing this strategy have been developed for family-based designs. In this report, we describe one such implementation: the multivariate family-based rare variant association tool (mFARVAT). mFARVAT is a quasi-likelihood-based score test for rare variant association analysis with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant on multiple phenotypes. Simulation results show that the proposed method is generally robust and efficient for various disease models, and we identify some promising candidate genes associated with chronic obstructive pulmonary disease. The software of mFARVAT is freely available at http://healthstat.snu.ac.kr/software/mfarvat/, implemented in C++ and supported on Linux and MS Windows. © 2016 WILEY PERIODICALS, INC.

  13. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  14. Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging.

    PubMed

    Falahati, Farshad; Westman, Eric; Simmons, Andrew

    2014-01-01

    Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.

  15. Exploratory Multivariate Analysis. A Graphical Approach.

    DTIC Science & Technology

    1981-01-01

    Gnanadesikan , 1977) but we feel that these should be used with great caution unless one really has good reason to believe that the data came from such a...are referred to Gnanadesikan (1977). The present author hopes that the convenience of a single summary or significance level will not deter his readers...fit of a harmonic model to meteorological data. (In preparation). Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate

  16. Optimization of Interior Permanent Magnet Motor by Quality Engineering and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Okada, Yukihiro; Kawase, Yoshihiro

    This paper has described the method of optimization based on the finite element method. The quality engineering and the multivariable analysis are used as the optimization technique. This optimizing method consists of two steps. At Step.1, the influence of parameters for output is obtained quantitatively, at Step.2, the number of calculation by the FEM can be cut down. That is, the optimal combination of the design parameters, which satisfies the required characteristic, can be searched for efficiently. In addition, this method is applied to a design of IPM motor to reduce the torque ripple. The final shape can maintain average torque and cut down the torque ripple 65%. Furthermore, the amount of permanent magnets can be reduced.

  17. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003

    NASA Astrophysics Data System (ADS)

    Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe

    2013-02-01

    Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.

  18. Comprehensive analysis of Polygoni Multiflori Radix of different geographical origins using ultra-high-performance liquid chromatography fingerprints and multivariate chemometric methods.

    PubMed

    Sun, Li-Li; Wang, Meng; Zhang, Hui-Jie; Liu, Ya-Nan; Ren, Xiao-Liang; Deng, Yan-Ru; Qi, Ai-Di

    2018-01-01

    Polygoni Multiflori Radix (PMR) is increasingly being used not just as a traditional herbal medicine but also as a popular functional food. In this study, multivariate chemometric methods and mass spectrometry were combined to analyze the ultra-high-performance liquid chromatograph (UPLC) fingerprints of PMR from six different geographical origins. A chemometric strategy based on multivariate curve resolution-alternating least squares (MCR-ALS) and three classification methods is proposed to analyze the UPLC fingerprints obtained. Common chromatographic problems, including the background contribution, baseline contribution, and peak overlap, were handled by the established MCR-ALS model. A total of 22 components were resolved. Moreover, relative species concentrations were obtained from the MCR-ALS model, which was used for multivariate classification analysis. Principal component analysis (PCA) and Ward's method have been applied to classify 72 PMR samples from six different geographical regions. The PCA score plot showed that the PMR samples fell into four clusters, which related to the geographical location and climate of the source areas. The results were then corroborated by Ward's method. In addition, according to the variance-weighted distance between cluster centers obtained from Ward's method, five components were identified as the most significant variables (chemical markers) for cluster discrimination. A counter-propagation artificial neural network has been applied to confirm and predict the effects of chemical markers on different samples. Finally, the five chemical markers were identified by UPLC-quadrupole time-of-flight mass spectrometer. Components 3, 12, 16, 18, and 19 were identified as 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside, emodin-8-O-β-d-glucopyranoside, emodin-8-O-(6'-O-acetyl)-β-d-glucopyranoside, emodin, and physcion, respectively. In conclusion, the proposed method can be applied for the comprehensive analysis of natural samples. Copyright © 2016. Published by Elsevier B.V.

  19. Application of multivariate statistical techniques in microbial ecology

    PubMed Central

    Paliy, O.; Shankar, V.

    2016-01-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791

  20. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  1. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  2. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression

    USDA-ARS?s Scientific Manuscript database

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly ...

  3. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  5. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    PubMed

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  6. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    PubMed

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  7. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.

    PubMed

    Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo

    2016-09-01

    The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.

  8. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir

    2017-06-01

    We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.

  9. New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares.

    PubMed

    Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic

    2016-12-01

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Multitaper, Causal Decomposition for Stochastic, Multivariate Time Series: Application to High-Frequency Calcium Imaging Data.

    PubMed

    Sornborger, Andrew T; Lauderdale, James D

    2016-11-01

    Neural data analysis has increasingly incorporated causal information to study circuit connectivity. Dimensional reduction forms the basis of most analyses of large multivariate time series. Here, we present a new, multitaper-based decomposition for stochastic, multivariate time series that acts on the covariance of the time series at all lags, C ( τ ), as opposed to standard methods that decompose the time series, X ( t ), using only information at zero-lag. In both simulated and neural imaging examples, we demonstrate that methods that neglect the full causal structure may be discarding important dynamical information in a time series.

  11. Improving Cluster Analysis with Automatic Variable Selection Based on Trees

    DTIC Science & Technology

    2014-12-01

    regression trees Daisy DISsimilAritY PAM partitioning around medoids PMA penalized multivariate analysis SPC sparse principal components UPGMA unweighted...unweighted pair-group average method ( UPGMA ). This method measures dissimilarities between all objects in two clusters and takes the average value

  12. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    NASA Astrophysics Data System (ADS)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  13. Nontargeted, Rapid Screening of Extra Virgin Olive Oil Products for Authenticity Using Near-Infrared Spectroscopy in Combination with Conformity Index and Multivariate Statistical Analyses.

    PubMed

    Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M

    2016-10-01

    A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  15. [A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis].

    PubMed

    Wang, Jinjia; Zhang, Yanna

    2015-02-01

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.

  16. Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition

    PubMed Central

    Lv, Yong; Song, Gangbing

    2018-01-01

    Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510

  17. Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition.

    PubMed

    Yuan, Rui; Lv, Yong; Song, Gangbing

    2018-04-16

    Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.

  18. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  19. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    PubMed Central

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  20. Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM

    ERIC Educational Resources Information Center

    Mair, Patrick; Satorra, Albert; Bentler, Peter M.

    2012-01-01

    This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…

  1. Early Numeracy Intervention: Does Quantity Discrimination Really Work?

    ERIC Educational Resources Information Center

    Hansmann, Paul

    2013-01-01

    Scope and Method of Study: The current study demonstrates that a taped problem intervention is an effective tool for increasing the early numeracy skill of QD. A taped problems intervention was used with two variations of the quantity discrimination measure (triangle and traditional). A 3x2 doubly multivariate multivariate analysis of variance was…

  2. Avoiding hard chromatographic segmentation: A moving window approach for the automated resolution of gas chromatography-mass spectrometry-based metabolomics signals by multivariate methods.

    PubMed

    Domingo-Almenara, Xavier; Perera, Alexandre; Brezmes, Jesus

    2016-11-25

    Gas chromatography-mass spectrometry (GC-MS) produces large and complex datasets characterized by co-eluted compounds and at trace levels, and with a distinct compound ion-redundancy as a result of the high fragmentation by the electron impact ionization. Compounds in GC-MS can be resolved by taking advantage of the multivariate nature of GC-MS data by applying multivariate resolution methods. However, multivariate methods have to be applied in small regions of the chromatogram, and therefore chromatograms are segmented prior to the application of the algorithms. The automation of this segmentation process is a challenging task as it implies separating between informative data and noise from the chromatogram. This study demonstrates the capabilities of independent component analysis-orthogonal signal deconvolution (ICA-OSD) and multivariate curve resolution-alternating least squares (MCR-ALS) with an overlapping moving window implementation to avoid the typical hard chromatographic segmentation. Also, after being resolved, compounds are aligned across samples by an automated alignment algorithm. We evaluated the proposed methods through a quantitative analysis of GC-qTOF MS data from 25 serum samples. The quantitative performance of both moving window ICA-OSD and MCR-ALS-based implementations was compared with the quantification of 33 compounds by the XCMS package. Results shown that most of the R 2 coefficients of determination exhibited a high correlation (R 2 >0.90) in both ICA-OSD and MCR-ALS moving window-based approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Multivariate Tensor-based Morphometry on Surfaces: Application to Mapping Ventricular Abnormalities in HIV/AIDS

    PubMed Central

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560

  4. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Augmented classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  6. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  7. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  8. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis.

    PubMed

    Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong

    2018-02-27

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  9. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    PubMed Central

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  10. [Analysis of variance of repeated data measured by water maze with SPSS].

    PubMed

    Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang

    2007-01-01

    To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P

  11. Chromatography methods and chemometrics for determination of milk fat adulterants

    NASA Astrophysics Data System (ADS)

    Trbović, D.; Petronijević, R.; Đorđević, V.

    2017-09-01

    Milk and milk-based products are among the leading food categories according to reported cases of food adulteration. Although many authentication problems exist in all areas of the food industry, adequate control methods are required to evaluate the authenticity of milk and milk products in the dairy industry. Moreover, gas chromatography (GC) analysis of triacylglycerols (TAGs) or fatty acid (FA) profiles of milk fat (MF) in combination with multivariate statistical data processing have been used to detect adulterations of milk and dairy products with foreign fats. The adulteration of milk and butter is a major issue for the dairy industry. The major adulterants of MF are vegetable oils (soybean, sunflower, groundnut, coconut, palm and peanut oil) and animal fat (cow tallow and pork lard). Multivariate analysis enables adulterated MF to be distinguished from authentic MF, while taking into account many analytical factors. Various multivariate analysis methods have been proposed to quantitatively detect levels of adulterant non-MFs, with multiple linear regression (MLR) seemingly the most suitable. There is a need for increased use of chemometric data analyses to detect adulterated MF in foods and for their expanded use in routine quality assurance testing.

  12. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  14. Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis

    PubMed Central

    Xu, Rui; Zhen, Zonglei; Liu, Jia

    2010-01-01

    Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081

  15. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio

    2018-01-01

    The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.

  16. Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1985-01-01

    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.

  17. Multivariate Analysis and Prediction of Dioxin-Furan ...

    EPA Pesticide Factsheets

    Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE

  18. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool

    PubMed Central

    Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi

    2016-01-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405

  19. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool.

    PubMed

    Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi

    2015-11-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.

  20. A comparative study of multivariable robustness analysis methods as applied to integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Lovell, T. A.; Schmidt, David K.

    1993-01-01

    Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.

  1. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  3. Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-)ESI/MS and RPLC/UV data: Application on green tea extracts.

    PubMed

    Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A

    2016-08-01

    The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Extending Inferential Group Analysis in Type 2 Diabetic Patients with Multivariate GLM Implemented in SPM8.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel

    2017-01-01

    Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.

  5. Application of multivariate statistical techniques in microbial ecology.

    PubMed

    Paliy, O; Shankar, V

    2016-03-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.

  6. PYCHEM: a multivariate analysis package for python.

    PubMed

    Jarvis, Roger M; Broadhurst, David; Johnson, Helen; O'Boyle, Noel M; Goodacre, Royston

    2006-10-15

    We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines. http://sourceforge.net/projects/pychem

  7. Borrowing of strength and study weights in multivariate and network meta-analysis.

    PubMed

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2017-12-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).

  8. Borrowing of strength and study weights in multivariate and network meta-analysis

    PubMed Central

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2016-01-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254

  9. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  10. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  11. An Individualized Student Term Project for Multivariate Calculus

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2004-01-01

    In this article, the author describes an individualized term project that is designed to increase student understanding of some of the major concepts and methods in multivariate calculus. The project involves having each student conduct a complete max-min analysis of a third degree polynomial in x and y that is based on his or her social security…

  12. Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait

    PubMed Central

    Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.

    2003-01-01

    Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094

  13. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis.

    PubMed

    Nespeca, Maurilio Gustavo; Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000-650 cm -1 . The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.

  14. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis

    PubMed Central

    Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time. PMID:29629209

  15. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    PubMed Central

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after 1H NMR spectroscopy. Results. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at −20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Conclusion. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions. PMID:23865070

  16. NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES

    PubMed Central

    He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.

    2017-01-01

    Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225

  17. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  18. Determination of five active compounds in Artemisia princeps and A. capillaris based on UPLC-DAD and discrimination of two species with multivariate analysis.

    PubMed

    Yang, Heejung; Lee, Dong Young; Jeon, Minji; Suh, Youngbae; Sung, Sang Hyun

    2014-05-01

    Five active compounds, chlorogenic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, jaceosidin, and eupatilin, in Artemisia princeps (Compositae) were simultaneously determined by ultra-performance liquid chromatography connected to diode array detector. The morphological resemblance between A. princeps and A. capillaris makes it difficult to properly identify species properly. It occasionally leads to misuse or misapplication in Korean traditional medicine. In the study, the discrimination between A. princeps and A. capillaris was optimally performed by the developed validation method, which resulted in definitely a difference between two species. Also, it was developed the most reliable markers contributing to the discrimination of two species by the multivariate analysis methods, such as a principal component analysis and a partial least squares discrimination analysis.

  19. Fast discrimination of hydroxypropyl methyl cellulose using portable Raman spectrometer and multivariate methods

    NASA Astrophysics Data System (ADS)

    Song, Biao; Lu, Dan; Peng, Ming; Li, Xia; Zou, Ye; Huang, Meizhen; Lu, Feng

    2017-02-01

    Raman spectroscopy is developed as a fast and non-destructive method for the discrimination and classification of hydroxypropyl methyl cellulose (HPMC) samples. 44 E series and 41 K series of HPMC samples are measured by a self-developed portable Raman spectrometer (Hx-Raman) which is excited by a 785 nm diode laser and the spectrum range is 200-2700 cm-1 with a resolution (FWHM) of 6 cm-1. Multivariate analysis is applied for discrimination of E series from K series. By methods of principal components analysis (PCA) and Fisher discriminant analysis (FDA), a discrimination result with sensitivity of 90.91% and specificity of 95.12% is achieved. The corresponding receiver operating characteristic (ROC) is 0.99, indicting the accuracy of the predictive model. This result demonstrates the prospect of portable Raman spectrometer for rapid, non-destructive classification and discrimination of E series and K series samples of HPMC.

  20. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  1. Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.

    PubMed

    Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O

    2015-10-01

    Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.

  2. Complex numbers in chemometrics: examples from multivariate impedance measurements on lipid monolayers.

    PubMed

    Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta

    2007-07-09

    Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.

  3. Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods.

    PubMed

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Pérez-Castaño, Estefanía; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phase LC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis took only 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil were used: one input-class, two input-class, and pseudo two input-class.

  4. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol

    NASA Astrophysics Data System (ADS)

    Yehia, Ali M.; Mohamed, Heba M.

    2016-01-01

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.

  5. Integration of multivariate empirical mode decomposition and independent component analysis for fetal ECG separation from abdominal signals.

    PubMed

    Thanaraj, Palani; Roshini, Mable; Balasubramanian, Parvathavarthini

    2016-11-14

    The fetal electrocardiogram (FECG) signals are essential to monitor the health condition of the baby. Fetal heart rate (FHR) is commonly used for diagnosing certain abnormalities in the formation of the heart. Usually, non-invasive abdominal electrocardiogram (AbECG) signals are obtained by placing surface electrodes in the abdomen region of the pregnant woman. AbECG signals are often not suitable for the direct analysis of fetal heart activity. Moreover, the strength and magnitude of the FECG signals are low compared to the maternal electrocardiogram (MECG) signals. The MECG signals are often superimposed with the FECG signals that make the monitoring of FECG signals a difficult task. Primary goal of the paper is to separate the fetal electrocardiogram (FECG) signals from the unwanted maternal electrocardiogram (MECG) signals. A multivariate signal processing procedure is proposed here that combines the Multivariate Empirical Mode Decomposition (MEMD) and Independent Component Analysis (ICA). The proposed method is evaluated with clinical abdominal signals taken from three pregnant women (N= 3) recorded during the 38-41 weeks of the gestation period. The number of fetal R-wave detected (NEFQRS), the number of unwanted maternal peaks (NMQRS), the number of undetected fetal R-wave (NUFQRS) and the FHR detection accuracy quantifies the performance of our method. Clinical investigation with three test subjects shows an overall detection accuracy of 92.8%. Comparative analysis with benchmark signal processing method such as ICA suggests the noteworthy performance of our method.

  6. Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products.

    PubMed

    Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena

    2007-11-05

    A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.

  7. Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data

    ERIC Educational Resources Information Center

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.

    2012-01-01

    We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…

  8. Application of Concepts from Cross-Recurrence Analysis in Speech Production: An Overview and Comparison with Other Nonlinear Methods

    ERIC Educational Resources Information Center

    Lancia, Leonardo; Fuchs, Susanne; Tiede, Mark

    2014-01-01

    Purpose: The aim of this article was to introduce an important tool, cross-recurrence analysis, to speech production applications by showing how it can be adapted to evaluate the similarity of multivariate patterns of articulatory motion. The method differs from classical applications of cross-recurrence analysis because no phase space…

  9. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 1: MARS System and Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.

    1974-01-01

    A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.

  10. Spatial compression algorithm for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  11. Analysis of Developmental Data: Comparison Among Alternative Methods

    ERIC Educational Resources Information Center

    Wilson, Ronald S.

    1975-01-01

    To examine the ability of the correction factor epsilon to counteract statistical bias in univariate analysis, an analysis of variance (adjusted by epsilon) and a multivariate analysis of variance were performed on the same data. The results indicated that univariate analysis is a fully protected design when used with epsilon. (JMB)

  12. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.

    PubMed

    Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin

    2015-04-01

    Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  13. Origin Discrimination of Osmanthus fragrans var. thunbergii Flowers using GC-MS and UPLC-PDA Combined with Multivariable Analysis Methods.

    PubMed

    Zhou, Fei; Zhao, Yajing; Peng, Jiyu; Jiang, Yirong; Li, Maiquan; Jiang, Yuan; Lu, Baiyi

    2017-07-01

    Osmanthus fragrans flowers are used as folk medicine and additives for teas, beverages and foods. The metabolites of O. fragrans flowers from different geographical origins were inconsistent in some extent. Chromatography and mass spectrometry combined with multivariable analysis methods provides an approach for discriminating the origin of O. fragrans flowers. To discriminate the Osmanthus fragrans var. thunbergii flowers from different origins with the identified metabolites. GC-MS and UPLC-PDA were conducted to analyse the metabolites in O. fragrans var. thunbergii flowers (in total 150 samples). Principal component analysis (PCA), soft independent modelling of class analogy analysis (SIMCA) and random forest (RF) analysis were applied to group the GC-MS and UPLC-PDA data. GC-MS identified 32 compounds common to all samples while UPLC-PDA/QTOF-MS identified 16 common compounds. PCA of the UPLC-PDA data generated a better clustering than PCA of the GC-MS data. Ten metabolites (six from GC-MS and four from UPLC-PDA) were selected as effective compounds for discrimination by PCA loadings. SIMCA and RF analysis were used to build classification models, and the RF model, based on the four effective compounds (caffeic acid derivative, acteoside, ligustroside and compound 15), yielded better results with the classification rate of 100% in the calibration set and 97.8% in the prediction set. GC-MS and UPLC-PDA combined with multivariable analysis methods can discriminate the origin of Osmanthus fragrans var. thunbergii flowers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis

    USGS Publications Warehouse

    McKenna, J.E.

    2003-01-01

    The biosphere is filled with complex living patterns and important questions about biodiversity and community and ecosystem ecology are concerned with structure and function of multispecies systems that are responsible for those patterns. Cluster analysis identifies discrete groups within multivariate data and is an effective method of coping with these complexities, but often suffers from subjective identification of groups. The bootstrap testing method greatly improves objective significance determination for cluster analysis. The BOOTCLUS program makes cluster analysis that reliably identifies real patterns within a data set more accessible and easier to use than previously available programs. A variety of analysis options and rapid re-analysis provide a means to quickly evaluate several aspects of a data set. Interpretation is influenced by sampling design and a priori designation of samples into replicate groups, and ultimately relies on the researcher's knowledge of the organisms and their environment. However, the BOOTCLUS program provides reliable, objectively determined groupings of multivariate data.

  15. Atrial Electrogram Fractionation Distribution before and after Pulmonary Vein Isolation in Human Persistent Atrial Fibrillation-A Retrospective Multivariate Statistical Analysis.

    PubMed

    Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André

    2017-01-01

    Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.

  16. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    PubMed

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  17. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Multiple imputation for handling missing outcome data when estimating the relative risk.

    PubMed

    Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B

    2017-09-06

    Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.

  19. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation.

    PubMed

    Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai

    2017-10-01

    Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.

  20. Estimation of railroad capacity using parametric methods.

    DOT National Transportation Integrated Search

    2013-12-01

    This paper reviews different methodologies used for railroad capacity estimation and presents a user-friendly method to measure capacity. The objective of this paper is to use multivariate regression analysis to develop a continuous relation of the d...

  1. Portable XRF and principal component analysis for bill characterization in forensic science.

    PubMed

    Appoloni, C R; Melquiades, F L

    2014-02-01

    Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  3. Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics

    PubMed Central

    Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven

    2011-01-01

    Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957

  4. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  5. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    PubMed

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  6. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    PubMed

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Quality evaluation of American ginseng using UPLC coupled with multivariate analysis].

    PubMed

    Tang, Yan; Yan, Shu-Mo; Wang, Jing-Jing; Yuan, Yuan; Yang, Bin

    2016-05-01

    An ultra performance liquid chromatography (UPLC)method combined with multivariate data analysis was developed to evaluate the quality of American ginseng by simultaneously determining the concentrations of six ginsenosides (Rg₁, Re, Rb₁, Rc, Ro and Rd)in the samples. For UPLC, acetonitrile with 0.01% formic acid and water with 0.01% formic acid were used as the mobile phase with gradient elution. Under the established chromatographic conditions, the six ginsenosides could be well separated and the results of linearity, stability, precision, repeatability, and recovery rate all reached the requirement of quantification analysis, respectively. The total contents of Rg₁, Re, and Rb₁ in 57 samples all reached the requirement of the 2015 edition of Chinese Pharmacopoeia. At the same time, the experimental data were analyzed by principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The crude drugs and the decoction pieces can be discriminated by a PCA method and the samples with different age can be distinguished by a PLS-DA method. Copyright© by the Chinese Pharmaceutical Association.

  8. Heuristics to Facilitate Understanding of Discriminant Analysis.

    ERIC Educational Resources Information Center

    Van Epps, Pamela D.

    This paper discusses the principles underlying discriminant analysis and constructs a simulated data set to illustrate its methods. Discriminant analysis is a multivariate technique for identifying the best combination of variables to maximally discriminate between groups. Discriminant functions are established on existing groups and used to…

  9. Functional Extended Redundancy Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Suk, Hye Won; Lee, Jang-Han; Moskowitz, D. S.; Lim, Jooseop

    2012-01-01

    We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous…

  10. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  11. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol.

    PubMed

    Yehia, Ali M; Mohamed, Heba M

    2016-01-05

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Multivariate survivorship analysis using two cross-sectional samples.

    PubMed

    Hill, M E

    1999-11-01

    As an alternative to survival analysis with longitudinal data, I introduce a method that can be applied when one observes the same cohort in two cross-sectional samples collected at different points in time. The method allows for the estimation of log-probability survivorship models that estimate the influence of multiple time-invariant factors on survival over a time interval separating two samples. This approach can be used whenever the survival process can be adequately conceptualized as an irreversible single-decrement process (e.g., mortality, the transition to first marriage among a cohort of never-married individuals). Using data from the Integrated Public Use Microdata Series (Ruggles and Sobek 1997), I illustrate the multivariate method through an investigation of the effects of race, parity, and educational attainment on the survival of older women in the United States.

  13. Comparison of Dissolution Similarity Assessment Methods for Products with Large Variations: f2 Statistics and Model-Independent Multivariate Confidence Region Procedure for Dissolution Profiles of Multiple Oral Products.

    PubMed

    Yoshida, Hiroyuki; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2017-01-01

    The current Japanese Ministry of Health Labour and Welfare (MHLW)'s Guideline for Bioequivalence Studies of Generic Products uses averaged dissolution rates for the assessment of dissolution similarity between test and reference formulations. This study clarifies how the application of model-independent multivariate confidence region procedure (Method B), described in the European Medical Agency and U.S. Food and Drug Administration guidelines, affects similarity outcomes obtained empirically from dissolution profiles with large variations in individual dissolution rates. Sixty-one datasets of dissolution profiles for immediate release, oral generic, and corresponding innovator products that showed large variation in individual dissolution rates in generic products were assessed on their similarity by using the f 2 statistics defined in the MHLW guidelines (MHLW f 2 method) and two different Method B procedures, including a bootstrap method applied with f 2 statistics (BS method) and a multivariate analysis method using the Mahalanobis distance (MV method). The MHLW f 2 and BS methods provided similar dissolution similarities between reference and generic products. Although a small difference in the similarity assessment may be due to the decrease in the lower confidence interval for expected f 2 values derived from the large variation in individual dissolution rates, the MV method provided results different from those obtained through MHLW f 2 and BS methods. Analysis of actual dissolution data for products with large individual variations would provide valuable information towards an enhanced understanding of these methods and their possible incorporation in the MHLW guidelines.

  14. Multivariable regression analysis of list experiment data on abortion: results from a large, randomly-selected population based study in Liberia.

    PubMed

    Moseson, Heidi; Gerdts, Caitlin; Dehlendorf, Christine; Hiatt, Robert A; Vittinghoff, Eric

    2017-12-21

    The list experiment is a promising measurement tool for eliciting truthful responses to stigmatized or sensitive health behaviors. However, investigators may be hesitant to adopt the method due to previously untestable assumptions and the perceived inability to conduct multivariable analysis. With a recently developed statistical test that can detect the presence of a design effect - the absence of which is a central assumption of the list experiment method - we sought to test the validity of a list experiment conducted on self-reported abortion in Liberia. We also aim to introduce recently developed multivariable regression estimators for the analysis of list experiment data, to explore relationships between respondent characteristics and having had an abortion - an important component of understanding the experiences of women who have abortions. To test the null hypothesis of no design effect in the Liberian list experiment data, we calculated the percentage of each respondent "type," characterized by response to the control items, and compared these percentages across treatment and control groups with a Bonferroni-adjusted alpha criterion. We then implemented two least squares and two maximum likelihood models (four total), each representing different bias-variance trade-offs, to estimate the association between respondent characteristics and abortion. We find no clear evidence of a design effect in list experiment data from Liberia (p = 0.18), affirming the first key assumption of the method. Multivariable analyses suggest a negative association between education and history of abortion. The retrospective nature of measuring lifetime experience of abortion, however, complicates interpretation of results, as the timing and safety of a respondent's abortion may have influenced her ability to pursue an education. Our work demonstrates that multivariable analyses, as well as statistical testing of a key design assumption, are possible with list experiment data, although with important limitations when considering lifetime measures. We outline how to implement this methodology with list experiment data in future research.

  15. Mathematical models for exploring different aspects of genotoxicity and carcinogenicity databases.

    PubMed

    Benigni, R; Giuliani, A

    1991-12-01

    One great obstacle to understanding and using the information contained in the genotoxicity and carcinogenicity databases is the very size of such databases. Their vastness makes them difficult to read; this leads to inadequate exploitation of the information, which becomes costly in terms of time, labor, and money. In its search for adequate approaches to the problem, the scientific community has, curiously, almost entirely neglected an existent series of very powerful methods of data analysis: the multivariate data analysis techniques. These methods were specifically designed for exploring large data sets. This paper presents the multivariate techniques and reports a number of applications to genotoxicity problems. These studies show how biology and mathematical modeling can be combined and how successful this combination is.

  16. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes

    PubMed Central

    2014-01-01

    Background Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. Methods The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Results Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Conclusions Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately. PMID:25047164

  17. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar.

    PubMed

    Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei

    2016-01-05

    An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Valuing the visual impact of wind farms: A calculus method for synthesizing choice experiments studies.

    PubMed

    Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy

    2018-05-06

    Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.

  19. Multivariate analysis of PRISMA optimized TLC image for predicting antioxidant activity and identification of contributing compounds from Pereskia bleo.

    PubMed

    Sharif, K M; Rahman, M M; Azmir, J; Khatib, A; Sabina, E; Shamsudin, S H; Zaidul, I S M

    2015-12-01

    Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed. Copyright © 2015 John Wiley & Sons, Ltd.

  20. [Methods of the multivariate statistical analysis of so-called polyetiological diseases using the example of coronary heart disease].

    PubMed

    Lifshits, A M

    1979-01-01

    General characteristics of the multivariate statistical analysis (MSA) is given. Methodical premises and criteria for the selection of an adequate MSA method applicable to pathoanatomic investigations of the epidemiology of multicausal diseases are presented. The experience of using MSA with computors and standard computing programs in studies of coronary arteries aterosclerosis on the materials of 2060 autopsies is described. The combined use of 4 MSA methods: sequential, correlational, regressional, and discriminant permitted to quantitate the contribution of each of the 8 examined risk factors in the development of aterosclerosis. The most important factors were found to be the age, arterial hypertension, and heredity. Occupational hypodynamia and increased fatness were more important in men, whereas diabetes melitus--in women. The registration of this combination of risk factors by MSA methods provides for more reliable prognosis of the likelihood of coronary heart disease with a fatal outcome than prognosis of the degree of coronary aterosclerosis.

  1. Multivariable nonlinear analysis of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2003-05-01

    We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.

  2. Sampling methods for the study of volatile profile of PDO wine vinegars. A comparison using multivariate data analysis.

    PubMed

    Ríos-Reina, Rocío; Morales, M Lourdes; García-González, Diego L; Amigo, José M; Callejón, Raquel M

    2018-03-01

    High-quality wine vinegars have been registered in Spain under protected designation of origin (PDO): "Vinagre de Jerez", "Vinagre de Condado de Huelva" and "Vinagre de Montilla-Moriles". The raw material, production and aging processes determine their quality and their aromatic composition. Vinegar volatile profile is usually analyzed by gas chromatography-mass spectrometry (GC-MS), being necessary a previous extraction step. Thus, three different sampling methods (Headspace solid phase microextraction "HS-SPME", Headspace stir bar sorptive extraction "HSSE" and Dynamic headspace extraction "DHS") were studied for the analysis of the volatile composition of Spanish PDO wine vinegars. Multivariate curve resolution (MCR) was used to solve chromatographic problems, improving the results obtained. Principal component analysis (PCA) showed that not all the sampling methods were equally suitable for the characterization and differentiation between PDOs and categories, being HSSE the technique that made able the best vinegar characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hierarchical multivariate covariance analysis of metabolic connectivity.

    PubMed

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  4. Method for factor analysis of GC/MS data

    DOEpatents

    Van Benthem, Mark H; Kotula, Paul G; Keenan, Michael R

    2012-09-11

    The method of the present invention provides a fast, robust, and automated multivariate statistical analysis of gas chromatography/mass spectroscopy (GC/MS) data sets. The method can involve systematic elimination of undesired, saturated peak masses to yield data that follow a linear, additive model. The cleaned data can then be subjected to a combination of PCA and orthogonal factor rotation followed by refinement with MCR-ALS to yield highly interpretable results.

  5. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    PubMed

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  6. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  7. Multivariate Longitudinal Methods for Studying Developmental Relationships between Depression and Academic Achievement

    ERIC Educational Resources Information Center

    Grimm, Kevin J.

    2007-01-01

    Recent advances in methods and computer software for longitudinal data analysis have pushed researchers to more critically examine developmental theories. In turn, researchers have also begun to push longitudinal methods by asking more complex developmental questions. One such question involves the relationships between two developmental…

  8. Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.

    2017-05-01

    Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.

  9. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

    PubMed

    Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

    2017-02-01

    Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Identifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales

    PubMed Central

    Williams, L. Keoki; Buu, Anne

    2017-01-01

    We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206

  11. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun

    2018-02-01

    It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.

  12. An Extension of Multiple Correspondence Analysis for Identifying Heterogeneous Subgroups of Respondents

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Montreal, Hec; Dillon, William R.; Takane, Yoshio

    2006-01-01

    An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…

  13. Simultaneous Two-Way Clustering of Multiple Correspondence Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Dillon, William R.

    2010-01-01

    A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…

  14. Python Spectral Analysis Tool (PySAT) for Preprocessing, Multivariate Analysis, and Machine Learning with Point Spectra

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Finch, N.; Clegg, S.; Graff, T.; Morris, R. V.; Laura, J.

    2017-06-01

    We present a Python-based library and graphical interface for the analysis of point spectra. The tool is being developed with a focus on methods used for ChemCam data, but is flexible enough to handle spectra from other instruments.

  15. Detecting Outliers in Factor Analysis Using the Forward Search Algorithm

    ERIC Educational Resources Information Center

    Mavridis, Dimitris; Moustaki, Irini

    2008-01-01

    In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani,…

  16. Multivariate Welch t-test on distances

    PubMed Central

    2016-01-01

    Motivation: Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns visualized through dimension reduction. This method recognizes that pairwise distance matrix between observations is sufficient to compute within and between group sums of squares necessary to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used. This method, however, suffers from loss of power and type I error inflation in the presence of heteroscedasticity and sample size imbalances. Results: We develop a solution in the form of a distance-based Welch t-test, TW2, for two sample potentially unbalanced and heteroscedastic data. We demonstrate empirically the desirable type I error and power characteristics of the new test. We compare the performance of PERMANOVA and TW2 in reanalysis of two existing microbiome datasets, where the methodology has originated. Availability and Implementation: The source code for methods and analysis of this article is available at https://github.com/alekseyenko/Tw2. Further guidance on application of these methods can be obtained from the author. Contact: alekseye@musc.edu PMID:27515741

  17. Multivariate Welch t-test on distances.

    PubMed

    Alekseyenko, Alexander V

    2016-12-01

    Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns visualized through dimension reduction. This method recognizes that pairwise distance matrix between observations is sufficient to compute within and between group sums of squares necessary to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used. This method, however, suffers from loss of power and type I error inflation in the presence of heteroscedasticity and sample size imbalances. We develop a solution in the form of a distance-based Welch t-test, [Formula: see text], for two sample potentially unbalanced and heteroscedastic data. We demonstrate empirically the desirable type I error and power characteristics of the new test. We compare the performance of PERMANOVA and [Formula: see text] in reanalysis of two existing microbiome datasets, where the methodology has originated. The source code for methods and analysis of this article is available at https://github.com/alekseyenko/Tw2 Further guidance on application of these methods can be obtained from the author. alekseye@musc.edu. © The Author 2016. Published by Oxford University Press.

  18. Combination of multivariate curve resolution and multivariate classification techniques for comprehensive high-performance liquid chromatography-diode array absorbance detection fingerprints analysis of Salvia reuterana extracts.

    PubMed

    Hakimzadeh, Neda; Parastar, Hadi; Fattahi, Mohammad

    2014-01-24

    In this study, multivariate curve resolution (MCR) and multivariate classification methods are proposed to develop a new chemometric strategy for comprehensive analysis of high-performance liquid chromatography-diode array absorbance detection (HPLC-DAD) fingerprints of sixty Salvia reuterana samples from five different geographical regions. Different chromatographic problems occurred during HPLC-DAD analysis of S. reuterana samples, such as baseline/background contribution and noise, low signal-to-noise ratio (S/N), asymmetric peaks, elution time shifts, and peak overlap are handled using the proposed strategy. In this way, chromatographic fingerprints of sixty samples are properly segmented to ten common chromatographic regions using local rank analysis and then, the corresponding segments are column-wise augmented for subsequent MCR analysis. Extended multivariate curve resolution-alternating least squares (MCR-ALS) is used to obtain pure component profiles in each segment. In general, thirty-one chemical components were resolved using MCR-ALS in sixty S. reuterana samples and the lack of fit (LOF) values of MCR-ALS models were below 10.0% in all cases. Pure spectral profiles are considered for identification of chemical components by comparing their resolved spectra with the standard ones and twenty-four components out of thirty-one components were identified. Additionally, pure elution profiles are used to obtain relative concentrations of chemical components in different samples for multivariate classification analysis by principal component analysis (PCA) and k-nearest neighbors (kNN). Inspection of the PCA score plot (explaining 76.1% of variance accounted for three PCs) showed that S. reuterana samples belong to four clusters. The degree of class separation (DCS) which quantifies the distance separating clusters in relation to the scatter within each cluster is calculated for four clusters and it was in the range of 1.6-5.8. These results are then confirmed by kNN. In addition, according to the PCA loading plot and kNN dendrogram of thirty-one variables, five chemical constituents of luteolin-7-o-glucoside, salvianolic acid D, rosmarinic acid, lithospermic acid and trijuganone A are identified as the most important variables (i.e., chemical markers) for clusters discrimination. Finally, the effect of different chemical markers on samples differentiation is investigated using counter-propagation artificial neural network (CP-ANN) method. It is concluded that the proposed strategy can be successfully applied for comprehensive analysis of chromatographic fingerprints of complex natural samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario

    NASA Astrophysics Data System (ADS)

    Ghanate, A. D.; Kothiwale, S.; Singh, S. P.; Bertrand, Dominique; Krishna, C. Murali

    2011-02-01

    Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity. The performance of other methods such as factorial discriminant analysis and partial least square discriminant analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination under complex conditions such as the multicancer scenario.

  20. Detecting spatio-temporal modes in multivariate data by entropy field decomposition

    NASA Astrophysics Data System (ADS)

    Frank, Lawrence R.; Galinsky, Vitaly L.

    2016-09-01

    A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESPs). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and nonlinear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging.

  1. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A Review of Multivariate Methods for Multimodal Fusion of Brain Imaging Data

    PubMed Central

    Adali, Tülay; Yu, Qingbao; Calhoun, Vince D.

    2011-01-01

    The development of various neuroimaging techniques is rapidly improving the measurements of brain function/structure. However, despite improvements in individual modalities, it is becoming increasingly clear that the most effective research approaches will utilize multi-modal fusion, which takes advantage of the fact that each modality provides a limited view of the brain. The goal of multimodal fusion is to capitalize on the strength of each modality in a joint analysis, rather than a separate analysis of each. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions from high dimensional data with a limited number of subjects. Numerous research efforts have been reported in the field based on various statistical approaches, e.g. independent component analysis (ICA), canonical correlation analysis (CCA) and partial least squares (PLS). In this review paper, we survey a number of multivariate methods appearing in previous reports, which are performed with or without prior information and may have utility for identifying potential brain illness biomarkers. We also discuss the possible strengths and limitations of each method, and review their applications to brain imaging data. PMID:22108139

  3. Multivariate Optimization for Extraction of Pyrethroids in Milk and Validation for GC-ECD and CG-MS/MS Analysis

    PubMed Central

    Zanchetti Meneghini, Leonardo; Rübensam, Gabriel; Claudino Bica, Vinicius; Ceccon, Amanda; Barreto, Fabiano; Flores Ferrão, Marco; Bergold, Ana Maria

    2014-01-01

    A simple and inexpensive method based on solvent extraction followed by low temperature clean-up was applied for determination of seven pyrethroids residues in bovine raw milk using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) and gas chromatography with electron-capture detector (GC-ECD). Sample extraction procedure was established through the evaluation of seven different extraction protocols, evaluated in terms of analyte recovery and cleanup efficiency. Sample preparation optimization was based on Doehlert design using fifteen runs with three different variables. Response surface methodologies and polynomial analysis were used to define the best extraction conditions. Method validation was carried out based on SANCO guide parameters and assessed by multivariate analysis. Method performance was considered satisfactory since mean recoveries were between 87% and 101% for three distinct concentrations. Accuracy and precision were lower than ±20%, and led to no significant differences (p < 0.05) between results obtained by GC-ECD and GC-MS/MS techniques. The method has been applied to routine analysis for determination of pyrethroid residues in bovine raw milk in the Brazilian National Residue Control Plan since 2013, in which a total of 50 samples were analyzed. PMID:25380457

  4. Implementation of physicochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration.

    PubMed

    Arvanitoyannis, Ioannis S; Vlachos, Antonios

    2007-01-01

    The authenticity of products labeled as olive oils, and in particular as virgin olive oils, stands for a very important issue both in terms of its health and commercial aspects. In view of the continuously increasing interest in virgin olive oil therapeutic properties, the traditional methods of characterization and physical and sensory analysis were further enriched with more advanced and sophisticated methods such as HPLC-MS, HPLC-GC/C/IRMS, RPLC-GC, DEPT, and CSIA among others. The results of both traditional and "novel" methods were treated both by means of classical multivariate analysis (cluster, principal component, correspondence, canonical, and discriminant) and artificial intelligence methods showing that nowadays the adulteration of virgin olive oil with seed oil is detectable at very low percentages, sometimes even at less than 1%. Furthermore, the detection of geographical origin of olive oil is equally feasible and much more accurate in countries like Italy and Spain where databases of physical/chemical properties exist. However, this geographical origin classification can also be accomplished in the absence of such databases provided that an adequate number of oil samples are used and the parameters studied have "discriminating power."

  5. Why Multivariate Methods Are Usually Vital in Research: Some Basic Concepts.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    The present paper suggests that multivariate methods ought to be used more frequently in behavioral research and explores the potential consequences of failing to use multivariate methods when these methods are appropriate. The paper explores in detail two reasons why multivariate methods are usually vital. The first is that they limit the…

  6. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    NASA Astrophysics Data System (ADS)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  7. Discrimination of inflammatory bowel disease using Raman spectroscopy and linear discriminant analysis methods

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong

    2016-03-01

    Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.

  8. Combining Correlation Matrices: Simulation Analysis of Improved Fixed-Effects Methods

    ERIC Educational Resources Information Center

    Hafdahl, Adam R.

    2007-01-01

    The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…

  9. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Campredon, R.; Abrao, J. J.; Bernat, M.; Latouche, C.

    1994-06-01

    In the last decade, the Atlantic coast of south-eastern Brazil has been affected by increasing deforestation and anthropogenic effluents. Sediments in the coastal lagoons have recorded the process of such environmental change. Thirty-seven sediment samples from three cores in Piratininga Lagoon, Rio de Janeiro, were analyzed for their major components and minor element concentrations in order to examine geochemical characteristics and the depositional environment and to investigate the variation of heavy metals of environmental concern. Two multivariate analysis methods, principal component analysis and cluster analysis, were performed on the analytical data set to help visualize the sample clusters and the element associations. On the whole, the sediment samples from each core are similar and the sample clusters corresponding to the three cores are clearly separated, as a result of the different conditions of sedimentation. Some changes in the depositional environment are recognized using the results of multivariate analysis. The enrichment of Pb, Cu, and Zn in the upper parts of cores is in agreement with increasing anthropogenic influx (pollution).

  10. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  11. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  12. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses.

    PubMed

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-12-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  13. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    PubMed

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  14. Independent Predictors of Prognosis Based on Oral Cavity Squamous Cell Carcinoma Surgical Margins.

    PubMed

    Buchakjian, Marisa R; Ginader, Timothy; Tasche, Kendall K; Pagedar, Nitin A; Smith, Brian J; Sperry, Steven M

    2018-05-01

    Objective To conduct a multivariate analysis of a large cohort of oral cavity squamous cell carcinoma (OCSCC) cases for independent predictors of local recurrence (LR) and overall survival (OS), with emphasis on the relationship between (1) prognosis and (2) main specimen permanent margins and intraoperative tumor bed frozen margins. Study Design Retrospective cohort study. Setting Tertiary academic head and neck cancer program. Subjects and Methods This study included 426 patients treated with OCSCC resection between 2005 and 2014 at University of Iowa Hospitals and Clinics. Patients underwent excision of OCSCC with intraoperative tumor bed frozen margin sampling and main specimen permanent margin assessment. Multivariate analysis of the data set to predict LR and OS was performed. Results Independent predictors of LR included nodal involvement, histologic grade, and main specimen permanent margin status. Specifically, the presence of a positive margin (odds ratio, 6.21; 95% CI, 3.3-11.9) or <1-mm/carcinoma in situ margin (odds ratio, 2.41; 95% CI, 1.19-4.87) on the main specimen was an independent predictor of LR, whereas intraoperative tumor bed margins were not predictive of LR on multivariate analysis. Similarly, independent predictors of OS on multivariate analysis included nodal involvement, extracapsular extension, and a positive main specimen margin. Tumor bed margins did not independently predict OS. Conclusion The main specimen margin is a strong independent predictor of LR and OS on multivariate analysis. Intraoperative tumor bed frozen margins do not independently predict prognosis. We conclude that emphasis should be placed on evaluating the main specimen margins when estimating prognosis after OCSCC resection.

  15. Identifying pleiotropic genes in genome-wide association studies from related subjects using the linear mixed model and Fisher combination function.

    PubMed

    Yang, James J; Williams, L Keoki; Buu, Anne

    2017-08-24

    A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.

  16. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  17. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    USGS Publications Warehouse

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  18. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  19. LIKELIHOOD RATIO TESTS OF HYPOTHESES ON MULTIVARIATE POPULATIONS, VOLUME II, TEST OF HYPOTHESIS--STATISTICAL MODELS FOR THE EVALUATION AND INTERPRETATION OF EDUCATIONAL CRITERIA. PART 4.

    ERIC Educational Resources Information Center

    SAW, J.G.

    THIS PAPER DEALS WITH SOME TESTS OF HYPOTHESIS FREQUENTLY ENCOUNTERED IN THE ANALYSIS OF MULTIVARIATE DATA. THE TYPE OF HYPOTHESIS CONSIDERED IS THAT WHICH THE STATISTICIAN CAN ANSWER IN THE NEGATIVE OR AFFIRMATIVE. THE DOOLITTLE METHOD MAKES IT POSSIBLE TO EVALUATE THE DETERMINANT OF A MATRIX OF HIGH ORDER, TO SOLVE A MATRIX EQUATION, OR TO…

  20. A review of multivariate methods in brain imaging data fusion

    NASA Astrophysics Data System (ADS)

    Sui, Jing; Adali, Tülay; Li, Yi-Ou; Yang, Honghui; Calhoun, Vince D.

    2010-03-01

    On joint analysis of multi-task brain imaging data sets, a variety of multivariate methods have shown their strengths and been applied to achieve different purposes based on their respective assumptions. In this paper, we provide a comprehensive review on optimization assumptions of six data fusion models, including 1) four blind methods: joint independent component analysis (jICA), multimodal canonical correlation analysis (mCCA), CCA on blind source separation (sCCA) and partial least squares (PLS); 2) two semi-blind methods: parallel ICA and coefficient-constrained ICA (CC-ICA). We also propose a novel model for joint blind source separation (BSS) of two datasets using a combination of sCCA and jICA, i.e., 'CCA+ICA', which, compared with other joint BSS methods, can achieve higher decomposition accuracy as well as the correct automatic source link. Applications of the proposed model to real multitask fMRI data are compared to joint ICA and mCCA; CCA+ICA further shows its advantages in capturing both shared and distinct information, differentiating groups, and interpreting duration of illness in schizophrenia patients, hence promising applicability to a wide variety of medical imaging problems.

  1. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies

    PubMed Central

    van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.

    2013-01-01

    To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524

  2. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  3. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  4. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

    PubMed

    Wang, Jinjia; Liu, Yuan

    2015-04-01

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

  5. Innovation Analysis | Energy Analysis | NREL

    Science.gov Websites

    . New empirical methods for estimating technical and commercial impact (based on patent citations and Commercial Breakthroughs, NREL employed regression models and multivariate simulations to compare social in the marketplace and found that: Web presence may provide a better representation of the commercial

  6. Agro-ecoregionalization of Iowa using multivariate geographical clustering

    Treesearch

    Carol L. Williams; William W. Hargrove; Matt Leibman; David E. James

    2008-01-01

    Agro-ecoregionalization is categorization of landscapes for use in crop suitability analysis, strategic agroeconomic development, risk analysis, and other purposes. Past agro-ecoregionalizations have been subjective, expert opinion driven, crop specific, and unsuitable for statistical extrapolation. Use of quantitative analytical methods provides an opportunity for...

  7. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Yoo, Hyeonchae; Ham, Hyeonheui; Kim, Moon S.

    2017-01-01

    The purpose of this study is to use near-infrared reflectance (NIR) spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA) was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method. PMID:28974012

  8. Multivariate Analysis of Electron Detachment Dissociation and Infrared Multiphoton Dissociation Mass Spectra of Heparan Sulfate Tetrasaccharides Differing Only in Hexuronic acid Stereochemistry

    NASA Astrophysics Data System (ADS)

    Oh, Han Bin; Leach, Franklin E.; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I. Jonathan

    2011-03-01

    The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.

  9. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  10. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model.

    PubMed

    Snell, Kym I E; Hua, Harry; Debray, Thomas P A; Ensor, Joie; Look, Maxime P; Moons, Karel G M; Riley, Richard D

    2016-01-01

    Our aim was to improve meta-analysis methods for summarizing a prediction model's performance when individual participant data are available from multiple studies for external validation. We suggest multivariate meta-analysis for jointly synthesizing calibration and discrimination performance, while accounting for their correlation. The approach estimates a prediction model's average performance, the heterogeneity in performance across populations, and the probability of "good" performance in new populations. This allows different implementation strategies (e.g., recalibration) to be compared. Application is made to a diagnostic model for deep vein thrombosis (DVT) and a prognostic model for breast cancer mortality. In both examples, multivariate meta-analysis reveals that calibration performance is excellent on average but highly heterogeneous across populations unless the model's intercept (baseline hazard) is recalibrated. For the cancer model, the probability of "good" performance (defined by C statistic ≥0.7 and calibration slope between 0.9 and 1.1) in a new population was 0.67 with recalibration but 0.22 without recalibration. For the DVT model, even with recalibration, there was only a 0.03 probability of "good" performance. Multivariate meta-analysis can be used to externally validate a prediction model's calibration and discrimination performance across multiple populations and to evaluate different implementation strategies. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.

  12. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MDAS: an integrated system for metabonomic data analysis.

    PubMed

    Liu, Juan; Li, Bo; Xiong, Jiang-Hui

    2009-03-01

    Metabonomics, the latest 'omics' research field, shows great promise as a tool in biomarker discovery, drug efficacy and toxicity analysis, disease diagnosis and prognosis. One of the major challenges now facing researchers is how to process this data to yield useful information about a biological system, e.g., the mechanism of diseases. Traditional methods employed in metabonomic data analysis use multivariate analysis methods developed independently in chemometrics research. Additionally, with the development of machine learning approaches, some methods such as SVMs also show promise for use in metabonomic data analysis. Aside from the application of general multivariate analysis and machine learning methods to this problem, there is also a need for an integrated tool customized for metabonomic data analysis which can be easily used by biologists to reveal interesting patterns in metabonomic data.In this paper, we present a novel software tool MDAS (Metabonomic Data Analysis System) for metabonomic data analysis which integrates traditional chemometrics methods and newly introduced machine learning approaches. MDAS contains a suite of functional models for metabonomic data analysis and optimizes the flow of data analysis. Several file formats can be accepted as input. The input data can be optionally preprocessed and can then be processed with operations such as feature analysis and dimensionality reduction. The data with reduced dimensionalities can be used for training or testing through machine learning models. The system supplies proper visualization for data preprocessing, feature analysis, and classification which can be a powerful function for users to extract knowledge from the data. MDAS is an integrated platform for metabonomic data analysis, which transforms a complex analysis procedure into a more formalized and simplified one. The software package can be obtained from the authors.

  14. Development and validation of multivariate calibration methods for simultaneous estimation of Paracetamol, Enalapril maleate and hydrochlorothiazide in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Singh, Veena D.; Daharwal, Sanjay J.

    2017-01-01

    Three multivariate calibration spectrophotometric methods were developed for simultaneous estimation of Paracetamol (PARA), Enalapril maleate (ENM) and Hydrochlorothiazide (HCTZ) in tablet dosage form; namely multi-linear regression calibration (MLRC), trilinear regression calibration method (TLRC) and classical least square (CLS) method. The selectivity of the proposed methods were studied by analyzing the laboratory prepared ternary mixture and successfully applied in their combined dosage form. The proposed methods were validated as per ICH guidelines and good accuracy; precision and specificity were confirmed within the concentration range of 5-35 μg mL- 1, 5-40 μg mL- 1 and 5-40 μg mL- 1of PARA, HCTZ and ENM, respectively. The results were statistically compared with reported HPLC method. Thus, the proposed methods can be effectively useful for the routine quality control analysis of these drugs in commercial tablet dosage form.

  15. A method of using cluster analysis to study statistical dependence in multivariate data

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Card, D. H.; Lyle, G. C.

    1975-01-01

    A technique is presented that uses both cluster analysis and a Monte Carlo significance test of clusters to discover associations between variables in multidimensional data. The method is applied to an example of a noisy function in three-dimensional space, to a sample from a mixture of three bivariate normal distributions, and to the well-known Fisher's Iris data.

  16. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study

    PubMed Central

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398

  17. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.

    PubMed

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.

  18. Discrimination between Bacillus and Alicyclobacillus isolates in apple juice by Fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H

    2015-02-01

    Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®

  19. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    PubMed

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Multivariate methods to visualise colour-space and colour discrimination data.

    PubMed

    Hastings, Gareth D; Rubin, Alan

    2015-01-01

    Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study of colour. Many additional studies using these methods along with the JND and other procedures have been identified and will be reported in future publications. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  1. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    PubMed

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  2. Mean Comparison: Manifest Variable versus Latent Variable

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Bentler, Peter M.

    2006-01-01

    An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…

  3. An Analysis of Methods Used to Examine Gender Differences in Computer-Related Behavior.

    ERIC Educational Resources Information Center

    Kay, Robin

    1992-01-01

    Review of research investigating gender differences in computer-related behavior examines statistical and methodological flaws. Issues addressed include sample selection, sample size, scale development, scale quality, the use of univariate and multivariate analyses, regressional analysis, construct definition, construct testing, and the…

  4. Development of achiral and chiral 2D HPLC methods for analysis of albendazole metabolites in microsomal fractions using multivariate analysis for the in vitro metabolism.

    PubMed

    Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V

    2013-08-01

    In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Multivariate evaluation of the effectiveness of treatment efficacy of cypermethrin against sea lice (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar)

    PubMed Central

    2013-01-01

    Background The sea louse Lepeophtheirus salmonis is the most important ectoparasite of farmed Atlantic salmon (Salmo salar) in Norwegian aquaculture. Control of sea lice is primarily dependent on the use of delousing chemotherapeutants, which are both expensive and toxic to other wildlife. The method most commonly used for monitoring treatment effectiveness relies on measuring the percentage reduction in the mobile stages of Lepeophtheirus salmonis only. However, this does not account for changes in the other sea lice stages and may result in misleading or incomplete interpretation regarding the effectiveness of treatment. With the aim of improving the evaluation of delousing treatments, we explored multivariate analyses of bath treatments using the topical pyrethroid, cypermethrin, in salmon pens at five Norwegian production sites. Results Conventional univariate analysis indicated reductions of over 90% in mobile stages at all sites. In contrast, multivariate analyses indicated differing treatment effectiveness between sites (p-value < 0.01) based on changes in the proportion and abundance of the chalimus and PAAM (pre-adult and adult males) stages. Low water temperatures and shortened intervals between sampling after treatment may account for the differences in the composition of chalimus and PAAM stage groups following treatment. Using multivariate analysis, such factors could be separated from those which were attributable to inadequate treatment or chemotherapeutant failure. Conclusions Multivariate analyses for evaluation of treatment effectiveness against multiple life cycle stages of L. salmonis yield additional information beyond that derivable from univariate methods. This can aid in the identification of causes of apparent treatment failure in salmon aquaculture. PMID:24354936

  6. Fibroblast Growth Factor 2-A Predictor of Outcome for Patients Irradiated for Stage II-III Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rades, Dirk, E-mail: Rades.Dirk@gmx.net; Setter, Cornelia; Dahl, Olav

    2012-01-01

    Purpose: The prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients with non-small-cell lung cancer (NSCLC) is unclear. The present study investigated the effect of tumor cell expression of FGF-2 on the outcome of 60 patients irradiated for Stage II-III NSCLC. Methods and Materials: The effect of FGF-2 expression and 13 additional factors on locoregional control (LRC), metastasis-free survival (MFS), and overall survival (OS) were retrospectively evaluated. These additional factors included age, gender, Karnofsky performance status, histologic type, histologic grade, T and N category, American Joint Committee on Cancer stage, surgery, chemotherapy, pack-years,more » smoking during radiotherapy, and hemoglobin during radiotherapy. Locoregional failure was identified by endoscopy or computed tomography. Univariate analyses were performed with the Kaplan-Meier method and the Wilcoxon test and multivariate analyses with the Cox proportional hazard model. Results: On univariate analysis, improved LRC was associated with surgery (p = .017), greater hemoglobin levels (p = .036), and FGF-2 negativity (p <.001). On multivariate analysis of LRC, surgery (relative risk [RR], 2.44; p = .037), and FGF-2 expression (RR, 5.06; p <.001) maintained significance. On univariate analysis, improved MFS was associated with squamous cell carcinoma (p = .020), greater hemoglobin levels (p = .007), and FGF-2 negativity (p = .001). On multivariate analysis of MFS, the hemoglobin levels (RR, 2.65; p = .019) and FGF-2 expression (RR, 3.05; p = .004) were significant. On univariate analysis, improved OS was associated with a lower N category (p = .048), greater hemoglobin levels (p <.001), and FGF-2 negativity (p <.001). On multivariate analysis of OS, greater hemoglobin levels (RR, 4.62; p = .002) and FGF-2 expression (RR, 3.25; p = .002) maintained significance. Conclusions: Tumor cell expression of FGF-2 appeared to be an independent negative predictor of LRC, MFS, and OS.« less

  7. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  8. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution

    PubMed Central

    Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei

    2013-01-01

    Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016

  9. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution.

    PubMed

    Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei

    2013-01-01

    Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.

  10. Evaluation of genetic diversity among soybean (Glycine max) genotypes using univariate and multivariate analysis.

    PubMed

    Oliveira, M M; Sousa, L B; Reis, M C; Silva Junior, E G; Cardoso, D B O; Hamawaki, O T; Nogueira, A P O

    2017-05-31

    The genetic diversity study has paramount importance in breeding programs; hence, it allows selection and choice of the parental genetic divergence, which have the agronomic traits desired by the breeder. This study aimed to characterize the genetic divergence between 24 soybean genotypes through their agronomic traits, using multivariate clustering methods to select the potential genitors for the promising hybrid combinations. Six agronomic traits evaluated were number of days to flowering and maturity, plant height at flowering and maturity, insertion height of the first pod, and yield. The genetic divergence evaluated by multivariate analysis that esteemed first the Mahalanobis' generalized distance (D 2 ), then the clustering using Tocher's optimization methods, and then the unweighted pair group method with arithmetic average (UPGMA). Tocher's optimization method and the UPGMA agreed with the groups' constitution between each other, the formation of eight distinct groups according Tocher's method and seven distinct groups using UPGMA. The trait number of days for flowering (45.66%) was the most efficient to explain dissimilarity between genotypes, and must be one of the main traits considered by the breeder in the moment of genitors choice in soybean-breeding programs. The genetic variability allowed the identification of dissimilar genotypes and with superior performances. The hybridizations UFU 18 x UFUS CARAJÁS, UFU 15 x UFU 13, and UFU 13 x UFUS CARAJÁS are promising to obtain superior segregating populations, which enable the development of more productive genotypes.

  11. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Braga, Jez Willian Batista; Trevizan, Lilian Cristina; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Santos, Dário, Jr.; Krug, Francisco José

    2010-01-01

    The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance, but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation.

  12. qFeature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  13. Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene J. W.; Kenny, Sean P.

    1991-01-01

    A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.

  14. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  15. Applying Multivariate Discrete Distributions to Genetically Informative Count Data.

    PubMed

    Kirkpatrick, Robert M; Neale, Michael C

    2016-03-01

    We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.

  16. Race and Older Mothers’ Differentiation: A Sequential Quantitative and Qualitative Analysis

    PubMed Central

    Sechrist, Jori; Suitor, J. Jill; Riffin, Catherine; Taylor-Watson, Kadari; Pillemer, Karl

    2011-01-01

    The goal of this paper is to demonstrate a process by which qualitative and quantitative approaches are combined to reveal patterns in the data that are unlikely to be detected and confirmed by either method alone. Specifically, we take a sequential approach to combining qualitative and quantitative data to explore race differences in how mothers differentiate among their adult children. We began with a standard multivariate analysis examining race differences in mothers’ differentiation among their adult children regarding emotional closeness and confiding. Finding no race differences in this analysis, we conducted an in-depth comparison of the Black and White mothers’ narratives to determine whether there were underlying patterns that we had been unable to detect in our first analysis. Using this method, we found that Black mothers were substantially more likely than White mothers to emphasize interpersonal relationships within the family when describing differences among their children. In our final step, we developed a measure of familism based on the qualitative data and conducted a multivariate analysis to confirm the patterns revealed by the in-depth comparison of the mother’s narratives. We conclude that using such a sequential mixed methods approach to data analysis has the potential to shed new light on complex family relations. PMID:21967639

  17. Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition

    PubMed Central

    Frank, Lawrence R.; Galinsky, Vitaly L.

    2016-01-01

    A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESP). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and non-linear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging (rsFMRI) data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging. PMID:27695512

  18. Measures of precision for dissimilarity-based multivariate analysis of ecological communities

    PubMed Central

    Anderson, Marti J; Santana-Garcon, Julia

    2015-01-01

    Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. PMID:25438826

  19. Hierarchical multivariate covariance analysis of metabolic connectivity

    PubMed Central

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-01-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129

  20. On the interpretation of weight vectors of linear models in multivariate neuroimaging.

    PubMed

    Haufe, Stefan; Meinecke, Frank; Görgen, Kai; Dähne, Sven; Haynes, John-Dylan; Blankertz, Benjamin; Bießmann, Felix

    2014-02-15

    The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model

    NASA Astrophysics Data System (ADS)

    Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.

    2018-01-01

    A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.

  2. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    PubMed

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  3. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review

    PubMed Central

    Xiao, Li; Wei, Hui; Himmel, Michael E.; Jameel, Hasan; Kelley, Stephen S.

    2014-01-01

    Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry (Py-mbms) are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis) and for building regression models (partial least square regression) between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated. This review aims to serve as a guide for choosing the most effective data analysis methods for NIR and Py-mbms characterization of biomass. PMID:25147552

  4. Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Sinkov, Sergey I.

    Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from on-line monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. On-line process monitoring with a focus on optical spectroscopy can provide a fast, non-destructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium (IV) is one example ofmore » a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e. Beer’s Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate, or chemometric, analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.« less

  5. Large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  6. Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners

    PubMed Central

    Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code. PMID:24663061

  7. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  8. Multisite-multivariable sensitivity analysis of distributed watershed models: enhancing the perceptions from computationally frugal methods

    USDA-ARS?s Scientific Manuscript database

    This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...

  9. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration.

    PubMed

    Goicoechea, H C; Olivieri, A C

    1999-08-01

    The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.

  10. State-Space Analysis of Working Memory in Schizophrenia: An FBIRN Study

    ERIC Educational Resources Information Center

    Janoos, Firdaus; Brown, Gregory; Morocz, Istvan A.; Wells, William M., III

    2013-01-01

    The neural correlates of "working memory" (WM) in schizophrenia (SZ) have been extensively studied using the multisite fMRI data acquired by the Functional Biomedical Informatics Research Network (fBIRN) consortium. Although univariate and multivariate analysis methods have been variously employed to localize brain responses under differing task…

  11. Multivariate Analysis of Seismic Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen

    1999-06-01

    This report includes the details of the model building procedure and prediction of seismic field data. Principal Components Regression, a multivariate analysis technique, was used to model seismic data collected as two pieces of equipment were cycled on and off. Models built that included only the two pieces of equipment of interest had trouble predicting data containing signals not included in the model. Evidence for poor predictions came from the prediction curves as well as spectral F-ratio plots. Once the extraneous signals were included in the model, predictions improved dramatically. While Principal Components Regression performed well for the present datamore » sets, the present data analysis suggests further work will be needed to develop more robust modeling methods as the data become more complex.« less

  12. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  13. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  14. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  15. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE PAGES

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  16. Power and sample size for multivariate logistic modeling of unmatched case-control studies.

    PubMed

    Gail, Mitchell H; Haneuse, Sebastien

    2017-01-01

    Sample size calculations are needed to design and assess the feasibility of case-control studies. Although such calculations are readily available for simple case-control designs and univariate analyses, there is limited theory and software for multivariate unconditional logistic analysis of case-control data. Here we outline the theory needed to detect scalar exposure effects or scalar interactions while controlling for other covariates in logistic regression. Both analytical and simulation methods are presented, together with links to the corresponding software.

  17. Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging.

    PubMed

    Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F

    2015-01-01

    An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  18. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects.

    PubMed

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2016-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.

  19. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects

    PubMed Central

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2017-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. PMID:28167896

  20. Detecting subtle hydrochemical anomalies with multivariate statistics: an example from homogeneous groundwaters in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    O'Shea, Bethany; Jankowski, Jerzy

    2006-12-01

    The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright

  1. Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.

    PubMed

    Allefeld, Carsten; Bialonski, Stephan

    2007-12-01

    Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.

  2. A Unified Framework for Association Analysis with Multiple Related Phenotypes

    PubMed Central

    Stephens, Matthew

    2013-01-01

    We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data. PMID:23861737

  3. A simple prognostic model for overall survival in metastatic renal cell carcinoma

    PubMed Central

    Assi, Hazem I.; Patenaude, Francois; Toumishey, Ethan; Ross, Laura; Abdelsalam, Mahmoud; Reiman, Tony

    2016-01-01

    Introduction: The primary purpose of this study was to develop a simpler prognostic model to predict overall survival for patients treated for metastatic renal cell carcinoma (mRCC) by examining variables shown in the literature to be associated with survival. Methods: We conducted a retrospective analysis of patients treated for mRCC at two Canadian centres. All patients who started first-line treatment were included in the analysis. A multivariate Cox proportional hazards regression model was constructed using a stepwise procedure. Patients were assigned to risk groups depending on how many of the three risk factors from the final multivariate model they had. Results: There were three risk factors in the final multivariate model: hemoglobin, prior nephrectomy, and time from diagnosis to treatment. Patients in the high-risk group (two or three risk factors) had a median survival of 5.9 months, while those in the intermediate-risk group (one risk factor) had a median survival of 16.2 months, and those in the low-risk group (no risk factors) had a median survival of 50.6 months. Conclusions: In multivariate analysis, shorter survival times were associated with hemoglobin below the lower limit of normal, absence of prior nephrectomy, and initiation of treatment within one year of diagnosis. PMID:27217858

  4. Handwriting Examination: Moving from Art to Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, K.H.; Hanlen, R.C.; Manzolillo, P.A.

    In this document, we present a method for validating the premises and methodology of forensic handwriting examination. This method is intuitively appealing because it relies on quantitative measurements currently used qualitatively by FDE's in making comparisons, and it is scientifically rigorous because it exploits the power of multivariate statistical analysis. This approach uses measures of both central tendency and variation to construct a profile for a given individual. (Central tendency and variation are important for characterizing an individual's writing and both are currently used by FDE's in comparative analyses). Once constructed, different profiles are then compared for individuality using clustermore » analysis; they are grouped so that profiles within a group cannot be differentiated from one another based on the measured characteristics, whereas profiles between groups can. The cluster analysis procedure used here exploits the power of multivariate hypothesis testing. The result is not only a profile grouping but also an indication of statistical significance of the groups generated.« less

  5. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control.

    PubMed

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija

    2015-08-01

    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  6. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes.

    PubMed

    Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J

    2014-07-21

    Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

  7. Multivariate normative comparisons using an aggregated database

    PubMed Central

    Murre, Jaap M. J.; Huizenga, Hilde M.

    2017-01-01

    In multivariate normative comparisons, a patient’s profile of test scores is compared to those in a normative sample. Recently, it has been shown that these multivariate normative comparisons enhance the sensitivity of neuropsychological assessment. However, multivariate normative comparisons require multivariate normative data, which are often unavailable. In this paper, we show how a multivariate normative database can be constructed by combining healthy control group data from published neuropsychological studies. We show that three issues should be addressed to construct a multivariate normative database. First, the database may have a multilevel structure, with participants nested within studies. Second, not all tests are administered in every study, so many data may be missing. Third, a patient should be compared to controls of similar age, gender and educational background rather than to the entire normative sample. To address these issues, we propose a multilevel approach for multivariate normative comparisons that accounts for missing data and includes covariates for age, gender and educational background. Simulations show that this approach controls the number of false positives and has high sensitivity to detect genuine deviations from the norm. An empirical example is provided. Implications for other domains than neuropsychology are also discussed. To facilitate broader adoption of these methods, we provide code implementing the entire analysis in the open source software package R. PMID:28267796

  8. Validation of the Child and Youth Resilience Measure (CYRM-28) on a Sample of At-Risk New Zealand Youth

    ERIC Educational Resources Information Center

    Sanders, Jackie; Munford, Robyn; Thimasarn-Anwar, Tewaporn; Liebenberg, Linda

    2017-01-01

    Purpose: This article reports on an examination of the psychometric properties of the 28-item Child and Youth Resilience Measure (CYRM-28). Methods: Exploratory factor analysis, confirmatory factor analysis, Cronbach's a, "t"-tests, correlations, and multivariate analysis of variance were applied to data collected via interviews from 593…

  9. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2014-09-15

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.

    2014-09-01

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.

  11. Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zuraw, Sarah; LIGO Collaboration

    2015-04-01

    The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.

  12. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    PubMed

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interactive visual analysis promotes exploration of long-term ecological data

    Treesearch

    T.N. Pham; J.A. Jones; R. Metoyer; F.J. Swanson; R.J. Pabst

    2013-01-01

    Long-term ecological data are crucial in helping ecologists understand ecosystem function and environmental change. Nevertheless, these kinds of data sets are difficult to analyze because they are usually large, multivariate, and spatiotemporal. Although existing analysis tools such as statistical methods and spreadsheet software permit rigorous tests of pre-conceived...

  14. Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity.

    PubMed

    Sant'Ana, Luiza D'O; Sousa, Juliana P L M; Salgueiro, Fernanda B; Lorenzon, Maria Cristina Affonso; Castro, Rosane N

    2012-01-01

    Various bioactive chemical constituents were quantified for 21 honey samples obtained at Rio de Janeiro and Minas Gerais, Brazil. To evaluate their antioxidant activity, 3 different methods were used: the ferric reducing antioxidant power, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, and the 2,2'-azinobis (3-ethylbenzothiazolin)-6-sulfonate (ABTS) assays. Correlations between the parameters were statistically significant (-0.6684 ≤ r ≤-0.8410, P < 0.05). Principal component analysis showed that honey samples from the same floral origins had more similar profiles, which made it possible to group the eucalyptus, morrão de candeia, and cambara honey samples in 3 distinct areas, while cluster analysis could separate the artificial honey from the floral honeys. This research might aid in the discrimination of honey floral origin, by using simple analytical methods in association with multivariate analysis, which could also show a great difference among floral honeys and artificial honey, indicating a possible way to help with the identification of artificial honeys. © 2011 Institute of Food Technologists®

  15. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry

    PubMed Central

    Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.

    2017-01-01

    Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569

  16. Anthropometric profile of combat athletes via multivariate analysis.

    PubMed

    Burdukiewicz, Anna; Pietraszewska, Jadwiga; Stachoń, Aleksandra; Andrzejewska, Justyna

    2017-11-07

    Athletic success is a complex phenotype influenced by multiple factors, from sport-specific skills to anthropometric characteristics. Considering the latter, the literature has repeatedly indicated that athletes possess distinct physical characteristics depending on the practiced discipline. The aim of the present study was to apply univariate and multivariate methods to assess a wide range of morphometric and somatotypic characteristics in male combat athletes. Biometric data were obtained from 206 male university-level practitioners of judo, jiu-jitsu, karate, kickboxing, taekwondo, and wrestling. Measures included height- and length-based variables, breadths, circumferences, and skinfolds. Body proportions and somatotype, using Sheldon's method of somatotopy as modified by Heath and Carter, were then determined. Body fat percentage was assessed by bioelectrical impedance analysis using tetrapolar hand-to-foot electrodes. Data were subjected to a wide array of statistical analysis. The results show between-group differences in the magnitudes of the analyzed characteristics. While mesomorphy was the dominant component of each group somatotype, enhanced ectomorphy was observed in those disciplines that require a high level of agility. Principal component analysis reduced the multivariate dimensionality of the data to three components (characterizing body size, height-based measures, and the anthropometric structure of the upper extremities) that explained the majority of data variance. The development of a sport-specific anthropometric profile via height- and mass-based and morphometric and somatotypic variables can aid in the design of training protocols and the identification of athlete markers as well as serve as a diagnostic criterion in predicting combat athlete performance.

  17. Use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond.

    PubMed

    Erb-Downward, John R; Sadighi Akha, Amir A; Wang, Juan; Shen, Ning; He, Bei; Martinez, Fernando J; Gyetko, Margaret R; Curtis, Jeffrey L; Huffnagle, Gary B

    2012-01-01

    This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.

  18. Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    1995-01-01

    Use of the bootstrap method in a canonical correlation analysis to evaluate the replicability of a study's results is illustrated. More confidence may be vested in research results that replicate. (SLD)

  19. Epidemiologic methods in clinical trials.

    PubMed

    Rothman, K J

    1977-04-01

    Epidemiologic methods developed to control confounding in non-experimental studies are equally applicable for experiments. In experiments, most confounding is usually controlled by random allocation of subjects to treatment groups, but randomization does not preclude confounding except for extremely large studies, the degree of confounding expected being inversely related to the size of the treatment groups. In experiments, as in non-experimental studies, the extent of confounding for each risk indicator should be assessed, and if sufficiently large, controlled. Confounding is properly assessed by comparing the unconfounded effect estimate to the crude effect estimate; a common error is to assess confounding by statistical tests of significance. Assessment of confounding involves its control as a prerequisite. Control is most readily and cogently achieved by stratification of the data, though with many factors to control simultaneously, multivariate analysis or a combination of multivariate analysis and stratification might be necessary.

  20. Geographically Sourcing Cocaine's Origin - Delineation of the Nineteen Major Coca Growing Regions in South America.

    PubMed

    Mallette, Jennifer R; Casale, John F; Jordan, James; Morello, David R; Beyer, Paul M

    2016-03-23

    Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses ((2)H and (18)O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.

  1. Geographically Sourcing Cocaine’s Origin - Delineation of the Nineteen Major Coca Growing Regions in South America

    NASA Astrophysics Data System (ADS)

    Mallette, Jennifer R.; Casale, John F.; Jordan, James; Morello, David R.; Beyer, Paul M.

    2016-03-01

    Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.

  2. Reproducibility of NMR analysis of urine samples: impact of sample preparation, storage conditions, and animal health status.

    PubMed

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining (1)H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after (1)H NMR spectroscopy. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at -20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions.

  3. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  4. Rapid quality assessment of Radix Aconiti Preparata using direct analysis in real time mass spectrometry.

    PubMed

    Zhu, Hongbin; Wang, Chunyan; Qi, Yao; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2012-11-08

    This study presents a novel and rapid method to identify chemical markers for the quality control of Radix Aconiti Preparata, a world widely used traditional herbal medicine. In the method, the samples with a fast extraction procedure were analyzed using direct analysis in real time mass spectrometry (DART MS) combined with multivariate data analysis. At present, the quality assessment approach of Radix Aconiti Preparata was based on the two processing methods recorded in Chinese Pharmacopoeia for the purpose of reducing the toxicity of Radix Aconiti and ensuring its clinical therapeutic efficacy. In order to ensure the safety and effectivity in clinical use, the processing degree of Radix Aconiti should be well controlled and assessed. In the paper, hierarchical cluster analysis and principal component analysis were performed to evaluate the DART MS data of Radix Aconiti Preparata samples in different processing times. The results showed that the well processed Radix Aconiti Preparata, unqualified processed and the raw Radix Aconiti could be clustered reasonably corresponding to their constituents. The loading plot shows that the main chemical markers having the most influence on the discrimination amongst the qualified and unqualified samples were mainly some monoester diterpenoid aconitines and diester diterpenoid aconitines, i.e. benzoylmesaconine, hypaconitine, mesaconitine, neoline, benzoylhypaconine, benzoylaconine, fuziline, aconitine and 10-OH-mesaconitine. The established DART MS approach in combination with multivariate data analysis provides a very flexible and reliable method for quality assessment of toxic herbal medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Application of curve resolution algorithms in the study of drug photodegradation kinetics -- the example of moclobemide.

    PubMed

    Skibiński, Robert; Komsta, Łukasz

    2012-01-01

    The photodegradation of moclobemide was studied in methanolic media. Ultra-HPLC (UHPLC)/MS/MS analysis proved decomposition to 4-chlorobenzamide as a major degradation product and small amounts of Ro 16-3177 (4-chloro-N-[2-[(2-hydroxyethyl)amino] ethyl]benzamide) and 2-[(4-chlorobenzylidene)amino]-N-[2-ethoxyethenyl]ethenamine. The methanolic solution was investigated spectrophotometrically in the UV region, registering the spectra during 30 min of degradation. Using reference spectra and a multivariate chemometric method (multivariate curve resolution-alternating least squares), the spectra were resolved and concentration profiles were obtained. The obtained results were in good agreement with a quantitative approach, with UHPLC-diode array detection as the reference method.

  6. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  7. Risk prediction for myocardial infarction via generalized functional regression models.

    PubMed

    Ieva, Francesca; Paganoni, Anna M

    2016-08-01

    In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.

  8. A functional U-statistic method for association analysis of sequencing data.

    PubMed

    Jadhav, Sneha; Tong, Xiaoran; Lu, Qing

    2017-11-01

    Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.

  9. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.

  10. Simultaneous determination of potassium guaiacolsulfonate, guaifenesin, diphenhydramine HCl and carbetapentane citrate in syrups by using HPLC-DAD coupled with partial least squares multivariate calibration.

    PubMed

    Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika

    2011-02-15

    A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    NASA Astrophysics Data System (ADS)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.

  12. Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog

    PubMed Central

    2013-01-01

    Background Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. Methods We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. Results Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. Conclusions Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG. PMID:24059247

  13. Discrimination of irradiated MOX fuel from UOX fuel by multivariate statistical analysis of simulated activities of gamma-emitting isotopes

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.

    2018-03-01

    This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.

  14. Using sperm morphometry and multivariate analysis to differentiate species of gray Mazama

    PubMed Central

    Duarte, José Maurício Barbanti

    2016-01-01

    There is genetic evidence that the two species of Brazilian gray Mazama, Mazama gouazoubira and Mazama nemorivaga, belong to different genera. This study identified significant differences that separated them into distinct groups, based on characteristics of the spermatozoa and ejaculate of both species. The characteristics that most clearly differentiated between the species were ejaculate colour, white for M. gouazoubira and reddish for M. nemorivaga, and sperm head dimensions. Multivariate analysis of sperm head dimension and format data accurately discriminated three groups for species with total percentage of misclassified of 0.71. The individual analysis, by animal, and the multivariate analysis have also discriminated correctly all five animals (total percentage of misclassified of 13.95%), and the canonical plot has shown three different clusters: Cluster 1, including individuals of M. nemorivaga; Cluster 2, including two individuals of M. gouazoubira; and Cluster 3, including a single individual of M. gouazoubira. The results obtained in this work corroborate the hypothesis of the formation of new genera and species for gray Mazama. Moreover, the easily applied method described herein can be used as an auxiliary tool to identify sibling species of other taxonomic groups. PMID:28018612

  15. Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques

    NASA Astrophysics Data System (ADS)

    Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein

    2017-10-01

    The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.

  16. A comparison of two follow-up analyses after multiple analysis of variance, analysis of variance, and descriptive discriminant analysis: A case study of the program effects on education-abroad programs

    Treesearch

    Alvin H. Yu; Garry Chick

    2010-01-01

    This study compared the utility of two different post-hoc tests after detecting significant differences within factors on multiple dependent variables using multivariate analysis of variance (MANOVA). We compared the univariate F test (the Scheffé method) to descriptive discriminant analysis (DDA) using an educational-tour survey of university study-...

  17. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.

  18. Impacts of Rising Health Care Costs on Families with Employment-Based Private Insurance: A National Analysis with State Fixed Effects

    PubMed Central

    Yu, Hao; Dick, Andrew W

    2012-01-01

    Background Given the rapid growth of health care costs, some experts were concerned with erosion of employment-based private insurance (EBPI). This empirical analysis aims to quantify the concern. Methods Using the National Health Account, we generated a cost index to represent state-level annual cost growth. We merged it with the 1996–2003 Medical Expenditure Panel Survey. The unit of analysis is the family. We conducted both bivariate and multivariate logistic analyses. Results The bivariate analysis found a significant inverse association between the cost index and the proportion of families receiving an offer of EBPI. The multivariate analysis showed that the cost index was significantly negatively associated with the likelihood of receiving an EBPI offer for the entire sample and for families in the first, second, and third quartiles of income distribution. The cost index was also significantly negatively associated with the proportion of families with EBPI for the entire year for each family member (EBPI-EYEM). The multivariate analysis confirmed significance of the relationship for the entire sample, and for families in the second and third quartiles of income distribution. Among the families with EBPI-EYEM, there was a positive relationship between the cost index and this group's likelihood of having out-of-pocket expenditures exceeding 10 percent of family income. The multivariate analysis confirmed significance of the relationship for the entire group and for families in the second and third quartiles of income distribution. Conclusions Rising health costs reduce EBPI availability and enrollment, and the financial protection provided by it, especially for middle-class families. PMID:22417314

  19. A multivariate model and statistical method for validating tree grade lumber yield equations

    Treesearch

    Donald W. Seegrist

    1975-01-01

    Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.

  20. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  1. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  2. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  3. Multivariate approaches for stability control of the olive oil reference materials for sensory analysis - part II: applications.

    PubMed

    Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis

    2018-02-09

    The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Multivariate test power approximations for balanced linear mixed models in studies with missing data.

    PubMed

    Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H

    2016-07-30

    Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  6. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System

    PubMed Central

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D.; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    AIM To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. METHODS The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. RESULTS Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure (P<0.05). Multivariate logistic regression analysis showed no statistically significant relationship (P>0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant (P<0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. CONCLUSION After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y. PMID:28393027

  7. A detailed comparison of analysis processes for MCC-IMS data in disease classification—Automated methods can replace manual peak annotations

    PubMed Central

    Horsch, Salome; Kopczynski, Dominik; Kuthe, Elias; Baumbach, Jörg Ingo; Rahmann, Sven

    2017-01-01

    Motivation Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column—ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process. Method We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios. Results The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology. PMID:28910313

  8. Embedding of multidimensional time-dependent observations.

    PubMed

    Barnard, J P; Aldrich, C; Gerber, M

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  9. Embedding of multidimensional time-dependent observations

    NASA Astrophysics Data System (ADS)

    Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  10. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning.

    PubMed

    Davatzikos, Christos

    2016-10-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.

  11. Measures of precision for dissimilarity-based multivariate analysis of ecological communities.

    PubMed

    Anderson, Marti J; Santana-Garcon, Julia

    2015-01-01

    Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  12. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning

    PubMed Central

    Davatzikos, Christos

    2017-01-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582

  13. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  14. Long-Term Stability of Membership in a Wechsler Intelligence Scale for Children--Third Edition (WISC-III) Subtest Core Profile Taxonomy

    ERIC Educational Resources Information Center

    Borsuk, Ellen R.; Watkins, Marley W.; Canivez, Gary L.

    2006-01-01

    Although often applied in practice, clinically based cognitive subtest profile analysis has failed to achieve empirical support. Nonlinear multivariate subtest profile analysis may have benefits over clinically based techniques, but the psychometric properties of these methods must be studied prior to their implementation and interpretation. The…

  15. The application of near infrared (NIR) spectroscopy to inorganic preservative-treated wood

    Treesearch

    Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Timothy G. Rials

    2004-01-01

    There is a growing need to find a rapid, inexpensive, and reliable method to distinguish between treated and untreated waste wood. This paper evaluates the ability of near infrared (NIR) spectroscopy with multivariate analysis (MVA) to distinguish preservative types and retentions. It is demonstrated that principal component analysis (PCA) can differentiate lumber...

  16. Understanding the Relationship between School-Based Management, Emotional Intelligence and Performance of Religious Upper Secondary School Principals in Banten Province

    ERIC Educational Resources Information Center

    Muslihah, Oleh Eneng

    2015-01-01

    The research examines the correlation between the understanding of school-based management, emotional intelligences and headmaster performance. Data was collected, using quantitative methods. The statistical analysis used was the Pearson Correlation, and multivariate regression analysis. The results of this research suggest firstly that there is…

  17. PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.

    PubMed

    Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan

    2009-01-01

    Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.

  18. PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data

    PubMed Central

    Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Hanson, Stephen José; Haxby, James V.; Pollmann, Stefan

    2009-01-01

    Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine-learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability. PMID:19184561

  19. Risk factors for baclofen pump infection in children: a multivariate analysis.

    PubMed

    Spader, Heather S; Bollo, Robert J; Bowers, Christian A; Riva-Cambrin, Jay

    2016-06-01

    OBJECTIVE Intrathecal baclofen infusion systems to manage severe spasticity and dystonia are associated with higher infection rates in children than in adults. Factors unique to this population, such as poor nutrition and physical limitations for pump placement, have been hypothesized as the reasons for this disparity. The authors assessed potential risk factors for infection in a multivariate analysis. METHODS Patients who underwent implantation of a programmable pump and intrathecal catheter for baclofen infusion at a single center between January 1, 2000, and March 1, 2012, were identified in this retrospective cohort study. The primary end point was infection. Potential risk factors investigated included preoperative (i.e., demographics, body mass index [BMI], gastrostomy tube, tracheostomy, previous spinal fusion), intraoperative (i.e., surgeon, antibiotics, pump size, catheter location), and postoperative (i.e., wound dehiscence, CSF leak, and number of revisions) factors. Univariate analysis was performed, and a multivariate logistic regression model was created to identify independent risk factors for infection. RESULTS A total of 254 patients were evaluated. The overall infection rate was 9.8%. Univariate analysis identified young age, shorter height, lower weight, dehiscence, CSF leak, and number of revisions within 6 months of pump placement as significantly associated with infection. Multivariate analysis identified young age, dehiscence, and number of revisions as independent risk factors for infection. CONCLUSIONS Young age, wound dehiscence, and number of revisions were independent risk factors for infection in this pediatric cohort. A low BMI and the presence of either a gastrostomy or tracheostomy were not associated with infection and may not be contraindications for this procedure.

  20. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  1. Multivariate Models for Normal and Binary Responses in Intervention Studies

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen

    2016-01-01

    Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…

  2. Rapid detection of bacterial pathogens using flourescence spectroscopy and chemometrics

    USDA-ARS?s Scientific Manuscript database

    This work presents the development of a method for rapid bacterial identification based on the fluorescence spectroscopy combined with multivariate analysis. Fluorescence spectra of pure three different genera of bacteria (Escherichia coli, Salmonella, and Campylobacter) were collected from 200...

  3. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Clinical management provided by board-certificated physiatrists in early rehabilitation is a significant determinant of functional improvement in acute stroke patients: a retrospective analysis of Japan rehabilitation database.

    PubMed

    Kinoshita, Shoji; Kakuda, Wataru; Momosaki, Ryo; Yamada, Naoki; Sugawara, Hidekazu; Watanabe, Shu; Abo, Masahiro

    2015-05-01

    Early rehabilitation for acute stroke patients is widely recommended. We tested the hypothesis that clinical outcome of stroke patients who receive early rehabilitation managed by board-certificated physiatrists (BCP) is generally better than that provided by other medical specialties. Data of stroke patients who underwent early rehabilitation in 19 acute hospitals between January 2005 and December 2013 were collected from the Japan Rehabilitation Database and analyzed retrospectively. Multivariate linear regression analysis using generalized estimating equations method was performed to assess the association between Functional Independence Measure (FIM) effectiveness and management provided by BCP in early rehabilitation. In addition, multivariate logistic regression analysis was also performed to assess the impact of management provided by BCP in acute phase on discharge destination. After setting the inclusion criteria, data of 3838 stroke patients were eligible for analysis. BCP provided early rehabilitation in 814 patients (21.2%). Both the duration of daily exercise time and the frequency of regular conferencing were significantly higher for patients managed by BCP than by other specialties. Although the mortality rate was not different, multivariate regression analysis showed that FIM effectiveness correlated significantly and positively with the management provided by BCP (coefficient, .35; 95% confidence interval [CI], .012-.059; P < .005). In addition, multivariate logistic analysis identified clinical management by BCP as a significant determinant of home discharge (odds ratio, 1.24; 95% CI, 1.08-1.44; P < .005). Our retrospective cohort study demonstrated that clinical management provided by BCP in early rehabilitation can lead to functional recovery of acute stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.

    PubMed

    Tang, Yongqiang

    2018-04-30

    The controlled imputation method refers to a class of pattern mixture models that have been commonly used as sensitivity analyses of longitudinal clinical trials with nonignorable dropout in recent years. These pattern mixture models assume that participants in the experimental arm after dropout have similar response profiles to the control participants or have worse outcomes than otherwise similar participants who remain on the experimental treatment. In spite of its popularity, the controlled imputation has not been formally developed for longitudinal binary and ordinal outcomes partially due to the lack of a natural multivariate distribution for such endpoints. In this paper, we propose 2 approaches for implementing the controlled imputation for binary and ordinal data based respectively on the sequential logistic regression and the multivariate probit model. Efficient Markov chain Monte Carlo algorithms are developed for missing data imputation by using the monotone data augmentation technique for the sequential logistic regression and a parameter-expanded monotone data augmentation scheme for the multivariate probit model. We assess the performance of the proposed procedures by simulation and the analysis of a schizophrenia clinical trial and compare them with the fully conditional specification, last observation carried forward, and baseline observation carried forward imputation methods. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Graphite Web: web tool for gene set analysis exploiting pathway topology

    PubMed Central

    Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara

    2013-01-01

    Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626

  7. Multivariate Classification of Original and Fake Perfumes by Ion Analysis and Ethanol Content.

    PubMed

    Gomes, Clêrton L; de Lima, Ari Clecius A; Loiola, Adonay R; da Silva, Abel B R; Cândido, Manuela C L; Nascimento, Ronaldo F

    2016-07-01

    The increased marketing of fake perfumes has encouraged us to investigate how to identify such products by their chemical characteristics and multivariate analysis. The aim of this study was to present an alternative approach to distinguish original from fake perfumes by means of the investigation of sodium, potassium, chloride ions, and ethanol contents by chemometric tools. For this, 50 perfumes were used (25 original and 25 counterfeit) for the analysis of ions (ion chromatography) and ethanol (gas chromatography). The results demonstrated that the fake perfume had low levels of ethanol and high levels of chloride compared to the original product. The data were treated by chemometric tools such as principal component analysis and linear discriminant analysis. This study proved that the analysis of ethanol is an effective method of distinguishing original from the fake products, and it may potentially be used to assist legal authorities in such cases. © 2016 American Academy of Forensic Sciences.

  8. Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis.

    PubMed

    Choi, Young Hae; Sertic, Sarah; Kim, Hye Kyong; Wilson, Erica G; Michopoulos, Filippos; Lefeber, Alfons W M; Erkelens, Cornelis; Prat Kricun, Sergio D; Verpoorte, Robert

    2005-02-23

    The metabolomic analysis of 11 Ilex species, I. argentina, I. brasiliensis, I. brevicuspis, I. dumosavar. dumosa, I. dumosa var. guaranina, I. integerrima, I. microdonta, I. paraguariensis var. paraguariensis, I. pseudobuxus, I. taubertiana, and I. theezans, was carried out by NMR spectroscopy and multivariate data analysis. The analysis using principal component analysis and classification of the (1)H NMR spectra showed a clear discrimination of those samples based on the metabolites present in the organic and aqueous fractions. The major metabolites that contribute to the discrimination are arbutin, caffeine, phenylpropanoids, and theobromine. Among those metabolites, arbutin, which has not been reported yet as a constituent of Ilex species, was found to be a biomarker for I. argentina,I. brasiliensis, I. brevicuspis, I. integerrima, I. microdonta, I. pseudobuxus, I. taubertiana, and I. theezans. This reliable method based on the determination of a large number of metabolites makes the chemotaxonomical analysis of Ilex species possible.

  9. A simple rapid approach using coupled multivariate statistical methods, GIS and trajectory models to delineate areas of common oil spill risk

    NASA Astrophysics Data System (ADS)

    Guillen, George; Rainey, Gail; Morin, Michelle

    2004-04-01

    Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.

  10. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  11. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, George

    1993-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.

  12. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, Stanislav

    1992-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.

  13. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    PubMed

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  14. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    PubMed

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  15. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea.

    PubMed

    Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata

    2017-03-17

    An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    PubMed

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  17. Applied statistics in agricultural, biological, and environmental sciences.

    USDA-ARS?s Scientific Manuscript database

    Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...

  18. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    PubMed

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  19. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification

    NASA Astrophysics Data System (ADS)

    Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng

    2013-10-01

    Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.

  20. Simultaneous quantification of the boar-taint compounds skatole and androstenone by surface-enhanced Raman scattering (SERS) and multivariate data analysis.

    PubMed

    Sørensen, Klavs M; Westley, Chloe; Goodacre, Royston; Engelsen, Søren Balling

    2015-10-01

    This study investigates the feasibility of using surface-enhanced Raman scattering (SERS) for the quantification of absolute levels of the boar-taint compounds skatole and androstenone in porcine fat. By investigation of different types of nanoparticles, pH and aggregating agents, an optimized environment that promotes SERS of the analytes was developed and tested with different multivariate spectral pre-processing techniques, and this was combined with variable selection on a series of analytical standards. The resulting method exhibited prediction errors (root mean square error of cross validation, RMSECV) of 2.4 × 10(-6) M skatole and 1.2 × 10(-7) M androstenone, with a limit of detection corresponding to approximately 2.1 × 10(-11) M for skatole and approximately 1.8 × 10(-10) for androstenone. The method was subsequently tested on porcine fat extract, leading to prediction errors (RMSECV) of 0.17 μg/g for skatole and 1.5 μg/g for androstenone. It is clear that this optimized SERS method, when combined with multivariate analysis, shows great potential for optimization into an on-line application, which will be the first of its kind, and opens up possibilities for simultaneous detection of other meat-quality metabolites or pathogen markers. Graphical abstract Artistic rendering of a laser-illuminated gold colloid sphere with skatole and androstenone adsorbed on the surface.

  1. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  2. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  3. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.

    PubMed

    Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M

    2015-10-01

    To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants

    PubMed Central

    Broadaway, K. Alaine; Cutler, David J.; Duncan, Richard; Moore, Jacob L.; Ware, Erin B.; Jhun, Min A.; Bielak, Lawrence F.; Zhao, Wei; Smith, Jennifer A.; Peyser, Patricia A.; Kardia, Sharon L.R.; Ghosh, Debashis; Epstein, Michael P.

    2016-01-01

    Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy. PMID:26942286

  5. Multivariate statistical data analysis methods for detecting baroclinic wave interactions in the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    Experiments on baroclinic wave instabilities in a rotating cylindrical gap have been long performed, e.g., to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. We present the application of appropriate multivariate data analysis methods on time series data sets acquired by the use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera measures the surface temperature field. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. Obviously, the temperature data set has much more information content as the velocity data set due to the particular measurement techniques. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). Our goal is (a) to verify the results yielded with the analysis of the velocity data and (b) to compare the data analysis methods. Therefor, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us to compare the methods. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  6. The impact of cavernosal nerve preservation on continence after robotic radical prostatectomy

    PubMed Central

    Pick, Donald L.; Osann, Kathryn; Skarecky, Douglas; Narula, Navneet; Finley, David S.; Ahlering, Thomas E.

    2014-01-01

    OBJECTIVE To evaluate associations between baseline characteristics, nerve-sparing (NS) status and return of continence, as a relationship may exist between return to continence and preservation of the neurovascular bundles for potency during radical prostatectomy (RP). PATIENTS AND METHODS The study included 592 consecutive robotic RPs completed between 2002 and 2007. All data were entered prospectively into an electronic database. Continence data (defined as zero pads) was collected using self-administered validated questionnaires. Baseline characteristics (age, International Index of Erectile Function [IIEF-5] score, American Urological Association symptom score, body mass index [BMI], clinical T-stage, Gleason score, and prostate-specific antigen level), NS status and learning curve were retrospectively evaluated for association with overall continence at 1, 3 and 12 months after RP using univariate and multivariable methods. Any patient taking preoperative phosphodiesterase inhibitors was excluded from the postoperative analysis. RESULTS Complete data were available for 537 of 592 patients (91%). Continence rates at 12 months after RP were 89.2%, 88.9% and 84.8% for bilateral NS, unilateral NS and non-NS respectively (P = 0.56). In multivariable analysis age, IIEF-5 score and BMI were significant independent predictors of continence. Cavernosal NS status did not significantly affect continence after adjusting for other co-variables. CONCLUSION After careful multivariable analysis of baseline characteristics age, IIEF-5 score and BMI affected continence in a statistically significant fashion. This suggests that baseline factors and not the physical preservation of the cavernosal nerves predict overall return to continence. PMID:21244602

  7. Combining ANOVA-PCA with POCHEMON to analyse micro-organism development in a polymicrobial environment.

    PubMed

    Geurts, Brigitte P; Neerincx, Anne H; Bertrand, Samuel; Leemans, Manja A A P; Postma, Geert J; Wolfender, Jean-Luc; Cristescu, Simona M; Buydens, Lutgarde M C; Jansen, Jeroen J

    2017-04-22

    Revealing the biochemistry associated to micro-organismal interspecies interactions is highly relevant for many purposes. Each pathogen has a characteristic metabolic fingerprint that allows identification based on their unique multivariate biochemistry. When pathogen species come into mutual contact, their co-culture will display a chemistry that may be attributed both to mixing of the characteristic chemistries of the mono-cultures and to competition between the pathogens. Therefore, investigating pathogen development in a polymicrobial environment requires dedicated chemometric methods to untangle and focus upon these sources of variation. The multivariate data analysis method Projected Orthogonalised Chemical Encounter Monitoring (POCHEMON) is dedicated to highlight metabolites characteristic for the interaction of two micro-organisms in co-culture. However, this approach is currently limited to a single time-point, while development of polymicrobial interactions may be highly dynamic. A well-known multivariate implementation of Analysis of Variance (ANOVA) uses Principal Component Analysis (ANOVA-PCA). This allows the overall dynamics to be separated from the pathogen-specific chemistry to analyse the contributions of both aspects separately. For this reason, we propose to integrate ANOVA-PCA with the POCHEMON approach to disentangle the pathogen dynamics and the specific biochemistry in interspecies interactions. Two complementary case studies show great potential for both liquid and gas chromatography - mass spectrometry to reveal novel information on chemistry specific to interspecies interaction during pathogen development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Gene set analysis using variance component tests.

    PubMed

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  9. Multivariate Statistical Analysis of Orthogonal Mass Spectral Data for the Identification of Chemical Attribution Signatures of 3-Methylfentanyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, B. P.; Valdez, C. A.; DeHope, A. J.

    Critical to many modern forensic investigations is the chemical attribution of the origin of an illegal drug. This process greatly relies on identification of compounds indicative of its clandestine or commercial production. The results of these studies can yield detailed information on method of manufacture, sophistication of the synthesis operation, starting material source, and final product. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3- methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods were studied in an effort to identify and classify route-specific signatures. These methods were chosen to minimize the use of scheduledmore » precursors, complicated laboratory equipment, number of overall steps, and demanding reaction conditions. Using gas and liquid chromatographies combined with mass spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductivelycoupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements were monitored. As seen in our previous work with CAS of fentanyl synthesis the complexity of the resultant data matrix necessitated the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically significant, route-specific CAS were identified. Statistical classification models using a variety of machine learning techniques were then developed with the ability to predict the method of 3-methylfentanyl synthesis from three blind crude samples generated by synthetic chemists without prior experience with these methods.« less

  10. Wavelet analysis for the study of the relations among soil radon anomalies, volcanic and seismic events: the case of Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Ferrera, Elisabetta; Giammanco, Salvatore; Cannata, Andrea; Montalto, Placido

    2013-04-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol® probe located on the upper NE flank of Mt. Etna volcano, close either to the Piano Provenzana fault or to the NE-Rift. Seismic and volcanological data have been analyzed together with radon data. We also analyzed air and soil temperature, barometric pressure, snow and rain fall data. In order to find possible correlations among the above parameters, and hence to reveal possible anomalies in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-days time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-days moving averages showed that, similar to multivariate linear regression analysis, the summer period is characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allows to study the relations among different signals either in time or frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Our work suggests that in order to make an accurate analysis of the relations among distinct signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be very effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  11. Multivariate analysis of the impacts of the turbine fuel JP-4 in a microcosm toxicity test with implications for the evaluation of ecosystem dynamics and risk assessment.

    PubMed

    Landis, W G; Matthews, R A; Markiewicz, A J; Matthews, G B

    1993-12-01

    Turbine fuels are often the only aviation fuel available in most of the world. Turbine fuels consist of numerous constituents with varying water solubilities, volatilities and toxicities. This study investigates the toxicity of the water soluble fraction (WSF) of JP-4 using the Standard Aquatic Microcosm (SAM). Multivariate analysis of the complex data, including the relatively new method of nonmetric clustering, was used and compared to more traditional analyses. Particular emphasis is placed on ecosystem dynamics in multivariate space.The WSF is prepared by vigorously mixing the fuel and the SAM microcosm media in a separatory funnel. The water phase, which contains the water-soluble fraction of JP-4 is then collected. The SAM experiment was conducted using concentrations of 0.0, 1.5 and 15% WSF. The WSF is added on day 7 of the experiments by removing 450 ml from each microcosm including the controls, then adding the appropriate amount of toxicant solution and finally bringing the final volume to 3 L with microcosm media. Analysis of the WSF was performed by purge and trap gas chromatography. The organic constituents of the WSF were not recoverable from the water column within several days of the addition of the toxicant. However, the impact of the WSF on the microcosm was apparent. In the highest initial concentration treatment group an algal bloom ensued, generated by the apparent toxicity of the WSF of JP-4 to the daphnids. As the daphnid populations recovered the algal populations decreased to control values. Multivariate methods clearly demonstrated this initial impact along with an additional oscillation seperating the four treatment groups in the latter segment of the experiment. Apparent recovery may be an artifact of the projections used to describe the multivariate data. The variables that were most important in distinguishing the four groups shifted during the course of the 63 day experiment. Even this simple microcosm exhibited a variety of dynamics, with implications for biomonitoring schemes and ecological risk assessments.

  12. Sensitive analytical method for simultaneous analysis of some vasoconstrictors with highly overlapped analytical signals

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Žerajić, S.; Cakić, M.

    2011-10-01

    Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.

  13. On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry

    NASA Astrophysics Data System (ADS)

    Gourdol, L.; Hissler, C.; Pfister, L.

    2012-04-01

    The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.

  14. Carbapenemase-producing Enterobacteriaceae: Risk factors for infection and impact of resistance on outcomes

    PubMed Central

    Mariappan, Shanthi; Sekar, Uma; Kamalanathan, Arunagiri

    2017-01-01

    Background: Carbapenemase-producing Enterobacteriaceae (CPE) have increased in recent years leading to limitations of treatment options. The present study was undertaken to detect CPE, risk factors for acquiring them and their impact on clinical outcomes. Methods: This retrospective observational study included 111 clinically significant Enterobacteriaceae resistant to cephalosporins subclass III and exhibiting a positive modified Hodge test. Screening for carbapenemase production was done by phenotypic methods, and polymerase chain reaction was performed to detect genes encoding them. Retrospectively, the medical records of the patients were perused to assess risk factors for infections with CPE and their impact. The data collected were duration of hospital stay, Intensive Care Unit (ICU) stay, use of invasive devices, mechanical ventilation, the presence of comorbidities, and antimicrobial therapy. The outcome was followed up. Univariate and multivariate analysis of the data were performed using SPSS software. Results: Carbapenemase-encoding genes were detected in 67 isolates. The genes detected were New Delhi metallo-β-lactamase, Verona integron-encoded metallo-β-lactamase, and oxacillinase-181.Although univariate analysis identified risk factors associated with acquiring CPE infections as ICU stay (P = 0.021), mechanical ventilation (P = 0.013), indwelling device (P = 0.011), diabetes mellitus (P = 0.036), usage of multiple antimicrobial agents (P = 0.007), administration of carbapenems (P = 0.042), presence of focal infection or sepsis (P = 0.013), and surgical interventions (P = 0.016), multivariate analysis revealed that all these factors were insignificant. Mortality rate was 56.7% in patients with CPE infections. By both univariate and multivariate analysis of impact of the variables on mortality in these patients, the significant factors were mechanical ventilation (odds ratio [OR]: 0.141, 95% confidence interval [CI]: 0.024–0.812) and presence of indwelling invasive device (OR: 8.034; 95% CI: 2.060–31.335). Conclusion: In this study, no specific factor was identified as an independent risk for acquisition of CPE infection. However, as it is evident by multivariate analysis, there is an increased risk of mortality in patients with CPE infections when they are ventilated and are supported by indwelling devices. PMID:28251105

  15. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    PubMed

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The result of adjuvant chemotherapy for localized pT3 upper urinary tract carcinoma in a multi-institutional study.

    PubMed

    Kawashima, Atsunari; Nakai, Yasutomo; Nakayama, Masashi; Ujike, Takeshi; Tanigawa, Go; Ono, Yutaka; Kamoto, Akihito; Takada, Tsuyosi; Yamaguchi, Yuichiro; Takayama, Hitoshi; Nishimura, Kazuo; Nonomura, Norio; Tsujimura, Akira

    2012-10-01

    To determine through the analysis of our multi-institutional database whether postoperative adjuvant chemotherapy for upper urinary tract carcinoma with localized invasive upper urinary tract carcinoma (UUTC) is beneficial. A study population of 93 patients with pT3N0/xM0 UUTC was eligible for this study. Clinical features evaluated were sex, tumor location, adjuvant chemotherapy status, tumor pathology (histology, grade, infiltrating growth, lymphovascular invasion (LVI)), and cause of death. Cancer-specific survival (CSS) was estimated by Kaplan-Meier method. Prognostic factors related to CSS were analyzed by Cox proportional hazards regression model for multivariate analysis. In pT3 patients, overall 5-year CSS rate was 68.4% and median CSS time was 31 months (range 3-114 months). In the adjuvant chemotherapy group, 5-year CSS rate was 80.8%, whereas 5-year CSS rate was 64.4% in the non-adjuvant chemotherapy group. By multivariate analysis, adjuvant chemotherapy status was significantly associated with CSS (P = 0.008) were sex, tumor grade, tumor histology, and LVI presence. This study, although it was retrospective study, revealed that adjuvant chemotherapy after RNU may be beneficial in pT3N0/X patients by multivariate analysis. Prospective studies evaluating adjuvant therapy regimens for UTTC are required.

  17. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing

    PubMed Central

    STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL

    2015-01-01

    Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749

  18. Some Tests of Randomness with Applications

    DTIC Science & Technology

    1981-02-01

    freedom. For further details, the reader is referred to Gnanadesikan (1977, p. 169) wherein other relevant tests are also given, Graphical tests, as...sample from a gamma distri- bution. J. Am. Statist. Assoc. 71, 480-7. Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate

  19. College Student Invulnerability Beliefs and HIV Vaccine Acceptability

    ERIC Educational Resources Information Center

    Ravert, Russell D.; Zimet, Gregory D.

    2009-01-01

    Objective: To examine behavioral history, beliefs, and vaccine characteristics as predictors of HIV vaccine acceptability. Methods: Two hundred forty-five US under graduates were surveyed regarding their sexual history, risk beliefs, and likelihood of accepting hypothetical HIV vaccines. Results: Multivariate regression analysis indicated that…

  20. A multivariate variational objective analysis-assimilation method. Part 2: Case study results with and without satellite data

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Kidder, Stanley Q.; Scott, Robert W.

    1988-01-01

    The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective measurement errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which: (1) the assimilated fields satisfy the dynamical constraints, (2) the assimilated fields depart from the observations, and (3) the assimilated fields are judged to be realistic through pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems.

  1. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  2. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis

    PubMed Central

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  3. Prognostic predictors of patients with carcinoma of the gastric cardia.

    PubMed

    Zhang, Ming; Li, Zhigao; Ma, Yan; Zhu, Guanyu; Zhang, Hongfeng; Xue, Yingwei

    2012-05-01

    This study gives insight into survival predictors and clinicopathological features of carcinoma of the gastric cardia. The study included 233 patients who underwent operation for carcinoma of the gastric cardia. Clinicopathological prognostic variables were evaluated as predictors of long-term survival by univariate and multivariate analysis. Cox regression was used for multivariate analysis and survival curves were drawn by the Kaplan- Meier method. Carcinoma of the gastric cardia was characterized by positive lymph node metastasis (77.3%), serosal invasion (83.3%) and more stage III or IV tumors (72.5%). Overall 5-year survival rate was 21.9% and median survival period was 24 months. The 5-year survival rate was influenced by tumor size, depth on invasion, lymph node metastasis, extent of lymph node dissection, disease stage, operation methods and resection margin. The absent of serosal invasion and lymph node metastasis, curative resection should be considered to be the favourable predictors of long-term survival of patients with carcinoma of the gastric cardia.

  4. Geographically Sourcing Cocaine’s Origin – Delineation of the Nineteen Major Coca Growing Regions in South America

    PubMed Central

    Mallette, Jennifer R.; Casale, John F.; Jordan, James; Morello, David R.; Beyer, Paul M.

    2016-01-01

    Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions. PMID:27006288

  5. Towards the authentication of European sea bass origin through a combination of biometric measurements and multiple analytical techniques.

    PubMed

    Farabegoli, Federica; Pirini, Maurizio; Rotolo, Magda; Silvi, Marina; Testi, Silvia; Ghidini, Sergio; Zanardi, Emanuela; Remondini, Daniel; Bonaldo, Alessio; Parma, Luca; Badiani, Anna

    2018-06-08

    The authenticity of fish products has become an imperative issue for authorities involved in the protection of consumers against fraudulent practices and in the market stabilization. The present study aimed to provide a method for authentication of European sea bass (Dicentrarchus labrax) according to the requirements for seafood labels (Regulation 1379/2013/EU). Data on biometric traits, fatty acid profile, elemental composition, and isotopic abundance of wild and reared (intensively, semi-intensively and extensively) specimens from 18 Southern European sources (n = 160) were collected and clustered in 6 sets of parameters, then subjected to multivariate analysis. Correct allocations of subjects according to their production method, origin and stocking density were demonstrated with good approximation rates (94%, 92% and 92%, respectively) using fatty acid profiles. Less satisfying results were obtained using isotopic abundance, biometric traits, and elemental composition. The multivariate analysis also revealed that extensively reared subjects cannot be analytically discriminated from wild ones.

  6. Kidney transplantation from deceased donors with elevated serum creatinine.

    PubMed

    Gallinat, Anja; Leerhoff, Sabine; Paul, Andreas; Molmenti, Ernesto P; Schulze, Maren; Witzke, Oliver; Sotiropoulos, Georgios C

    2016-12-01

    Elevated donor serum creatinine has been associated with inferior graft survival in kidney transplantation (KT). The aim of this study was to evaluate the impact of elevated donor serum creatinine on short and long-term outcomes and to determine possible ways to optimize the use of these organs. All kidney transplants from 01-2000 to 12-2012 with donor creatinine ≥ 2 mg/dl were considered. Risk factors for delayed graft function (DGF) were explored with uni- and multivariate regression analyses. Donor and recipient data were analyzed with uni- and multivariate cox proportional hazard analyses. Graft and patient survival were calculated using the Kaplan-Meier method. Seventy-eight patients were considered. Median recipient age and waiting time on dialysis were 53 years and 5.1 years, respectively. After a median follow-up of 6.2 years, 63 patients are alive. 1, 3, and 5-year graft and patient survival rates were 92, 89, and 89 % and 96, 93, and 89 %, respectively. Serum creatinine level at procurement and recipient's dialysis time prior to KT were predictors of DGF in multivariate analysis (p = 0.0164 and p = 0.0101, respectively). Charlson comorbidity score retained statistical significance by multivariate regression analysis for graft survival (p = 0.0321). Recipient age (p = 0.0035) was predictive of patient survival by multivariate analysis. Satisfactory long-term kidney transplant outcomes in the setting of elevated donor serum creatinine ≥2 mg/dl can be achieved when donor creatinine is <3.5 mg/dl, and the recipient has low comorbidities, is under 56 years of age, and remains in dialysis prior to KT for <6.8 years.

  7. Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi

    2011-07-01

    In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.

  8. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  9. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    NASA Astrophysics Data System (ADS)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  10. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    PubMed

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms.

    PubMed

    Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari

    2013-05-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.

  12. Pretreatment Health Behaviors Predict Survival Among Patients With Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Duffy, Sonia A.; Ronis, David L.; McLean, Scott; Fowler, Karen E.; Gruber, Stephen B.; Wolf, Gregory T.; Terrell, Jeffrey E.

    2009-01-01

    Purpose Our prior work has shown that the health behaviors of head and neck cancer patients are interrelated and are associated with quality of life; however, other than smoking, the relationship between health behaviors and survival is unclear. Patients and Methods A prospective cohort study was conducted to determine the relationship between five pretreatment health behaviors (smoking, alcohol, diet, physical activity, and sleep) and all-cause survival among 504 head and neck cancer patients. Results Smoking status was the strongest predictor of survival, with both current smokers (hazard ratio [HR] = 2.4; 95% CI, 1.3 to 4.4) and former smokers (HR = 2.0; 95% CI, 1.2 to 3.5) showing significant associations with poor survival. Problem drinking was associated with survival in the univariate analysis (HR = 1.4; 95% CI, 1.0 to 2.0) but lost significance when controlling for other factors. Low fruit intake was negatively associated with survival in the univariate analysis only (HR = 1.6; 95% CI, 1.1 to 2.1), whereas vegetable intake was not significant in either univariate or multivariate analyses. Although physical activity was associated with survival in the univariate analysis (HR = 0.95; 95% CI, 0.93 to 0.97), it was not significant in the multivariate model. Sleep was not significantly associated with survival in either univariate or multivariate analysis. Control variables that were also independently associated with survival in the multivariate analysis were age, education, tumor site, cancer stage, and surgical treatment. Conclusion Variation in selected pretreatment health behaviors (eg, smoking, fruit intake, and physical activity) in this population is associated with variation in survival. PMID:19289626

  13. Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.

    PubMed

    Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin

    2018-06-01

    Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  15. Sampling effort affects multivariate comparisons of stream assemblages

    USGS Publications Warehouse

    Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.

    2002-01-01

    Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.

  16. Rapid discrimination of sea buckthorn berries from different H. rhamnoides subspecies by multi-step IR spectroscopy coupled with multivariate data analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Zhang, Ying; Zhang, Jing; Fan, Gang; Tu, Ya; Sun, Suqin; Shen, Xudong; Li, Qingzhu; Zhang, Yi

    2018-03-01

    As an important ethnic medicine, sea buckthorn was widely used to prevent and treat various diseases due to its nutritional and medicinal properties. According to the Chinese Pharmacopoeia, sea buckthorn was originated from H. rhamnoides, which includes five subspecies distributed in China. Confusion and misidentification usually occurred due to their similar morphology, especially in dried and powdered forms. Additionally, these five subspecies have vital differences in quality and physiological efficacy. This paper focused on the quick classification and identification method of sea buckthorn berry powders from five H. rhamnoides subspecies using multi-step IR spectroscopy coupled with multivariate data analysis. The holistic chemical compositions revealed by the FT-IR spectra demonstrated that flavonoids, fatty acids and sugars were the main chemical components. Further, the differences in FT-IR spectra regarding their peaks, positions and intensities were used to identify H. rhamnoides subspecies samples. The discrimination was achieved using principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). The results showed that the combination of multi-step IR spectroscopy and chemometric analysis offered a simple, fast and reliable method for the classification and identification of the sea buckthorn berry powders from different H. rhamnoides subspecies.

  17. Simultaneous Determination of Metamizole, Thiamin and Pyridoxin Using UV-Spectroscopy in Combination with Multivariate Calibration

    PubMed Central

    Chotimah, Chusnul; Sudjadi; Riyanto, Sugeng; Rohman, Abdul

    2015-01-01

    Purpose: Analysis of drugs in multicomponent system officially is carried out using chromatographic technique, however, this technique is too laborious and involving sophisticated instrument. Therefore, UV-VIS spectrophotometry coupled with multivariate calibration of partial least square (PLS) for quantitative analysis of metamizole, thiamin and pyridoxin is developed in the presence of cyanocobalamine without any separation step. Methods: The calibration and validation samples are prepared. The calibration model is prepared by developing a series of sample mixture consisting these drugs in certain proportion. Cross validation of calibration sample using leave one out technique is used to identify the smaller set of components that provide the greatest predictive ability. The evaluation of calibration model was based on the coefficient of determination (R2) and root mean square error of calibration (RMSEC). Results: The results showed that the coefficient of determination (R2) for the relationship between actual values and predicted values for all studied drugs was higher than 0.99 indicating good accuracy. The RMSEC values obtained were relatively low, indicating good precision. The accuracy and presision results of developed method showed no significant difference compared to those obtained by official method of HPLC. Conclusion: The developed method (UV-VIS spectrophotometry in combination with PLS) was succesfully used for analysis of metamizole, thiamin and pyridoxin in tablet dosage form. PMID:26819934

  18. [Mortality in early-stage, surgically resected non-small cell lung cancer less than 3 cm of size: Competing risk analysis].

    PubMed

    Jordá Aragón, Carlos; Peñalver Cuesta, Juan Carlos; Mancheño Franch, Nuria; de Aguiar Quevedo, Karol; Vera Sempere, Francisco; Padilla Alarcón, José

    2015-09-07

    Survival studies of non-small cell lung cancer (NSCLC) are usually based on the Kaplan-Meier method. However, other factors not covered by this method may modify the observation of the event of interest. There are models of cumulative incidence (CI), that take into account these competing risks, enabling more accurate survival estimates and evaluation of the risk of death from other causes. We aimed to evaluate these models in resected early-stage NSCLC patients. This study included 263 patients with resected NSCLC whose diameter was ≤ 3 cm without node involvement (N0). Demographic, clinical, morphopathological and surgical variables, TNM classification and long-term evolution were analysed. To analyse CI, death by another cause was considered to be competitive event. For the univariate analysis, Gray's method was used, while Fine and Gray's method was employed for the multivariate analysis. Mortality by NSCLC was 19.4% at 5 years and 14.3% by another cause. Both curves crossed at 6.3 years, and probability of death by another cause became greater from this point. In multivariate analysis, cancer mortality was conditioned by visceral pleural invasion (VPI) (P=.001) and vascular invasion (P=.020), with age>50 years (P=.034), smoking (P=.009) and the Charlson index ≥ 2 (P=.000) being by no cancer. By the method of CI, VPI and vascular invasion conditioned cancer death in NSCLC >3 cm, while non-tumor causes of long-term death were determined. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  19. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  20. Multivariate pattern analysis of fMRI data reveals deficits in distributed representations in schizophrenia

    PubMed Central

    Yoon, Jong H.; Tamir, Diana; Minzenberg, Michael J.; Ragland, J. Daniel; Ursu, Stefan; Carter, Cameron S.

    2009-01-01

    Background Multivariate pattern analysis is an alternative method of analyzing fMRI data, which is capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed representations in schizophrenia. We also compared the results of this method with traditional GLM-based univariate analysis. Methods 19 schizophrenia and 15 control subjects viewed two runs of stimuli--exemplars of faces, scenes, objects, and scrambled images. To verify engagement with stimuli, subjects completed a 1-back matching task. A multi-voxel pattern classifier was trained to identify category-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of voxel-wise activity across runs evaluated variance over time in activity patterns. Results Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished classification accuracy in patients compared to controls, 59% and 72% respectively. In contrast, there was no group difference in GLM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups showed highly significant correlation between inter-run correlations and classification accuracy. Conclusions Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished task performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with univariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of non-specific factors driving these results. PMID:18822407

  1. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia

    1987-01-01

    A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.

  2. Application of quality by design concepts in the development of fluidized bed granulation and tableting processes.

    PubMed

    Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana

    2013-06-01

    This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.

  3. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

    PubMed

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger

    2013-09-15

    The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Drop coating deposition Raman spectroscopy of blood plasma for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Li, Pengpeng; Chen, Changshui; Deng, Xiaoyuan; Mao, Hua; Jin, Shaoqin

    2015-03-01

    We have recently applied the technique of drop coating deposition Raman (DCDR) spectroscopy for colorectal cancer (CRC) detection using blood plasma. The aim of this study was to develop a more convenient and stable method based on blood plasma for noninvasive CRC detection. Significant differences are observed in DCDR spectra between healthy (n=105) and cancer (n=75) plasma from 15 CRC patients and 21 volunteers, particularly in the spectra that are related to proteins, nucleic acids, and β-carotene. The multivariate analysis principal components analysis and the linear discriminate analysis, together with leave-one-out, cross validation were used on DCDR spectra and yielded a sensitivity of 100% (75/75) and specificity of 98.1% (103/105) for detection of CRC. This study demonstrates that DCDR spectroscopy of blood plasma associated with multivariate statistical algorithms has the potential for the noninvasive detection of CRC.

  5. The Effects of Computer-Assisted Instruction Based on Top-Level Structure Method in English Reading and Writing Abilities of Thai EFL Students

    ERIC Educational Resources Information Center

    Jinajai, Nattapong; Rattanavich, Saowalak

    2015-01-01

    This research aims to study the development of ninth grade students' reading and writing abilities and interests in learning English taught through computer-assisted instruction (CAI) based on the top-level structure (TLS) method. An experimental group time series design was used, and the data was analyzed by multivariate analysis of variance…

  6. Combine bivariate statistics analysis and multivariate statistics analysis to assess landslide susceptibility in Chen-Yu-Lan watershed, Nantou, Taiwan.

    NASA Astrophysics Data System (ADS)

    Ngan Nguyen, Thi To; Liu, Cheng-Chien

    2013-04-01

    How landslides occurred and which factors triggered and sped up landslide occurrences were usually asked by researchers in the past decades. Many investigations carried out in many places in the world to finding out methods that predict and prevent damages from landslides phenomena. Chen-Yu-Lan River watershed is reputed as a 'hot pot' of landslide researches in Taiwan by its complicated geological structures with the significant tectonic fault systems and steeply mountainous terrain. Beside annual high precipitation concentration and the abrupt slopes, some natural disaster, as typhoons (Sinlaku-2008, Kalmaegi-2008, and Marakot-2009) and earthquake (Chi-Chi earthquake-1999) are also the triggered factors cause landslides with serious damages in this place. This research expresses the quantitative approaches to generate landslide susceptible map for Chen-Yu-Lan watershed, a mountainous area in the central Taiwan. Landslide inventories data, which were detected from the Formosat-2 imageries for eight years from 2004 to 2011, were applied to carry out landslide susceptibility mapping. Bivariate statistics analysis and multivariate statistics analysis would be applied to calculate susceptible index of landslides. The weights of parameters were computed based on landslide data for eight years from 2004 to 2011. To validate effective levels of factors to landslide occurrences, this method built some multivariate algorithms and compared these results with real landslide occurrences. Besides this method, the historical data of landslides were also used to assess and classify landslide susceptibility levels. From long-term landslide data, relation between landslide susceptibility levels and landslide repetition was assigned. The results demonstrated differently effective levels of potential factors, such as, slope gradient, drainage density, lithology and land use to landslide phenomena. The results also showed logical relationship between weights and characteristics of factors' classes. Depending on these results be able to help planning managers localize the high risk areas of landslide or safely areas by building and human activities.

  7. Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.

    PubMed

    Mair, Patrick; Satorra, Albert; Bentler, Peter M

    2012-07-01

    This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo evaluation of structural equation models within the context of nonnormal data. The new procedure for nonnormal data simulation is theoretically described and also implemented in the widely used R environment. The quality of the method is assessed by Monte Carlo simulations. A 1-sample test on the observed covariance matrix based on the copula methodology is proposed. This new test for evaluating the quality of a simulation is defined through a particular structural model specification and is robust against normality violations.

  8. The Python Spectral Analysis Tool (PySAT) for Powerful, Flexible, and Easy Preprocessing and Machine Learning with Point Spectral Data

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.

    2018-04-01

    The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.

  9. Mapping the Diversity among Runaways: A Descriptive Multivariate Analysis of Selected Social Psychological Background Conditions.

    ERIC Educational Resources Information Center

    Brennan, Tim

    1980-01-01

    A review of prior classification systems of runaways is followed by a descriptive taxonomy of runaways developed using cluster-analytic methods. The empirical types illustrate patterns of weakness in bonds between runaways and families, schools, or peer relationships. (Author)

  10. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  11. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle

    PubMed Central

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008

  12. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle.

    PubMed

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection.

  13. A FORTRAN program for multivariate survival analysis on the personal computer.

    PubMed

    Mulder, P G

    1988-01-01

    In this paper a FORTRAN program is presented for multivariate survival or life table regression analysis in a competing risks' situation. The relevant failure rate (for example, a particular disease or mortality rate) is modelled as a log-linear function of a vector of (possibly time-dependent) explanatory variables. The explanatory variables may also include the variable time itself, which is useful for parameterizing piecewise exponential time-to-failure distributions in a Gompertz-like or Weibull-like way as a more efficient alternative to Cox's proportional hazards model. Maximum likelihood estimates of the coefficients of the log-linear relationship are obtained from the iterative Newton-Raphson method. The program runs on a personal computer under DOS; running time is quite acceptable, even for large samples.

  14. Ordinary chondrites - Multivariate statistical analysis of trace element contents

    NASA Technical Reports Server (NTRS)

    Lipschutz, Michael E.; Samuels, Stephen M.

    1991-01-01

    The contents of mobile trace elements (Co, Au, Sb, Ga, Se, Rb, Cs, Te, Bi, Ag, In, Tl, Zn, and Cd) in Antarctic and non-Antarctic populations of H4-6 and L4-6 chondrites, were compared using standard multivariate discriminant functions borrowed from linear discriminant analysis and logistic regression. A nonstandard randomization-simulation method was developed, making it possible to carry out probability assignments on a distribution-free basis. Compositional differences were found both between the Antarctic and non-Antarctic H4-6 chondrite populations and between two L4-6 chondrite populations. It is shown that, for various types of meteorites (in particular, for the H4-6 chondrites), the Antarctic/non-Antarctic compositional difference is due to preterrestrial differences in the genesis of their parent materials.

  15. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data.

    PubMed

    Nielsen, Allan Aasbjerg

    2002-01-01

    This paper describes two- and multiset canonical correlations analysis (CCA) for data fusion, multisource, multiset, or multitemporal exploratory data analysis. These techniques transform multivariate multiset data into new orthogonal variables called canonical variates (CVs) which, when applied in remote sensing, exhibit ever-decreasing similarity (as expressed by correlation measures) over sets consisting of 1) spectral variables at fixed points in time (R-mode analysis), or 2) temporal variables with fixed wavelengths (T-mode analysis). The CVs are invariant to linear and affine transformations of the original variables within sets which means, for example, that the R-mode CVs are insensitive to changes over time in offset and gain in a measuring device. In a case study, CVs are calculated from Landsat Thematic Mapper (TM) data with six spectral bands over six consecutive years. Both Rand T-mode CVs clearly exhibit the desired characteristic: they show maximum similarity for the low-order canonical variates and minimum similarity for the high-order canonical variates. These characteristics are seen both visually and in objective measures. The results from the multiset CCA R- and T-mode analyses are very different. This difference is ascribed to the noise structure in the data. The CCA methods are related to partial least squares (PLS) methods. This paper very briefly describes multiset CCA-based multiset PLS. Also, the CCA methods can be applied as multivariate extensions to empirical orthogonal functions (EOF) techniques. Multiset CCA is well-suited for inclusion in geographical information systems (GIS).

  16. Big-Data RHEED analysis for understanding epitaxial film growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less

  17. Simple and Multivariate Relationships Between Spiritual Intelligence with General Health and Happiness.

    PubMed

    Amirian, Mohammad-Elyas; Fazilat-Pour, Masoud

    2016-08-01

    The present study examined simple and multivariate relationships of spiritual intelligence with general health and happiness. The employed method was descriptive and correlational. King's Spiritual Quotient scales, GHQ-28 and Oxford Happiness Inventory, are filled out by a sample consisted of 384 students, which were selected using stratified random sampling from the students of Shahid Bahonar University of Kerman. Data are subjected to descriptive and inferential statistics including correlations and multivariate regressions. Bivariate correlations support positive and significant predictive value of spiritual intelligence toward general health and happiness. Further analysis showed that among the Spiritual Intelligence' subscales, Existential Critical Thinking Predicted General Health and Happiness, reversely. In addition, happiness was positively predicted by generation of personal meaning and transcendental awareness. The findings are discussed in line with the previous studies and the relevant theoretical background.

  18. Multivariate Cluster Analysis.

    ERIC Educational Resources Information Center

    McRae, Douglas J.

    Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…

  19. Influence of microclimatic ammonia levels on productive performance of different broilers’ breeds estimated with univariate and multivariate approaches

    PubMed Central

    Soliman, Essam S.; Moawed, Sherif A.; Hassan, Rania A.

    2017-01-01

    Background and Aim: Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people’s health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. Materials and Methods: A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Results: Ammonia levels were significantly higher (p< 0.01) in the Ross compared to the Hubbard breed farm, although no significant differences (p>0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (p< 0.01) during fall compared to winter irrespective of broiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p< 0.01), but not with the ambient temperature (r=−0.045; p>0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. Conclusion: The study revealed that broiler’s growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers’ growth performance parameters data using multivariate discriminant function analysis. PMID:28919677

  20. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo.

    PubMed

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E

    2016-07-01

    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Recent Advances in Resting-State Electroencephalography Biomarkers for Autism Spectrum Disorder-A Review of Methodological and Clinical Challenges.

    PubMed

    Heunis, Tosca-Marie; Aldrich, Chris; de Vries, Petrus J

    2016-08-01

    Electroencephalography (EEG) has been used for almost a century to identify seizure-related disorders in humans, typically through expert interpretation of multichannel recordings. Attempts have been made to quantify EEG through frequency analyses and graphic representations. These "traditional" quantitative EEG analysis methods were limited in their ability to analyze complex and multivariate data and have not been generally accepted in clinical settings. There has been growing interest in identification of novel EEG biomarkers to detect early risk of autism spectrum disorder, to identify clinically meaningful subgroups, and to monitor targeted intervention strategies. Most studies to date have, however, used quantitative EEG approaches, and little is known about the emerging multivariate analytical methods or the robustness of candidate biomarkers in the context of the variability of autism spectrum disorder. Here, we present a targeted review of methodological and clinical challenges in the search for novel resting-state EEG biomarkers for autism spectrum disorder. Three primary novel methodologies are discussed: (1) modified multiscale entropy, (2) coherence analysis, and (3) recurrence quantification analysis. Results suggest that these methods may be able to classify resting-state EEG as "autism spectrum disorder" or "typically developing", but many signal processing questions remain unanswered. We suggest that the move to novel EEG analysis methods is akin to the progress in neuroimaging from visual inspection, through region-of-interest analysis, to whole-brain computational analysis. Novel resting-state EEG biomarkers will have to evaluate a range of potential demographic, clinical, and technical confounders including age, gender, intellectual ability, comorbidity, and medication, before these approaches can be translated into the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Applying Multivariate Adaptive Splines to Identify Genes With Expressions Varying After Diagnosis in Microarray Experiments.

    PubMed

    Duan, Fenghai; Xu, Ye

    2017-01-01

    To analyze a microarray experiment to identify the genes with expressions varying after the diagnosis of breast cancer. A total of 44 928 probe sets in an Affymetrix microarray data publicly available on Gene Expression Omnibus from 249 patients with breast cancer were analyzed by the nonparametric multivariate adaptive splines. Then, the identified genes with turning points were grouped by K-means clustering, and their network relationship was subsequently analyzed by the Ingenuity Pathway Analysis. In total, 1640 probe sets (genes) were reliably identified to have turning points along with the age at diagnosis in their expression profiling, of which 927 expressed lower after turning points and 713 expressed higher after the turning points. K-means clustered them into 3 groups with turning points centering at 54, 62.5, and 72, respectively. The pathway analysis showed that the identified genes were actively involved in various cancer-related functions or networks. In this article, we applied the nonparametric multivariate adaptive splines method to a publicly available gene expression data and successfully identified genes with expressions varying before and after breast cancer diagnosis.

  3. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  4. Apolipoprotein E Polymorphism and Left Ventricular Failure in Beta-Thalassemia: A Multivariate Meta-Analysis.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Bagos, Pantelis G

    2017-09-01

    Apolipoprotein E (ApoE) is potentially a genetic risk factor for the development of left ventricular failure (LVF), the main cause of death in beta-thalassemia homozygotes. In the present study, we synthesize the results of independent studies examining the effect of ApoE on LVF development in thalassemic patients through a meta-analytic approach. However, all studies report more than one outcome, as patients are classified into three groups according to the severity of the symptoms and the genetic polymorphism. Thus, a multivariate meta-analytic method that addresses simultaneously multiple exposures and multiple comparison groups was developed. Four individual studies were included in the meta-analysis involving 613 beta-thalassemic patients and 664 controls. The proposed method that takes into account the correlation of log odds ratios (log(ORs)), revealed a statistically significant overall association (P-value  =  0.009), mainly attributed to the contrast of E4 versus E3 allele for patients with evidence (OR: 2.32, 95% CI: 1.19, 4.53) or patients with clinical and echocardiographic findings (OR: 3.34, 95% CI: 1.78, 6.26) of LVF. This study suggests that E4 is a genetic risk factor for LVF in beta-thalassemia major. The presented multivariate approach can be applied in several fields of research. © 2017 John Wiley & Sons Ltd/University College London.

  5. Tailored multivariate analysis for modulated enhanced diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni

    2015-10-21

    Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. The multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). When applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. To develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less

  6. Comparative study of the efficiency of computed univariate and multivariate methods for the estimation of the binary mixture of clotrimazole and dexamethasone using two different spectral regions

    NASA Astrophysics Data System (ADS)

    Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Lotfy, Hayam Mahmoud; Shehata, Mostafa Abdel-Aty

    2018-04-01

    Three methods of analysis are conducted that need computational procedures by the Matlab® software. The first is the univariate mean centering method which eliminates the interfering signal of the one component at a selected wave length leaving the amplitude measured to represent the component of interest only. The other two multivariate methods named PLS and PCR depend on a large number of variables that lead to extraction of the maximum amount of information required to determine the component of interest in the presence of the other. Good accurate and precise results are obtained from the three methods for determining clotrimazole in the linearity range 1-12 μg/mL and 75-550 μg/mL with dexamethasone acetate 2-20 μg/mL in synthetic mixtures and pharmaceutical formulation using two different spectral regions 205-240 nm and 233-278 nm. The results obtained are compared statistically to each other and to the official methods.

  7. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis.

    PubMed

    Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz

    2010-08-06

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.

  8. Composting of cow dung and crop residues using termite mounds as bulking agent.

    PubMed

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  10. Creativity, Bipolar Disorder Vulnerability and Psychological Well-Being: A Preliminary Study

    ERIC Educational Resources Information Center

    Gostoli, Sara; Cerini, Veronica; Piolanti, Antonio; Rafanelli, Chiara

    2017-01-01

    The aim of this research was to investigate the relationships between creativity, subclinical bipolar disorder symptomatology, and psychological well-being. The study method was of descriptive, correlational type. Significant tests were performed using multivariate regression analysis. Students of the 4th grade of 6 different Italian colleges…

  11. Comparative Robustness of Recent Methods for Analyzing Multivariate Repeated Measures Designs

    ERIC Educational Resources Information Center

    Seco, Guillermo Vallejo; Gras, Jaime Arnau; Garcia, Manuel Ato

    2007-01-01

    This study evaluated the robustness of two recent methods for analyzing multivariate repeated measures when the assumptions of covariance homogeneity and multivariate normality are violated. Specifically, the authors' work compares the performance of the modified Brown-Forsythe (MBF) procedure and the mixed-model procedure adjusted by the…

  12. Elimination of chromatographic and mass spectrometric problems in GC-MS analysis of Lavender essential oil by multivariate curve resolution techniques: Improving the peak purity assessment by variable size moving window-evolving factor analysis.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni-Pourasil, Roudabeh Sadat; Sereshti, Hassan

    2015-03-01

    In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The proposed methodology was applied to the GC-MS analysis of Iranian Lavender essential oil, which resulted in extending the number of identified constituents from 56 to 143 components. It was found that the most abundant constituents of the Iranian Lavender essential oil are α-pinene (16.51%), camphor (10.20%), 1,8-cineole (9.50%), bornyl acetate (8.11%) and camphene (6.50%). This indicates that the Iranian type Lavender contains a relatively high percentage of α-pinene. Comparison of different types of Lavender essential oils showed the composition similarity between Iranian and Italian (Sardinia Island) Lavenders. Published by Elsevier B.V.

  13. Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor hematopoietic cell transplantation.

    PubMed

    Marino, S R; Lin, S; Maiers, M; Haagenson, M; Spellman, S; Klein, J P; Binkowski, T A; Lee, S J; van Besien, K

    2012-02-01

    The identification of important amino acid substitutions associated with low survival in hematopoietic cell transplantation (HCT) is hampered by the large number of observed substitutions compared with the small number of patients available for analysis. Random forest analysis is designed to address these limitations. We studied 2107 HCT recipients with good or intermediate risk hematological malignancies to identify HLA class I amino acid substitutions associated with reduced survival at day 100 post transplant. Random forest analysis and traditional univariate and multivariate analyses were used. Random forest analysis identified amino acid substitutions in 33 positions that were associated with reduced 100 day survival, including HLA-A 9, 43, 62, 63, 76, 77, 95, 97, 114, 116, 152, 156, 166 and 167; HLA-B 97, 109, 116 and 156; and HLA-C 6, 9, 11, 14, 21, 66, 77, 80, 95, 97, 99, 116, 156, 163 and 173. In all 13 had been previously reported by other investigators using classical biostatistical approaches. Using the same data set, traditional multivariate logistic regression identified only five amino acid substitutions associated with lower day 100 survival. Random forest analysis is a novel statistical methodology for analysis of HLA mismatching and outcome studies, capable of identifying important amino acid substitutions missed by other methods.

  14. Relevant Feature Set Estimation with a Knock-out Strategy and Random Forests

    PubMed Central

    Ganz, Melanie; Greve, Douglas N.; Fischl, Bruce; Konukoglu, Ender

    2015-01-01

    Group analysis of neuroimaging data is a vital tool for identifying anatomical and functional variations related to diseases as well as normal biological processes. The analyses are often performed on a large number of highly correlated measurements using a relatively smaller number of samples. Despite the correlation structure, the most widely used approach is to analyze the data using univariate methods followed by post-hoc corrections that try to account for the data’s multivariate nature. Although widely used, this approach may fail to recover from the adverse effects of the initial analysis when local effects are not strong. Multivariate pattern analysis (MVPA) is a powerful alternative to the univariate approach for identifying relevant variations. Jointly analyzing all the measures, MVPA techniques can detect global effects even when individual local effects are too weak to detect with univariate analysis. Current approaches are successful in identifying variations that yield highly predictive and compact models. However, they suffer from lessened sensitivity and instabilities in identification of relevant variations. Furthermore, current methods’ user-defined parameters are often unintuitive and difficult to determine. In this article, we propose a novel MVPA method for group analysis of high-dimensional data that overcomes the drawbacks of the current techniques. Our approach explicitly aims to identify all relevant variations using a “knock-out” strategy and the Random Forest algorithm. In evaluations with synthetic datasets the proposed method achieved substantially higher sensitivity and accuracy than the state-of-the-art MVPA methods, and outperformed the univariate approach when the effect size is low. In experiments with real datasets the proposed method identified regions beyond the univariate approach, while other MVPA methods failed to replicate the univariate results. More importantly, in a reproducibility study with the well-known ADNI dataset the proposed method yielded higher stability and power than the univariate approach. PMID:26272728

  15. Detecting spatial regimes in ecosystems | Science Inventory ...

    EPA Pesticide Factsheets

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning

  16. A screening method based on UV-Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices.

    PubMed

    Boggia, Raffaella; Casolino, Maria Chiara; Hysenaj, Vilma; Oliveri, Paolo; Zunin, Paola

    2013-10-15

    Consumer demand for pomegranate juice has considerably grown, during the last years, for its potential health benefits. Since it is an expensive functional food, cheaper fruit juices addition (i.e., grape and apple juices) or its simple dilution, or polyphenols subtraction are deceptively used. At present, time-consuming analyses are used to control the quality of this product. Furthermore these analyses are expensive and require well-trained analysts. Thus, the purpose of this study was to propose a high-speed and easy-to-use shortcut. Based on UV-VIS spectroscopy and chemometrics, a screening method is proposed to quickly screening some common fillers of pomegranate juice that could decrease the antiradical scavenging capacity of pure products. The analytical method was applied to laboratory prepared juices, to commercial juices and to representative experimental mixtures at different levels of water and filler juices. The outcomes were evaluated by means of multivariate exploratory analysis. The results indicate that the proposed strategy can be a useful screening tool to assess addition of filler juices and water to pomegranate juices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Comparative evaluation of the powder and compression properties of various grades and brands of microcrystalline cellulose by multivariate methods.

    PubMed

    Haware, Rahul V; Bauer-Brandl, Annette; Tho, Ingunn

    2010-01-01

    The present work challenges a newly developed approach to tablet formulation development by using chemically identical materials (grades and brands of microcrystalline cellulose). Tablet properties with respect to process and formulation parameters (e.g. compression speed, added lubricant and Emcompress fractions) were evaluated by 2(3)-factorial designs. Tablets of constant true volume were prepared on a compaction simulator at constant pressure (approx. 100 MPa). The highly repeatable and accurate force-displacement data obtained was evaluated by simple 'in-die' Heckel method and work descriptors. Relationships and interactions between formulation, process and tablet parameters were identified and quantified by multivariate analysis techniques; principal component analysis (PCA) and partial least square regressions (PLS). The method proved to be able to distinguish between different grades of MCC and even between two different brands of the same grade (Avicel PH 101 and Vivapur 101). One example of interaction was studied in more detail by mixed level design: The interaction effect of lubricant and Emcompress on elastic recovery of Avicel PH 102 was demonstrated to be complex and non-linear using the development tool under investigation.

  18. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  19. A novel second-order standard addition analytical method based on data processing with multidimensional partial least-squares and residual bilinearization.

    PubMed

    Lozano, Valeria A; Ibañez, Gabriela A; Olivieri, Alejandro C

    2009-10-05

    In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.

  20. Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.

    PubMed

    Lee, Dongha; Jang, Changwon; Park, Hae-Jeong

    2015-03-01

    Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Systematic wavelength selection for improved multivariate spectral analysis

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  2. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  3. Delineation of estuarine management areas using multivariate geostatistics: the case of Sado Estuary.

    PubMed

    Caeiro, Sandra; Goovaerts, Pierre; Painho, Marco; Costa, M Helena

    2003-09-15

    The Sado Estuary is a coastal zone located in the south of Portugal where conflicts between conservation and development exist because of its location near industrialized urban zones and its designation as a natural reserve. The aim of this paper is to evaluate a set of multivariate geostatistical approaches to delineate spatially contiguous regions of sediment structure for Sado Estuary. These areas will be the supporting infrastructure of an environmental management system for this estuary. The boundaries of each homogeneous area were derived from three sediment characterization attributes through three different approaches: (1) cluster analysis of dissimilarity matrix function of geographical separation followed by indicator kriging of the cluster data, (2) discriminant analysis of kriged values of the three sediment attributes, and (3) a combination of methods 1 and 2. Final maximum likelihood classification was integrated into a geographical information system. All methods generated fairly spatially contiguous management areas that reproduce well the environment of the estuary. Map comparison techniques based on kappa statistics showed thatthe resultant three maps are similar, supporting the choice of any of the methods as appropriate for management of the Sado Estuary. However, the results of method 1 seem to be in better agreement with estuary behavior, assessment of contamination sources, and previous work conducted at this site.

  4. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1.

    PubMed

    Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel

    2014-01-01

    Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.

  5. LinkWinds: An Approach to Visual Data Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1992-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.

  6. An evaluation of the use of near infrared (NIR) spectroscopy to identify water and oil-borne preservatives

    Treesearch

    Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Todd F. Shupe

    2003-01-01

    In this research we experimented with a new and rapid way of analyzing wood. Near Infrared (NIR)spectroscopy together with multivariate analysis is becoming a widely used technique in the field of forest products especially for property determination and is already firmly established in the pulp and paper industry. This method is ideal for the chemical analysis of wood...

  7. Nonparametric analysis of Minnesota spruce and aspen tree data and LANDSAT data

    NASA Technical Reports Server (NTRS)

    Scott, D. W.; Jee, R.

    1984-01-01

    The application of nonparametric methods in data-intensive problems faced by NASA is described. The theoretical development of efficient multivariate density estimators and the novel use of color graphics workstations are reviewed. The use of nonparametric density estimates for data representation and for Bayesian classification are described and illustrated. Progress in building a data analysis system in a workstation environment is reviewed and preliminary runs presented.

  8. Predictors of retention in community-based methadone maintenance treatment program in Pearl River Delta, China

    PubMed Central

    2013-01-01

    Background The aims were to identify predictors of treatment retention in methadone maintenance treatment (MMT) clinics in Pearl River Delta, China. Methods Retrospective longitudinal study. Participants: 6 MMT clinics in rural and urban area were selected. Statistical analysis: Stratified random sampling was employed, and the data were analyzed using Kaplan-Meier survival curves and life table method. Protective or risk factors were explored using Cox’s proportional hazards model. Independent variables were enrolled in univariate analysis and among which significant variables were analyzed by multivariate analysis. Results A total of 2728 patients were enrolled. The median of the retention duration was 13.63 months, and the cumulative retention rates at 1,2,3 years were 53.0%, 35.0%, 20.0%, respectively. Multivariate Cox analysis showed: age, relationship with family, live on support from family or friends, income, considering treatment cost suitable, considering treatment open time suitable, addiction severity (daily expense for drug), communication with former drug taking peer, living in rural area, daily treatment dosage, sharing needles, re-admission and history of being arrested were predictors for MMT retention. Conclusions MMT retention rate in Guangdong was low and treatment skills and quality should be improved. Meanwhile, participation of family and society should be encouraged. PMID:23497263

  9. Fighting for Intelligence: A Brief Overview of the Academic Work of John L. Horn

    PubMed Central

    McArdle, John J.; Hofer, Scott M.

    2015-01-01

    John L. Horn (1928–2006) was a pioneer in multivariate thinking and the application of multivariate methods to research on intelligence and personality. His key works on individual differences in the methodological areas of factor analysis and the substantive areas of cognition are reviewed here. John was also our mentor, teacher, colleague, and friend. We overview John Horn’s main contributions to the field of intelligence by highlighting 3 issues about his methods of factor analysis and 3 of his substantive debates about intelligence. We first focus on Horn’s methodological demonstrations describing (a) the many uses of simulated random variables in exploratory factor analysis; (b) the exploratory uses of confirmatory factor analysis; and (c) the key differences between states, traits, and trait-changes. On a substantive basis, John believed that there were important individual differences among people in terms of cognition and personality. These sentiments led to his intellectual battles about (d) Spearman’s g theory of a unitary intelligence, (e) Guilford’s multifaceted model of intelligence, and (f) the Schaie and Baltes approach to defining the lack of decline of intelligence earlier in the life span. We conclude with a summary of John Horn’s unique approaches to dealing with common issues. PMID:26246642

  10. Comparative study of different approaches for multivariate image analysis in HPTLC fingerprinting of natural products such as plant resin.

    PubMed

    Ristivojević, Petar; Trifković, Jelena; Vovk, Irena; Milojković-Opsenica, Dušanka

    2017-01-01

    Considering the introduction of phytochemical fingerprint analysis, as a method of screening the complex natural products for the presence of most bioactive compounds, use of chemometric classification methods, application of powerful scanning and image capturing and processing devices and algorithms, advancement in development of novel stationary phases as well as various separation modalities, high-performance thin-layer chromatography (HPTLC) fingerprinting is becoming attractive and fruitful field of separation science. Multivariate image analysis is crucial in the light of proper data acquisition. In a current study, different image processing procedures were studied and compared in detail on the example of HPTLC chromatograms of plant resins. In that sense, obtained variables such as gray intensities of pixels along the solvent front, peak area and mean values of peak were used as input data and compared to obtained best classification models. Important steps in image analysis, baseline removal, denoising, target peak alignment and normalization were pointed out. Numerical data set based on mean value of selected bands and intensities of pixels along the solvent front proved to be the most convenient for planar-chromatographic profiling, although required at least the basic knowledge on image processing methodology, and could be proposed for further investigation in HPLTC fingerprinting. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  12. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  13. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India--spectroscopical approach.

    PubMed

    Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V

    2015-02-25

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W

    2014-06-01

    The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic subtyping methods, and can be used for L. monocytogenes strain typing by food industries and public health agencies to enable faster response and intervention to listeriosis outbreaks. FT-IR can also be applied for routine monitoring of the pathogen in food processing plants and for investigating postprocessing contamination because it is capable of differentiating heat-killed and viable L. monocytogenes populations. © 2014 Institute of Food Technologists®

  15. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  16. Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data

    PubMed Central

    McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen

    2016-01-01

    Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. PMID:26921716

  17. SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis.

    PubMed

    Aguirre-Gamboa, Raul; Trevino, Victor

    2014-06-01

    MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  19. Unbiased metabolite profiling by liquid chromatography-quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: classification of seven Lonicera species flower buds.

    PubMed

    Gao, Wen; Yang, Hua; Qi, Lian-Wen; Liu, E-Hu; Ren, Mei-Ting; Yan, Yu-Ting; Chen, Jun; Li, Ping

    2012-07-06

    Plant-based medicines become increasingly popular over the world. Authentication of herbal raw materials is important to ensure their safety and efficacy. Some herbs belonging to closely related species but differing in medicinal properties are difficult to be identified because of similar morphological and microscopic characteristics. Chromatographic fingerprinting is an alternative method to distinguish them. Existing approaches do not allow a comprehensive analysis for herbal authentication. We have now developed a strategy consisting of (1) full metabolic profiling of herbal medicines by rapid resolution liquid chromatography (RRLC) combined with quadrupole time-of-flight mass spectrometry (QTOF MS), (2) global analysis of non-targeted compounds by molecular feature extraction algorithm, (3) multivariate statistical analysis for classification and prediction, and (4) marker compounds characterization. This approach has provided a fast and unbiased comparative multivariate analysis of the metabolite composition of 33-batch samples covering seven Lonicera species. Individual metabolic profiles are performed at the level of molecular fragments without prior structural assignment. In the entire set, the obtained classifier for seven Lonicera species flower buds showed good prediction performance and a total of 82 statistically different components were rapidly obtained by the strategy. The elemental compositions of discriminative metabolites were characterized by the accurate mass measurement of the pseudomolecular ions and their chemical types were assigned by the MS/MS spectra. The high-resolution, comprehensive and unbiased strategy for metabolite data analysis presented here is powerful and opens the new direction of authentication in herbal analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. CD147 as a novel biomarker for predicting the prognosis and clinicopathological features of bladder cancer: a meta-analysis

    PubMed Central

    Li, Hongru; Xu, Yadong; Li, Hui

    2017-01-01

    Objective To assess the prognostic and clinicopathological characteristics of CD147 in human bladder cancer. Methods Studies on CD147 expression in bladder cancer were retrieved from PubMed, EMBASE, the Cochrane Library, Web of Science, China National Knowledge Infrastructure, and the WanFang databases. Outcomes were pooled with meta-analyzing softwares RevMan 5.3 and STATA 14.0. Results Twenty-four studies with 25 datasets demonstrated that CD147 expression was higher in bladder cancer than in non-cancer tissues (OR=43.64, P<0.00001). Moreover, this increase was associated with more advanced clinical stages (OR=73.89, P<0.0001), deeper invasion (OR=3.22, P<0.00001), lower histological differentiation (OR=4.54, P=0.0005), poorer overall survival (univariate analysis, HR=2.63, P<0.00001; multivariate analysis, HR=1.86, P=0.00036), disease specific survival (univariate analysis, HR=1.65, P=0.002), disease recurrence-free survival (univariate analysis, HR=2.78, P=0.001; multivariate analysis, HR=5.51, P=0.017), rate of recurrence (OR=1.91, P=0.0006), invasive depth (pT2∼T4 vs. pTa∼T1; OR=3.22, P<0.00001), and histological differentiation (low versus moderate-to-high; OR=4.54, P=0.0005). No difference was found among disease specific survival in multivariate analysis (P=0.067), lymph node metastasis (P=0.12), and sex (P=0.15). Conclusion CD147 could be a biomarker for early diagnosis, treatment, and prognosis of bladder cancer. PMID:28977970

Top